coresight-etm3x.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928
  1. /* Copyright (c) 2011-2012, The Linux Foundation. All rights reserved.
  2. *
  3. * This program is free software; you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License version 2 and
  5. * only version 2 as published by the Free Software Foundation.
  6. *
  7. * This program is distributed in the hope that it will be useful,
  8. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. * GNU General Public License for more details.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/init.h>
  15. #include <linux/types.h>
  16. #include <linux/device.h>
  17. #include <linux/io.h>
  18. #include <linux/err.h>
  19. #include <linux/fs.h>
  20. #include <linux/slab.h>
  21. #include <linux/delay.h>
  22. #include <linux/smp.h>
  23. #include <linux/sysfs.h>
  24. #include <linux/stat.h>
  25. #include <linux/clk.h>
  26. #include <linux/cpu.h>
  27. #include <linux/of.h>
  28. #include <linux/coresight.h>
  29. #include <linux/amba/bus.h>
  30. #include <linux/seq_file.h>
  31. #include <linux/uaccess.h>
  32. #include <asm/sections.h>
  33. #include "coresight-etm.h"
  34. #ifdef CONFIG_CORESIGHT_SOURCE_ETM_DEFAULT_ENABLE
  35. static int boot_enable = 1;
  36. #else
  37. static int boot_enable;
  38. #endif
  39. module_param_named(
  40. boot_enable, boot_enable, int, S_IRUGO
  41. );
  42. /* The number of ETM/PTM currently registered */
  43. static int etm_count;
  44. static struct etm_drvdata *etmdrvdata[NR_CPUS];
  45. static inline void etm_writel(struct etm_drvdata *drvdata,
  46. u32 val, u32 off)
  47. {
  48. if (drvdata->use_cp14) {
  49. if (etm_writel_cp14(off, val)) {
  50. dev_err(drvdata->dev,
  51. "invalid CP14 access to ETM reg: %#x", off);
  52. }
  53. } else {
  54. writel_relaxed(val, drvdata->base + off);
  55. }
  56. }
  57. static inline unsigned int etm_readl(struct etm_drvdata *drvdata, u32 off)
  58. {
  59. u32 val;
  60. if (drvdata->use_cp14) {
  61. if (etm_readl_cp14(off, &val)) {
  62. dev_err(drvdata->dev,
  63. "invalid CP14 access to ETM reg: %#x", off);
  64. }
  65. } else {
  66. val = readl_relaxed(drvdata->base + off);
  67. }
  68. return val;
  69. }
  70. /*
  71. * Memory mapped writes to clear os lock are not supported on some processors
  72. * and OS lock must be unlocked before any memory mapped access on such
  73. * processors, otherwise memory mapped reads/writes will be invalid.
  74. */
  75. static void etm_os_unlock(void *info)
  76. {
  77. struct etm_drvdata *drvdata = (struct etm_drvdata *)info;
  78. /* Writing any value to ETMOSLAR unlocks the trace registers */
  79. etm_writel(drvdata, 0x0, ETMOSLAR);
  80. isb();
  81. }
  82. static void etm_set_pwrdwn(struct etm_drvdata *drvdata)
  83. {
  84. u32 etmcr;
  85. /* Ensure pending cp14 accesses complete before setting pwrdwn */
  86. mb();
  87. isb();
  88. etmcr = etm_readl(drvdata, ETMCR);
  89. etmcr |= ETMCR_PWD_DWN;
  90. etm_writel(drvdata, etmcr, ETMCR);
  91. }
  92. static void etm_clr_pwrdwn(struct etm_drvdata *drvdata)
  93. {
  94. u32 etmcr;
  95. etmcr = etm_readl(drvdata, ETMCR);
  96. etmcr &= ~ETMCR_PWD_DWN;
  97. etm_writel(drvdata, etmcr, ETMCR);
  98. /* Ensure pwrup completes before subsequent cp14 accesses */
  99. mb();
  100. isb();
  101. }
  102. static void etm_set_pwrup(struct etm_drvdata *drvdata)
  103. {
  104. u32 etmpdcr;
  105. etmpdcr = readl_relaxed(drvdata->base + ETMPDCR);
  106. etmpdcr |= ETMPDCR_PWD_UP;
  107. writel_relaxed(etmpdcr, drvdata->base + ETMPDCR);
  108. /* Ensure pwrup completes before subsequent cp14 accesses */
  109. mb();
  110. isb();
  111. }
  112. static void etm_clr_pwrup(struct etm_drvdata *drvdata)
  113. {
  114. u32 etmpdcr;
  115. /* Ensure pending cp14 accesses complete before clearing pwrup */
  116. mb();
  117. isb();
  118. etmpdcr = readl_relaxed(drvdata->base + ETMPDCR);
  119. etmpdcr &= ~ETMPDCR_PWD_UP;
  120. writel_relaxed(etmpdcr, drvdata->base + ETMPDCR);
  121. }
  122. /**
  123. * coresight_timeout_etm - loop until a bit has changed to a specific state.
  124. * @drvdata: etm's private data structure.
  125. * @offset: address of a register, starting from @addr.
  126. * @position: the position of the bit of interest.
  127. * @value: the value the bit should have.
  128. *
  129. * Basically the same as @coresight_timeout except for the register access
  130. * method where we have to account for CP14 configurations.
  131. * Return: 0 as soon as the bit has taken the desired state or -EAGAIN if
  132. * TIMEOUT_US has elapsed, which ever happens first.
  133. */
  134. static int coresight_timeout_etm(struct etm_drvdata *drvdata, u32 offset,
  135. int position, int value)
  136. {
  137. int i;
  138. u32 val;
  139. for (i = TIMEOUT_US; i > 0; i--) {
  140. val = etm_readl(drvdata, offset);
  141. /* Waiting on the bit to go from 0 to 1 */
  142. if (value) {
  143. if (val & BIT(position))
  144. return 0;
  145. /* Waiting on the bit to go from 1 to 0 */
  146. } else {
  147. if (!(val & BIT(position)))
  148. return 0;
  149. }
  150. /*
  151. * Delay is arbitrary - the specification doesn't say how long
  152. * we are expected to wait. Extra check required to make sure
  153. * we don't wait needlessly on the last iteration.
  154. */
  155. if (i - 1)
  156. udelay(1);
  157. }
  158. return -EAGAIN;
  159. }
  160. static void etm_set_prog(struct etm_drvdata *drvdata)
  161. {
  162. u32 etmcr;
  163. etmcr = etm_readl(drvdata, ETMCR);
  164. etmcr |= ETMCR_ETM_PRG;
  165. etm_writel(drvdata, etmcr, ETMCR);
  166. /*
  167. * Recommended by spec for cp14 accesses to ensure etmcr write is
  168. * complete before polling etmsr
  169. */
  170. isb();
  171. if (coresight_timeout_etm(drvdata, ETMSR, ETMSR_PROG_BIT, 1)) {
  172. dev_err(drvdata->dev,
  173. "timeout observed when probing at offset %#x\n", ETMSR);
  174. }
  175. }
  176. static void etm_clr_prog(struct etm_drvdata *drvdata)
  177. {
  178. u32 etmcr;
  179. etmcr = etm_readl(drvdata, ETMCR);
  180. etmcr &= ~ETMCR_ETM_PRG;
  181. etm_writel(drvdata, etmcr, ETMCR);
  182. /*
  183. * Recommended by spec for cp14 accesses to ensure etmcr write is
  184. * complete before polling etmsr
  185. */
  186. isb();
  187. if (coresight_timeout_etm(drvdata, ETMSR, ETMSR_PROG_BIT, 0)) {
  188. dev_err(drvdata->dev,
  189. "timeout observed when probing at offset %#x\n", ETMSR);
  190. }
  191. }
  192. static void etm_set_default(struct etm_drvdata *drvdata)
  193. {
  194. int i;
  195. drvdata->trigger_event = ETM_DEFAULT_EVENT_VAL;
  196. drvdata->enable_event = ETM_HARD_WIRE_RES_A;
  197. drvdata->seq_12_event = ETM_DEFAULT_EVENT_VAL;
  198. drvdata->seq_21_event = ETM_DEFAULT_EVENT_VAL;
  199. drvdata->seq_23_event = ETM_DEFAULT_EVENT_VAL;
  200. drvdata->seq_31_event = ETM_DEFAULT_EVENT_VAL;
  201. drvdata->seq_32_event = ETM_DEFAULT_EVENT_VAL;
  202. drvdata->seq_13_event = ETM_DEFAULT_EVENT_VAL;
  203. drvdata->timestamp_event = ETM_DEFAULT_EVENT_VAL;
  204. for (i = 0; i < drvdata->nr_cntr; i++) {
  205. drvdata->cntr_rld_val[i] = 0x0;
  206. drvdata->cntr_event[i] = ETM_DEFAULT_EVENT_VAL;
  207. drvdata->cntr_rld_event[i] = ETM_DEFAULT_EVENT_VAL;
  208. drvdata->cntr_val[i] = 0x0;
  209. }
  210. drvdata->seq_curr_state = 0x0;
  211. drvdata->ctxid_idx = 0x0;
  212. for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
  213. drvdata->ctxid_val[i] = 0x0;
  214. drvdata->ctxid_mask = 0x0;
  215. }
  216. static void etm_enable_hw(void *info)
  217. {
  218. int i;
  219. u32 etmcr;
  220. struct etm_drvdata *drvdata = info;
  221. CS_UNLOCK(drvdata->base);
  222. /* Turn engine on */
  223. etm_clr_pwrdwn(drvdata);
  224. /* Apply power to trace registers */
  225. etm_set_pwrup(drvdata);
  226. /* Make sure all registers are accessible */
  227. etm_os_unlock(drvdata);
  228. etm_set_prog(drvdata);
  229. etmcr = etm_readl(drvdata, ETMCR);
  230. etmcr &= (ETMCR_PWD_DWN | ETMCR_ETM_PRG);
  231. etmcr |= drvdata->port_size;
  232. etm_writel(drvdata, drvdata->ctrl | etmcr, ETMCR);
  233. etm_writel(drvdata, drvdata->trigger_event, ETMTRIGGER);
  234. etm_writel(drvdata, drvdata->startstop_ctrl, ETMTSSCR);
  235. etm_writel(drvdata, drvdata->enable_event, ETMTEEVR);
  236. etm_writel(drvdata, drvdata->enable_ctrl1, ETMTECR1);
  237. etm_writel(drvdata, drvdata->fifofull_level, ETMFFLR);
  238. for (i = 0; i < drvdata->nr_addr_cmp; i++) {
  239. etm_writel(drvdata, drvdata->addr_val[i], ETMACVRn(i));
  240. etm_writel(drvdata, drvdata->addr_acctype[i], ETMACTRn(i));
  241. }
  242. for (i = 0; i < drvdata->nr_cntr; i++) {
  243. etm_writel(drvdata, drvdata->cntr_rld_val[i], ETMCNTRLDVRn(i));
  244. etm_writel(drvdata, drvdata->cntr_event[i], ETMCNTENRn(i));
  245. etm_writel(drvdata, drvdata->cntr_rld_event[i],
  246. ETMCNTRLDEVRn(i));
  247. etm_writel(drvdata, drvdata->cntr_val[i], ETMCNTVRn(i));
  248. }
  249. etm_writel(drvdata, drvdata->seq_12_event, ETMSQ12EVR);
  250. etm_writel(drvdata, drvdata->seq_21_event, ETMSQ21EVR);
  251. etm_writel(drvdata, drvdata->seq_23_event, ETMSQ23EVR);
  252. etm_writel(drvdata, drvdata->seq_31_event, ETMSQ31EVR);
  253. etm_writel(drvdata, drvdata->seq_32_event, ETMSQ32EVR);
  254. etm_writel(drvdata, drvdata->seq_13_event, ETMSQ13EVR);
  255. etm_writel(drvdata, drvdata->seq_curr_state, ETMSQR);
  256. for (i = 0; i < drvdata->nr_ext_out; i++)
  257. etm_writel(drvdata, ETM_DEFAULT_EVENT_VAL, ETMEXTOUTEVRn(i));
  258. for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
  259. etm_writel(drvdata, drvdata->ctxid_val[i], ETMCIDCVRn(i));
  260. etm_writel(drvdata, drvdata->ctxid_mask, ETMCIDCMR);
  261. etm_writel(drvdata, drvdata->sync_freq, ETMSYNCFR);
  262. /* No external input selected */
  263. etm_writel(drvdata, 0x0, ETMEXTINSELR);
  264. etm_writel(drvdata, drvdata->timestamp_event, ETMTSEVR);
  265. /* No auxiliary control selected */
  266. etm_writel(drvdata, 0x0, ETMAUXCR);
  267. etm_writel(drvdata, drvdata->traceid, ETMTRACEIDR);
  268. /* No VMID comparator value selected */
  269. etm_writel(drvdata, 0x0, ETMVMIDCVR);
  270. /* Ensures trace output is enabled from this ETM */
  271. etm_writel(drvdata, drvdata->ctrl | ETMCR_ETM_EN | etmcr, ETMCR);
  272. etm_clr_prog(drvdata);
  273. CS_LOCK(drvdata->base);
  274. dev_dbg(drvdata->dev, "cpu: %d enable smp call done\n", drvdata->cpu);
  275. }
  276. static int etm_trace_id_simple(struct etm_drvdata *drvdata)
  277. {
  278. if (!drvdata->enable)
  279. return drvdata->traceid;
  280. return (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
  281. }
  282. static int etm_trace_id(struct coresight_device *csdev)
  283. {
  284. struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
  285. unsigned long flags;
  286. int trace_id = -1;
  287. if (!drvdata->enable)
  288. return drvdata->traceid;
  289. if (clk_prepare_enable(drvdata->clk))
  290. goto out;
  291. spin_lock_irqsave(&drvdata->spinlock, flags);
  292. CS_UNLOCK(drvdata->base);
  293. trace_id = (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
  294. CS_LOCK(drvdata->base);
  295. spin_unlock_irqrestore(&drvdata->spinlock, flags);
  296. clk_disable_unprepare(drvdata->clk);
  297. out:
  298. return trace_id;
  299. }
  300. static int etm_enable(struct coresight_device *csdev)
  301. {
  302. struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
  303. int ret;
  304. ret = clk_prepare_enable(drvdata->clk);
  305. if (ret)
  306. goto err_clk;
  307. spin_lock(&drvdata->spinlock);
  308. /*
  309. * Configure the ETM only if the CPU is online. If it isn't online
  310. * hw configuration will take place when 'CPU_STARTING' is received
  311. * in @etm_cpu_callback.
  312. */
  313. if (cpu_online(drvdata->cpu)) {
  314. ret = smp_call_function_single(drvdata->cpu,
  315. etm_enable_hw, drvdata, 1);
  316. if (ret)
  317. goto err;
  318. }
  319. drvdata->enable = true;
  320. drvdata->sticky_enable = true;
  321. spin_unlock(&drvdata->spinlock);
  322. dev_info(drvdata->dev, "ETM tracing enabled\n");
  323. return 0;
  324. err:
  325. spin_unlock(&drvdata->spinlock);
  326. clk_disable_unprepare(drvdata->clk);
  327. err_clk:
  328. return ret;
  329. }
  330. static void etm_disable_hw(void *info)
  331. {
  332. int i;
  333. struct etm_drvdata *drvdata = info;
  334. CS_UNLOCK(drvdata->base);
  335. etm_set_prog(drvdata);
  336. /* Program trace enable to low by using always false event */
  337. etm_writel(drvdata, ETM_HARD_WIRE_RES_A | ETM_EVENT_NOT_A, ETMTEEVR);
  338. /* Read back sequencer and counters for post trace analysis */
  339. drvdata->seq_curr_state = (etm_readl(drvdata, ETMSQR) & ETM_SQR_MASK);
  340. for (i = 0; i < drvdata->nr_cntr; i++)
  341. drvdata->cntr_val[i] = etm_readl(drvdata, ETMCNTVRn(i));
  342. etm_set_pwrdwn(drvdata);
  343. CS_LOCK(drvdata->base);
  344. dev_dbg(drvdata->dev, "cpu: %d disable smp call done\n", drvdata->cpu);
  345. }
  346. static void etm_disable(struct coresight_device *csdev)
  347. {
  348. struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
  349. /*
  350. * Taking hotplug lock here protects from clocks getting disabled
  351. * with tracing being left on (crash scenario) if user disable occurs
  352. * after cpu online mask indicates the cpu is offline but before the
  353. * DYING hotplug callback is serviced by the ETM driver.
  354. */
  355. get_online_cpus();
  356. spin_lock(&drvdata->spinlock);
  357. /*
  358. * Executing etm_disable_hw on the cpu whose ETM is being disabled
  359. * ensures that register writes occur when cpu is powered.
  360. */
  361. smp_call_function_single(drvdata->cpu, etm_disable_hw, drvdata, 1);
  362. drvdata->enable = false;
  363. spin_unlock(&drvdata->spinlock);
  364. put_online_cpus();
  365. clk_disable_unprepare(drvdata->clk);
  366. dev_info(drvdata->dev, "ETM tracing disabled\n");
  367. }
  368. static const struct coresight_ops_source etm_source_ops = {
  369. .trace_id = etm_trace_id,
  370. .enable = etm_enable,
  371. .disable = etm_disable,
  372. };
  373. static const struct coresight_ops etm_cs_ops = {
  374. .source_ops = &etm_source_ops,
  375. };
  376. static ssize_t nr_addr_cmp_show(struct device *dev,
  377. struct device_attribute *attr, char *buf)
  378. {
  379. unsigned long val;
  380. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  381. val = drvdata->nr_addr_cmp;
  382. return sprintf(buf, "%#lx\n", val);
  383. }
  384. static DEVICE_ATTR_RO(nr_addr_cmp);
  385. static ssize_t nr_cntr_show(struct device *dev,
  386. struct device_attribute *attr, char *buf)
  387. { unsigned long val;
  388. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  389. val = drvdata->nr_cntr;
  390. return sprintf(buf, "%#lx\n", val);
  391. }
  392. static DEVICE_ATTR_RO(nr_cntr);
  393. static ssize_t nr_ctxid_cmp_show(struct device *dev,
  394. struct device_attribute *attr, char *buf)
  395. {
  396. unsigned long val;
  397. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  398. val = drvdata->nr_ctxid_cmp;
  399. return sprintf(buf, "%#lx\n", val);
  400. }
  401. static DEVICE_ATTR_RO(nr_ctxid_cmp);
  402. static ssize_t etmsr_show(struct device *dev,
  403. struct device_attribute *attr, char *buf)
  404. {
  405. int ret;
  406. unsigned long flags, val;
  407. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  408. ret = clk_prepare_enable(drvdata->clk);
  409. if (ret)
  410. return ret;
  411. spin_lock_irqsave(&drvdata->spinlock, flags);
  412. CS_UNLOCK(drvdata->base);
  413. val = etm_readl(drvdata, ETMSR);
  414. CS_LOCK(drvdata->base);
  415. spin_unlock_irqrestore(&drvdata->spinlock, flags);
  416. clk_disable_unprepare(drvdata->clk);
  417. return sprintf(buf, "%#lx\n", val);
  418. }
  419. static DEVICE_ATTR_RO(etmsr);
  420. static ssize_t reset_store(struct device *dev,
  421. struct device_attribute *attr,
  422. const char *buf, size_t size)
  423. {
  424. int i, ret;
  425. unsigned long val;
  426. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  427. ret = kstrtoul(buf, 16, &val);
  428. if (ret)
  429. return ret;
  430. if (val) {
  431. spin_lock(&drvdata->spinlock);
  432. drvdata->mode = ETM_MODE_EXCLUDE;
  433. drvdata->ctrl = 0x0;
  434. drvdata->trigger_event = ETM_DEFAULT_EVENT_VAL;
  435. drvdata->startstop_ctrl = 0x0;
  436. drvdata->addr_idx = 0x0;
  437. for (i = 0; i < drvdata->nr_addr_cmp; i++) {
  438. drvdata->addr_val[i] = 0x0;
  439. drvdata->addr_acctype[i] = 0x0;
  440. drvdata->addr_type[i] = ETM_ADDR_TYPE_NONE;
  441. }
  442. drvdata->cntr_idx = 0x0;
  443. etm_set_default(drvdata);
  444. spin_unlock(&drvdata->spinlock);
  445. }
  446. return size;
  447. }
  448. static DEVICE_ATTR_WO(reset);
  449. static ssize_t mode_show(struct device *dev,
  450. struct device_attribute *attr, char *buf)
  451. {
  452. unsigned long val;
  453. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  454. val = drvdata->mode;
  455. return sprintf(buf, "%#lx\n", val);
  456. }
  457. static ssize_t mode_store(struct device *dev,
  458. struct device_attribute *attr,
  459. const char *buf, size_t size)
  460. {
  461. int ret;
  462. unsigned long val;
  463. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  464. ret = kstrtoul(buf, 16, &val);
  465. if (ret)
  466. return ret;
  467. spin_lock(&drvdata->spinlock);
  468. drvdata->mode = val & ETM_MODE_ALL;
  469. if (drvdata->mode & ETM_MODE_EXCLUDE)
  470. drvdata->enable_ctrl1 |= ETMTECR1_INC_EXC;
  471. else
  472. drvdata->enable_ctrl1 &= ~ETMTECR1_INC_EXC;
  473. if (drvdata->mode & ETM_MODE_CYCACC)
  474. drvdata->ctrl |= ETMCR_CYC_ACC;
  475. else
  476. drvdata->ctrl &= ~ETMCR_CYC_ACC;
  477. if (drvdata->mode & ETM_MODE_STALL) {
  478. if (!(drvdata->etmccr & ETMCCR_FIFOFULL)) {
  479. dev_warn(drvdata->dev, "stall mode not supported\n");
  480. return -EINVAL;
  481. }
  482. drvdata->ctrl |= ETMCR_STALL_MODE;
  483. } else
  484. drvdata->ctrl &= ~ETMCR_STALL_MODE;
  485. if (drvdata->mode & ETM_MODE_TIMESTAMP) {
  486. if (!(drvdata->etmccer & ETMCCER_TIMESTAMP)) {
  487. dev_warn(drvdata->dev, "timestamp not supported\n");
  488. return -EINVAL;
  489. }
  490. drvdata->ctrl |= ETMCR_TIMESTAMP_EN;
  491. } else
  492. drvdata->ctrl &= ~ETMCR_TIMESTAMP_EN;
  493. if (drvdata->mode & ETM_MODE_CTXID)
  494. drvdata->ctrl |= ETMCR_CTXID_SIZE;
  495. else
  496. drvdata->ctrl &= ~ETMCR_CTXID_SIZE;
  497. spin_unlock(&drvdata->spinlock);
  498. return size;
  499. }
  500. static DEVICE_ATTR_RW(mode);
  501. static ssize_t trigger_event_show(struct device *dev,
  502. struct device_attribute *attr, char *buf)
  503. {
  504. unsigned long val;
  505. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  506. val = drvdata->trigger_event;
  507. return sprintf(buf, "%#lx\n", val);
  508. }
  509. static ssize_t trigger_event_store(struct device *dev,
  510. struct device_attribute *attr,
  511. const char *buf, size_t size)
  512. {
  513. int ret;
  514. unsigned long val;
  515. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  516. ret = kstrtoul(buf, 16, &val);
  517. if (ret)
  518. return ret;
  519. drvdata->trigger_event = val & ETM_EVENT_MASK;
  520. return size;
  521. }
  522. static DEVICE_ATTR_RW(trigger_event);
  523. static ssize_t enable_event_show(struct device *dev,
  524. struct device_attribute *attr, char *buf)
  525. {
  526. unsigned long val;
  527. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  528. val = drvdata->enable_event;
  529. return sprintf(buf, "%#lx\n", val);
  530. }
  531. static ssize_t enable_event_store(struct device *dev,
  532. struct device_attribute *attr,
  533. const char *buf, size_t size)
  534. {
  535. int ret;
  536. unsigned long val;
  537. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  538. ret = kstrtoul(buf, 16, &val);
  539. if (ret)
  540. return ret;
  541. drvdata->enable_event = val & ETM_EVENT_MASK;
  542. return size;
  543. }
  544. static DEVICE_ATTR_RW(enable_event);
  545. static ssize_t fifofull_level_show(struct device *dev,
  546. struct device_attribute *attr, char *buf)
  547. {
  548. unsigned long val;
  549. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  550. val = drvdata->fifofull_level;
  551. return sprintf(buf, "%#lx\n", val);
  552. }
  553. static ssize_t fifofull_level_store(struct device *dev,
  554. struct device_attribute *attr,
  555. const char *buf, size_t size)
  556. {
  557. int ret;
  558. unsigned long val;
  559. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  560. ret = kstrtoul(buf, 16, &val);
  561. if (ret)
  562. return ret;
  563. drvdata->fifofull_level = val;
  564. return size;
  565. }
  566. static DEVICE_ATTR_RW(fifofull_level);
  567. static ssize_t addr_idx_show(struct device *dev,
  568. struct device_attribute *attr, char *buf)
  569. {
  570. unsigned long val;
  571. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  572. val = drvdata->addr_idx;
  573. return sprintf(buf, "%#lx\n", val);
  574. }
  575. static ssize_t addr_idx_store(struct device *dev,
  576. struct device_attribute *attr,
  577. const char *buf, size_t size)
  578. {
  579. int ret;
  580. unsigned long val;
  581. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  582. ret = kstrtoul(buf, 16, &val);
  583. if (ret)
  584. return ret;
  585. if (val >= drvdata->nr_addr_cmp)
  586. return -EINVAL;
  587. /*
  588. * Use spinlock to ensure index doesn't change while it gets
  589. * dereferenced multiple times within a spinlock block elsewhere.
  590. */
  591. spin_lock(&drvdata->spinlock);
  592. drvdata->addr_idx = val;
  593. spin_unlock(&drvdata->spinlock);
  594. return size;
  595. }
  596. static DEVICE_ATTR_RW(addr_idx);
  597. static ssize_t addr_single_show(struct device *dev,
  598. struct device_attribute *attr, char *buf)
  599. {
  600. u8 idx;
  601. unsigned long val;
  602. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  603. spin_lock(&drvdata->spinlock);
  604. idx = drvdata->addr_idx;
  605. if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
  606. drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
  607. spin_unlock(&drvdata->spinlock);
  608. return -EINVAL;
  609. }
  610. val = drvdata->addr_val[idx];
  611. spin_unlock(&drvdata->spinlock);
  612. return sprintf(buf, "%#lx\n", val);
  613. }
  614. static ssize_t addr_single_store(struct device *dev,
  615. struct device_attribute *attr,
  616. const char *buf, size_t size)
  617. {
  618. u8 idx;
  619. int ret;
  620. unsigned long val;
  621. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  622. ret = kstrtoul(buf, 16, &val);
  623. if (ret)
  624. return ret;
  625. spin_lock(&drvdata->spinlock);
  626. idx = drvdata->addr_idx;
  627. if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
  628. drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
  629. spin_unlock(&drvdata->spinlock);
  630. return -EINVAL;
  631. }
  632. drvdata->addr_val[idx] = val;
  633. drvdata->addr_type[idx] = ETM_ADDR_TYPE_SINGLE;
  634. spin_unlock(&drvdata->spinlock);
  635. return size;
  636. }
  637. static DEVICE_ATTR_RW(addr_single);
  638. static ssize_t addr_range_show(struct device *dev,
  639. struct device_attribute *attr, char *buf)
  640. {
  641. u8 idx;
  642. unsigned long val1, val2;
  643. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  644. spin_lock(&drvdata->spinlock);
  645. idx = drvdata->addr_idx;
  646. if (idx % 2 != 0) {
  647. spin_unlock(&drvdata->spinlock);
  648. return -EPERM;
  649. }
  650. if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
  651. drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
  652. (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
  653. drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
  654. spin_unlock(&drvdata->spinlock);
  655. return -EPERM;
  656. }
  657. val1 = drvdata->addr_val[idx];
  658. val2 = drvdata->addr_val[idx + 1];
  659. spin_unlock(&drvdata->spinlock);
  660. return sprintf(buf, "%#lx %#lx\n", val1, val2);
  661. }
  662. static ssize_t addr_range_store(struct device *dev,
  663. struct device_attribute *attr,
  664. const char *buf, size_t size)
  665. {
  666. u8 idx;
  667. unsigned long val1, val2;
  668. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  669. if (sscanf(buf, "%lx %lx", &val1, &val2) != 2)
  670. return -EINVAL;
  671. /* Lower address comparator cannot have a higher address value */
  672. if (val1 > val2)
  673. return -EINVAL;
  674. spin_lock(&drvdata->spinlock);
  675. idx = drvdata->addr_idx;
  676. if (idx % 2 != 0) {
  677. spin_unlock(&drvdata->spinlock);
  678. return -EPERM;
  679. }
  680. if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
  681. drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
  682. (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
  683. drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
  684. spin_unlock(&drvdata->spinlock);
  685. return -EPERM;
  686. }
  687. drvdata->addr_val[idx] = val1;
  688. drvdata->addr_type[idx] = ETM_ADDR_TYPE_RANGE;
  689. drvdata->addr_val[idx + 1] = val2;
  690. drvdata->addr_type[idx + 1] = ETM_ADDR_TYPE_RANGE;
  691. drvdata->enable_ctrl1 |= (1 << (idx/2));
  692. spin_unlock(&drvdata->spinlock);
  693. return size;
  694. }
  695. static DEVICE_ATTR_RW(addr_range);
  696. static ssize_t addr_start_show(struct device *dev,
  697. struct device_attribute *attr, char *buf)
  698. {
  699. u8 idx;
  700. unsigned long val;
  701. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  702. spin_lock(&drvdata->spinlock);
  703. idx = drvdata->addr_idx;
  704. if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
  705. drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
  706. spin_unlock(&drvdata->spinlock);
  707. return -EPERM;
  708. }
  709. val = drvdata->addr_val[idx];
  710. spin_unlock(&drvdata->spinlock);
  711. return sprintf(buf, "%#lx\n", val);
  712. }
  713. static ssize_t addr_start_store(struct device *dev,
  714. struct device_attribute *attr,
  715. const char *buf, size_t size)
  716. {
  717. u8 idx;
  718. int ret;
  719. unsigned long val;
  720. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  721. ret = kstrtoul(buf, 16, &val);
  722. if (ret)
  723. return ret;
  724. spin_lock(&drvdata->spinlock);
  725. idx = drvdata->addr_idx;
  726. if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
  727. drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
  728. spin_unlock(&drvdata->spinlock);
  729. return -EPERM;
  730. }
  731. drvdata->addr_val[idx] = val;
  732. drvdata->addr_type[idx] = ETM_ADDR_TYPE_START;
  733. drvdata->startstop_ctrl |= (1 << idx);
  734. drvdata->enable_ctrl1 |= BIT(25);
  735. spin_unlock(&drvdata->spinlock);
  736. return size;
  737. }
  738. static DEVICE_ATTR_RW(addr_start);
  739. static ssize_t addr_stop_show(struct device *dev,
  740. struct device_attribute *attr, char *buf)
  741. {
  742. u8 idx;
  743. unsigned long val;
  744. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  745. spin_lock(&drvdata->spinlock);
  746. idx = drvdata->addr_idx;
  747. if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
  748. drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
  749. spin_unlock(&drvdata->spinlock);
  750. return -EPERM;
  751. }
  752. val = drvdata->addr_val[idx];
  753. spin_unlock(&drvdata->spinlock);
  754. return sprintf(buf, "%#lx\n", val);
  755. }
  756. static ssize_t addr_stop_store(struct device *dev,
  757. struct device_attribute *attr,
  758. const char *buf, size_t size)
  759. {
  760. u8 idx;
  761. int ret;
  762. unsigned long val;
  763. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  764. ret = kstrtoul(buf, 16, &val);
  765. if (ret)
  766. return ret;
  767. spin_lock(&drvdata->spinlock);
  768. idx = drvdata->addr_idx;
  769. if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
  770. drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
  771. spin_unlock(&drvdata->spinlock);
  772. return -EPERM;
  773. }
  774. drvdata->addr_val[idx] = val;
  775. drvdata->addr_type[idx] = ETM_ADDR_TYPE_STOP;
  776. drvdata->startstop_ctrl |= (1 << (idx + 16));
  777. drvdata->enable_ctrl1 |= ETMTECR1_START_STOP;
  778. spin_unlock(&drvdata->spinlock);
  779. return size;
  780. }
  781. static DEVICE_ATTR_RW(addr_stop);
  782. static ssize_t addr_acctype_show(struct device *dev,
  783. struct device_attribute *attr, char *buf)
  784. {
  785. unsigned long val;
  786. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  787. spin_lock(&drvdata->spinlock);
  788. val = drvdata->addr_acctype[drvdata->addr_idx];
  789. spin_unlock(&drvdata->spinlock);
  790. return sprintf(buf, "%#lx\n", val);
  791. }
  792. static ssize_t addr_acctype_store(struct device *dev,
  793. struct device_attribute *attr,
  794. const char *buf, size_t size)
  795. {
  796. int ret;
  797. unsigned long val;
  798. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  799. ret = kstrtoul(buf, 16, &val);
  800. if (ret)
  801. return ret;
  802. spin_lock(&drvdata->spinlock);
  803. drvdata->addr_acctype[drvdata->addr_idx] = val;
  804. spin_unlock(&drvdata->spinlock);
  805. return size;
  806. }
  807. static DEVICE_ATTR_RW(addr_acctype);
  808. static ssize_t cntr_idx_show(struct device *dev,
  809. struct device_attribute *attr, char *buf)
  810. {
  811. unsigned long val;
  812. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  813. val = drvdata->cntr_idx;
  814. return sprintf(buf, "%#lx\n", val);
  815. }
  816. static ssize_t cntr_idx_store(struct device *dev,
  817. struct device_attribute *attr,
  818. const char *buf, size_t size)
  819. {
  820. int ret;
  821. unsigned long val;
  822. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  823. ret = kstrtoul(buf, 16, &val);
  824. if (ret)
  825. return ret;
  826. if (val >= drvdata->nr_cntr)
  827. return -EINVAL;
  828. /*
  829. * Use spinlock to ensure index doesn't change while it gets
  830. * dereferenced multiple times within a spinlock block elsewhere.
  831. */
  832. spin_lock(&drvdata->spinlock);
  833. drvdata->cntr_idx = val;
  834. spin_unlock(&drvdata->spinlock);
  835. return size;
  836. }
  837. static DEVICE_ATTR_RW(cntr_idx);
  838. static ssize_t cntr_rld_val_show(struct device *dev,
  839. struct device_attribute *attr, char *buf)
  840. {
  841. unsigned long val;
  842. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  843. spin_lock(&drvdata->spinlock);
  844. val = drvdata->cntr_rld_val[drvdata->cntr_idx];
  845. spin_unlock(&drvdata->spinlock);
  846. return sprintf(buf, "%#lx\n", val);
  847. }
  848. static ssize_t cntr_rld_val_store(struct device *dev,
  849. struct device_attribute *attr,
  850. const char *buf, size_t size)
  851. {
  852. int ret;
  853. unsigned long val;
  854. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  855. ret = kstrtoul(buf, 16, &val);
  856. if (ret)
  857. return ret;
  858. spin_lock(&drvdata->spinlock);
  859. drvdata->cntr_rld_val[drvdata->cntr_idx] = val;
  860. spin_unlock(&drvdata->spinlock);
  861. return size;
  862. }
  863. static DEVICE_ATTR_RW(cntr_rld_val);
  864. static ssize_t cntr_event_show(struct device *dev,
  865. struct device_attribute *attr, char *buf)
  866. {
  867. unsigned long val;
  868. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  869. spin_lock(&drvdata->spinlock);
  870. val = drvdata->cntr_event[drvdata->cntr_idx];
  871. spin_unlock(&drvdata->spinlock);
  872. return sprintf(buf, "%#lx\n", val);
  873. }
  874. static ssize_t cntr_event_store(struct device *dev,
  875. struct device_attribute *attr,
  876. const char *buf, size_t size)
  877. {
  878. int ret;
  879. unsigned long val;
  880. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  881. ret = kstrtoul(buf, 16, &val);
  882. if (ret)
  883. return ret;
  884. spin_lock(&drvdata->spinlock);
  885. drvdata->cntr_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK;
  886. spin_unlock(&drvdata->spinlock);
  887. return size;
  888. }
  889. static DEVICE_ATTR_RW(cntr_event);
  890. static ssize_t cntr_rld_event_show(struct device *dev,
  891. struct device_attribute *attr, char *buf)
  892. {
  893. unsigned long val;
  894. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  895. spin_lock(&drvdata->spinlock);
  896. val = drvdata->cntr_rld_event[drvdata->cntr_idx];
  897. spin_unlock(&drvdata->spinlock);
  898. return sprintf(buf, "%#lx\n", val);
  899. }
  900. static ssize_t cntr_rld_event_store(struct device *dev,
  901. struct device_attribute *attr,
  902. const char *buf, size_t size)
  903. {
  904. int ret;
  905. unsigned long val;
  906. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  907. ret = kstrtoul(buf, 16, &val);
  908. if (ret)
  909. return ret;
  910. spin_lock(&drvdata->spinlock);
  911. drvdata->cntr_rld_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK;
  912. spin_unlock(&drvdata->spinlock);
  913. return size;
  914. }
  915. static DEVICE_ATTR_RW(cntr_rld_event);
  916. static ssize_t cntr_val_show(struct device *dev,
  917. struct device_attribute *attr, char *buf)
  918. {
  919. int i, ret = 0;
  920. u32 val;
  921. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  922. if (!drvdata->enable) {
  923. spin_lock(&drvdata->spinlock);
  924. for (i = 0; i < drvdata->nr_cntr; i++)
  925. ret += sprintf(buf, "counter %d: %x\n",
  926. i, drvdata->cntr_val[i]);
  927. spin_unlock(&drvdata->spinlock);
  928. return ret;
  929. }
  930. for (i = 0; i < drvdata->nr_cntr; i++) {
  931. val = etm_readl(drvdata, ETMCNTVRn(i));
  932. ret += sprintf(buf, "counter %d: %x\n", i, val);
  933. }
  934. return ret;
  935. }
  936. static ssize_t cntr_val_store(struct device *dev,
  937. struct device_attribute *attr,
  938. const char *buf, size_t size)
  939. {
  940. int ret;
  941. unsigned long val;
  942. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  943. ret = kstrtoul(buf, 16, &val);
  944. if (ret)
  945. return ret;
  946. spin_lock(&drvdata->spinlock);
  947. drvdata->cntr_val[drvdata->cntr_idx] = val;
  948. spin_unlock(&drvdata->spinlock);
  949. return size;
  950. }
  951. static DEVICE_ATTR_RW(cntr_val);
  952. static ssize_t seq_12_event_show(struct device *dev,
  953. struct device_attribute *attr, char *buf)
  954. {
  955. unsigned long val;
  956. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  957. val = drvdata->seq_12_event;
  958. return sprintf(buf, "%#lx\n", val);
  959. }
  960. static ssize_t seq_12_event_store(struct device *dev,
  961. struct device_attribute *attr,
  962. const char *buf, size_t size)
  963. {
  964. int ret;
  965. unsigned long val;
  966. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  967. ret = kstrtoul(buf, 16, &val);
  968. if (ret)
  969. return ret;
  970. drvdata->seq_12_event = val & ETM_EVENT_MASK;
  971. return size;
  972. }
  973. static DEVICE_ATTR_RW(seq_12_event);
  974. static ssize_t seq_21_event_show(struct device *dev,
  975. struct device_attribute *attr, char *buf)
  976. {
  977. unsigned long val;
  978. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  979. val = drvdata->seq_21_event;
  980. return sprintf(buf, "%#lx\n", val);
  981. }
  982. static ssize_t seq_21_event_store(struct device *dev,
  983. struct device_attribute *attr,
  984. const char *buf, size_t size)
  985. {
  986. int ret;
  987. unsigned long val;
  988. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  989. ret = kstrtoul(buf, 16, &val);
  990. if (ret)
  991. return ret;
  992. drvdata->seq_21_event = val & ETM_EVENT_MASK;
  993. return size;
  994. }
  995. static DEVICE_ATTR_RW(seq_21_event);
  996. static ssize_t seq_23_event_show(struct device *dev,
  997. struct device_attribute *attr, char *buf)
  998. {
  999. unsigned long val;
  1000. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1001. val = drvdata->seq_23_event;
  1002. return sprintf(buf, "%#lx\n", val);
  1003. }
  1004. static ssize_t seq_23_event_store(struct device *dev,
  1005. struct device_attribute *attr,
  1006. const char *buf, size_t size)
  1007. {
  1008. int ret;
  1009. unsigned long val;
  1010. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1011. ret = kstrtoul(buf, 16, &val);
  1012. if (ret)
  1013. return ret;
  1014. drvdata->seq_23_event = val & ETM_EVENT_MASK;
  1015. return size;
  1016. }
  1017. static DEVICE_ATTR_RW(seq_23_event);
  1018. static ssize_t seq_31_event_show(struct device *dev,
  1019. struct device_attribute *attr, char *buf)
  1020. {
  1021. unsigned long val;
  1022. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1023. val = drvdata->seq_31_event;
  1024. return sprintf(buf, "%#lx\n", val);
  1025. }
  1026. static ssize_t seq_31_event_store(struct device *dev,
  1027. struct device_attribute *attr,
  1028. const char *buf, size_t size)
  1029. {
  1030. int ret;
  1031. unsigned long val;
  1032. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1033. ret = kstrtoul(buf, 16, &val);
  1034. if (ret)
  1035. return ret;
  1036. drvdata->seq_31_event = val & ETM_EVENT_MASK;
  1037. return size;
  1038. }
  1039. static DEVICE_ATTR_RW(seq_31_event);
  1040. static ssize_t seq_32_event_show(struct device *dev,
  1041. struct device_attribute *attr, char *buf)
  1042. {
  1043. unsigned long val;
  1044. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1045. val = drvdata->seq_32_event;
  1046. return sprintf(buf, "%#lx\n", val);
  1047. }
  1048. static ssize_t seq_32_event_store(struct device *dev,
  1049. struct device_attribute *attr,
  1050. const char *buf, size_t size)
  1051. {
  1052. int ret;
  1053. unsigned long val;
  1054. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1055. ret = kstrtoul(buf, 16, &val);
  1056. if (ret)
  1057. return ret;
  1058. drvdata->seq_32_event = val & ETM_EVENT_MASK;
  1059. return size;
  1060. }
  1061. static DEVICE_ATTR_RW(seq_32_event);
  1062. static ssize_t seq_13_event_show(struct device *dev,
  1063. struct device_attribute *attr, char *buf)
  1064. {
  1065. unsigned long val;
  1066. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1067. val = drvdata->seq_13_event;
  1068. return sprintf(buf, "%#lx\n", val);
  1069. }
  1070. static ssize_t seq_13_event_store(struct device *dev,
  1071. struct device_attribute *attr,
  1072. const char *buf, size_t size)
  1073. {
  1074. int ret;
  1075. unsigned long val;
  1076. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1077. ret = kstrtoul(buf, 16, &val);
  1078. if (ret)
  1079. return ret;
  1080. drvdata->seq_13_event = val & ETM_EVENT_MASK;
  1081. return size;
  1082. }
  1083. static DEVICE_ATTR_RW(seq_13_event);
  1084. static ssize_t seq_curr_state_show(struct device *dev,
  1085. struct device_attribute *attr, char *buf)
  1086. {
  1087. int ret;
  1088. unsigned long val, flags;
  1089. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1090. if (!drvdata->enable) {
  1091. val = drvdata->seq_curr_state;
  1092. goto out;
  1093. }
  1094. ret = clk_prepare_enable(drvdata->clk);
  1095. if (ret)
  1096. return ret;
  1097. spin_lock_irqsave(&drvdata->spinlock, flags);
  1098. CS_UNLOCK(drvdata->base);
  1099. val = (etm_readl(drvdata, ETMSQR) & ETM_SQR_MASK);
  1100. CS_LOCK(drvdata->base);
  1101. spin_unlock_irqrestore(&drvdata->spinlock, flags);
  1102. clk_disable_unprepare(drvdata->clk);
  1103. out:
  1104. return sprintf(buf, "%#lx\n", val);
  1105. }
  1106. static ssize_t seq_curr_state_store(struct device *dev,
  1107. struct device_attribute *attr,
  1108. const char *buf, size_t size)
  1109. {
  1110. int ret;
  1111. unsigned long val;
  1112. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1113. ret = kstrtoul(buf, 16, &val);
  1114. if (ret)
  1115. return ret;
  1116. if (val > ETM_SEQ_STATE_MAX_VAL)
  1117. return -EINVAL;
  1118. drvdata->seq_curr_state = val;
  1119. return size;
  1120. }
  1121. static DEVICE_ATTR_RW(seq_curr_state);
  1122. static ssize_t ctxid_idx_show(struct device *dev,
  1123. struct device_attribute *attr, char *buf)
  1124. {
  1125. unsigned long val;
  1126. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1127. val = drvdata->ctxid_idx;
  1128. return sprintf(buf, "%#lx\n", val);
  1129. }
  1130. static ssize_t ctxid_idx_store(struct device *dev,
  1131. struct device_attribute *attr,
  1132. const char *buf, size_t size)
  1133. {
  1134. int ret;
  1135. unsigned long val;
  1136. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1137. ret = kstrtoul(buf, 16, &val);
  1138. if (ret)
  1139. return ret;
  1140. if (val >= drvdata->nr_ctxid_cmp)
  1141. return -EINVAL;
  1142. /*
  1143. * Use spinlock to ensure index doesn't change while it gets
  1144. * dereferenced multiple times within a spinlock block elsewhere.
  1145. */
  1146. spin_lock(&drvdata->spinlock);
  1147. drvdata->ctxid_idx = val;
  1148. spin_unlock(&drvdata->spinlock);
  1149. return size;
  1150. }
  1151. static DEVICE_ATTR_RW(ctxid_idx);
  1152. static ssize_t ctxid_val_show(struct device *dev,
  1153. struct device_attribute *attr, char *buf)
  1154. {
  1155. unsigned long val;
  1156. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1157. spin_lock(&drvdata->spinlock);
  1158. val = drvdata->ctxid_val[drvdata->ctxid_idx];
  1159. spin_unlock(&drvdata->spinlock);
  1160. return sprintf(buf, "%#lx\n", val);
  1161. }
  1162. static ssize_t ctxid_val_store(struct device *dev,
  1163. struct device_attribute *attr,
  1164. const char *buf, size_t size)
  1165. {
  1166. int ret;
  1167. unsigned long val;
  1168. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1169. ret = kstrtoul(buf, 16, &val);
  1170. if (ret)
  1171. return ret;
  1172. spin_lock(&drvdata->spinlock);
  1173. drvdata->ctxid_val[drvdata->ctxid_idx] = val;
  1174. spin_unlock(&drvdata->spinlock);
  1175. return size;
  1176. }
  1177. static DEVICE_ATTR_RW(ctxid_val);
  1178. static ssize_t ctxid_mask_show(struct device *dev,
  1179. struct device_attribute *attr, char *buf)
  1180. {
  1181. unsigned long val;
  1182. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1183. val = drvdata->ctxid_mask;
  1184. return sprintf(buf, "%#lx\n", val);
  1185. }
  1186. static ssize_t ctxid_mask_store(struct device *dev,
  1187. struct device_attribute *attr,
  1188. const char *buf, size_t size)
  1189. {
  1190. int ret;
  1191. unsigned long val;
  1192. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1193. ret = kstrtoul(buf, 16, &val);
  1194. if (ret)
  1195. return ret;
  1196. drvdata->ctxid_mask = val;
  1197. return size;
  1198. }
  1199. static DEVICE_ATTR_RW(ctxid_mask);
  1200. static ssize_t sync_freq_show(struct device *dev,
  1201. struct device_attribute *attr, char *buf)
  1202. {
  1203. unsigned long val;
  1204. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1205. val = drvdata->sync_freq;
  1206. return sprintf(buf, "%#lx\n", val);
  1207. }
  1208. static ssize_t sync_freq_store(struct device *dev,
  1209. struct device_attribute *attr,
  1210. const char *buf, size_t size)
  1211. {
  1212. int ret;
  1213. unsigned long val;
  1214. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1215. ret = kstrtoul(buf, 16, &val);
  1216. if (ret)
  1217. return ret;
  1218. drvdata->sync_freq = val & ETM_SYNC_MASK;
  1219. return size;
  1220. }
  1221. static DEVICE_ATTR_RW(sync_freq);
  1222. static ssize_t timestamp_event_show(struct device *dev,
  1223. struct device_attribute *attr, char *buf)
  1224. {
  1225. unsigned long val;
  1226. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1227. val = drvdata->timestamp_event;
  1228. return sprintf(buf, "%#lx\n", val);
  1229. }
  1230. static ssize_t timestamp_event_store(struct device *dev,
  1231. struct device_attribute *attr,
  1232. const char *buf, size_t size)
  1233. {
  1234. int ret;
  1235. unsigned long val;
  1236. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1237. ret = kstrtoul(buf, 16, &val);
  1238. if (ret)
  1239. return ret;
  1240. drvdata->timestamp_event = val & ETM_EVENT_MASK;
  1241. return size;
  1242. }
  1243. static DEVICE_ATTR_RW(timestamp_event);
  1244. static ssize_t status_show(struct device *dev,
  1245. struct device_attribute *attr, char *buf)
  1246. {
  1247. int ret;
  1248. unsigned long flags;
  1249. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1250. ret = clk_prepare_enable(drvdata->clk);
  1251. if (ret)
  1252. return ret;
  1253. spin_lock_irqsave(&drvdata->spinlock, flags);
  1254. CS_UNLOCK(drvdata->base);
  1255. ret = sprintf(buf,
  1256. "ETMCCR: 0x%08x\n"
  1257. "ETMCCER: 0x%08x\n"
  1258. "ETMSCR: 0x%08x\n"
  1259. "ETMIDR: 0x%08x\n"
  1260. "ETMCR: 0x%08x\n"
  1261. "ETMTRACEIDR: 0x%08x\n"
  1262. "Enable event: 0x%08x\n"
  1263. "Enable start/stop: 0x%08x\n"
  1264. "Enable control: CR1 0x%08x CR2 0x%08x\n"
  1265. "CPU affinity: %d\n",
  1266. drvdata->etmccr, drvdata->etmccer,
  1267. etm_readl(drvdata, ETMSCR), etm_readl(drvdata, ETMIDR),
  1268. etm_readl(drvdata, ETMCR), etm_trace_id_simple(drvdata),
  1269. etm_readl(drvdata, ETMTEEVR),
  1270. etm_readl(drvdata, ETMTSSCR),
  1271. etm_readl(drvdata, ETMTECR1),
  1272. etm_readl(drvdata, ETMTECR2),
  1273. drvdata->cpu);
  1274. CS_LOCK(drvdata->base);
  1275. spin_unlock_irqrestore(&drvdata->spinlock, flags);
  1276. clk_disable_unprepare(drvdata->clk);
  1277. return ret;
  1278. }
  1279. static DEVICE_ATTR_RO(status);
  1280. static ssize_t traceid_show(struct device *dev,
  1281. struct device_attribute *attr, char *buf)
  1282. {
  1283. int ret;
  1284. unsigned long val, flags;
  1285. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1286. if (!drvdata->enable) {
  1287. val = drvdata->traceid;
  1288. goto out;
  1289. }
  1290. ret = clk_prepare_enable(drvdata->clk);
  1291. if (ret)
  1292. return ret;
  1293. spin_lock_irqsave(&drvdata->spinlock, flags);
  1294. CS_UNLOCK(drvdata->base);
  1295. val = (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
  1296. CS_LOCK(drvdata->base);
  1297. spin_unlock_irqrestore(&drvdata->spinlock, flags);
  1298. clk_disable_unprepare(drvdata->clk);
  1299. out:
  1300. return sprintf(buf, "%#lx\n", val);
  1301. }
  1302. static ssize_t traceid_store(struct device *dev,
  1303. struct device_attribute *attr,
  1304. const char *buf, size_t size)
  1305. {
  1306. int ret;
  1307. unsigned long val;
  1308. struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
  1309. ret = kstrtoul(buf, 16, &val);
  1310. if (ret)
  1311. return ret;
  1312. drvdata->traceid = val & ETM_TRACEID_MASK;
  1313. return size;
  1314. }
  1315. static DEVICE_ATTR_RW(traceid);
  1316. static struct attribute *coresight_etm_attrs[] = {
  1317. &dev_attr_nr_addr_cmp.attr,
  1318. &dev_attr_nr_cntr.attr,
  1319. &dev_attr_nr_ctxid_cmp.attr,
  1320. &dev_attr_etmsr.attr,
  1321. &dev_attr_reset.attr,
  1322. &dev_attr_mode.attr,
  1323. &dev_attr_trigger_event.attr,
  1324. &dev_attr_enable_event.attr,
  1325. &dev_attr_fifofull_level.attr,
  1326. &dev_attr_addr_idx.attr,
  1327. &dev_attr_addr_single.attr,
  1328. &dev_attr_addr_range.attr,
  1329. &dev_attr_addr_start.attr,
  1330. &dev_attr_addr_stop.attr,
  1331. &dev_attr_addr_acctype.attr,
  1332. &dev_attr_cntr_idx.attr,
  1333. &dev_attr_cntr_rld_val.attr,
  1334. &dev_attr_cntr_event.attr,
  1335. &dev_attr_cntr_rld_event.attr,
  1336. &dev_attr_cntr_val.attr,
  1337. &dev_attr_seq_12_event.attr,
  1338. &dev_attr_seq_21_event.attr,
  1339. &dev_attr_seq_23_event.attr,
  1340. &dev_attr_seq_31_event.attr,
  1341. &dev_attr_seq_32_event.attr,
  1342. &dev_attr_seq_13_event.attr,
  1343. &dev_attr_seq_curr_state.attr,
  1344. &dev_attr_ctxid_idx.attr,
  1345. &dev_attr_ctxid_val.attr,
  1346. &dev_attr_ctxid_mask.attr,
  1347. &dev_attr_sync_freq.attr,
  1348. &dev_attr_timestamp_event.attr,
  1349. &dev_attr_status.attr,
  1350. &dev_attr_traceid.attr,
  1351. NULL,
  1352. };
  1353. ATTRIBUTE_GROUPS(coresight_etm);
  1354. static int etm_cpu_callback(struct notifier_block *nfb, unsigned long action,
  1355. void *hcpu)
  1356. {
  1357. unsigned int cpu = (unsigned long)hcpu;
  1358. if (!etmdrvdata[cpu])
  1359. goto out;
  1360. switch (action & (~CPU_TASKS_FROZEN)) {
  1361. case CPU_STARTING:
  1362. spin_lock(&etmdrvdata[cpu]->spinlock);
  1363. if (!etmdrvdata[cpu]->os_unlock) {
  1364. etm_os_unlock(etmdrvdata[cpu]);
  1365. etmdrvdata[cpu]->os_unlock = true;
  1366. }
  1367. if (etmdrvdata[cpu]->enable)
  1368. etm_enable_hw(etmdrvdata[cpu]);
  1369. spin_unlock(&etmdrvdata[cpu]->spinlock);
  1370. break;
  1371. case CPU_ONLINE:
  1372. if (etmdrvdata[cpu]->boot_enable &&
  1373. !etmdrvdata[cpu]->sticky_enable)
  1374. coresight_enable(etmdrvdata[cpu]->csdev);
  1375. break;
  1376. case CPU_DYING:
  1377. spin_lock(&etmdrvdata[cpu]->spinlock);
  1378. if (etmdrvdata[cpu]->enable)
  1379. etm_disable_hw(etmdrvdata[cpu]);
  1380. spin_unlock(&etmdrvdata[cpu]->spinlock);
  1381. break;
  1382. }
  1383. out:
  1384. return NOTIFY_OK;
  1385. }
  1386. static struct notifier_block etm_cpu_notifier = {
  1387. .notifier_call = etm_cpu_callback,
  1388. };
  1389. static bool etm_arch_supported(u8 arch)
  1390. {
  1391. switch (arch) {
  1392. case ETM_ARCH_V3_3:
  1393. break;
  1394. case ETM_ARCH_V3_5:
  1395. break;
  1396. case PFT_ARCH_V1_0:
  1397. break;
  1398. case PFT_ARCH_V1_1:
  1399. break;
  1400. default:
  1401. return false;
  1402. }
  1403. return true;
  1404. }
  1405. static void etm_init_arch_data(void *info)
  1406. {
  1407. u32 etmidr;
  1408. u32 etmccr;
  1409. struct etm_drvdata *drvdata = info;
  1410. CS_UNLOCK(drvdata->base);
  1411. /* First dummy read */
  1412. (void)etm_readl(drvdata, ETMPDSR);
  1413. /* Provide power to ETM: ETMPDCR[3] == 1 */
  1414. etm_set_pwrup(drvdata);
  1415. /*
  1416. * Clear power down bit since when this bit is set writes to
  1417. * certain registers might be ignored.
  1418. */
  1419. etm_clr_pwrdwn(drvdata);
  1420. /*
  1421. * Set prog bit. It will be set from reset but this is included to
  1422. * ensure it is set
  1423. */
  1424. etm_set_prog(drvdata);
  1425. /* Find all capabilities */
  1426. etmidr = etm_readl(drvdata, ETMIDR);
  1427. drvdata->arch = BMVAL(etmidr, 4, 11);
  1428. drvdata->port_size = etm_readl(drvdata, ETMCR) & PORT_SIZE_MASK;
  1429. drvdata->etmccer = etm_readl(drvdata, ETMCCER);
  1430. etmccr = etm_readl(drvdata, ETMCCR);
  1431. drvdata->etmccr = etmccr;
  1432. drvdata->nr_addr_cmp = BMVAL(etmccr, 0, 3) * 2;
  1433. drvdata->nr_cntr = BMVAL(etmccr, 13, 15);
  1434. drvdata->nr_ext_inp = BMVAL(etmccr, 17, 19);
  1435. drvdata->nr_ext_out = BMVAL(etmccr, 20, 22);
  1436. drvdata->nr_ctxid_cmp = BMVAL(etmccr, 24, 25);
  1437. etm_set_pwrdwn(drvdata);
  1438. etm_clr_pwrup(drvdata);
  1439. CS_LOCK(drvdata->base);
  1440. }
  1441. static void etm_init_default_data(struct etm_drvdata *drvdata)
  1442. {
  1443. static int etm3x_traceid;
  1444. u32 flags = (1 << 0 | /* instruction execute*/
  1445. 3 << 3 | /* ARM instruction */
  1446. 0 << 5 | /* No data value comparison */
  1447. 0 << 7 | /* No exact mach */
  1448. 0 << 8 | /* Ignore context ID */
  1449. 0 << 10); /* Security ignored */
  1450. /*
  1451. * Initial configuration only - guarantees sources handled by
  1452. * this driver have a unique ID at startup time but not between
  1453. * all other types of sources. For that we lean on the core
  1454. * framework.
  1455. */
  1456. drvdata->traceid = etm3x_traceid++;
  1457. drvdata->ctrl = (ETMCR_CYC_ACC | ETMCR_TIMESTAMP_EN);
  1458. drvdata->enable_ctrl1 = ETMTECR1_ADDR_COMP_1;
  1459. if (drvdata->nr_addr_cmp >= 2) {
  1460. drvdata->addr_val[0] = (u32) _stext;
  1461. drvdata->addr_val[1] = (u32) _etext;
  1462. drvdata->addr_acctype[0] = flags;
  1463. drvdata->addr_acctype[1] = flags;
  1464. drvdata->addr_type[0] = ETM_ADDR_TYPE_RANGE;
  1465. drvdata->addr_type[1] = ETM_ADDR_TYPE_RANGE;
  1466. }
  1467. etm_set_default(drvdata);
  1468. }
  1469. static int etm_probe(struct amba_device *adev, const struct amba_id *id)
  1470. {
  1471. int ret;
  1472. void __iomem *base;
  1473. struct device *dev = &adev->dev;
  1474. struct coresight_platform_data *pdata = NULL;
  1475. struct etm_drvdata *drvdata;
  1476. struct resource *res = &adev->res;
  1477. struct coresight_desc *desc;
  1478. struct device_node *np = adev->dev.of_node;
  1479. desc = devm_kzalloc(dev, sizeof(*desc), GFP_KERNEL);
  1480. if (!desc)
  1481. return -ENOMEM;
  1482. drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
  1483. if (!drvdata)
  1484. return -ENOMEM;
  1485. if (np) {
  1486. pdata = of_get_coresight_platform_data(dev, np);
  1487. if (IS_ERR(pdata))
  1488. return PTR_ERR(pdata);
  1489. adev->dev.platform_data = pdata;
  1490. drvdata->use_cp14 = of_property_read_bool(np, "arm,cp14");
  1491. }
  1492. drvdata->dev = &adev->dev;
  1493. dev_set_drvdata(dev, drvdata);
  1494. /* Validity for the resource is already checked by the AMBA core */
  1495. base = devm_ioremap_resource(dev, res);
  1496. if (IS_ERR(base))
  1497. return PTR_ERR(base);
  1498. drvdata->base = base;
  1499. spin_lock_init(&drvdata->spinlock);
  1500. drvdata->clk = adev->pclk;
  1501. ret = clk_prepare_enable(drvdata->clk);
  1502. if (ret)
  1503. return ret;
  1504. drvdata->cpu = pdata ? pdata->cpu : 0;
  1505. get_online_cpus();
  1506. etmdrvdata[drvdata->cpu] = drvdata;
  1507. if (!smp_call_function_single(drvdata->cpu, etm_os_unlock, drvdata, 1))
  1508. drvdata->os_unlock = true;
  1509. if (smp_call_function_single(drvdata->cpu,
  1510. etm_init_arch_data, drvdata, 1))
  1511. dev_err(dev, "ETM arch init failed\n");
  1512. if (!etm_count++)
  1513. register_hotcpu_notifier(&etm_cpu_notifier);
  1514. put_online_cpus();
  1515. if (etm_arch_supported(drvdata->arch) == false) {
  1516. ret = -EINVAL;
  1517. goto err_arch_supported;
  1518. }
  1519. etm_init_default_data(drvdata);
  1520. clk_disable_unprepare(drvdata->clk);
  1521. desc->type = CORESIGHT_DEV_TYPE_SOURCE;
  1522. desc->subtype.source_subtype = CORESIGHT_DEV_SUBTYPE_SOURCE_PROC;
  1523. desc->ops = &etm_cs_ops;
  1524. desc->pdata = pdata;
  1525. desc->dev = dev;
  1526. desc->groups = coresight_etm_groups;
  1527. drvdata->csdev = coresight_register(desc);
  1528. if (IS_ERR(drvdata->csdev)) {
  1529. ret = PTR_ERR(drvdata->csdev);
  1530. goto err_arch_supported;
  1531. }
  1532. dev_info(dev, "ETM initialized\n");
  1533. if (boot_enable) {
  1534. coresight_enable(drvdata->csdev);
  1535. drvdata->boot_enable = true;
  1536. }
  1537. return 0;
  1538. err_arch_supported:
  1539. clk_disable_unprepare(drvdata->clk);
  1540. if (--etm_count == 0)
  1541. unregister_hotcpu_notifier(&etm_cpu_notifier);
  1542. return ret;
  1543. }
  1544. static int etm_remove(struct amba_device *adev)
  1545. {
  1546. struct etm_drvdata *drvdata = amba_get_drvdata(adev);
  1547. coresight_unregister(drvdata->csdev);
  1548. if (--etm_count == 0)
  1549. unregister_hotcpu_notifier(&etm_cpu_notifier);
  1550. return 0;
  1551. }
  1552. static struct amba_id etm_ids[] = {
  1553. { /* ETM 3.3 */
  1554. .id = 0x0003b921,
  1555. .mask = 0x0003ffff,
  1556. },
  1557. { /* ETM 3.5 */
  1558. .id = 0x0003b956,
  1559. .mask = 0x0003ffff,
  1560. },
  1561. { /* PTM 1.0 */
  1562. .id = 0x0003b950,
  1563. .mask = 0x0003ffff,
  1564. },
  1565. { /* PTM 1.1 */
  1566. .id = 0x0003b95f,
  1567. .mask = 0x0003ffff,
  1568. },
  1569. { 0, 0},
  1570. };
  1571. static struct amba_driver etm_driver = {
  1572. .drv = {
  1573. .name = "coresight-etm3x",
  1574. .owner = THIS_MODULE,
  1575. },
  1576. .probe = etm_probe,
  1577. .remove = etm_remove,
  1578. .id_table = etm_ids,
  1579. };
  1580. int __init etm_init(void)
  1581. {
  1582. return amba_driver_register(&etm_driver);
  1583. }
  1584. module_init(etm_init);
  1585. void __exit etm_exit(void)
  1586. {
  1587. amba_driver_unregister(&etm_driver);
  1588. }
  1589. module_exit(etm_exit);
  1590. MODULE_LICENSE("GPL v2");
  1591. MODULE_DESCRIPTION("CoreSight Program Flow Trace driver");