i915_sysfs.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Ben Widawsky <ben@bwidawsk.net>
  25. *
  26. */
  27. #include <linux/device.h>
  28. #include <linux/module.h>
  29. #include <linux/stat.h>
  30. #include <linux/sysfs.h>
  31. #include "intel_drv.h"
  32. #include "i915_drv.h"
  33. #define dev_to_drm_minor(d) dev_get_drvdata((d))
  34. #ifdef CONFIG_PM
  35. static u32 calc_residency(struct drm_device *dev, const u32 reg)
  36. {
  37. struct drm_i915_private *dev_priv = dev->dev_private;
  38. u64 raw_time; /* 32b value may overflow during fixed point math */
  39. u64 units = 128ULL, div = 100000ULL, bias = 100ULL;
  40. u32 ret;
  41. if (!intel_enable_rc6(dev))
  42. return 0;
  43. intel_runtime_pm_get(dev_priv);
  44. /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
  45. if (IS_VALLEYVIEW(dev)) {
  46. u32 reg, czcount_30ns;
  47. if (IS_CHERRYVIEW(dev))
  48. reg = CHV_CLK_CTL1;
  49. else
  50. reg = VLV_CLK_CTL2;
  51. czcount_30ns = I915_READ(reg) >> CLK_CTL2_CZCOUNT_30NS_SHIFT;
  52. if (!czcount_30ns) {
  53. WARN(!czcount_30ns, "bogus CZ count value");
  54. ret = 0;
  55. goto out;
  56. }
  57. units = 0;
  58. div = 1000000ULL;
  59. if (IS_CHERRYVIEW(dev)) {
  60. /* Special case for 320Mhz */
  61. if (czcount_30ns == 1) {
  62. div = 10000000ULL;
  63. units = 3125ULL;
  64. } else {
  65. /* chv counts are one less */
  66. czcount_30ns += 1;
  67. }
  68. }
  69. if (units == 0)
  70. units = DIV_ROUND_UP_ULL(30ULL * bias,
  71. (u64)czcount_30ns);
  72. if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
  73. units <<= 8;
  74. div = div * bias;
  75. }
  76. raw_time = I915_READ(reg) * units;
  77. ret = DIV_ROUND_UP_ULL(raw_time, div);
  78. out:
  79. intel_runtime_pm_put(dev_priv);
  80. return ret;
  81. }
  82. static ssize_t
  83. show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf)
  84. {
  85. struct drm_minor *dminor = dev_to_drm_minor(kdev);
  86. return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev));
  87. }
  88. static ssize_t
  89. show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  90. {
  91. struct drm_minor *dminor = dev_get_drvdata(kdev);
  92. u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6);
  93. return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
  94. }
  95. static ssize_t
  96. show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  97. {
  98. struct drm_minor *dminor = dev_to_drm_minor(kdev);
  99. u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p);
  100. if (IS_VALLEYVIEW(dminor->dev))
  101. rc6p_residency = 0;
  102. return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency);
  103. }
  104. static ssize_t
  105. show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  106. {
  107. struct drm_minor *dminor = dev_to_drm_minor(kdev);
  108. u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp);
  109. if (IS_VALLEYVIEW(dminor->dev))
  110. rc6pp_residency = 0;
  111. return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency);
  112. }
  113. static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL);
  114. static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL);
  115. static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL);
  116. static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL);
  117. static struct attribute *rc6_attrs[] = {
  118. &dev_attr_rc6_enable.attr,
  119. &dev_attr_rc6_residency_ms.attr,
  120. NULL
  121. };
  122. static struct attribute_group rc6_attr_group = {
  123. .name = power_group_name,
  124. .attrs = rc6_attrs
  125. };
  126. static struct attribute *rc6p_attrs[] = {
  127. &dev_attr_rc6p_residency_ms.attr,
  128. &dev_attr_rc6pp_residency_ms.attr,
  129. NULL
  130. };
  131. static struct attribute_group rc6p_attr_group = {
  132. .name = power_group_name,
  133. .attrs = rc6p_attrs
  134. };
  135. #endif
  136. static int l3_access_valid(struct drm_device *dev, loff_t offset)
  137. {
  138. if (!HAS_L3_DPF(dev))
  139. return -EPERM;
  140. if (offset % 4 != 0)
  141. return -EINVAL;
  142. if (offset >= GEN7_L3LOG_SIZE)
  143. return -ENXIO;
  144. return 0;
  145. }
  146. static ssize_t
  147. i915_l3_read(struct file *filp, struct kobject *kobj,
  148. struct bin_attribute *attr, char *buf,
  149. loff_t offset, size_t count)
  150. {
  151. struct device *dev = container_of(kobj, struct device, kobj);
  152. struct drm_minor *dminor = dev_to_drm_minor(dev);
  153. struct drm_device *drm_dev = dminor->dev;
  154. struct drm_i915_private *dev_priv = drm_dev->dev_private;
  155. int slice = (int)(uintptr_t)attr->private;
  156. int ret;
  157. count = round_down(count, 4);
  158. ret = l3_access_valid(drm_dev, offset);
  159. if (ret)
  160. return ret;
  161. count = min_t(size_t, GEN7_L3LOG_SIZE - offset, count);
  162. ret = i915_mutex_lock_interruptible(drm_dev);
  163. if (ret)
  164. return ret;
  165. if (dev_priv->l3_parity.remap_info[slice])
  166. memcpy(buf,
  167. dev_priv->l3_parity.remap_info[slice] + (offset/4),
  168. count);
  169. else
  170. memset(buf, 0, count);
  171. mutex_unlock(&drm_dev->struct_mutex);
  172. return count;
  173. }
  174. static ssize_t
  175. i915_l3_write(struct file *filp, struct kobject *kobj,
  176. struct bin_attribute *attr, char *buf,
  177. loff_t offset, size_t count)
  178. {
  179. struct device *dev = container_of(kobj, struct device, kobj);
  180. struct drm_minor *dminor = dev_to_drm_minor(dev);
  181. struct drm_device *drm_dev = dminor->dev;
  182. struct drm_i915_private *dev_priv = drm_dev->dev_private;
  183. struct intel_context *ctx;
  184. u32 *temp = NULL; /* Just here to make handling failures easy */
  185. int slice = (int)(uintptr_t)attr->private;
  186. int ret;
  187. if (!HAS_HW_CONTEXTS(drm_dev))
  188. return -ENXIO;
  189. ret = l3_access_valid(drm_dev, offset);
  190. if (ret)
  191. return ret;
  192. ret = i915_mutex_lock_interruptible(drm_dev);
  193. if (ret)
  194. return ret;
  195. if (!dev_priv->l3_parity.remap_info[slice]) {
  196. temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL);
  197. if (!temp) {
  198. mutex_unlock(&drm_dev->struct_mutex);
  199. return -ENOMEM;
  200. }
  201. }
  202. ret = i915_gpu_idle(drm_dev);
  203. if (ret) {
  204. kfree(temp);
  205. mutex_unlock(&drm_dev->struct_mutex);
  206. return ret;
  207. }
  208. /* TODO: Ideally we really want a GPU reset here to make sure errors
  209. * aren't propagated. Since I cannot find a stable way to reset the GPU
  210. * at this point it is left as a TODO.
  211. */
  212. if (temp)
  213. dev_priv->l3_parity.remap_info[slice] = temp;
  214. memcpy(dev_priv->l3_parity.remap_info[slice] + (offset/4), buf, count);
  215. /* NB: We defer the remapping until we switch to the context */
  216. list_for_each_entry(ctx, &dev_priv->context_list, link)
  217. ctx->remap_slice |= (1<<slice);
  218. mutex_unlock(&drm_dev->struct_mutex);
  219. return count;
  220. }
  221. static struct bin_attribute dpf_attrs = {
  222. .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)},
  223. .size = GEN7_L3LOG_SIZE,
  224. .read = i915_l3_read,
  225. .write = i915_l3_write,
  226. .mmap = NULL,
  227. .private = (void *)0
  228. };
  229. static struct bin_attribute dpf_attrs_1 = {
  230. .attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)},
  231. .size = GEN7_L3LOG_SIZE,
  232. .read = i915_l3_read,
  233. .write = i915_l3_write,
  234. .mmap = NULL,
  235. .private = (void *)1
  236. };
  237. static ssize_t gt_cur_freq_mhz_show(struct device *kdev,
  238. struct device_attribute *attr, char *buf)
  239. {
  240. struct drm_minor *minor = dev_to_drm_minor(kdev);
  241. struct drm_device *dev = minor->dev;
  242. struct drm_i915_private *dev_priv = dev->dev_private;
  243. int ret;
  244. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  245. intel_runtime_pm_get(dev_priv);
  246. mutex_lock(&dev_priv->rps.hw_lock);
  247. if (IS_VALLEYVIEW(dev_priv->dev)) {
  248. u32 freq;
  249. freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  250. ret = vlv_gpu_freq(dev_priv, (freq >> 8) & 0xff);
  251. } else {
  252. ret = dev_priv->rps.cur_freq * GT_FREQUENCY_MULTIPLIER;
  253. }
  254. mutex_unlock(&dev_priv->rps.hw_lock);
  255. intel_runtime_pm_put(dev_priv);
  256. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  257. }
  258. static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev,
  259. struct device_attribute *attr, char *buf)
  260. {
  261. struct drm_minor *minor = dev_to_drm_minor(kdev);
  262. struct drm_device *dev = minor->dev;
  263. struct drm_i915_private *dev_priv = dev->dev_private;
  264. return snprintf(buf, PAGE_SIZE, "%d\n",
  265. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  266. }
  267. static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  268. {
  269. struct drm_minor *minor = dev_to_drm_minor(kdev);
  270. struct drm_device *dev = minor->dev;
  271. struct drm_i915_private *dev_priv = dev->dev_private;
  272. int ret;
  273. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  274. mutex_lock(&dev_priv->rps.hw_lock);
  275. if (IS_VALLEYVIEW(dev_priv->dev))
  276. ret = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  277. else
  278. ret = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
  279. mutex_unlock(&dev_priv->rps.hw_lock);
  280. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  281. }
  282. static ssize_t gt_max_freq_mhz_store(struct device *kdev,
  283. struct device_attribute *attr,
  284. const char *buf, size_t count)
  285. {
  286. struct drm_minor *minor = dev_to_drm_minor(kdev);
  287. struct drm_device *dev = minor->dev;
  288. struct drm_i915_private *dev_priv = dev->dev_private;
  289. u32 val;
  290. ssize_t ret;
  291. ret = kstrtou32(buf, 0, &val);
  292. if (ret)
  293. return ret;
  294. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  295. mutex_lock(&dev_priv->rps.hw_lock);
  296. if (IS_VALLEYVIEW(dev_priv->dev))
  297. val = vlv_freq_opcode(dev_priv, val);
  298. else
  299. val /= GT_FREQUENCY_MULTIPLIER;
  300. if (val < dev_priv->rps.min_freq ||
  301. val > dev_priv->rps.max_freq ||
  302. val < dev_priv->rps.min_freq_softlimit) {
  303. mutex_unlock(&dev_priv->rps.hw_lock);
  304. return -EINVAL;
  305. }
  306. if (val > dev_priv->rps.rp0_freq)
  307. DRM_DEBUG("User requested overclocking to %d\n",
  308. val * GT_FREQUENCY_MULTIPLIER);
  309. dev_priv->rps.max_freq_softlimit = val;
  310. if (dev_priv->rps.cur_freq > val) {
  311. if (IS_VALLEYVIEW(dev))
  312. valleyview_set_rps(dev, val);
  313. else
  314. gen6_set_rps(dev, val);
  315. } else if (!IS_VALLEYVIEW(dev)) {
  316. /* We still need gen6_set_rps to process the new max_delay and
  317. * update the interrupt limits even though frequency request is
  318. * unchanged. */
  319. gen6_set_rps(dev, dev_priv->rps.cur_freq);
  320. }
  321. mutex_unlock(&dev_priv->rps.hw_lock);
  322. return count;
  323. }
  324. static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  325. {
  326. struct drm_minor *minor = dev_to_drm_minor(kdev);
  327. struct drm_device *dev = minor->dev;
  328. struct drm_i915_private *dev_priv = dev->dev_private;
  329. int ret;
  330. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  331. mutex_lock(&dev_priv->rps.hw_lock);
  332. if (IS_VALLEYVIEW(dev_priv->dev))
  333. ret = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  334. else
  335. ret = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
  336. mutex_unlock(&dev_priv->rps.hw_lock);
  337. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  338. }
  339. static ssize_t gt_min_freq_mhz_store(struct device *kdev,
  340. struct device_attribute *attr,
  341. const char *buf, size_t count)
  342. {
  343. struct drm_minor *minor = dev_to_drm_minor(kdev);
  344. struct drm_device *dev = minor->dev;
  345. struct drm_i915_private *dev_priv = dev->dev_private;
  346. u32 val;
  347. ssize_t ret;
  348. ret = kstrtou32(buf, 0, &val);
  349. if (ret)
  350. return ret;
  351. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  352. mutex_lock(&dev_priv->rps.hw_lock);
  353. if (IS_VALLEYVIEW(dev))
  354. val = vlv_freq_opcode(dev_priv, val);
  355. else
  356. val /= GT_FREQUENCY_MULTIPLIER;
  357. if (val < dev_priv->rps.min_freq ||
  358. val > dev_priv->rps.max_freq ||
  359. val > dev_priv->rps.max_freq_softlimit) {
  360. mutex_unlock(&dev_priv->rps.hw_lock);
  361. return -EINVAL;
  362. }
  363. dev_priv->rps.min_freq_softlimit = val;
  364. if (dev_priv->rps.cur_freq < val) {
  365. if (IS_VALLEYVIEW(dev))
  366. valleyview_set_rps(dev, val);
  367. else
  368. gen6_set_rps(dev, val);
  369. } else if (!IS_VALLEYVIEW(dev)) {
  370. /* We still need gen6_set_rps to process the new min_delay and
  371. * update the interrupt limits even though frequency request is
  372. * unchanged. */
  373. gen6_set_rps(dev, dev_priv->rps.cur_freq);
  374. }
  375. mutex_unlock(&dev_priv->rps.hw_lock);
  376. return count;
  377. }
  378. static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL);
  379. static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store);
  380. static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store);
  381. static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL);
  382. static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf);
  383. static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  384. static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  385. static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  386. /* For now we have a static number of RP states */
  387. static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  388. {
  389. struct drm_minor *minor = dev_to_drm_minor(kdev);
  390. struct drm_device *dev = minor->dev;
  391. struct drm_i915_private *dev_priv = dev->dev_private;
  392. u32 val, rp_state_cap;
  393. ssize_t ret;
  394. ret = mutex_lock_interruptible(&dev->struct_mutex);
  395. if (ret)
  396. return ret;
  397. intel_runtime_pm_get(dev_priv);
  398. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  399. intel_runtime_pm_put(dev_priv);
  400. mutex_unlock(&dev->struct_mutex);
  401. if (attr == &dev_attr_gt_RP0_freq_mhz) {
  402. if (IS_VALLEYVIEW(dev))
  403. val = vlv_gpu_freq(dev_priv, dev_priv->rps.rp0_freq);
  404. else
  405. val = ((rp_state_cap & 0x0000ff) >> 0) * GT_FREQUENCY_MULTIPLIER;
  406. } else if (attr == &dev_attr_gt_RP1_freq_mhz) {
  407. if (IS_VALLEYVIEW(dev))
  408. val = vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq);
  409. else
  410. val = ((rp_state_cap & 0x00ff00) >> 8) * GT_FREQUENCY_MULTIPLIER;
  411. } else if (attr == &dev_attr_gt_RPn_freq_mhz) {
  412. if (IS_VALLEYVIEW(dev))
  413. val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq);
  414. else
  415. val = ((rp_state_cap & 0xff0000) >> 16) * GT_FREQUENCY_MULTIPLIER;
  416. } else {
  417. BUG();
  418. }
  419. return snprintf(buf, PAGE_SIZE, "%d\n", val);
  420. }
  421. static const struct attribute *gen6_attrs[] = {
  422. &dev_attr_gt_cur_freq_mhz.attr,
  423. &dev_attr_gt_max_freq_mhz.attr,
  424. &dev_attr_gt_min_freq_mhz.attr,
  425. &dev_attr_gt_RP0_freq_mhz.attr,
  426. &dev_attr_gt_RP1_freq_mhz.attr,
  427. &dev_attr_gt_RPn_freq_mhz.attr,
  428. NULL,
  429. };
  430. static const struct attribute *vlv_attrs[] = {
  431. &dev_attr_gt_cur_freq_mhz.attr,
  432. &dev_attr_gt_max_freq_mhz.attr,
  433. &dev_attr_gt_min_freq_mhz.attr,
  434. &dev_attr_gt_RP0_freq_mhz.attr,
  435. &dev_attr_gt_RP1_freq_mhz.attr,
  436. &dev_attr_gt_RPn_freq_mhz.attr,
  437. &dev_attr_vlv_rpe_freq_mhz.attr,
  438. NULL,
  439. };
  440. static ssize_t error_state_read(struct file *filp, struct kobject *kobj,
  441. struct bin_attribute *attr, char *buf,
  442. loff_t off, size_t count)
  443. {
  444. struct device *kdev = container_of(kobj, struct device, kobj);
  445. struct drm_minor *minor = dev_to_drm_minor(kdev);
  446. struct drm_device *dev = minor->dev;
  447. struct i915_error_state_file_priv error_priv;
  448. struct drm_i915_error_state_buf error_str;
  449. ssize_t ret_count = 0;
  450. int ret;
  451. memset(&error_priv, 0, sizeof(error_priv));
  452. ret = i915_error_state_buf_init(&error_str, to_i915(dev), count, off);
  453. if (ret)
  454. return ret;
  455. error_priv.dev = dev;
  456. i915_error_state_get(dev, &error_priv);
  457. ret = i915_error_state_to_str(&error_str, &error_priv);
  458. if (ret)
  459. goto out;
  460. ret_count = count < error_str.bytes ? count : error_str.bytes;
  461. memcpy(buf, error_str.buf, ret_count);
  462. out:
  463. i915_error_state_put(&error_priv);
  464. i915_error_state_buf_release(&error_str);
  465. return ret ?: ret_count;
  466. }
  467. static ssize_t error_state_write(struct file *file, struct kobject *kobj,
  468. struct bin_attribute *attr, char *buf,
  469. loff_t off, size_t count)
  470. {
  471. struct device *kdev = container_of(kobj, struct device, kobj);
  472. struct drm_minor *minor = dev_to_drm_minor(kdev);
  473. struct drm_device *dev = minor->dev;
  474. int ret;
  475. DRM_DEBUG_DRIVER("Resetting error state\n");
  476. ret = mutex_lock_interruptible(&dev->struct_mutex);
  477. if (ret)
  478. return ret;
  479. i915_destroy_error_state(dev);
  480. mutex_unlock(&dev->struct_mutex);
  481. return count;
  482. }
  483. static struct bin_attribute error_state_attr = {
  484. .attr.name = "error",
  485. .attr.mode = S_IRUSR | S_IWUSR,
  486. .size = 0,
  487. .read = error_state_read,
  488. .write = error_state_write,
  489. };
  490. void i915_setup_sysfs(struct drm_device *dev)
  491. {
  492. int ret;
  493. #ifdef CONFIG_PM
  494. if (HAS_RC6(dev)) {
  495. ret = sysfs_merge_group(&dev->primary->kdev->kobj,
  496. &rc6_attr_group);
  497. if (ret)
  498. DRM_ERROR("RC6 residency sysfs setup failed\n");
  499. }
  500. if (HAS_RC6p(dev)) {
  501. ret = sysfs_merge_group(&dev->primary->kdev->kobj,
  502. &rc6p_attr_group);
  503. if (ret)
  504. DRM_ERROR("RC6p residency sysfs setup failed\n");
  505. }
  506. #endif
  507. if (HAS_L3_DPF(dev)) {
  508. ret = device_create_bin_file(dev->primary->kdev, &dpf_attrs);
  509. if (ret)
  510. DRM_ERROR("l3 parity sysfs setup failed\n");
  511. if (NUM_L3_SLICES(dev) > 1) {
  512. ret = device_create_bin_file(dev->primary->kdev,
  513. &dpf_attrs_1);
  514. if (ret)
  515. DRM_ERROR("l3 parity slice 1 setup failed\n");
  516. }
  517. }
  518. ret = 0;
  519. if (IS_VALLEYVIEW(dev))
  520. ret = sysfs_create_files(&dev->primary->kdev->kobj, vlv_attrs);
  521. else if (INTEL_INFO(dev)->gen >= 6)
  522. ret = sysfs_create_files(&dev->primary->kdev->kobj, gen6_attrs);
  523. if (ret)
  524. DRM_ERROR("RPS sysfs setup failed\n");
  525. ret = sysfs_create_bin_file(&dev->primary->kdev->kobj,
  526. &error_state_attr);
  527. if (ret)
  528. DRM_ERROR("error_state sysfs setup failed\n");
  529. }
  530. void i915_teardown_sysfs(struct drm_device *dev)
  531. {
  532. sysfs_remove_bin_file(&dev->primary->kdev->kobj, &error_state_attr);
  533. if (IS_VALLEYVIEW(dev))
  534. sysfs_remove_files(&dev->primary->kdev->kobj, vlv_attrs);
  535. else
  536. sysfs_remove_files(&dev->primary->kdev->kobj, gen6_attrs);
  537. device_remove_bin_file(dev->primary->kdev, &dpf_attrs_1);
  538. device_remove_bin_file(dev->primary->kdev, &dpf_attrs);
  539. #ifdef CONFIG_PM
  540. sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6_attr_group);
  541. sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6p_attr_group);
  542. #endif
  543. }