kfd_device_queue_manager.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/list.h>
  25. #include <linux/types.h>
  26. #include <linux/printk.h>
  27. #include <linux/bitops.h>
  28. #include "kfd_priv.h"
  29. #include "kfd_device_queue_manager.h"
  30. #include "kfd_mqd_manager.h"
  31. #include "cik_regs.h"
  32. #include "kfd_kernel_queue.h"
  33. #include "../../radeon/cik_reg.h"
  34. /* Size of the per-pipe EOP queue */
  35. #define CIK_HPD_EOP_BYTES_LOG2 11
  36. #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
  37. static bool is_mem_initialized;
  38. static int init_memory(struct device_queue_manager *dqm);
  39. static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
  40. unsigned int pasid, unsigned int vmid);
  41. static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
  42. struct queue *q,
  43. struct qcm_process_device *qpd);
  44. static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
  45. static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock);
  46. static inline unsigned int get_pipes_num(struct device_queue_manager *dqm)
  47. {
  48. BUG_ON(!dqm || !dqm->dev);
  49. return dqm->dev->shared_resources.compute_pipe_count;
  50. }
  51. static inline unsigned int get_first_pipe(struct device_queue_manager *dqm)
  52. {
  53. BUG_ON(!dqm);
  54. return dqm->dev->shared_resources.first_compute_pipe;
  55. }
  56. static inline unsigned int get_pipes_num_cpsch(void)
  57. {
  58. return PIPE_PER_ME_CP_SCHEDULING;
  59. }
  60. static inline unsigned int
  61. get_sh_mem_bases_nybble_64(struct kfd_process_device *pdd)
  62. {
  63. uint32_t nybble;
  64. nybble = (pdd->lds_base >> 60) & 0x0E;
  65. return nybble;
  66. }
  67. static inline unsigned int get_sh_mem_bases_32(struct kfd_process_device *pdd)
  68. {
  69. unsigned int shared_base;
  70. shared_base = (pdd->lds_base >> 16) & 0xFF;
  71. return shared_base;
  72. }
  73. static uint32_t compute_sh_mem_bases_64bit(unsigned int top_address_nybble);
  74. static void init_process_memory(struct device_queue_manager *dqm,
  75. struct qcm_process_device *qpd)
  76. {
  77. struct kfd_process_device *pdd;
  78. unsigned int temp;
  79. BUG_ON(!dqm || !qpd);
  80. pdd = qpd_to_pdd(qpd);
  81. /* check if sh_mem_config register already configured */
  82. if (qpd->sh_mem_config == 0) {
  83. qpd->sh_mem_config =
  84. ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED) |
  85. DEFAULT_MTYPE(MTYPE_NONCACHED) |
  86. APE1_MTYPE(MTYPE_NONCACHED);
  87. qpd->sh_mem_ape1_limit = 0;
  88. qpd->sh_mem_ape1_base = 0;
  89. }
  90. if (qpd->pqm->process->is_32bit_user_mode) {
  91. temp = get_sh_mem_bases_32(pdd);
  92. qpd->sh_mem_bases = SHARED_BASE(temp);
  93. qpd->sh_mem_config |= PTR32;
  94. } else {
  95. temp = get_sh_mem_bases_nybble_64(pdd);
  96. qpd->sh_mem_bases = compute_sh_mem_bases_64bit(temp);
  97. }
  98. pr_debug("kfd: is32bit process: %d sh_mem_bases nybble: 0x%X and register 0x%X\n",
  99. qpd->pqm->process->is_32bit_user_mode, temp, qpd->sh_mem_bases);
  100. }
  101. static void program_sh_mem_settings(struct device_queue_manager *dqm,
  102. struct qcm_process_device *qpd)
  103. {
  104. return kfd2kgd->program_sh_mem_settings(dqm->dev->kgd, qpd->vmid,
  105. qpd->sh_mem_config,
  106. qpd->sh_mem_ape1_base,
  107. qpd->sh_mem_ape1_limit,
  108. qpd->sh_mem_bases);
  109. }
  110. static int allocate_vmid(struct device_queue_manager *dqm,
  111. struct qcm_process_device *qpd,
  112. struct queue *q)
  113. {
  114. int bit, allocated_vmid;
  115. if (dqm->vmid_bitmap == 0)
  116. return -ENOMEM;
  117. bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
  118. clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
  119. /* Kaveri kfd vmid's starts from vmid 8 */
  120. allocated_vmid = bit + KFD_VMID_START_OFFSET;
  121. pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
  122. qpd->vmid = allocated_vmid;
  123. q->properties.vmid = allocated_vmid;
  124. set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
  125. program_sh_mem_settings(dqm, qpd);
  126. return 0;
  127. }
  128. static void deallocate_vmid(struct device_queue_manager *dqm,
  129. struct qcm_process_device *qpd,
  130. struct queue *q)
  131. {
  132. int bit = qpd->vmid - KFD_VMID_START_OFFSET;
  133. /* Release the vmid mapping */
  134. set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
  135. set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
  136. qpd->vmid = 0;
  137. q->properties.vmid = 0;
  138. }
  139. static int create_queue_nocpsch(struct device_queue_manager *dqm,
  140. struct queue *q,
  141. struct qcm_process_device *qpd,
  142. int *allocated_vmid)
  143. {
  144. int retval;
  145. BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
  146. pr_debug("kfd: In func %s\n", __func__);
  147. print_queue(q);
  148. mutex_lock(&dqm->lock);
  149. if (list_empty(&qpd->queues_list)) {
  150. retval = allocate_vmid(dqm, qpd, q);
  151. if (retval != 0) {
  152. mutex_unlock(&dqm->lock);
  153. return retval;
  154. }
  155. }
  156. *allocated_vmid = qpd->vmid;
  157. q->properties.vmid = qpd->vmid;
  158. retval = create_compute_queue_nocpsch(dqm, q, qpd);
  159. if (retval != 0) {
  160. if (list_empty(&qpd->queues_list)) {
  161. deallocate_vmid(dqm, qpd, q);
  162. *allocated_vmid = 0;
  163. }
  164. mutex_unlock(&dqm->lock);
  165. return retval;
  166. }
  167. list_add(&q->list, &qpd->queues_list);
  168. dqm->queue_count++;
  169. mutex_unlock(&dqm->lock);
  170. return 0;
  171. }
  172. static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
  173. {
  174. bool set;
  175. int pipe, bit;
  176. set = false;
  177. for (pipe = dqm->next_pipe_to_allocate; pipe < get_pipes_num(dqm);
  178. pipe = (pipe + 1) % get_pipes_num(dqm)) {
  179. if (dqm->allocated_queues[pipe] != 0) {
  180. bit = find_first_bit(
  181. (unsigned long *)&dqm->allocated_queues[pipe],
  182. QUEUES_PER_PIPE);
  183. clear_bit(bit,
  184. (unsigned long *)&dqm->allocated_queues[pipe]);
  185. q->pipe = pipe;
  186. q->queue = bit;
  187. set = true;
  188. break;
  189. }
  190. }
  191. if (set == false)
  192. return -EBUSY;
  193. pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
  194. __func__, q->pipe, q->queue);
  195. /* horizontal hqd allocation */
  196. dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
  197. return 0;
  198. }
  199. static inline void deallocate_hqd(struct device_queue_manager *dqm,
  200. struct queue *q)
  201. {
  202. set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
  203. }
  204. static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
  205. struct queue *q,
  206. struct qcm_process_device *qpd)
  207. {
  208. int retval;
  209. struct mqd_manager *mqd;
  210. BUG_ON(!dqm || !q || !qpd);
  211. mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
  212. if (mqd == NULL)
  213. return -ENOMEM;
  214. retval = allocate_hqd(dqm, q);
  215. if (retval != 0)
  216. return retval;
  217. retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
  218. &q->gart_mqd_addr, &q->properties);
  219. if (retval != 0) {
  220. deallocate_hqd(dqm, q);
  221. return retval;
  222. }
  223. pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
  224. q->pipe,
  225. q->queue);
  226. retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
  227. q->queue, (uint32_t __user *) q->properties.write_ptr);
  228. if (retval != 0) {
  229. deallocate_hqd(dqm, q);
  230. mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
  231. return retval;
  232. }
  233. return 0;
  234. }
  235. static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
  236. struct qcm_process_device *qpd,
  237. struct queue *q)
  238. {
  239. int retval;
  240. struct mqd_manager *mqd;
  241. BUG_ON(!dqm || !q || !q->mqd || !qpd);
  242. retval = 0;
  243. pr_debug("kfd: In Func %s\n", __func__);
  244. mutex_lock(&dqm->lock);
  245. mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
  246. if (mqd == NULL) {
  247. retval = -ENOMEM;
  248. goto out;
  249. }
  250. retval = mqd->destroy_mqd(mqd, q->mqd,
  251. KFD_PREEMPT_TYPE_WAVEFRONT,
  252. QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
  253. q->pipe, q->queue);
  254. if (retval != 0)
  255. goto out;
  256. deallocate_hqd(dqm, q);
  257. mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
  258. list_del(&q->list);
  259. if (list_empty(&qpd->queues_list))
  260. deallocate_vmid(dqm, qpd, q);
  261. dqm->queue_count--;
  262. out:
  263. mutex_unlock(&dqm->lock);
  264. return retval;
  265. }
  266. static int update_queue(struct device_queue_manager *dqm, struct queue *q)
  267. {
  268. int retval;
  269. struct mqd_manager *mqd;
  270. bool prev_active = false;
  271. BUG_ON(!dqm || !q || !q->mqd);
  272. mutex_lock(&dqm->lock);
  273. mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
  274. if (mqd == NULL) {
  275. mutex_unlock(&dqm->lock);
  276. return -ENOMEM;
  277. }
  278. if (q->properties.is_active == true)
  279. prev_active = true;
  280. /*
  281. *
  282. * check active state vs. the previous state
  283. * and modify counter accordingly
  284. */
  285. retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
  286. if ((q->properties.is_active == true) && (prev_active == false))
  287. dqm->queue_count++;
  288. else if ((q->properties.is_active == false) && (prev_active == true))
  289. dqm->queue_count--;
  290. if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
  291. retval = execute_queues_cpsch(dqm, false);
  292. mutex_unlock(&dqm->lock);
  293. return retval;
  294. }
  295. static struct mqd_manager *get_mqd_manager_nocpsch(
  296. struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
  297. {
  298. struct mqd_manager *mqd;
  299. BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
  300. pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
  301. mqd = dqm->mqds[type];
  302. if (!mqd) {
  303. mqd = mqd_manager_init(type, dqm->dev);
  304. if (mqd == NULL)
  305. pr_err("kfd: mqd manager is NULL");
  306. dqm->mqds[type] = mqd;
  307. }
  308. return mqd;
  309. }
  310. static int register_process_nocpsch(struct device_queue_manager *dqm,
  311. struct qcm_process_device *qpd)
  312. {
  313. struct device_process_node *n;
  314. BUG_ON(!dqm || !qpd);
  315. pr_debug("kfd: In func %s\n", __func__);
  316. n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
  317. if (!n)
  318. return -ENOMEM;
  319. n->qpd = qpd;
  320. mutex_lock(&dqm->lock);
  321. list_add(&n->list, &dqm->queues);
  322. init_process_memory(dqm, qpd);
  323. dqm->processes_count++;
  324. mutex_unlock(&dqm->lock);
  325. return 0;
  326. }
  327. static int unregister_process_nocpsch(struct device_queue_manager *dqm,
  328. struct qcm_process_device *qpd)
  329. {
  330. int retval;
  331. struct device_process_node *cur, *next;
  332. BUG_ON(!dqm || !qpd);
  333. BUG_ON(!list_empty(&qpd->queues_list));
  334. pr_debug("kfd: In func %s\n", __func__);
  335. retval = 0;
  336. mutex_lock(&dqm->lock);
  337. list_for_each_entry_safe(cur, next, &dqm->queues, list) {
  338. if (qpd == cur->qpd) {
  339. list_del(&cur->list);
  340. kfree(cur);
  341. dqm->processes_count--;
  342. goto out;
  343. }
  344. }
  345. /* qpd not found in dqm list */
  346. retval = 1;
  347. out:
  348. mutex_unlock(&dqm->lock);
  349. return retval;
  350. }
  351. static int
  352. set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
  353. unsigned int vmid)
  354. {
  355. uint32_t pasid_mapping;
  356. pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  357. ATC_VMID_PASID_MAPPING_VALID;
  358. return kfd2kgd->set_pasid_vmid_mapping(dqm->dev->kgd, pasid_mapping,
  359. vmid);
  360. }
  361. static uint32_t compute_sh_mem_bases_64bit(unsigned int top_address_nybble)
  362. {
  363. /* In 64-bit mode, we can only control the top 3 bits of the LDS,
  364. * scratch and GPUVM apertures.
  365. * The hardware fills in the remaining 59 bits according to the
  366. * following pattern:
  367. * LDS: X0000000'00000000 - X0000001'00000000 (4GB)
  368. * Scratch: X0000001'00000000 - X0000002'00000000 (4GB)
  369. * GPUVM: Y0010000'00000000 - Y0020000'00000000 (1TB)
  370. *
  371. * (where X/Y is the configurable nybble with the low-bit 0)
  372. *
  373. * LDS and scratch will have the same top nybble programmed in the
  374. * top 3 bits of SH_MEM_BASES.PRIVATE_BASE.
  375. * GPUVM can have a different top nybble programmed in the
  376. * top 3 bits of SH_MEM_BASES.SHARED_BASE.
  377. * We don't bother to support different top nybbles
  378. * for LDS/Scratch and GPUVM.
  379. */
  380. BUG_ON((top_address_nybble & 1) || top_address_nybble > 0xE ||
  381. top_address_nybble == 0);
  382. return PRIVATE_BASE(top_address_nybble << 12) |
  383. SHARED_BASE(top_address_nybble << 12);
  384. }
  385. static int init_memory(struct device_queue_manager *dqm)
  386. {
  387. int i, retval;
  388. for (i = 8; i < 16; i++)
  389. set_pasid_vmid_mapping(dqm, 0, i);
  390. retval = kfd2kgd->init_memory(dqm->dev->kgd);
  391. if (retval == 0)
  392. is_mem_initialized = true;
  393. return retval;
  394. }
  395. static int init_pipelines(struct device_queue_manager *dqm,
  396. unsigned int pipes_num, unsigned int first_pipe)
  397. {
  398. void *hpdptr;
  399. struct mqd_manager *mqd;
  400. unsigned int i, err, inx;
  401. uint64_t pipe_hpd_addr;
  402. BUG_ON(!dqm || !dqm->dev);
  403. pr_debug("kfd: In func %s\n", __func__);
  404. /*
  405. * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
  406. * The driver never accesses this memory after zeroing it.
  407. * It doesn't even have to be saved/restored on suspend/resume
  408. * because it contains no data when there are no active queues.
  409. */
  410. err = kfd2kgd->allocate_mem(dqm->dev->kgd,
  411. CIK_HPD_EOP_BYTES * pipes_num,
  412. PAGE_SIZE,
  413. KFD_MEMPOOL_SYSTEM_WRITECOMBINE,
  414. (struct kgd_mem **) &dqm->pipeline_mem);
  415. if (err) {
  416. pr_err("kfd: error allocate vidmem num pipes: %d\n",
  417. pipes_num);
  418. return -ENOMEM;
  419. }
  420. hpdptr = dqm->pipeline_mem->cpu_ptr;
  421. dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
  422. memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
  423. mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
  424. if (mqd == NULL) {
  425. kfd2kgd->free_mem(dqm->dev->kgd,
  426. (struct kgd_mem *) dqm->pipeline_mem);
  427. return -ENOMEM;
  428. }
  429. for (i = 0; i < pipes_num; i++) {
  430. inx = i + first_pipe;
  431. pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
  432. pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
  433. /* = log2(bytes/4)-1 */
  434. kfd2kgd->init_pipeline(dqm->dev->kgd, i,
  435. CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
  436. }
  437. return 0;
  438. }
  439. static int init_scheduler(struct device_queue_manager *dqm)
  440. {
  441. int retval;
  442. BUG_ON(!dqm);
  443. pr_debug("kfd: In %s\n", __func__);
  444. retval = init_pipelines(dqm, get_pipes_num(dqm), KFD_DQM_FIRST_PIPE);
  445. if (retval != 0)
  446. return retval;
  447. retval = init_memory(dqm);
  448. return retval;
  449. }
  450. static int initialize_nocpsch(struct device_queue_manager *dqm)
  451. {
  452. int i;
  453. BUG_ON(!dqm);
  454. pr_debug("kfd: In func %s num of pipes: %d\n",
  455. __func__, get_pipes_num(dqm));
  456. mutex_init(&dqm->lock);
  457. INIT_LIST_HEAD(&dqm->queues);
  458. dqm->queue_count = dqm->next_pipe_to_allocate = 0;
  459. dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
  460. sizeof(unsigned int), GFP_KERNEL);
  461. if (!dqm->allocated_queues) {
  462. mutex_destroy(&dqm->lock);
  463. return -ENOMEM;
  464. }
  465. for (i = 0; i < get_pipes_num(dqm); i++)
  466. dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
  467. dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
  468. init_scheduler(dqm);
  469. return 0;
  470. }
  471. static void uninitialize_nocpsch(struct device_queue_manager *dqm)
  472. {
  473. int i;
  474. BUG_ON(!dqm);
  475. BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
  476. kfree(dqm->allocated_queues);
  477. for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
  478. kfree(dqm->mqds[i]);
  479. mutex_destroy(&dqm->lock);
  480. kfd2kgd->free_mem(dqm->dev->kgd,
  481. (struct kgd_mem *) dqm->pipeline_mem);
  482. }
  483. static int start_nocpsch(struct device_queue_manager *dqm)
  484. {
  485. return 0;
  486. }
  487. static int stop_nocpsch(struct device_queue_manager *dqm)
  488. {
  489. return 0;
  490. }
  491. /*
  492. * Device Queue Manager implementation for cp scheduler
  493. */
  494. static int set_sched_resources(struct device_queue_manager *dqm)
  495. {
  496. struct scheduling_resources res;
  497. unsigned int queue_num, queue_mask;
  498. BUG_ON(!dqm);
  499. pr_debug("kfd: In func %s\n", __func__);
  500. queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
  501. queue_mask = (1 << queue_num) - 1;
  502. res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
  503. res.vmid_mask <<= KFD_VMID_START_OFFSET;
  504. res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
  505. res.gws_mask = res.oac_mask = res.gds_heap_base =
  506. res.gds_heap_size = 0;
  507. pr_debug("kfd: scheduling resources:\n"
  508. " vmid mask: 0x%8X\n"
  509. " queue mask: 0x%8llX\n",
  510. res.vmid_mask, res.queue_mask);
  511. return pm_send_set_resources(&dqm->packets, &res);
  512. }
  513. static int initialize_cpsch(struct device_queue_manager *dqm)
  514. {
  515. int retval;
  516. BUG_ON(!dqm);
  517. pr_debug("kfd: In func %s num of pipes: %d\n",
  518. __func__, get_pipes_num_cpsch());
  519. mutex_init(&dqm->lock);
  520. INIT_LIST_HEAD(&dqm->queues);
  521. dqm->queue_count = dqm->processes_count = 0;
  522. dqm->active_runlist = false;
  523. retval = init_pipelines(dqm, get_pipes_num(dqm), 0);
  524. if (retval != 0)
  525. goto fail_init_pipelines;
  526. return 0;
  527. fail_init_pipelines:
  528. mutex_destroy(&dqm->lock);
  529. return retval;
  530. }
  531. static int start_cpsch(struct device_queue_manager *dqm)
  532. {
  533. struct device_process_node *node;
  534. int retval;
  535. BUG_ON(!dqm);
  536. retval = 0;
  537. retval = pm_init(&dqm->packets, dqm);
  538. if (retval != 0)
  539. goto fail_packet_manager_init;
  540. retval = set_sched_resources(dqm);
  541. if (retval != 0)
  542. goto fail_set_sched_resources;
  543. pr_debug("kfd: allocating fence memory\n");
  544. /* allocate fence memory on the gart */
  545. retval = kfd2kgd->allocate_mem(dqm->dev->kgd,
  546. sizeof(*dqm->fence_addr),
  547. 32,
  548. KFD_MEMPOOL_SYSTEM_WRITECOMBINE,
  549. (struct kgd_mem **) &dqm->fence_mem);
  550. if (retval != 0)
  551. goto fail_allocate_vidmem;
  552. dqm->fence_addr = dqm->fence_mem->cpu_ptr;
  553. dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
  554. list_for_each_entry(node, &dqm->queues, list)
  555. if (node->qpd->pqm->process && dqm->dev)
  556. kfd_bind_process_to_device(dqm->dev,
  557. node->qpd->pqm->process);
  558. execute_queues_cpsch(dqm, true);
  559. return 0;
  560. fail_allocate_vidmem:
  561. fail_set_sched_resources:
  562. pm_uninit(&dqm->packets);
  563. fail_packet_manager_init:
  564. return retval;
  565. }
  566. static int stop_cpsch(struct device_queue_manager *dqm)
  567. {
  568. struct device_process_node *node;
  569. struct kfd_process_device *pdd;
  570. BUG_ON(!dqm);
  571. destroy_queues_cpsch(dqm, true);
  572. list_for_each_entry(node, &dqm->queues, list) {
  573. pdd = qpd_to_pdd(node->qpd);
  574. pdd->bound = false;
  575. }
  576. kfd2kgd->free_mem(dqm->dev->kgd,
  577. (struct kgd_mem *) dqm->fence_mem);
  578. pm_uninit(&dqm->packets);
  579. return 0;
  580. }
  581. static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
  582. struct kernel_queue *kq,
  583. struct qcm_process_device *qpd)
  584. {
  585. BUG_ON(!dqm || !kq || !qpd);
  586. pr_debug("kfd: In func %s\n", __func__);
  587. mutex_lock(&dqm->lock);
  588. list_add(&kq->list, &qpd->priv_queue_list);
  589. dqm->queue_count++;
  590. qpd->is_debug = true;
  591. execute_queues_cpsch(dqm, false);
  592. mutex_unlock(&dqm->lock);
  593. return 0;
  594. }
  595. static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
  596. struct kernel_queue *kq,
  597. struct qcm_process_device *qpd)
  598. {
  599. BUG_ON(!dqm || !kq);
  600. pr_debug("kfd: In %s\n", __func__);
  601. mutex_lock(&dqm->lock);
  602. destroy_queues_cpsch(dqm, false);
  603. list_del(&kq->list);
  604. dqm->queue_count--;
  605. qpd->is_debug = false;
  606. execute_queues_cpsch(dqm, false);
  607. mutex_unlock(&dqm->lock);
  608. }
  609. static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
  610. struct qcm_process_device *qpd, int *allocate_vmid)
  611. {
  612. int retval;
  613. struct mqd_manager *mqd;
  614. BUG_ON(!dqm || !q || !qpd);
  615. retval = 0;
  616. if (allocate_vmid)
  617. *allocate_vmid = 0;
  618. mutex_lock(&dqm->lock);
  619. mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_CP);
  620. if (mqd == NULL) {
  621. mutex_unlock(&dqm->lock);
  622. return -ENOMEM;
  623. }
  624. retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
  625. &q->gart_mqd_addr, &q->properties);
  626. if (retval != 0)
  627. goto out;
  628. list_add(&q->list, &qpd->queues_list);
  629. if (q->properties.is_active) {
  630. dqm->queue_count++;
  631. retval = execute_queues_cpsch(dqm, false);
  632. }
  633. out:
  634. mutex_unlock(&dqm->lock);
  635. return retval;
  636. }
  637. static int fence_wait_timeout(unsigned int *fence_addr,
  638. unsigned int fence_value,
  639. unsigned long timeout)
  640. {
  641. BUG_ON(!fence_addr);
  642. timeout += jiffies;
  643. while (*fence_addr != fence_value) {
  644. if (time_after(jiffies, timeout)) {
  645. pr_err("kfd: qcm fence wait loop timeout expired\n");
  646. return -ETIME;
  647. }
  648. cpu_relax();
  649. }
  650. return 0;
  651. }
  652. static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock)
  653. {
  654. int retval;
  655. BUG_ON(!dqm);
  656. retval = 0;
  657. if (lock)
  658. mutex_lock(&dqm->lock);
  659. if (dqm->active_runlist == false)
  660. goto out;
  661. retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
  662. KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0);
  663. if (retval != 0)
  664. goto out;
  665. *dqm->fence_addr = KFD_FENCE_INIT;
  666. pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
  667. KFD_FENCE_COMPLETED);
  668. /* should be timed out */
  669. fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
  670. QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
  671. pm_release_ib(&dqm->packets);
  672. dqm->active_runlist = false;
  673. out:
  674. if (lock)
  675. mutex_unlock(&dqm->lock);
  676. return retval;
  677. }
  678. static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
  679. {
  680. int retval;
  681. BUG_ON(!dqm);
  682. if (lock)
  683. mutex_lock(&dqm->lock);
  684. retval = destroy_queues_cpsch(dqm, false);
  685. if (retval != 0) {
  686. pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
  687. goto out;
  688. }
  689. if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
  690. retval = 0;
  691. goto out;
  692. }
  693. if (dqm->active_runlist) {
  694. retval = 0;
  695. goto out;
  696. }
  697. retval = pm_send_runlist(&dqm->packets, &dqm->queues);
  698. if (retval != 0) {
  699. pr_err("kfd: failed to execute runlist");
  700. goto out;
  701. }
  702. dqm->active_runlist = true;
  703. out:
  704. if (lock)
  705. mutex_unlock(&dqm->lock);
  706. return retval;
  707. }
  708. static int destroy_queue_cpsch(struct device_queue_manager *dqm,
  709. struct qcm_process_device *qpd,
  710. struct queue *q)
  711. {
  712. int retval;
  713. struct mqd_manager *mqd;
  714. BUG_ON(!dqm || !qpd || !q);
  715. retval = 0;
  716. /* remove queue from list to prevent rescheduling after preemption */
  717. mutex_lock(&dqm->lock);
  718. mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_CP);
  719. if (!mqd) {
  720. retval = -ENOMEM;
  721. goto failed;
  722. }
  723. list_del(&q->list);
  724. dqm->queue_count--;
  725. execute_queues_cpsch(dqm, false);
  726. mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
  727. mutex_unlock(&dqm->lock);
  728. return 0;
  729. failed:
  730. mutex_unlock(&dqm->lock);
  731. return retval;
  732. }
  733. /*
  734. * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
  735. * stay in user mode.
  736. */
  737. #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
  738. /* APE1 limit is inclusive and 64K aligned. */
  739. #define APE1_LIMIT_ALIGNMENT 0xFFFF
  740. static bool set_cache_memory_policy(struct device_queue_manager *dqm,
  741. struct qcm_process_device *qpd,
  742. enum cache_policy default_policy,
  743. enum cache_policy alternate_policy,
  744. void __user *alternate_aperture_base,
  745. uint64_t alternate_aperture_size)
  746. {
  747. uint32_t default_mtype;
  748. uint32_t ape1_mtype;
  749. pr_debug("kfd: In func %s\n", __func__);
  750. mutex_lock(&dqm->lock);
  751. if (alternate_aperture_size == 0) {
  752. /* base > limit disables APE1 */
  753. qpd->sh_mem_ape1_base = 1;
  754. qpd->sh_mem_ape1_limit = 0;
  755. } else {
  756. /*
  757. * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
  758. * SH_MEM_APE1_BASE[31:0], 0x0000 }
  759. * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
  760. * SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
  761. * Verify that the base and size parameters can be
  762. * represented in this format and convert them.
  763. * Additionally restrict APE1 to user-mode addresses.
  764. */
  765. uint64_t base = (uintptr_t)alternate_aperture_base;
  766. uint64_t limit = base + alternate_aperture_size - 1;
  767. if (limit <= base)
  768. goto out;
  769. if ((base & APE1_FIXED_BITS_MASK) != 0)
  770. goto out;
  771. if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
  772. goto out;
  773. qpd->sh_mem_ape1_base = base >> 16;
  774. qpd->sh_mem_ape1_limit = limit >> 16;
  775. }
  776. default_mtype = (default_policy == cache_policy_coherent) ?
  777. MTYPE_NONCACHED :
  778. MTYPE_CACHED;
  779. ape1_mtype = (alternate_policy == cache_policy_coherent) ?
  780. MTYPE_NONCACHED :
  781. MTYPE_CACHED;
  782. qpd->sh_mem_config = (qpd->sh_mem_config & PTR32)
  783. | ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED)
  784. | DEFAULT_MTYPE(default_mtype)
  785. | APE1_MTYPE(ape1_mtype);
  786. if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
  787. program_sh_mem_settings(dqm, qpd);
  788. pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
  789. qpd->sh_mem_config, qpd->sh_mem_ape1_base,
  790. qpd->sh_mem_ape1_limit);
  791. mutex_unlock(&dqm->lock);
  792. return true;
  793. out:
  794. mutex_unlock(&dqm->lock);
  795. return false;
  796. }
  797. struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
  798. {
  799. struct device_queue_manager *dqm;
  800. BUG_ON(!dev);
  801. dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
  802. if (!dqm)
  803. return NULL;
  804. dqm->dev = dev;
  805. switch (sched_policy) {
  806. case KFD_SCHED_POLICY_HWS:
  807. case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
  808. /* initialize dqm for cp scheduling */
  809. dqm->create_queue = create_queue_cpsch;
  810. dqm->initialize = initialize_cpsch;
  811. dqm->start = start_cpsch;
  812. dqm->stop = stop_cpsch;
  813. dqm->destroy_queue = destroy_queue_cpsch;
  814. dqm->update_queue = update_queue;
  815. dqm->get_mqd_manager = get_mqd_manager_nocpsch;
  816. dqm->register_process = register_process_nocpsch;
  817. dqm->unregister_process = unregister_process_nocpsch;
  818. dqm->uninitialize = uninitialize_nocpsch;
  819. dqm->create_kernel_queue = create_kernel_queue_cpsch;
  820. dqm->destroy_kernel_queue = destroy_kernel_queue_cpsch;
  821. dqm->set_cache_memory_policy = set_cache_memory_policy;
  822. break;
  823. case KFD_SCHED_POLICY_NO_HWS:
  824. /* initialize dqm for no cp scheduling */
  825. dqm->start = start_nocpsch;
  826. dqm->stop = stop_nocpsch;
  827. dqm->create_queue = create_queue_nocpsch;
  828. dqm->destroy_queue = destroy_queue_nocpsch;
  829. dqm->update_queue = update_queue;
  830. dqm->get_mqd_manager = get_mqd_manager_nocpsch;
  831. dqm->register_process = register_process_nocpsch;
  832. dqm->unregister_process = unregister_process_nocpsch;
  833. dqm->initialize = initialize_nocpsch;
  834. dqm->uninitialize = uninitialize_nocpsch;
  835. dqm->set_cache_memory_policy = set_cache_memory_policy;
  836. break;
  837. default:
  838. BUG();
  839. break;
  840. }
  841. if (dqm->initialize(dqm) != 0) {
  842. kfree(dqm);
  843. return NULL;
  844. }
  845. return dqm;
  846. }
  847. void device_queue_manager_uninit(struct device_queue_manager *dqm)
  848. {
  849. BUG_ON(!dqm);
  850. dqm->uninitialize(dqm);
  851. kfree(dqm);
  852. }