kfd_topology.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/types.h>
  23. #include <linux/kernel.h>
  24. #include <linux/pci.h>
  25. #include <linux/errno.h>
  26. #include <linux/acpi.h>
  27. #include <linux/hash.h>
  28. #include <linux/cpufreq.h>
  29. #include "kfd_priv.h"
  30. #include "kfd_crat.h"
  31. #include "kfd_topology.h"
  32. static struct list_head topology_device_list;
  33. static int topology_crat_parsed;
  34. static struct kfd_system_properties sys_props;
  35. static DECLARE_RWSEM(topology_lock);
  36. struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
  37. {
  38. struct kfd_topology_device *top_dev;
  39. struct kfd_dev *device = NULL;
  40. down_read(&topology_lock);
  41. list_for_each_entry(top_dev, &topology_device_list, list)
  42. if (top_dev->gpu_id == gpu_id) {
  43. device = top_dev->gpu;
  44. break;
  45. }
  46. up_read(&topology_lock);
  47. return device;
  48. }
  49. struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
  50. {
  51. struct kfd_topology_device *top_dev;
  52. struct kfd_dev *device = NULL;
  53. down_read(&topology_lock);
  54. list_for_each_entry(top_dev, &topology_device_list, list)
  55. if (top_dev->gpu->pdev == pdev) {
  56. device = top_dev->gpu;
  57. break;
  58. }
  59. up_read(&topology_lock);
  60. return device;
  61. }
  62. static int kfd_topology_get_crat_acpi(void *crat_image, size_t *size)
  63. {
  64. struct acpi_table_header *crat_table;
  65. acpi_status status;
  66. if (!size)
  67. return -EINVAL;
  68. /*
  69. * Fetch the CRAT table from ACPI
  70. */
  71. status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
  72. if (status == AE_NOT_FOUND) {
  73. pr_warn("CRAT table not found\n");
  74. return -ENODATA;
  75. } else if (ACPI_FAILURE(status)) {
  76. const char *err = acpi_format_exception(status);
  77. pr_err("CRAT table error: %s\n", err);
  78. return -EINVAL;
  79. }
  80. if (*size >= crat_table->length && crat_image != NULL)
  81. memcpy(crat_image, crat_table, crat_table->length);
  82. *size = crat_table->length;
  83. return 0;
  84. }
  85. static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
  86. struct crat_subtype_computeunit *cu)
  87. {
  88. BUG_ON(!dev);
  89. BUG_ON(!cu);
  90. dev->node_props.cpu_cores_count = cu->num_cpu_cores;
  91. dev->node_props.cpu_core_id_base = cu->processor_id_low;
  92. if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
  93. dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
  94. pr_info("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
  95. cu->processor_id_low);
  96. }
  97. static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
  98. struct crat_subtype_computeunit *cu)
  99. {
  100. BUG_ON(!dev);
  101. BUG_ON(!cu);
  102. dev->node_props.simd_id_base = cu->processor_id_low;
  103. dev->node_props.simd_count = cu->num_simd_cores;
  104. dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
  105. dev->node_props.max_waves_per_simd = cu->max_waves_simd;
  106. dev->node_props.wave_front_size = cu->wave_front_size;
  107. dev->node_props.mem_banks_count = cu->num_banks;
  108. dev->node_props.array_count = cu->num_arrays;
  109. dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
  110. dev->node_props.simd_per_cu = cu->num_simd_per_cu;
  111. dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
  112. if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
  113. dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
  114. pr_info("CU GPU: simds=%d id_base=%d\n", cu->num_simd_cores,
  115. cu->processor_id_low);
  116. }
  117. /* kfd_parse_subtype_cu is called when the topology mutex is already acquired */
  118. static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu)
  119. {
  120. struct kfd_topology_device *dev;
  121. int i = 0;
  122. BUG_ON(!cu);
  123. pr_info("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
  124. cu->proximity_domain, cu->hsa_capability);
  125. list_for_each_entry(dev, &topology_device_list, list) {
  126. if (cu->proximity_domain == i) {
  127. if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
  128. kfd_populated_cu_info_cpu(dev, cu);
  129. if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
  130. kfd_populated_cu_info_gpu(dev, cu);
  131. break;
  132. }
  133. i++;
  134. }
  135. return 0;
  136. }
  137. /*
  138. * kfd_parse_subtype_mem is called when the topology mutex is
  139. * already acquired
  140. */
  141. static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem)
  142. {
  143. struct kfd_mem_properties *props;
  144. struct kfd_topology_device *dev;
  145. int i = 0;
  146. BUG_ON(!mem);
  147. pr_info("Found memory entry in CRAT table with proximity_domain=%d\n",
  148. mem->promixity_domain);
  149. list_for_each_entry(dev, &topology_device_list, list) {
  150. if (mem->promixity_domain == i) {
  151. props = kfd_alloc_struct(props);
  152. if (props == NULL)
  153. return -ENOMEM;
  154. if (dev->node_props.cpu_cores_count == 0)
  155. props->heap_type = HSA_MEM_HEAP_TYPE_FB_PRIVATE;
  156. else
  157. props->heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
  158. if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
  159. props->flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
  160. if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
  161. props->flags |= HSA_MEM_FLAGS_NON_VOLATILE;
  162. props->size_in_bytes =
  163. ((uint64_t)mem->length_high << 32) +
  164. mem->length_low;
  165. props->width = mem->width;
  166. dev->mem_bank_count++;
  167. list_add_tail(&props->list, &dev->mem_props);
  168. break;
  169. }
  170. i++;
  171. }
  172. return 0;
  173. }
  174. /*
  175. * kfd_parse_subtype_cache is called when the topology mutex
  176. * is already acquired
  177. */
  178. static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache)
  179. {
  180. struct kfd_cache_properties *props;
  181. struct kfd_topology_device *dev;
  182. uint32_t id;
  183. BUG_ON(!cache);
  184. id = cache->processor_id_low;
  185. pr_info("Found cache entry in CRAT table with processor_id=%d\n", id);
  186. list_for_each_entry(dev, &topology_device_list, list)
  187. if (id == dev->node_props.cpu_core_id_base ||
  188. id == dev->node_props.simd_id_base) {
  189. props = kfd_alloc_struct(props);
  190. if (props == NULL)
  191. return -ENOMEM;
  192. props->processor_id_low = id;
  193. props->cache_level = cache->cache_level;
  194. props->cache_size = cache->cache_size;
  195. props->cacheline_size = cache->cache_line_size;
  196. props->cachelines_per_tag = cache->lines_per_tag;
  197. props->cache_assoc = cache->associativity;
  198. props->cache_latency = cache->cache_latency;
  199. if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
  200. props->cache_type |= HSA_CACHE_TYPE_DATA;
  201. if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
  202. props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
  203. if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
  204. props->cache_type |= HSA_CACHE_TYPE_CPU;
  205. if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
  206. props->cache_type |= HSA_CACHE_TYPE_HSACU;
  207. dev->cache_count++;
  208. dev->node_props.caches_count++;
  209. list_add_tail(&props->list, &dev->cache_props);
  210. break;
  211. }
  212. return 0;
  213. }
  214. /*
  215. * kfd_parse_subtype_iolink is called when the topology mutex
  216. * is already acquired
  217. */
  218. static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink)
  219. {
  220. struct kfd_iolink_properties *props;
  221. struct kfd_topology_device *dev;
  222. uint32_t i = 0;
  223. uint32_t id_from;
  224. uint32_t id_to;
  225. BUG_ON(!iolink);
  226. id_from = iolink->proximity_domain_from;
  227. id_to = iolink->proximity_domain_to;
  228. pr_info("Found IO link entry in CRAT table with id_from=%d\n", id_from);
  229. list_for_each_entry(dev, &topology_device_list, list) {
  230. if (id_from == i) {
  231. props = kfd_alloc_struct(props);
  232. if (props == NULL)
  233. return -ENOMEM;
  234. props->node_from = id_from;
  235. props->node_to = id_to;
  236. props->ver_maj = iolink->version_major;
  237. props->ver_min = iolink->version_minor;
  238. /*
  239. * weight factor (derived from CDIR), currently always 1
  240. */
  241. props->weight = 1;
  242. props->min_latency = iolink->minimum_latency;
  243. props->max_latency = iolink->maximum_latency;
  244. props->min_bandwidth = iolink->minimum_bandwidth_mbs;
  245. props->max_bandwidth = iolink->maximum_bandwidth_mbs;
  246. props->rec_transfer_size =
  247. iolink->recommended_transfer_size;
  248. dev->io_link_count++;
  249. dev->node_props.io_links_count++;
  250. list_add_tail(&props->list, &dev->io_link_props);
  251. break;
  252. }
  253. i++;
  254. }
  255. return 0;
  256. }
  257. static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr)
  258. {
  259. struct crat_subtype_computeunit *cu;
  260. struct crat_subtype_memory *mem;
  261. struct crat_subtype_cache *cache;
  262. struct crat_subtype_iolink *iolink;
  263. int ret = 0;
  264. BUG_ON(!sub_type_hdr);
  265. switch (sub_type_hdr->type) {
  266. case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
  267. cu = (struct crat_subtype_computeunit *)sub_type_hdr;
  268. ret = kfd_parse_subtype_cu(cu);
  269. break;
  270. case CRAT_SUBTYPE_MEMORY_AFFINITY:
  271. mem = (struct crat_subtype_memory *)sub_type_hdr;
  272. ret = kfd_parse_subtype_mem(mem);
  273. break;
  274. case CRAT_SUBTYPE_CACHE_AFFINITY:
  275. cache = (struct crat_subtype_cache *)sub_type_hdr;
  276. ret = kfd_parse_subtype_cache(cache);
  277. break;
  278. case CRAT_SUBTYPE_TLB_AFFINITY:
  279. /*
  280. * For now, nothing to do here
  281. */
  282. pr_info("Found TLB entry in CRAT table (not processing)\n");
  283. break;
  284. case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
  285. /*
  286. * For now, nothing to do here
  287. */
  288. pr_info("Found CCOMPUTE entry in CRAT table (not processing)\n");
  289. break;
  290. case CRAT_SUBTYPE_IOLINK_AFFINITY:
  291. iolink = (struct crat_subtype_iolink *)sub_type_hdr;
  292. ret = kfd_parse_subtype_iolink(iolink);
  293. break;
  294. default:
  295. pr_warn("Unknown subtype (%d) in CRAT\n",
  296. sub_type_hdr->type);
  297. }
  298. return ret;
  299. }
  300. static void kfd_release_topology_device(struct kfd_topology_device *dev)
  301. {
  302. struct kfd_mem_properties *mem;
  303. struct kfd_cache_properties *cache;
  304. struct kfd_iolink_properties *iolink;
  305. BUG_ON(!dev);
  306. list_del(&dev->list);
  307. while (dev->mem_props.next != &dev->mem_props) {
  308. mem = container_of(dev->mem_props.next,
  309. struct kfd_mem_properties, list);
  310. list_del(&mem->list);
  311. kfree(mem);
  312. }
  313. while (dev->cache_props.next != &dev->cache_props) {
  314. cache = container_of(dev->cache_props.next,
  315. struct kfd_cache_properties, list);
  316. list_del(&cache->list);
  317. kfree(cache);
  318. }
  319. while (dev->io_link_props.next != &dev->io_link_props) {
  320. iolink = container_of(dev->io_link_props.next,
  321. struct kfd_iolink_properties, list);
  322. list_del(&iolink->list);
  323. kfree(iolink);
  324. }
  325. kfree(dev);
  326. sys_props.num_devices--;
  327. }
  328. static void kfd_release_live_view(void)
  329. {
  330. struct kfd_topology_device *dev;
  331. while (topology_device_list.next != &topology_device_list) {
  332. dev = container_of(topology_device_list.next,
  333. struct kfd_topology_device, list);
  334. kfd_release_topology_device(dev);
  335. }
  336. memset(&sys_props, 0, sizeof(sys_props));
  337. }
  338. static struct kfd_topology_device *kfd_create_topology_device(void)
  339. {
  340. struct kfd_topology_device *dev;
  341. dev = kfd_alloc_struct(dev);
  342. if (dev == NULL) {
  343. pr_err("No memory to allocate a topology device");
  344. return NULL;
  345. }
  346. INIT_LIST_HEAD(&dev->mem_props);
  347. INIT_LIST_HEAD(&dev->cache_props);
  348. INIT_LIST_HEAD(&dev->io_link_props);
  349. list_add_tail(&dev->list, &topology_device_list);
  350. sys_props.num_devices++;
  351. return dev;
  352. }
  353. static int kfd_parse_crat_table(void *crat_image)
  354. {
  355. struct kfd_topology_device *top_dev;
  356. struct crat_subtype_generic *sub_type_hdr;
  357. uint16_t node_id;
  358. int ret;
  359. struct crat_header *crat_table = (struct crat_header *)crat_image;
  360. uint16_t num_nodes;
  361. uint32_t image_len;
  362. if (!crat_image)
  363. return -EINVAL;
  364. num_nodes = crat_table->num_domains;
  365. image_len = crat_table->length;
  366. pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
  367. for (node_id = 0; node_id < num_nodes; node_id++) {
  368. top_dev = kfd_create_topology_device();
  369. if (!top_dev) {
  370. kfd_release_live_view();
  371. return -ENOMEM;
  372. }
  373. }
  374. sys_props.platform_id =
  375. (*((uint64_t *)crat_table->oem_id)) & CRAT_OEMID_64BIT_MASK;
  376. sys_props.platform_oem = *((uint64_t *)crat_table->oem_table_id);
  377. sys_props.platform_rev = crat_table->revision;
  378. sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
  379. while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
  380. ((char *)crat_image) + image_len) {
  381. if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
  382. ret = kfd_parse_subtype(sub_type_hdr);
  383. if (ret != 0) {
  384. kfd_release_live_view();
  385. return ret;
  386. }
  387. }
  388. sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
  389. sub_type_hdr->length);
  390. }
  391. sys_props.generation_count++;
  392. topology_crat_parsed = 1;
  393. return 0;
  394. }
  395. #define sysfs_show_gen_prop(buffer, fmt, ...) \
  396. snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__)
  397. #define sysfs_show_32bit_prop(buffer, name, value) \
  398. sysfs_show_gen_prop(buffer, "%s %u\n", name, value)
  399. #define sysfs_show_64bit_prop(buffer, name, value) \
  400. sysfs_show_gen_prop(buffer, "%s %llu\n", name, value)
  401. #define sysfs_show_32bit_val(buffer, value) \
  402. sysfs_show_gen_prop(buffer, "%u\n", value)
  403. #define sysfs_show_str_val(buffer, value) \
  404. sysfs_show_gen_prop(buffer, "%s\n", value)
  405. static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
  406. char *buffer)
  407. {
  408. ssize_t ret;
  409. /* Making sure that the buffer is an empty string */
  410. buffer[0] = 0;
  411. if (attr == &sys_props.attr_genid) {
  412. ret = sysfs_show_32bit_val(buffer, sys_props.generation_count);
  413. } else if (attr == &sys_props.attr_props) {
  414. sysfs_show_64bit_prop(buffer, "platform_oem",
  415. sys_props.platform_oem);
  416. sysfs_show_64bit_prop(buffer, "platform_id",
  417. sys_props.platform_id);
  418. ret = sysfs_show_64bit_prop(buffer, "platform_rev",
  419. sys_props.platform_rev);
  420. } else {
  421. ret = -EINVAL;
  422. }
  423. return ret;
  424. }
  425. static const struct sysfs_ops sysprops_ops = {
  426. .show = sysprops_show,
  427. };
  428. static struct kobj_type sysprops_type = {
  429. .sysfs_ops = &sysprops_ops,
  430. };
  431. static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
  432. char *buffer)
  433. {
  434. ssize_t ret;
  435. struct kfd_iolink_properties *iolink;
  436. /* Making sure that the buffer is an empty string */
  437. buffer[0] = 0;
  438. iolink = container_of(attr, struct kfd_iolink_properties, attr);
  439. sysfs_show_32bit_prop(buffer, "type", iolink->iolink_type);
  440. sysfs_show_32bit_prop(buffer, "version_major", iolink->ver_maj);
  441. sysfs_show_32bit_prop(buffer, "version_minor", iolink->ver_min);
  442. sysfs_show_32bit_prop(buffer, "node_from", iolink->node_from);
  443. sysfs_show_32bit_prop(buffer, "node_to", iolink->node_to);
  444. sysfs_show_32bit_prop(buffer, "weight", iolink->weight);
  445. sysfs_show_32bit_prop(buffer, "min_latency", iolink->min_latency);
  446. sysfs_show_32bit_prop(buffer, "max_latency", iolink->max_latency);
  447. sysfs_show_32bit_prop(buffer, "min_bandwidth", iolink->min_bandwidth);
  448. sysfs_show_32bit_prop(buffer, "max_bandwidth", iolink->max_bandwidth);
  449. sysfs_show_32bit_prop(buffer, "recommended_transfer_size",
  450. iolink->rec_transfer_size);
  451. ret = sysfs_show_32bit_prop(buffer, "flags", iolink->flags);
  452. return ret;
  453. }
  454. static const struct sysfs_ops iolink_ops = {
  455. .show = iolink_show,
  456. };
  457. static struct kobj_type iolink_type = {
  458. .sysfs_ops = &iolink_ops,
  459. };
  460. static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
  461. char *buffer)
  462. {
  463. ssize_t ret;
  464. struct kfd_mem_properties *mem;
  465. /* Making sure that the buffer is an empty string */
  466. buffer[0] = 0;
  467. mem = container_of(attr, struct kfd_mem_properties, attr);
  468. sysfs_show_32bit_prop(buffer, "heap_type", mem->heap_type);
  469. sysfs_show_64bit_prop(buffer, "size_in_bytes", mem->size_in_bytes);
  470. sysfs_show_32bit_prop(buffer, "flags", mem->flags);
  471. sysfs_show_32bit_prop(buffer, "width", mem->width);
  472. ret = sysfs_show_32bit_prop(buffer, "mem_clk_max", mem->mem_clk_max);
  473. return ret;
  474. }
  475. static const struct sysfs_ops mem_ops = {
  476. .show = mem_show,
  477. };
  478. static struct kobj_type mem_type = {
  479. .sysfs_ops = &mem_ops,
  480. };
  481. static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
  482. char *buffer)
  483. {
  484. ssize_t ret;
  485. uint32_t i;
  486. struct kfd_cache_properties *cache;
  487. /* Making sure that the buffer is an empty string */
  488. buffer[0] = 0;
  489. cache = container_of(attr, struct kfd_cache_properties, attr);
  490. sysfs_show_32bit_prop(buffer, "processor_id_low",
  491. cache->processor_id_low);
  492. sysfs_show_32bit_prop(buffer, "level", cache->cache_level);
  493. sysfs_show_32bit_prop(buffer, "size", cache->cache_size);
  494. sysfs_show_32bit_prop(buffer, "cache_line_size", cache->cacheline_size);
  495. sysfs_show_32bit_prop(buffer, "cache_lines_per_tag",
  496. cache->cachelines_per_tag);
  497. sysfs_show_32bit_prop(buffer, "association", cache->cache_assoc);
  498. sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency);
  499. sysfs_show_32bit_prop(buffer, "type", cache->cache_type);
  500. snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer);
  501. for (i = 0; i < KFD_TOPOLOGY_CPU_SIBLINGS; i++)
  502. ret = snprintf(buffer, PAGE_SIZE, "%s%d%s",
  503. buffer, cache->sibling_map[i],
  504. (i == KFD_TOPOLOGY_CPU_SIBLINGS-1) ?
  505. "\n" : ",");
  506. return ret;
  507. }
  508. static const struct sysfs_ops cache_ops = {
  509. .show = kfd_cache_show,
  510. };
  511. static struct kobj_type cache_type = {
  512. .sysfs_ops = &cache_ops,
  513. };
  514. static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
  515. char *buffer)
  516. {
  517. ssize_t ret;
  518. struct kfd_topology_device *dev;
  519. char public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE];
  520. uint32_t i;
  521. /* Making sure that the buffer is an empty string */
  522. buffer[0] = 0;
  523. if (strcmp(attr->name, "gpu_id") == 0) {
  524. dev = container_of(attr, struct kfd_topology_device,
  525. attr_gpuid);
  526. ret = sysfs_show_32bit_val(buffer, dev->gpu_id);
  527. } else if (strcmp(attr->name, "name") == 0) {
  528. dev = container_of(attr, struct kfd_topology_device,
  529. attr_name);
  530. for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE; i++) {
  531. public_name[i] =
  532. (char)dev->node_props.marketing_name[i];
  533. if (dev->node_props.marketing_name[i] == 0)
  534. break;
  535. }
  536. public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1] = 0x0;
  537. ret = sysfs_show_str_val(buffer, public_name);
  538. } else {
  539. dev = container_of(attr, struct kfd_topology_device,
  540. attr_props);
  541. sysfs_show_32bit_prop(buffer, "cpu_cores_count",
  542. dev->node_props.cpu_cores_count);
  543. sysfs_show_32bit_prop(buffer, "simd_count",
  544. dev->node_props.simd_count);
  545. if (dev->mem_bank_count < dev->node_props.mem_banks_count) {
  546. pr_warn("kfd: mem_banks_count truncated from %d to %d\n",
  547. dev->node_props.mem_banks_count,
  548. dev->mem_bank_count);
  549. sysfs_show_32bit_prop(buffer, "mem_banks_count",
  550. dev->mem_bank_count);
  551. } else {
  552. sysfs_show_32bit_prop(buffer, "mem_banks_count",
  553. dev->node_props.mem_banks_count);
  554. }
  555. sysfs_show_32bit_prop(buffer, "caches_count",
  556. dev->node_props.caches_count);
  557. sysfs_show_32bit_prop(buffer, "io_links_count",
  558. dev->node_props.io_links_count);
  559. sysfs_show_32bit_prop(buffer, "cpu_core_id_base",
  560. dev->node_props.cpu_core_id_base);
  561. sysfs_show_32bit_prop(buffer, "simd_id_base",
  562. dev->node_props.simd_id_base);
  563. sysfs_show_32bit_prop(buffer, "capability",
  564. dev->node_props.capability);
  565. sysfs_show_32bit_prop(buffer, "max_waves_per_simd",
  566. dev->node_props.max_waves_per_simd);
  567. sysfs_show_32bit_prop(buffer, "lds_size_in_kb",
  568. dev->node_props.lds_size_in_kb);
  569. sysfs_show_32bit_prop(buffer, "gds_size_in_kb",
  570. dev->node_props.gds_size_in_kb);
  571. sysfs_show_32bit_prop(buffer, "wave_front_size",
  572. dev->node_props.wave_front_size);
  573. sysfs_show_32bit_prop(buffer, "array_count",
  574. dev->node_props.array_count);
  575. sysfs_show_32bit_prop(buffer, "simd_arrays_per_engine",
  576. dev->node_props.simd_arrays_per_engine);
  577. sysfs_show_32bit_prop(buffer, "cu_per_simd_array",
  578. dev->node_props.cu_per_simd_array);
  579. sysfs_show_32bit_prop(buffer, "simd_per_cu",
  580. dev->node_props.simd_per_cu);
  581. sysfs_show_32bit_prop(buffer, "max_slots_scratch_cu",
  582. dev->node_props.max_slots_scratch_cu);
  583. sysfs_show_32bit_prop(buffer, "vendor_id",
  584. dev->node_props.vendor_id);
  585. sysfs_show_32bit_prop(buffer, "device_id",
  586. dev->node_props.device_id);
  587. sysfs_show_32bit_prop(buffer, "location_id",
  588. dev->node_props.location_id);
  589. if (dev->gpu) {
  590. sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute",
  591. kfd2kgd->get_max_engine_clock_in_mhz(
  592. dev->gpu->kgd));
  593. sysfs_show_64bit_prop(buffer, "local_mem_size",
  594. kfd2kgd->get_vmem_size(dev->gpu->kgd));
  595. sysfs_show_32bit_prop(buffer, "fw_version",
  596. kfd2kgd->get_fw_version(
  597. dev->gpu->kgd,
  598. KGD_ENGINE_MEC1));
  599. }
  600. ret = sysfs_show_32bit_prop(buffer, "max_engine_clk_ccompute",
  601. cpufreq_quick_get_max(0)/1000);
  602. }
  603. return ret;
  604. }
  605. static const struct sysfs_ops node_ops = {
  606. .show = node_show,
  607. };
  608. static struct kobj_type node_type = {
  609. .sysfs_ops = &node_ops,
  610. };
  611. static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
  612. {
  613. sysfs_remove_file(kobj, attr);
  614. kobject_del(kobj);
  615. kobject_put(kobj);
  616. }
  617. static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
  618. {
  619. struct kfd_iolink_properties *iolink;
  620. struct kfd_cache_properties *cache;
  621. struct kfd_mem_properties *mem;
  622. BUG_ON(!dev);
  623. if (dev->kobj_iolink) {
  624. list_for_each_entry(iolink, &dev->io_link_props, list)
  625. if (iolink->kobj) {
  626. kfd_remove_sysfs_file(iolink->kobj,
  627. &iolink->attr);
  628. iolink->kobj = NULL;
  629. }
  630. kobject_del(dev->kobj_iolink);
  631. kobject_put(dev->kobj_iolink);
  632. dev->kobj_iolink = NULL;
  633. }
  634. if (dev->kobj_cache) {
  635. list_for_each_entry(cache, &dev->cache_props, list)
  636. if (cache->kobj) {
  637. kfd_remove_sysfs_file(cache->kobj,
  638. &cache->attr);
  639. cache->kobj = NULL;
  640. }
  641. kobject_del(dev->kobj_cache);
  642. kobject_put(dev->kobj_cache);
  643. dev->kobj_cache = NULL;
  644. }
  645. if (dev->kobj_mem) {
  646. list_for_each_entry(mem, &dev->mem_props, list)
  647. if (mem->kobj) {
  648. kfd_remove_sysfs_file(mem->kobj, &mem->attr);
  649. mem->kobj = NULL;
  650. }
  651. kobject_del(dev->kobj_mem);
  652. kobject_put(dev->kobj_mem);
  653. dev->kobj_mem = NULL;
  654. }
  655. if (dev->kobj_node) {
  656. sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
  657. sysfs_remove_file(dev->kobj_node, &dev->attr_name);
  658. sysfs_remove_file(dev->kobj_node, &dev->attr_props);
  659. kobject_del(dev->kobj_node);
  660. kobject_put(dev->kobj_node);
  661. dev->kobj_node = NULL;
  662. }
  663. }
  664. static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
  665. uint32_t id)
  666. {
  667. struct kfd_iolink_properties *iolink;
  668. struct kfd_cache_properties *cache;
  669. struct kfd_mem_properties *mem;
  670. int ret;
  671. uint32_t i;
  672. BUG_ON(!dev);
  673. /*
  674. * Creating the sysfs folders
  675. */
  676. BUG_ON(dev->kobj_node);
  677. dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
  678. if (!dev->kobj_node)
  679. return -ENOMEM;
  680. ret = kobject_init_and_add(dev->kobj_node, &node_type,
  681. sys_props.kobj_nodes, "%d", id);
  682. if (ret < 0)
  683. return ret;
  684. dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
  685. if (!dev->kobj_mem)
  686. return -ENOMEM;
  687. dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
  688. if (!dev->kobj_cache)
  689. return -ENOMEM;
  690. dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
  691. if (!dev->kobj_iolink)
  692. return -ENOMEM;
  693. /*
  694. * Creating sysfs files for node properties
  695. */
  696. dev->attr_gpuid.name = "gpu_id";
  697. dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
  698. sysfs_attr_init(&dev->attr_gpuid);
  699. dev->attr_name.name = "name";
  700. dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
  701. sysfs_attr_init(&dev->attr_name);
  702. dev->attr_props.name = "properties";
  703. dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
  704. sysfs_attr_init(&dev->attr_props);
  705. ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
  706. if (ret < 0)
  707. return ret;
  708. ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
  709. if (ret < 0)
  710. return ret;
  711. ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
  712. if (ret < 0)
  713. return ret;
  714. i = 0;
  715. list_for_each_entry(mem, &dev->mem_props, list) {
  716. mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
  717. if (!mem->kobj)
  718. return -ENOMEM;
  719. ret = kobject_init_and_add(mem->kobj, &mem_type,
  720. dev->kobj_mem, "%d", i);
  721. if (ret < 0)
  722. return ret;
  723. mem->attr.name = "properties";
  724. mem->attr.mode = KFD_SYSFS_FILE_MODE;
  725. sysfs_attr_init(&mem->attr);
  726. ret = sysfs_create_file(mem->kobj, &mem->attr);
  727. if (ret < 0)
  728. return ret;
  729. i++;
  730. }
  731. i = 0;
  732. list_for_each_entry(cache, &dev->cache_props, list) {
  733. cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
  734. if (!cache->kobj)
  735. return -ENOMEM;
  736. ret = kobject_init_and_add(cache->kobj, &cache_type,
  737. dev->kobj_cache, "%d", i);
  738. if (ret < 0)
  739. return ret;
  740. cache->attr.name = "properties";
  741. cache->attr.mode = KFD_SYSFS_FILE_MODE;
  742. sysfs_attr_init(&cache->attr);
  743. ret = sysfs_create_file(cache->kobj, &cache->attr);
  744. if (ret < 0)
  745. return ret;
  746. i++;
  747. }
  748. i = 0;
  749. list_for_each_entry(iolink, &dev->io_link_props, list) {
  750. iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
  751. if (!iolink->kobj)
  752. return -ENOMEM;
  753. ret = kobject_init_and_add(iolink->kobj, &iolink_type,
  754. dev->kobj_iolink, "%d", i);
  755. if (ret < 0)
  756. return ret;
  757. iolink->attr.name = "properties";
  758. iolink->attr.mode = KFD_SYSFS_FILE_MODE;
  759. sysfs_attr_init(&iolink->attr);
  760. ret = sysfs_create_file(iolink->kobj, &iolink->attr);
  761. if (ret < 0)
  762. return ret;
  763. i++;
  764. }
  765. return 0;
  766. }
  767. static int kfd_build_sysfs_node_tree(void)
  768. {
  769. struct kfd_topology_device *dev;
  770. int ret;
  771. uint32_t i = 0;
  772. list_for_each_entry(dev, &topology_device_list, list) {
  773. ret = kfd_build_sysfs_node_entry(dev, i);
  774. if (ret < 0)
  775. return ret;
  776. i++;
  777. }
  778. return 0;
  779. }
  780. static void kfd_remove_sysfs_node_tree(void)
  781. {
  782. struct kfd_topology_device *dev;
  783. list_for_each_entry(dev, &topology_device_list, list)
  784. kfd_remove_sysfs_node_entry(dev);
  785. }
  786. static int kfd_topology_update_sysfs(void)
  787. {
  788. int ret;
  789. pr_info("Creating topology SYSFS entries\n");
  790. if (sys_props.kobj_topology == NULL) {
  791. sys_props.kobj_topology =
  792. kfd_alloc_struct(sys_props.kobj_topology);
  793. if (!sys_props.kobj_topology)
  794. return -ENOMEM;
  795. ret = kobject_init_and_add(sys_props.kobj_topology,
  796. &sysprops_type, &kfd_device->kobj,
  797. "topology");
  798. if (ret < 0)
  799. return ret;
  800. sys_props.kobj_nodes = kobject_create_and_add("nodes",
  801. sys_props.kobj_topology);
  802. if (!sys_props.kobj_nodes)
  803. return -ENOMEM;
  804. sys_props.attr_genid.name = "generation_id";
  805. sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
  806. sysfs_attr_init(&sys_props.attr_genid);
  807. ret = sysfs_create_file(sys_props.kobj_topology,
  808. &sys_props.attr_genid);
  809. if (ret < 0)
  810. return ret;
  811. sys_props.attr_props.name = "system_properties";
  812. sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
  813. sysfs_attr_init(&sys_props.attr_props);
  814. ret = sysfs_create_file(sys_props.kobj_topology,
  815. &sys_props.attr_props);
  816. if (ret < 0)
  817. return ret;
  818. }
  819. kfd_remove_sysfs_node_tree();
  820. return kfd_build_sysfs_node_tree();
  821. }
  822. static void kfd_topology_release_sysfs(void)
  823. {
  824. kfd_remove_sysfs_node_tree();
  825. if (sys_props.kobj_topology) {
  826. sysfs_remove_file(sys_props.kobj_topology,
  827. &sys_props.attr_genid);
  828. sysfs_remove_file(sys_props.kobj_topology,
  829. &sys_props.attr_props);
  830. if (sys_props.kobj_nodes) {
  831. kobject_del(sys_props.kobj_nodes);
  832. kobject_put(sys_props.kobj_nodes);
  833. sys_props.kobj_nodes = NULL;
  834. }
  835. kobject_del(sys_props.kobj_topology);
  836. kobject_put(sys_props.kobj_topology);
  837. sys_props.kobj_topology = NULL;
  838. }
  839. }
  840. int kfd_topology_init(void)
  841. {
  842. void *crat_image = NULL;
  843. size_t image_size = 0;
  844. int ret;
  845. /*
  846. * Initialize the head for the topology device list
  847. */
  848. INIT_LIST_HEAD(&topology_device_list);
  849. init_rwsem(&topology_lock);
  850. topology_crat_parsed = 0;
  851. memset(&sys_props, 0, sizeof(sys_props));
  852. /*
  853. * Get the CRAT image from the ACPI
  854. */
  855. ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
  856. if (ret == 0 && image_size > 0) {
  857. pr_info("Found CRAT image with size=%zd\n", image_size);
  858. crat_image = kmalloc(image_size, GFP_KERNEL);
  859. if (!crat_image) {
  860. ret = -ENOMEM;
  861. pr_err("No memory for allocating CRAT image\n");
  862. goto err;
  863. }
  864. ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
  865. if (ret == 0) {
  866. down_write(&topology_lock);
  867. ret = kfd_parse_crat_table(crat_image);
  868. if (ret == 0)
  869. ret = kfd_topology_update_sysfs();
  870. up_write(&topology_lock);
  871. } else {
  872. pr_err("Couldn't get CRAT table size from ACPI\n");
  873. }
  874. kfree(crat_image);
  875. } else if (ret == -ENODATA) {
  876. ret = 0;
  877. } else {
  878. pr_err("Couldn't get CRAT table size from ACPI\n");
  879. }
  880. err:
  881. pr_info("Finished initializing topology ret=%d\n", ret);
  882. return ret;
  883. }
  884. void kfd_topology_shutdown(void)
  885. {
  886. kfd_topology_release_sysfs();
  887. kfd_release_live_view();
  888. }
  889. static void kfd_debug_print_topology(void)
  890. {
  891. struct kfd_topology_device *dev;
  892. uint32_t i = 0;
  893. pr_info("DEBUG PRINT OF TOPOLOGY:");
  894. list_for_each_entry(dev, &topology_device_list, list) {
  895. pr_info("Node: %d\n", i);
  896. pr_info("\tGPU assigned: %s\n", (dev->gpu ? "yes" : "no"));
  897. pr_info("\tCPU count: %d\n", dev->node_props.cpu_cores_count);
  898. pr_info("\tSIMD count: %d", dev->node_props.simd_count);
  899. i++;
  900. }
  901. }
  902. static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
  903. {
  904. uint32_t hashout;
  905. uint32_t buf[7];
  906. int i;
  907. if (!gpu)
  908. return 0;
  909. buf[0] = gpu->pdev->devfn;
  910. buf[1] = gpu->pdev->subsystem_vendor;
  911. buf[2] = gpu->pdev->subsystem_device;
  912. buf[3] = gpu->pdev->device;
  913. buf[4] = gpu->pdev->bus->number;
  914. buf[5] = (uint32_t)(kfd2kgd->get_vmem_size(gpu->kgd) & 0xffffffff);
  915. buf[6] = (uint32_t)(kfd2kgd->get_vmem_size(gpu->kgd) >> 32);
  916. for (i = 0, hashout = 0; i < 7; i++)
  917. hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
  918. return hashout;
  919. }
  920. static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
  921. {
  922. struct kfd_topology_device *dev;
  923. struct kfd_topology_device *out_dev = NULL;
  924. BUG_ON(!gpu);
  925. list_for_each_entry(dev, &topology_device_list, list)
  926. if (dev->gpu == NULL && dev->node_props.simd_count > 0) {
  927. dev->gpu = gpu;
  928. out_dev = dev;
  929. break;
  930. }
  931. return out_dev;
  932. }
  933. static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
  934. {
  935. /*
  936. * TODO: Generate an event for thunk about the arrival/removal
  937. * of the GPU
  938. */
  939. }
  940. int kfd_topology_add_device(struct kfd_dev *gpu)
  941. {
  942. uint32_t gpu_id;
  943. struct kfd_topology_device *dev;
  944. int res;
  945. BUG_ON(!gpu);
  946. gpu_id = kfd_generate_gpu_id(gpu);
  947. pr_debug("kfd: Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
  948. down_write(&topology_lock);
  949. /*
  950. * Try to assign the GPU to existing topology device (generated from
  951. * CRAT table
  952. */
  953. dev = kfd_assign_gpu(gpu);
  954. if (!dev) {
  955. pr_info("GPU was not found in the current topology. Extending.\n");
  956. kfd_debug_print_topology();
  957. dev = kfd_create_topology_device();
  958. if (!dev) {
  959. res = -ENOMEM;
  960. goto err;
  961. }
  962. dev->gpu = gpu;
  963. /*
  964. * TODO: Make a call to retrieve topology information from the
  965. * GPU vBIOS
  966. */
  967. /*
  968. * Update the SYSFS tree, since we added another topology device
  969. */
  970. if (kfd_topology_update_sysfs() < 0)
  971. kfd_topology_release_sysfs();
  972. }
  973. dev->gpu_id = gpu_id;
  974. gpu->id = gpu_id;
  975. dev->node_props.vendor_id = gpu->pdev->vendor;
  976. dev->node_props.device_id = gpu->pdev->device;
  977. dev->node_props.location_id = (gpu->pdev->bus->number << 24) +
  978. (gpu->pdev->devfn & 0xffffff);
  979. /*
  980. * TODO: Retrieve max engine clock values from KGD
  981. */
  982. res = 0;
  983. err:
  984. up_write(&topology_lock);
  985. if (res == 0)
  986. kfd_notify_gpu_change(gpu_id, 1);
  987. return res;
  988. }
  989. int kfd_topology_remove_device(struct kfd_dev *gpu)
  990. {
  991. struct kfd_topology_device *dev;
  992. uint32_t gpu_id;
  993. int res = -ENODEV;
  994. BUG_ON(!gpu);
  995. down_write(&topology_lock);
  996. list_for_each_entry(dev, &topology_device_list, list)
  997. if (dev->gpu == gpu) {
  998. gpu_id = dev->gpu_id;
  999. kfd_remove_sysfs_node_entry(dev);
  1000. kfd_release_topology_device(dev);
  1001. res = 0;
  1002. if (kfd_topology_update_sysfs() < 0)
  1003. kfd_topology_release_sysfs();
  1004. break;
  1005. }
  1006. up_write(&topology_lock);
  1007. if (res == 0)
  1008. kfd_notify_gpu_change(gpu_id, 0);
  1009. return res;
  1010. }
  1011. /*
  1012. * When idx is out of bounds, the function will return NULL
  1013. */
  1014. struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx)
  1015. {
  1016. struct kfd_topology_device *top_dev;
  1017. struct kfd_dev *device = NULL;
  1018. uint8_t device_idx = 0;
  1019. down_read(&topology_lock);
  1020. list_for_each_entry(top_dev, &topology_device_list, list) {
  1021. if (device_idx == idx) {
  1022. device = top_dev->gpu;
  1023. break;
  1024. }
  1025. device_idx++;
  1026. }
  1027. up_read(&topology_lock);
  1028. return device;
  1029. }