cppi41.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103
  1. #include <linux/delay.h>
  2. #include <linux/dmaengine.h>
  3. #include <linux/dma-mapping.h>
  4. #include <linux/platform_device.h>
  5. #include <linux/module.h>
  6. #include <linux/of.h>
  7. #include <linux/slab.h>
  8. #include <linux/of_dma.h>
  9. #include <linux/of_irq.h>
  10. #include <linux/dmapool.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/of_address.h>
  13. #include <linux/pm_runtime.h>
  14. #include "dmaengine.h"
  15. #define DESC_TYPE 27
  16. #define DESC_TYPE_HOST 0x10
  17. #define DESC_TYPE_TEARD 0x13
  18. #define TD_DESC_IS_RX (1 << 16)
  19. #define TD_DESC_DMA_NUM 10
  20. #define DESC_LENGTH_BITS_NUM 21
  21. #define DESC_TYPE_USB (5 << 26)
  22. #define DESC_PD_COMPLETE (1 << 31)
  23. /* DMA engine */
  24. #define DMA_TDFDQ 4
  25. #define DMA_TXGCR(x) (0x800 + (x) * 0x20)
  26. #define DMA_RXGCR(x) (0x808 + (x) * 0x20)
  27. #define RXHPCRA0 4
  28. #define GCR_CHAN_ENABLE (1 << 31)
  29. #define GCR_TEARDOWN (1 << 30)
  30. #define GCR_STARV_RETRY (1 << 24)
  31. #define GCR_DESC_TYPE_HOST (1 << 14)
  32. /* DMA scheduler */
  33. #define DMA_SCHED_CTRL 0
  34. #define DMA_SCHED_CTRL_EN (1 << 31)
  35. #define DMA_SCHED_WORD(x) ((x) * 4 + 0x800)
  36. #define SCHED_ENTRY0_CHAN(x) ((x) << 0)
  37. #define SCHED_ENTRY0_IS_RX (1 << 7)
  38. #define SCHED_ENTRY1_CHAN(x) ((x) << 8)
  39. #define SCHED_ENTRY1_IS_RX (1 << 15)
  40. #define SCHED_ENTRY2_CHAN(x) ((x) << 16)
  41. #define SCHED_ENTRY2_IS_RX (1 << 23)
  42. #define SCHED_ENTRY3_CHAN(x) ((x) << 24)
  43. #define SCHED_ENTRY3_IS_RX (1 << 31)
  44. /* Queue manager */
  45. /* 4 KiB of memory for descriptors, 2 for each endpoint */
  46. #define ALLOC_DECS_NUM 128
  47. #define DESCS_AREAS 1
  48. #define TOTAL_DESCS_NUM (ALLOC_DECS_NUM * DESCS_AREAS)
  49. #define QMGR_SCRATCH_SIZE (TOTAL_DESCS_NUM * 4)
  50. #define QMGR_LRAM0_BASE 0x80
  51. #define QMGR_LRAM_SIZE 0x84
  52. #define QMGR_LRAM1_BASE 0x88
  53. #define QMGR_MEMBASE(x) (0x1000 + (x) * 0x10)
  54. #define QMGR_MEMCTRL(x) (0x1004 + (x) * 0x10)
  55. #define QMGR_MEMCTRL_IDX_SH 16
  56. #define QMGR_MEMCTRL_DESC_SH 8
  57. #define QMGR_NUM_PEND 5
  58. #define QMGR_PEND(x) (0x90 + (x) * 4)
  59. #define QMGR_PENDING_SLOT_Q(x) (x / 32)
  60. #define QMGR_PENDING_BIT_Q(x) (x % 32)
  61. #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
  62. #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
  63. #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
  64. #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
  65. /* Glue layer specific */
  66. /* USBSS / USB AM335x */
  67. #define USBSS_IRQ_STATUS 0x28
  68. #define USBSS_IRQ_ENABLER 0x2c
  69. #define USBSS_IRQ_CLEARR 0x30
  70. #define USBSS_IRQ_PD_COMP (1 << 2)
  71. /* Packet Descriptor */
  72. #define PD2_ZERO_LENGTH (1 << 19)
  73. struct cppi41_channel {
  74. struct dma_chan chan;
  75. struct dma_async_tx_descriptor txd;
  76. struct cppi41_dd *cdd;
  77. struct cppi41_desc *desc;
  78. dma_addr_t desc_phys;
  79. void __iomem *gcr_reg;
  80. int is_tx;
  81. u32 residue;
  82. unsigned int q_num;
  83. unsigned int q_comp_num;
  84. unsigned int port_num;
  85. unsigned td_retry;
  86. unsigned td_queued:1;
  87. unsigned td_seen:1;
  88. unsigned td_desc_seen:1;
  89. };
  90. struct cppi41_desc {
  91. u32 pd0;
  92. u32 pd1;
  93. u32 pd2;
  94. u32 pd3;
  95. u32 pd4;
  96. u32 pd5;
  97. u32 pd6;
  98. u32 pd7;
  99. } __aligned(32);
  100. struct chan_queues {
  101. u16 submit;
  102. u16 complete;
  103. };
  104. struct cppi41_dd {
  105. struct dma_device ddev;
  106. void *qmgr_scratch;
  107. dma_addr_t scratch_phys;
  108. struct cppi41_desc *cd;
  109. dma_addr_t descs_phys;
  110. u32 first_td_desc;
  111. struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
  112. void __iomem *usbss_mem;
  113. void __iomem *ctrl_mem;
  114. void __iomem *sched_mem;
  115. void __iomem *qmgr_mem;
  116. unsigned int irq;
  117. const struct chan_queues *queues_rx;
  118. const struct chan_queues *queues_tx;
  119. struct chan_queues td_queue;
  120. /* context for suspend/resume */
  121. unsigned int dma_tdfdq;
  122. };
  123. #define FIST_COMPLETION_QUEUE 93
  124. static struct chan_queues usb_queues_tx[] = {
  125. /* USB0 ENDP 1 */
  126. [ 0] = { .submit = 32, .complete = 93},
  127. [ 1] = { .submit = 34, .complete = 94},
  128. [ 2] = { .submit = 36, .complete = 95},
  129. [ 3] = { .submit = 38, .complete = 96},
  130. [ 4] = { .submit = 40, .complete = 97},
  131. [ 5] = { .submit = 42, .complete = 98},
  132. [ 6] = { .submit = 44, .complete = 99},
  133. [ 7] = { .submit = 46, .complete = 100},
  134. [ 8] = { .submit = 48, .complete = 101},
  135. [ 9] = { .submit = 50, .complete = 102},
  136. [10] = { .submit = 52, .complete = 103},
  137. [11] = { .submit = 54, .complete = 104},
  138. [12] = { .submit = 56, .complete = 105},
  139. [13] = { .submit = 58, .complete = 106},
  140. [14] = { .submit = 60, .complete = 107},
  141. /* USB1 ENDP1 */
  142. [15] = { .submit = 62, .complete = 125},
  143. [16] = { .submit = 64, .complete = 126},
  144. [17] = { .submit = 66, .complete = 127},
  145. [18] = { .submit = 68, .complete = 128},
  146. [19] = { .submit = 70, .complete = 129},
  147. [20] = { .submit = 72, .complete = 130},
  148. [21] = { .submit = 74, .complete = 131},
  149. [22] = { .submit = 76, .complete = 132},
  150. [23] = { .submit = 78, .complete = 133},
  151. [24] = { .submit = 80, .complete = 134},
  152. [25] = { .submit = 82, .complete = 135},
  153. [26] = { .submit = 84, .complete = 136},
  154. [27] = { .submit = 86, .complete = 137},
  155. [28] = { .submit = 88, .complete = 138},
  156. [29] = { .submit = 90, .complete = 139},
  157. };
  158. static const struct chan_queues usb_queues_rx[] = {
  159. /* USB0 ENDP 1 */
  160. [ 0] = { .submit = 1, .complete = 109},
  161. [ 1] = { .submit = 2, .complete = 110},
  162. [ 2] = { .submit = 3, .complete = 111},
  163. [ 3] = { .submit = 4, .complete = 112},
  164. [ 4] = { .submit = 5, .complete = 113},
  165. [ 5] = { .submit = 6, .complete = 114},
  166. [ 6] = { .submit = 7, .complete = 115},
  167. [ 7] = { .submit = 8, .complete = 116},
  168. [ 8] = { .submit = 9, .complete = 117},
  169. [ 9] = { .submit = 10, .complete = 118},
  170. [10] = { .submit = 11, .complete = 119},
  171. [11] = { .submit = 12, .complete = 120},
  172. [12] = { .submit = 13, .complete = 121},
  173. [13] = { .submit = 14, .complete = 122},
  174. [14] = { .submit = 15, .complete = 123},
  175. /* USB1 ENDP 1 */
  176. [15] = { .submit = 16, .complete = 141},
  177. [16] = { .submit = 17, .complete = 142},
  178. [17] = { .submit = 18, .complete = 143},
  179. [18] = { .submit = 19, .complete = 144},
  180. [19] = { .submit = 20, .complete = 145},
  181. [20] = { .submit = 21, .complete = 146},
  182. [21] = { .submit = 22, .complete = 147},
  183. [22] = { .submit = 23, .complete = 148},
  184. [23] = { .submit = 24, .complete = 149},
  185. [24] = { .submit = 25, .complete = 150},
  186. [25] = { .submit = 26, .complete = 151},
  187. [26] = { .submit = 27, .complete = 152},
  188. [27] = { .submit = 28, .complete = 153},
  189. [28] = { .submit = 29, .complete = 154},
  190. [29] = { .submit = 30, .complete = 155},
  191. };
  192. struct cppi_glue_infos {
  193. irqreturn_t (*isr)(int irq, void *data);
  194. const struct chan_queues *queues_rx;
  195. const struct chan_queues *queues_tx;
  196. struct chan_queues td_queue;
  197. };
  198. static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
  199. {
  200. return container_of(c, struct cppi41_channel, chan);
  201. }
  202. static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
  203. {
  204. struct cppi41_channel *c;
  205. u32 descs_size;
  206. u32 desc_num;
  207. descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
  208. if (!((desc >= cdd->descs_phys) &&
  209. (desc < (cdd->descs_phys + descs_size)))) {
  210. return NULL;
  211. }
  212. desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
  213. BUG_ON(desc_num >= ALLOC_DECS_NUM);
  214. c = cdd->chan_busy[desc_num];
  215. cdd->chan_busy[desc_num] = NULL;
  216. return c;
  217. }
  218. static void cppi_writel(u32 val, void *__iomem *mem)
  219. {
  220. __raw_writel(val, mem);
  221. }
  222. static u32 cppi_readl(void *__iomem *mem)
  223. {
  224. return __raw_readl(mem);
  225. }
  226. static u32 pd_trans_len(u32 val)
  227. {
  228. return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
  229. }
  230. static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
  231. {
  232. u32 desc;
  233. desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
  234. desc &= ~0x1f;
  235. return desc;
  236. }
  237. static irqreturn_t cppi41_irq(int irq, void *data)
  238. {
  239. struct cppi41_dd *cdd = data;
  240. struct cppi41_channel *c;
  241. u32 status;
  242. int i;
  243. status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
  244. if (!(status & USBSS_IRQ_PD_COMP))
  245. return IRQ_NONE;
  246. cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
  247. for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
  248. i++) {
  249. u32 val;
  250. u32 q_num;
  251. val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
  252. if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
  253. u32 mask;
  254. /* set corresponding bit for completetion Q 93 */
  255. mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
  256. /* not set all bits for queues less than Q 93 */
  257. mask--;
  258. /* now invert and keep only Q 93+ set */
  259. val &= ~mask;
  260. }
  261. if (val)
  262. __iormb();
  263. while (val) {
  264. u32 desc, len;
  265. q_num = __fls(val);
  266. val &= ~(1 << q_num);
  267. q_num += 32 * i;
  268. desc = cppi41_pop_desc(cdd, q_num);
  269. c = desc_to_chan(cdd, desc);
  270. if (WARN_ON(!c)) {
  271. pr_err("%s() q %d desc %08x\n", __func__,
  272. q_num, desc);
  273. continue;
  274. }
  275. if (c->desc->pd2 & PD2_ZERO_LENGTH)
  276. len = 0;
  277. else
  278. len = pd_trans_len(c->desc->pd0);
  279. c->residue = pd_trans_len(c->desc->pd6) - len;
  280. dma_cookie_complete(&c->txd);
  281. c->txd.callback(c->txd.callback_param);
  282. }
  283. }
  284. return IRQ_HANDLED;
  285. }
  286. static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
  287. {
  288. dma_cookie_t cookie;
  289. cookie = dma_cookie_assign(tx);
  290. return cookie;
  291. }
  292. static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
  293. {
  294. struct cppi41_channel *c = to_cpp41_chan(chan);
  295. dma_cookie_init(chan);
  296. dma_async_tx_descriptor_init(&c->txd, chan);
  297. c->txd.tx_submit = cppi41_tx_submit;
  298. if (!c->is_tx)
  299. cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
  300. return 0;
  301. }
  302. static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
  303. {
  304. }
  305. static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
  306. dma_cookie_t cookie, struct dma_tx_state *txstate)
  307. {
  308. struct cppi41_channel *c = to_cpp41_chan(chan);
  309. enum dma_status ret;
  310. /* lock */
  311. ret = dma_cookie_status(chan, cookie, txstate);
  312. if (txstate && ret == DMA_COMPLETE)
  313. txstate->residue = c->residue;
  314. /* unlock */
  315. return ret;
  316. }
  317. static void push_desc_queue(struct cppi41_channel *c)
  318. {
  319. struct cppi41_dd *cdd = c->cdd;
  320. u32 desc_num;
  321. u32 desc_phys;
  322. u32 reg;
  323. desc_phys = lower_32_bits(c->desc_phys);
  324. desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
  325. WARN_ON(cdd->chan_busy[desc_num]);
  326. cdd->chan_busy[desc_num] = c;
  327. reg = (sizeof(struct cppi41_desc) - 24) / 4;
  328. reg |= desc_phys;
  329. cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
  330. }
  331. static void cppi41_dma_issue_pending(struct dma_chan *chan)
  332. {
  333. struct cppi41_channel *c = to_cpp41_chan(chan);
  334. u32 reg;
  335. c->residue = 0;
  336. reg = GCR_CHAN_ENABLE;
  337. if (!c->is_tx) {
  338. reg |= GCR_STARV_RETRY;
  339. reg |= GCR_DESC_TYPE_HOST;
  340. reg |= c->q_comp_num;
  341. }
  342. cppi_writel(reg, c->gcr_reg);
  343. /*
  344. * We don't use writel() but __raw_writel() so we have to make sure
  345. * that the DMA descriptor in coherent memory made to the main memory
  346. * before starting the dma engine.
  347. */
  348. __iowmb();
  349. push_desc_queue(c);
  350. }
  351. static u32 get_host_pd0(u32 length)
  352. {
  353. u32 reg;
  354. reg = DESC_TYPE_HOST << DESC_TYPE;
  355. reg |= length;
  356. return reg;
  357. }
  358. static u32 get_host_pd1(struct cppi41_channel *c)
  359. {
  360. u32 reg;
  361. reg = 0;
  362. return reg;
  363. }
  364. static u32 get_host_pd2(struct cppi41_channel *c)
  365. {
  366. u32 reg;
  367. reg = DESC_TYPE_USB;
  368. reg |= c->q_comp_num;
  369. return reg;
  370. }
  371. static u32 get_host_pd3(u32 length)
  372. {
  373. u32 reg;
  374. /* PD3 = packet size */
  375. reg = length;
  376. return reg;
  377. }
  378. static u32 get_host_pd6(u32 length)
  379. {
  380. u32 reg;
  381. /* PD6 buffer size */
  382. reg = DESC_PD_COMPLETE;
  383. reg |= length;
  384. return reg;
  385. }
  386. static u32 get_host_pd4_or_7(u32 addr)
  387. {
  388. u32 reg;
  389. reg = addr;
  390. return reg;
  391. }
  392. static u32 get_host_pd5(void)
  393. {
  394. u32 reg;
  395. reg = 0;
  396. return reg;
  397. }
  398. static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
  399. struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
  400. enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
  401. {
  402. struct cppi41_channel *c = to_cpp41_chan(chan);
  403. struct cppi41_desc *d;
  404. struct scatterlist *sg;
  405. unsigned int i;
  406. unsigned int num;
  407. num = 0;
  408. d = c->desc;
  409. for_each_sg(sgl, sg, sg_len, i) {
  410. u32 addr;
  411. u32 len;
  412. /* We need to use more than one desc once musb supports sg */
  413. BUG_ON(num > 0);
  414. addr = lower_32_bits(sg_dma_address(sg));
  415. len = sg_dma_len(sg);
  416. d->pd0 = get_host_pd0(len);
  417. d->pd1 = get_host_pd1(c);
  418. d->pd2 = get_host_pd2(c);
  419. d->pd3 = get_host_pd3(len);
  420. d->pd4 = get_host_pd4_or_7(addr);
  421. d->pd5 = get_host_pd5();
  422. d->pd6 = get_host_pd6(len);
  423. d->pd7 = get_host_pd4_or_7(addr);
  424. d++;
  425. }
  426. return &c->txd;
  427. }
  428. static int cpp41_cfg_chan(struct cppi41_channel *c,
  429. struct dma_slave_config *cfg)
  430. {
  431. return 0;
  432. }
  433. static void cppi41_compute_td_desc(struct cppi41_desc *d)
  434. {
  435. d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
  436. }
  437. static int cppi41_tear_down_chan(struct cppi41_channel *c)
  438. {
  439. struct cppi41_dd *cdd = c->cdd;
  440. struct cppi41_desc *td;
  441. u32 reg;
  442. u32 desc_phys;
  443. u32 td_desc_phys;
  444. td = cdd->cd;
  445. td += cdd->first_td_desc;
  446. td_desc_phys = cdd->descs_phys;
  447. td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
  448. if (!c->td_queued) {
  449. cppi41_compute_td_desc(td);
  450. __iowmb();
  451. reg = (sizeof(struct cppi41_desc) - 24) / 4;
  452. reg |= td_desc_phys;
  453. cppi_writel(reg, cdd->qmgr_mem +
  454. QMGR_QUEUE_D(cdd->td_queue.submit));
  455. reg = GCR_CHAN_ENABLE;
  456. if (!c->is_tx) {
  457. reg |= GCR_STARV_RETRY;
  458. reg |= GCR_DESC_TYPE_HOST;
  459. reg |= c->q_comp_num;
  460. }
  461. reg |= GCR_TEARDOWN;
  462. cppi_writel(reg, c->gcr_reg);
  463. c->td_queued = 1;
  464. c->td_retry = 500;
  465. }
  466. if (!c->td_seen || !c->td_desc_seen) {
  467. desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
  468. if (!desc_phys)
  469. desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
  470. if (desc_phys == c->desc_phys) {
  471. c->td_desc_seen = 1;
  472. } else if (desc_phys == td_desc_phys) {
  473. u32 pd0;
  474. __iormb();
  475. pd0 = td->pd0;
  476. WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
  477. WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
  478. WARN_ON((pd0 & 0x1f) != c->port_num);
  479. c->td_seen = 1;
  480. } else if (desc_phys) {
  481. WARN_ON_ONCE(1);
  482. }
  483. }
  484. c->td_retry--;
  485. /*
  486. * If the TX descriptor / channel is in use, the caller needs to poke
  487. * his TD bit multiple times. After that he hardware releases the
  488. * transfer descriptor followed by TD descriptor. Waiting seems not to
  489. * cause any difference.
  490. * RX seems to be thrown out right away. However once the TearDown
  491. * descriptor gets through we are done. If we have seens the transfer
  492. * descriptor before the TD we fetch it from enqueue, it has to be
  493. * there waiting for us.
  494. */
  495. if (!c->td_seen && c->td_retry) {
  496. udelay(1);
  497. return -EAGAIN;
  498. }
  499. WARN_ON(!c->td_retry);
  500. if (!c->td_desc_seen) {
  501. desc_phys = cppi41_pop_desc(cdd, c->q_num);
  502. if (!desc_phys)
  503. desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
  504. WARN_ON(!desc_phys);
  505. }
  506. c->td_queued = 0;
  507. c->td_seen = 0;
  508. c->td_desc_seen = 0;
  509. cppi_writel(0, c->gcr_reg);
  510. return 0;
  511. }
  512. static int cppi41_stop_chan(struct dma_chan *chan)
  513. {
  514. struct cppi41_channel *c = to_cpp41_chan(chan);
  515. struct cppi41_dd *cdd = c->cdd;
  516. u32 desc_num;
  517. u32 desc_phys;
  518. int ret;
  519. desc_phys = lower_32_bits(c->desc_phys);
  520. desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
  521. if (!cdd->chan_busy[desc_num])
  522. return 0;
  523. ret = cppi41_tear_down_chan(c);
  524. if (ret)
  525. return ret;
  526. WARN_ON(!cdd->chan_busy[desc_num]);
  527. cdd->chan_busy[desc_num] = NULL;
  528. return 0;
  529. }
  530. static int cppi41_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  531. unsigned long arg)
  532. {
  533. struct cppi41_channel *c = to_cpp41_chan(chan);
  534. int ret;
  535. switch (cmd) {
  536. case DMA_SLAVE_CONFIG:
  537. ret = cpp41_cfg_chan(c, (struct dma_slave_config *) arg);
  538. break;
  539. case DMA_TERMINATE_ALL:
  540. ret = cppi41_stop_chan(chan);
  541. break;
  542. default:
  543. ret = -ENXIO;
  544. break;
  545. }
  546. return ret;
  547. }
  548. static void cleanup_chans(struct cppi41_dd *cdd)
  549. {
  550. while (!list_empty(&cdd->ddev.channels)) {
  551. struct cppi41_channel *cchan;
  552. cchan = list_first_entry(&cdd->ddev.channels,
  553. struct cppi41_channel, chan.device_node);
  554. list_del(&cchan->chan.device_node);
  555. kfree(cchan);
  556. }
  557. }
  558. static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
  559. {
  560. struct cppi41_channel *cchan;
  561. int i;
  562. int ret;
  563. u32 n_chans;
  564. ret = of_property_read_u32(dev->of_node, "#dma-channels",
  565. &n_chans);
  566. if (ret)
  567. return ret;
  568. /*
  569. * The channels can only be used as TX or as RX. So we add twice
  570. * that much dma channels because USB can only do RX or TX.
  571. */
  572. n_chans *= 2;
  573. for (i = 0; i < n_chans; i++) {
  574. cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
  575. if (!cchan)
  576. goto err;
  577. cchan->cdd = cdd;
  578. if (i & 1) {
  579. cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
  580. cchan->is_tx = 1;
  581. } else {
  582. cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
  583. cchan->is_tx = 0;
  584. }
  585. cchan->port_num = i >> 1;
  586. cchan->desc = &cdd->cd[i];
  587. cchan->desc_phys = cdd->descs_phys;
  588. cchan->desc_phys += i * sizeof(struct cppi41_desc);
  589. cchan->chan.device = &cdd->ddev;
  590. list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
  591. }
  592. cdd->first_td_desc = n_chans;
  593. return 0;
  594. err:
  595. cleanup_chans(cdd);
  596. return -ENOMEM;
  597. }
  598. static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
  599. {
  600. unsigned int mem_decs;
  601. int i;
  602. mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
  603. for (i = 0; i < DESCS_AREAS; i++) {
  604. cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
  605. cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
  606. dma_free_coherent(dev, mem_decs, cdd->cd,
  607. cdd->descs_phys);
  608. }
  609. }
  610. static void disable_sched(struct cppi41_dd *cdd)
  611. {
  612. cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
  613. }
  614. static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
  615. {
  616. disable_sched(cdd);
  617. purge_descs(dev, cdd);
  618. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  619. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  620. dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
  621. cdd->scratch_phys);
  622. }
  623. static int init_descs(struct device *dev, struct cppi41_dd *cdd)
  624. {
  625. unsigned int desc_size;
  626. unsigned int mem_decs;
  627. int i;
  628. u32 reg;
  629. u32 idx;
  630. BUILD_BUG_ON(sizeof(struct cppi41_desc) &
  631. (sizeof(struct cppi41_desc) - 1));
  632. BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
  633. BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
  634. desc_size = sizeof(struct cppi41_desc);
  635. mem_decs = ALLOC_DECS_NUM * desc_size;
  636. idx = 0;
  637. for (i = 0; i < DESCS_AREAS; i++) {
  638. reg = idx << QMGR_MEMCTRL_IDX_SH;
  639. reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
  640. reg |= ilog2(ALLOC_DECS_NUM) - 5;
  641. BUILD_BUG_ON(DESCS_AREAS != 1);
  642. cdd->cd = dma_alloc_coherent(dev, mem_decs,
  643. &cdd->descs_phys, GFP_KERNEL);
  644. if (!cdd->cd)
  645. return -ENOMEM;
  646. cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
  647. cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
  648. idx += ALLOC_DECS_NUM;
  649. }
  650. return 0;
  651. }
  652. static void init_sched(struct cppi41_dd *cdd)
  653. {
  654. unsigned ch;
  655. unsigned word;
  656. u32 reg;
  657. word = 0;
  658. cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
  659. for (ch = 0; ch < 15 * 2; ch += 2) {
  660. reg = SCHED_ENTRY0_CHAN(ch);
  661. reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
  662. reg |= SCHED_ENTRY2_CHAN(ch + 1);
  663. reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
  664. cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
  665. word++;
  666. }
  667. reg = 15 * 2 * 2 - 1;
  668. reg |= DMA_SCHED_CTRL_EN;
  669. cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
  670. }
  671. static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
  672. {
  673. int ret;
  674. BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
  675. cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
  676. &cdd->scratch_phys, GFP_KERNEL);
  677. if (!cdd->qmgr_scratch)
  678. return -ENOMEM;
  679. cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  680. cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
  681. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
  682. ret = init_descs(dev, cdd);
  683. if (ret)
  684. goto err_td;
  685. cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
  686. init_sched(cdd);
  687. return 0;
  688. err_td:
  689. deinit_cppi41(dev, cdd);
  690. return ret;
  691. }
  692. static struct platform_driver cpp41_dma_driver;
  693. /*
  694. * The param format is:
  695. * X Y
  696. * X: Port
  697. * Y: 0 = RX else TX
  698. */
  699. #define INFO_PORT 0
  700. #define INFO_IS_TX 1
  701. static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
  702. {
  703. struct cppi41_channel *cchan;
  704. struct cppi41_dd *cdd;
  705. const struct chan_queues *queues;
  706. u32 *num = param;
  707. if (chan->device->dev->driver != &cpp41_dma_driver.driver)
  708. return false;
  709. cchan = to_cpp41_chan(chan);
  710. if (cchan->port_num != num[INFO_PORT])
  711. return false;
  712. if (cchan->is_tx && !num[INFO_IS_TX])
  713. return false;
  714. cdd = cchan->cdd;
  715. if (cchan->is_tx)
  716. queues = cdd->queues_tx;
  717. else
  718. queues = cdd->queues_rx;
  719. BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
  720. if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
  721. return false;
  722. cchan->q_num = queues[cchan->port_num].submit;
  723. cchan->q_comp_num = queues[cchan->port_num].complete;
  724. return true;
  725. }
  726. static struct of_dma_filter_info cpp41_dma_info = {
  727. .filter_fn = cpp41_dma_filter_fn,
  728. };
  729. static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
  730. struct of_dma *ofdma)
  731. {
  732. int count = dma_spec->args_count;
  733. struct of_dma_filter_info *info = ofdma->of_dma_data;
  734. if (!info || !info->filter_fn)
  735. return NULL;
  736. if (count != 2)
  737. return NULL;
  738. return dma_request_channel(info->dma_cap, info->filter_fn,
  739. &dma_spec->args[0]);
  740. }
  741. static const struct cppi_glue_infos usb_infos = {
  742. .isr = cppi41_irq,
  743. .queues_rx = usb_queues_rx,
  744. .queues_tx = usb_queues_tx,
  745. .td_queue = { .submit = 31, .complete = 0 },
  746. };
  747. static const struct of_device_id cppi41_dma_ids[] = {
  748. { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
  749. {},
  750. };
  751. MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
  752. static const struct cppi_glue_infos *get_glue_info(struct device *dev)
  753. {
  754. const struct of_device_id *of_id;
  755. of_id = of_match_node(cppi41_dma_ids, dev->of_node);
  756. if (!of_id)
  757. return NULL;
  758. return of_id->data;
  759. }
  760. static int cppi41_dma_probe(struct platform_device *pdev)
  761. {
  762. struct cppi41_dd *cdd;
  763. struct device *dev = &pdev->dev;
  764. const struct cppi_glue_infos *glue_info;
  765. int irq;
  766. int ret;
  767. glue_info = get_glue_info(dev);
  768. if (!glue_info)
  769. return -EINVAL;
  770. cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
  771. if (!cdd)
  772. return -ENOMEM;
  773. dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
  774. cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
  775. cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
  776. cdd->ddev.device_tx_status = cppi41_dma_tx_status;
  777. cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
  778. cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
  779. cdd->ddev.device_control = cppi41_dma_control;
  780. cdd->ddev.dev = dev;
  781. INIT_LIST_HEAD(&cdd->ddev.channels);
  782. cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
  783. cdd->usbss_mem = of_iomap(dev->of_node, 0);
  784. cdd->ctrl_mem = of_iomap(dev->of_node, 1);
  785. cdd->sched_mem = of_iomap(dev->of_node, 2);
  786. cdd->qmgr_mem = of_iomap(dev->of_node, 3);
  787. if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
  788. !cdd->qmgr_mem)
  789. return -ENXIO;
  790. pm_runtime_enable(dev);
  791. ret = pm_runtime_get_sync(dev);
  792. if (ret < 0)
  793. goto err_get_sync;
  794. cdd->queues_rx = glue_info->queues_rx;
  795. cdd->queues_tx = glue_info->queues_tx;
  796. cdd->td_queue = glue_info->td_queue;
  797. ret = init_cppi41(dev, cdd);
  798. if (ret)
  799. goto err_init_cppi;
  800. ret = cppi41_add_chans(dev, cdd);
  801. if (ret)
  802. goto err_chans;
  803. irq = irq_of_parse_and_map(dev->of_node, 0);
  804. if (!irq) {
  805. ret = -EINVAL;
  806. goto err_irq;
  807. }
  808. cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
  809. ret = devm_request_irq(&pdev->dev, irq, glue_info->isr, IRQF_SHARED,
  810. dev_name(dev), cdd);
  811. if (ret)
  812. goto err_irq;
  813. cdd->irq = irq;
  814. ret = dma_async_device_register(&cdd->ddev);
  815. if (ret)
  816. goto err_dma_reg;
  817. ret = of_dma_controller_register(dev->of_node,
  818. cppi41_dma_xlate, &cpp41_dma_info);
  819. if (ret)
  820. goto err_of;
  821. platform_set_drvdata(pdev, cdd);
  822. return 0;
  823. err_of:
  824. dma_async_device_unregister(&cdd->ddev);
  825. err_dma_reg:
  826. err_irq:
  827. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  828. cleanup_chans(cdd);
  829. err_chans:
  830. deinit_cppi41(dev, cdd);
  831. err_init_cppi:
  832. pm_runtime_put(dev);
  833. err_get_sync:
  834. pm_runtime_disable(dev);
  835. iounmap(cdd->usbss_mem);
  836. iounmap(cdd->ctrl_mem);
  837. iounmap(cdd->sched_mem);
  838. iounmap(cdd->qmgr_mem);
  839. return ret;
  840. }
  841. static int cppi41_dma_remove(struct platform_device *pdev)
  842. {
  843. struct cppi41_dd *cdd = platform_get_drvdata(pdev);
  844. of_dma_controller_free(pdev->dev.of_node);
  845. dma_async_device_unregister(&cdd->ddev);
  846. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  847. devm_free_irq(&pdev->dev, cdd->irq, cdd);
  848. cleanup_chans(cdd);
  849. deinit_cppi41(&pdev->dev, cdd);
  850. iounmap(cdd->usbss_mem);
  851. iounmap(cdd->ctrl_mem);
  852. iounmap(cdd->sched_mem);
  853. iounmap(cdd->qmgr_mem);
  854. pm_runtime_put(&pdev->dev);
  855. pm_runtime_disable(&pdev->dev);
  856. return 0;
  857. }
  858. #ifdef CONFIG_PM_SLEEP
  859. static int cppi41_suspend(struct device *dev)
  860. {
  861. struct cppi41_dd *cdd = dev_get_drvdata(dev);
  862. cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
  863. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  864. disable_sched(cdd);
  865. return 0;
  866. }
  867. static int cppi41_resume(struct device *dev)
  868. {
  869. struct cppi41_dd *cdd = dev_get_drvdata(dev);
  870. struct cppi41_channel *c;
  871. int i;
  872. for (i = 0; i < DESCS_AREAS; i++)
  873. cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
  874. list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
  875. if (!c->is_tx)
  876. cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
  877. init_sched(cdd);
  878. cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
  879. cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  880. cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
  881. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
  882. cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
  883. return 0;
  884. }
  885. #endif
  886. static SIMPLE_DEV_PM_OPS(cppi41_pm_ops, cppi41_suspend, cppi41_resume);
  887. static struct platform_driver cpp41_dma_driver = {
  888. .probe = cppi41_dma_probe,
  889. .remove = cppi41_dma_remove,
  890. .driver = {
  891. .name = "cppi41-dma-engine",
  892. .pm = &cppi41_pm_ops,
  893. .of_match_table = of_match_ptr(cppi41_dma_ids),
  894. },
  895. };
  896. module_platform_driver(cpp41_dma_driver);
  897. MODULE_LICENSE("GPL");
  898. MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");