intel_ringbuffer.c 91 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /* Rough estimate of the typical request size, performing a flush,
  36. * set-context and then emitting the batch.
  37. */
  38. #define LEGACY_REQUEST_SIZE 200
  39. int __intel_ring_space(int head, int tail, int size)
  40. {
  41. int space = head - tail;
  42. if (space <= 0)
  43. space += size;
  44. return space - I915_RING_FREE_SPACE;
  45. }
  46. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  47. {
  48. if (ringbuf->last_retired_head != -1) {
  49. ringbuf->head = ringbuf->last_retired_head;
  50. ringbuf->last_retired_head = -1;
  51. }
  52. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  53. ringbuf->tail, ringbuf->size);
  54. }
  55. bool intel_engine_stopped(struct intel_engine_cs *engine)
  56. {
  57. struct drm_i915_private *dev_priv = engine->i915;
  58. return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
  59. }
  60. static void __intel_ring_advance(struct intel_engine_cs *engine)
  61. {
  62. struct intel_ringbuffer *ringbuf = engine->buffer;
  63. ringbuf->tail &= ringbuf->size - 1;
  64. if (intel_engine_stopped(engine))
  65. return;
  66. engine->write_tail(engine, ringbuf->tail);
  67. }
  68. static int
  69. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  70. u32 invalidate_domains,
  71. u32 flush_domains)
  72. {
  73. struct intel_engine_cs *engine = req->engine;
  74. u32 cmd;
  75. int ret;
  76. cmd = MI_FLUSH;
  77. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  78. cmd |= MI_NO_WRITE_FLUSH;
  79. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  80. cmd |= MI_READ_FLUSH;
  81. ret = intel_ring_begin(req, 2);
  82. if (ret)
  83. return ret;
  84. intel_ring_emit(engine, cmd);
  85. intel_ring_emit(engine, MI_NOOP);
  86. intel_ring_advance(engine);
  87. return 0;
  88. }
  89. static int
  90. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  91. u32 invalidate_domains,
  92. u32 flush_domains)
  93. {
  94. struct intel_engine_cs *engine = req->engine;
  95. u32 cmd;
  96. int ret;
  97. /*
  98. * read/write caches:
  99. *
  100. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  101. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  102. * also flushed at 2d versus 3d pipeline switches.
  103. *
  104. * read-only caches:
  105. *
  106. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  107. * MI_READ_FLUSH is set, and is always flushed on 965.
  108. *
  109. * I915_GEM_DOMAIN_COMMAND may not exist?
  110. *
  111. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  112. * invalidated when MI_EXE_FLUSH is set.
  113. *
  114. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  115. * invalidated with every MI_FLUSH.
  116. *
  117. * TLBs:
  118. *
  119. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  120. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  121. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  122. * are flushed at any MI_FLUSH.
  123. */
  124. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  125. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  126. cmd &= ~MI_NO_WRITE_FLUSH;
  127. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  128. cmd |= MI_EXE_FLUSH;
  129. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  130. (IS_G4X(req->i915) || IS_GEN5(req->i915)))
  131. cmd |= MI_INVALIDATE_ISP;
  132. ret = intel_ring_begin(req, 2);
  133. if (ret)
  134. return ret;
  135. intel_ring_emit(engine, cmd);
  136. intel_ring_emit(engine, MI_NOOP);
  137. intel_ring_advance(engine);
  138. return 0;
  139. }
  140. /**
  141. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  142. * implementing two workarounds on gen6. From section 1.4.7.1
  143. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  144. *
  145. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  146. * produced by non-pipelined state commands), software needs to first
  147. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  148. * 0.
  149. *
  150. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  151. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  152. *
  153. * And the workaround for these two requires this workaround first:
  154. *
  155. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  156. * BEFORE the pipe-control with a post-sync op and no write-cache
  157. * flushes.
  158. *
  159. * And this last workaround is tricky because of the requirements on
  160. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  161. * volume 2 part 1:
  162. *
  163. * "1 of the following must also be set:
  164. * - Render Target Cache Flush Enable ([12] of DW1)
  165. * - Depth Cache Flush Enable ([0] of DW1)
  166. * - Stall at Pixel Scoreboard ([1] of DW1)
  167. * - Depth Stall ([13] of DW1)
  168. * - Post-Sync Operation ([13] of DW1)
  169. * - Notify Enable ([8] of DW1)"
  170. *
  171. * The cache flushes require the workaround flush that triggered this
  172. * one, so we can't use it. Depth stall would trigger the same.
  173. * Post-sync nonzero is what triggered this second workaround, so we
  174. * can't use that one either. Notify enable is IRQs, which aren't
  175. * really our business. That leaves only stall at scoreboard.
  176. */
  177. static int
  178. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  179. {
  180. struct intel_engine_cs *engine = req->engine;
  181. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  182. int ret;
  183. ret = intel_ring_begin(req, 6);
  184. if (ret)
  185. return ret;
  186. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  187. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  188. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  189. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  190. intel_ring_emit(engine, 0); /* low dword */
  191. intel_ring_emit(engine, 0); /* high dword */
  192. intel_ring_emit(engine, MI_NOOP);
  193. intel_ring_advance(engine);
  194. ret = intel_ring_begin(req, 6);
  195. if (ret)
  196. return ret;
  197. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  198. intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
  199. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  200. intel_ring_emit(engine, 0);
  201. intel_ring_emit(engine, 0);
  202. intel_ring_emit(engine, MI_NOOP);
  203. intel_ring_advance(engine);
  204. return 0;
  205. }
  206. static int
  207. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  208. u32 invalidate_domains, u32 flush_domains)
  209. {
  210. struct intel_engine_cs *engine = req->engine;
  211. u32 flags = 0;
  212. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  213. int ret;
  214. /* Force SNB workarounds for PIPE_CONTROL flushes */
  215. ret = intel_emit_post_sync_nonzero_flush(req);
  216. if (ret)
  217. return ret;
  218. /* Just flush everything. Experiments have shown that reducing the
  219. * number of bits based on the write domains has little performance
  220. * impact.
  221. */
  222. if (flush_domains) {
  223. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  224. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  225. /*
  226. * Ensure that any following seqno writes only happen
  227. * when the render cache is indeed flushed.
  228. */
  229. flags |= PIPE_CONTROL_CS_STALL;
  230. }
  231. if (invalidate_domains) {
  232. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  233. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  234. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  235. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  238. /*
  239. * TLB invalidate requires a post-sync write.
  240. */
  241. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  242. }
  243. ret = intel_ring_begin(req, 4);
  244. if (ret)
  245. return ret;
  246. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  247. intel_ring_emit(engine, flags);
  248. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  249. intel_ring_emit(engine, 0);
  250. intel_ring_advance(engine);
  251. return 0;
  252. }
  253. static int
  254. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  255. {
  256. struct intel_engine_cs *engine = req->engine;
  257. int ret;
  258. ret = intel_ring_begin(req, 4);
  259. if (ret)
  260. return ret;
  261. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  262. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  263. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  264. intel_ring_emit(engine, 0);
  265. intel_ring_emit(engine, 0);
  266. intel_ring_advance(engine);
  267. return 0;
  268. }
  269. static int
  270. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  271. u32 invalidate_domains, u32 flush_domains)
  272. {
  273. struct intel_engine_cs *engine = req->engine;
  274. u32 flags = 0;
  275. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  276. int ret;
  277. /*
  278. * Ensure that any following seqno writes only happen when the render
  279. * cache is indeed flushed.
  280. *
  281. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  282. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  283. * don't try to be clever and just set it unconditionally.
  284. */
  285. flags |= PIPE_CONTROL_CS_STALL;
  286. /* Just flush everything. Experiments have shown that reducing the
  287. * number of bits based on the write domains has little performance
  288. * impact.
  289. */
  290. if (flush_domains) {
  291. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  292. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  293. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  294. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  295. }
  296. if (invalidate_domains) {
  297. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  298. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  299. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  300. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  301. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  302. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  303. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  304. /*
  305. * TLB invalidate requires a post-sync write.
  306. */
  307. flags |= PIPE_CONTROL_QW_WRITE;
  308. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  309. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  310. /* Workaround: we must issue a pipe_control with CS-stall bit
  311. * set before a pipe_control command that has the state cache
  312. * invalidate bit set. */
  313. gen7_render_ring_cs_stall_wa(req);
  314. }
  315. ret = intel_ring_begin(req, 4);
  316. if (ret)
  317. return ret;
  318. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  319. intel_ring_emit(engine, flags);
  320. intel_ring_emit(engine, scratch_addr);
  321. intel_ring_emit(engine, 0);
  322. intel_ring_advance(engine);
  323. return 0;
  324. }
  325. static int
  326. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  327. u32 flags, u32 scratch_addr)
  328. {
  329. struct intel_engine_cs *engine = req->engine;
  330. int ret;
  331. ret = intel_ring_begin(req, 6);
  332. if (ret)
  333. return ret;
  334. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  335. intel_ring_emit(engine, flags);
  336. intel_ring_emit(engine, scratch_addr);
  337. intel_ring_emit(engine, 0);
  338. intel_ring_emit(engine, 0);
  339. intel_ring_emit(engine, 0);
  340. intel_ring_advance(engine);
  341. return 0;
  342. }
  343. static int
  344. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  345. u32 invalidate_domains, u32 flush_domains)
  346. {
  347. u32 flags = 0;
  348. u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  349. int ret;
  350. flags |= PIPE_CONTROL_CS_STALL;
  351. if (flush_domains) {
  352. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  353. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  354. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  355. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  356. }
  357. if (invalidate_domains) {
  358. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  359. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  360. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  361. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  362. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  363. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_QW_WRITE;
  365. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  366. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  367. ret = gen8_emit_pipe_control(req,
  368. PIPE_CONTROL_CS_STALL |
  369. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  370. 0);
  371. if (ret)
  372. return ret;
  373. }
  374. return gen8_emit_pipe_control(req, flags, scratch_addr);
  375. }
  376. static void ring_write_tail(struct intel_engine_cs *engine,
  377. u32 value)
  378. {
  379. struct drm_i915_private *dev_priv = engine->i915;
  380. I915_WRITE_TAIL(engine, value);
  381. }
  382. u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
  383. {
  384. struct drm_i915_private *dev_priv = engine->i915;
  385. u64 acthd;
  386. if (INTEL_GEN(dev_priv) >= 8)
  387. acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
  388. RING_ACTHD_UDW(engine->mmio_base));
  389. else if (INTEL_GEN(dev_priv) >= 4)
  390. acthd = I915_READ(RING_ACTHD(engine->mmio_base));
  391. else
  392. acthd = I915_READ(ACTHD);
  393. return acthd;
  394. }
  395. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  396. {
  397. struct drm_i915_private *dev_priv = engine->i915;
  398. u32 addr;
  399. addr = dev_priv->status_page_dmah->busaddr;
  400. if (INTEL_GEN(dev_priv) >= 4)
  401. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  402. I915_WRITE(HWS_PGA, addr);
  403. }
  404. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  405. {
  406. struct drm_i915_private *dev_priv = engine->i915;
  407. i915_reg_t mmio;
  408. /* The ring status page addresses are no longer next to the rest of
  409. * the ring registers as of gen7.
  410. */
  411. if (IS_GEN7(dev_priv)) {
  412. switch (engine->id) {
  413. case RCS:
  414. mmio = RENDER_HWS_PGA_GEN7;
  415. break;
  416. case BCS:
  417. mmio = BLT_HWS_PGA_GEN7;
  418. break;
  419. /*
  420. * VCS2 actually doesn't exist on Gen7. Only shut up
  421. * gcc switch check warning
  422. */
  423. case VCS2:
  424. case VCS:
  425. mmio = BSD_HWS_PGA_GEN7;
  426. break;
  427. case VECS:
  428. mmio = VEBOX_HWS_PGA_GEN7;
  429. break;
  430. }
  431. } else if (IS_GEN6(dev_priv)) {
  432. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  433. } else {
  434. /* XXX: gen8 returns to sanity */
  435. mmio = RING_HWS_PGA(engine->mmio_base);
  436. }
  437. I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
  438. POSTING_READ(mmio);
  439. /*
  440. * Flush the TLB for this page
  441. *
  442. * FIXME: These two bits have disappeared on gen8, so a question
  443. * arises: do we still need this and if so how should we go about
  444. * invalidating the TLB?
  445. */
  446. if (IS_GEN(dev_priv, 6, 7)) {
  447. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  448. /* ring should be idle before issuing a sync flush*/
  449. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  450. I915_WRITE(reg,
  451. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  452. INSTPM_SYNC_FLUSH));
  453. if (intel_wait_for_register(dev_priv,
  454. reg, INSTPM_SYNC_FLUSH, 0,
  455. 1000))
  456. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  457. engine->name);
  458. }
  459. }
  460. static bool stop_ring(struct intel_engine_cs *engine)
  461. {
  462. struct drm_i915_private *dev_priv = engine->i915;
  463. if (!IS_GEN2(dev_priv)) {
  464. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  465. if (intel_wait_for_register(dev_priv,
  466. RING_MI_MODE(engine->mmio_base),
  467. MODE_IDLE,
  468. MODE_IDLE,
  469. 1000)) {
  470. DRM_ERROR("%s : timed out trying to stop ring\n",
  471. engine->name);
  472. /* Sometimes we observe that the idle flag is not
  473. * set even though the ring is empty. So double
  474. * check before giving up.
  475. */
  476. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  477. return false;
  478. }
  479. }
  480. I915_WRITE_CTL(engine, 0);
  481. I915_WRITE_HEAD(engine, 0);
  482. engine->write_tail(engine, 0);
  483. if (!IS_GEN2(dev_priv)) {
  484. (void)I915_READ_CTL(engine);
  485. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  486. }
  487. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  488. }
  489. void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
  490. {
  491. memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
  492. }
  493. static int init_ring_common(struct intel_engine_cs *engine)
  494. {
  495. struct drm_i915_private *dev_priv = engine->i915;
  496. struct intel_ringbuffer *ringbuf = engine->buffer;
  497. struct drm_i915_gem_object *obj = ringbuf->obj;
  498. int ret = 0;
  499. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  500. if (!stop_ring(engine)) {
  501. /* G45 ring initialization often fails to reset head to zero */
  502. DRM_DEBUG_KMS("%s head not reset to zero "
  503. "ctl %08x head %08x tail %08x start %08x\n",
  504. engine->name,
  505. I915_READ_CTL(engine),
  506. I915_READ_HEAD(engine),
  507. I915_READ_TAIL(engine),
  508. I915_READ_START(engine));
  509. if (!stop_ring(engine)) {
  510. DRM_ERROR("failed to set %s head to zero "
  511. "ctl %08x head %08x tail %08x start %08x\n",
  512. engine->name,
  513. I915_READ_CTL(engine),
  514. I915_READ_HEAD(engine),
  515. I915_READ_TAIL(engine),
  516. I915_READ_START(engine));
  517. ret = -EIO;
  518. goto out;
  519. }
  520. }
  521. if (I915_NEED_GFX_HWS(dev_priv))
  522. intel_ring_setup_status_page(engine);
  523. else
  524. ring_setup_phys_status_page(engine);
  525. /* Enforce ordering by reading HEAD register back */
  526. I915_READ_HEAD(engine);
  527. /* Initialize the ring. This must happen _after_ we've cleared the ring
  528. * registers with the above sequence (the readback of the HEAD registers
  529. * also enforces ordering), otherwise the hw might lose the new ring
  530. * register values. */
  531. I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
  532. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  533. if (I915_READ_HEAD(engine))
  534. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  535. engine->name, I915_READ_HEAD(engine));
  536. I915_WRITE_HEAD(engine, 0);
  537. (void)I915_READ_HEAD(engine);
  538. I915_WRITE_CTL(engine,
  539. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  540. | RING_VALID);
  541. /* If the head is still not zero, the ring is dead */
  542. if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
  543. I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
  544. (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
  545. DRM_ERROR("%s initialization failed "
  546. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  547. engine->name,
  548. I915_READ_CTL(engine),
  549. I915_READ_CTL(engine) & RING_VALID,
  550. I915_READ_HEAD(engine), I915_READ_TAIL(engine),
  551. I915_READ_START(engine),
  552. (unsigned long)i915_gem_obj_ggtt_offset(obj));
  553. ret = -EIO;
  554. goto out;
  555. }
  556. ringbuf->last_retired_head = -1;
  557. ringbuf->head = I915_READ_HEAD(engine);
  558. ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
  559. intel_ring_update_space(ringbuf);
  560. intel_engine_init_hangcheck(engine);
  561. out:
  562. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  563. return ret;
  564. }
  565. void
  566. intel_fini_pipe_control(struct intel_engine_cs *engine)
  567. {
  568. if (engine->scratch.obj == NULL)
  569. return;
  570. if (INTEL_GEN(engine->i915) >= 5) {
  571. kunmap(sg_page(engine->scratch.obj->pages->sgl));
  572. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  573. }
  574. drm_gem_object_unreference(&engine->scratch.obj->base);
  575. engine->scratch.obj = NULL;
  576. }
  577. int
  578. intel_init_pipe_control(struct intel_engine_cs *engine)
  579. {
  580. int ret;
  581. WARN_ON(engine->scratch.obj);
  582. engine->scratch.obj = i915_gem_object_create(engine->i915->dev, 4096);
  583. if (IS_ERR(engine->scratch.obj)) {
  584. DRM_ERROR("Failed to allocate seqno page\n");
  585. ret = PTR_ERR(engine->scratch.obj);
  586. engine->scratch.obj = NULL;
  587. goto err;
  588. }
  589. ret = i915_gem_object_set_cache_level(engine->scratch.obj,
  590. I915_CACHE_LLC);
  591. if (ret)
  592. goto err_unref;
  593. ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
  594. if (ret)
  595. goto err_unref;
  596. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
  597. engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
  598. if (engine->scratch.cpu_page == NULL) {
  599. ret = -ENOMEM;
  600. goto err_unpin;
  601. }
  602. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  603. engine->name, engine->scratch.gtt_offset);
  604. return 0;
  605. err_unpin:
  606. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  607. err_unref:
  608. drm_gem_object_unreference(&engine->scratch.obj->base);
  609. err:
  610. return ret;
  611. }
  612. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  613. {
  614. struct intel_engine_cs *engine = req->engine;
  615. struct i915_workarounds *w = &req->i915->workarounds;
  616. int ret, i;
  617. if (w->count == 0)
  618. return 0;
  619. engine->gpu_caches_dirty = true;
  620. ret = intel_ring_flush_all_caches(req);
  621. if (ret)
  622. return ret;
  623. ret = intel_ring_begin(req, (w->count * 2 + 2));
  624. if (ret)
  625. return ret;
  626. intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
  627. for (i = 0; i < w->count; i++) {
  628. intel_ring_emit_reg(engine, w->reg[i].addr);
  629. intel_ring_emit(engine, w->reg[i].value);
  630. }
  631. intel_ring_emit(engine, MI_NOOP);
  632. intel_ring_advance(engine);
  633. engine->gpu_caches_dirty = true;
  634. ret = intel_ring_flush_all_caches(req);
  635. if (ret)
  636. return ret;
  637. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  638. return 0;
  639. }
  640. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  641. {
  642. int ret;
  643. ret = intel_ring_workarounds_emit(req);
  644. if (ret != 0)
  645. return ret;
  646. ret = i915_gem_render_state_init(req);
  647. if (ret)
  648. return ret;
  649. return 0;
  650. }
  651. static int wa_add(struct drm_i915_private *dev_priv,
  652. i915_reg_t addr,
  653. const u32 mask, const u32 val)
  654. {
  655. const u32 idx = dev_priv->workarounds.count;
  656. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  657. return -ENOSPC;
  658. dev_priv->workarounds.reg[idx].addr = addr;
  659. dev_priv->workarounds.reg[idx].value = val;
  660. dev_priv->workarounds.reg[idx].mask = mask;
  661. dev_priv->workarounds.count++;
  662. return 0;
  663. }
  664. #define WA_REG(addr, mask, val) do { \
  665. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  666. if (r) \
  667. return r; \
  668. } while (0)
  669. #define WA_SET_BIT_MASKED(addr, mask) \
  670. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  671. #define WA_CLR_BIT_MASKED(addr, mask) \
  672. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  673. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  674. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  675. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  676. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  677. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  678. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  679. i915_reg_t reg)
  680. {
  681. struct drm_i915_private *dev_priv = engine->i915;
  682. struct i915_workarounds *wa = &dev_priv->workarounds;
  683. const uint32_t index = wa->hw_whitelist_count[engine->id];
  684. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  685. return -EINVAL;
  686. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  687. i915_mmio_reg_offset(reg));
  688. wa->hw_whitelist_count[engine->id]++;
  689. return 0;
  690. }
  691. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  692. {
  693. struct drm_i915_private *dev_priv = engine->i915;
  694. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  695. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  696. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  697. /* WaDisablePartialInstShootdown:bdw,chv */
  698. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  699. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  700. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  701. * workaround for for a possible hang in the unlikely event a TLB
  702. * invalidation occurs during a PSD flush.
  703. */
  704. /* WaForceEnableNonCoherent:bdw,chv */
  705. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  706. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  707. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  708. HDC_FORCE_NON_COHERENT);
  709. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  710. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  711. * polygons in the same 8x4 pixel/sample area to be processed without
  712. * stalling waiting for the earlier ones to write to Hierarchical Z
  713. * buffer."
  714. *
  715. * This optimization is off by default for BDW and CHV; turn it on.
  716. */
  717. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  718. /* Wa4x4STCOptimizationDisable:bdw,chv */
  719. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  720. /*
  721. * BSpec recommends 8x4 when MSAA is used,
  722. * however in practice 16x4 seems fastest.
  723. *
  724. * Note that PS/WM thread counts depend on the WIZ hashing
  725. * disable bit, which we don't touch here, but it's good
  726. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  727. */
  728. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  729. GEN6_WIZ_HASHING_MASK,
  730. GEN6_WIZ_HASHING_16x4);
  731. return 0;
  732. }
  733. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  734. {
  735. struct drm_i915_private *dev_priv = engine->i915;
  736. int ret;
  737. ret = gen8_init_workarounds(engine);
  738. if (ret)
  739. return ret;
  740. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  741. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  742. /* WaDisableDopClockGating:bdw */
  743. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  744. DOP_CLOCK_GATING_DISABLE);
  745. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  746. GEN8_SAMPLER_POWER_BYPASS_DIS);
  747. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  748. /* WaForceContextSaveRestoreNonCoherent:bdw */
  749. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  750. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  751. (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  752. return 0;
  753. }
  754. static int chv_init_workarounds(struct intel_engine_cs *engine)
  755. {
  756. struct drm_i915_private *dev_priv = engine->i915;
  757. int ret;
  758. ret = gen8_init_workarounds(engine);
  759. if (ret)
  760. return ret;
  761. /* WaDisableThreadStallDopClockGating:chv */
  762. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  763. /* Improve HiZ throughput on CHV. */
  764. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  765. return 0;
  766. }
  767. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  768. {
  769. struct drm_i915_private *dev_priv = engine->i915;
  770. int ret;
  771. /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
  772. I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
  773. /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
  774. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  775. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  776. /* WaDisableKillLogic:bxt,skl,kbl */
  777. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  778. ECOCHK_DIS_TLB);
  779. /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
  780. /* WaDisablePartialInstShootdown:skl,bxt,kbl */
  781. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  782. FLOW_CONTROL_ENABLE |
  783. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  784. /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
  785. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  786. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  787. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  788. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  789. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  790. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  791. GEN9_DG_MIRROR_FIX_ENABLE);
  792. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  793. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  794. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  795. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  796. GEN9_RHWO_OPTIMIZATION_DISABLE);
  797. /*
  798. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  799. * but we do that in per ctx batchbuffer as there is an issue
  800. * with this register not getting restored on ctx restore
  801. */
  802. }
  803. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
  804. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
  805. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  806. GEN9_ENABLE_YV12_BUGFIX |
  807. GEN9_ENABLE_GPGPU_PREEMPTION);
  808. /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
  809. /* WaDisablePartialResolveInVc:skl,bxt,kbl */
  810. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  811. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  812. /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
  813. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  814. GEN9_CCS_TLB_PREFETCH_ENABLE);
  815. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  816. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
  817. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  818. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  819. PIXEL_MASK_CAMMING_DISABLE);
  820. /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
  821. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  822. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  823. HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
  824. /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
  825. * both tied to WaForceContextSaveRestoreNonCoherent
  826. * in some hsds for skl. We keep the tie for all gen9. The
  827. * documentation is a bit hazy and so we want to get common behaviour,
  828. * even though there is no clear evidence we would need both on kbl/bxt.
  829. * This area has been source of system hangs so we play it safe
  830. * and mimic the skl regardless of what bspec says.
  831. *
  832. * Use Force Non-Coherent whenever executing a 3D context. This
  833. * is a workaround for a possible hang in the unlikely event
  834. * a TLB invalidation occurs during a PSD flush.
  835. */
  836. /* WaForceEnableNonCoherent:skl,bxt,kbl */
  837. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  838. HDC_FORCE_NON_COHERENT);
  839. /* WaDisableHDCInvalidation:skl,bxt,kbl */
  840. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  841. BDW_DISABLE_HDC_INVALIDATION);
  842. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
  843. if (IS_SKYLAKE(dev_priv) ||
  844. IS_KABYLAKE(dev_priv) ||
  845. IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  846. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  847. GEN8_SAMPLER_POWER_BYPASS_DIS);
  848. /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
  849. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  850. /* WaOCLCoherentLineFlush:skl,bxt,kbl */
  851. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  852. GEN8_LQSC_FLUSH_COHERENT_LINES));
  853. /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
  854. ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
  855. if (ret)
  856. return ret;
  857. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
  858. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  859. if (ret)
  860. return ret;
  861. /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
  862. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  863. if (ret)
  864. return ret;
  865. return 0;
  866. }
  867. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  868. {
  869. struct drm_i915_private *dev_priv = engine->i915;
  870. u8 vals[3] = { 0, 0, 0 };
  871. unsigned int i;
  872. for (i = 0; i < 3; i++) {
  873. u8 ss;
  874. /*
  875. * Only consider slices where one, and only one, subslice has 7
  876. * EUs
  877. */
  878. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  879. continue;
  880. /*
  881. * subslice_7eu[i] != 0 (because of the check above) and
  882. * ss_max == 4 (maximum number of subslices possible per slice)
  883. *
  884. * -> 0 <= ss <= 3;
  885. */
  886. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  887. vals[i] = 3 - ss;
  888. }
  889. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  890. return 0;
  891. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  892. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  893. GEN9_IZ_HASHING_MASK(2) |
  894. GEN9_IZ_HASHING_MASK(1) |
  895. GEN9_IZ_HASHING_MASK(0),
  896. GEN9_IZ_HASHING(2, vals[2]) |
  897. GEN9_IZ_HASHING(1, vals[1]) |
  898. GEN9_IZ_HASHING(0, vals[0]));
  899. return 0;
  900. }
  901. static int skl_init_workarounds(struct intel_engine_cs *engine)
  902. {
  903. struct drm_i915_private *dev_priv = engine->i915;
  904. int ret;
  905. ret = gen9_init_workarounds(engine);
  906. if (ret)
  907. return ret;
  908. /*
  909. * Actual WA is to disable percontext preemption granularity control
  910. * until D0 which is the default case so this is equivalent to
  911. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  912. */
  913. if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
  914. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  915. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  916. }
  917. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
  918. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  919. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  920. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  921. }
  922. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  923. * involving this register should also be added to WA batch as required.
  924. */
  925. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
  926. /* WaDisableLSQCROPERFforOCL:skl */
  927. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  928. GEN8_LQSC_RO_PERF_DIS);
  929. /* WaEnableGapsTsvCreditFix:skl */
  930. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
  931. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  932. GEN9_GAPS_TSV_CREDIT_DISABLE));
  933. }
  934. /* WaDisablePowerCompilerClockGating:skl */
  935. if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
  936. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  937. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  938. /* WaBarrierPerformanceFixDisable:skl */
  939. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
  940. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  941. HDC_FENCE_DEST_SLM_DISABLE |
  942. HDC_BARRIER_PERFORMANCE_DISABLE);
  943. /* WaDisableSbeCacheDispatchPortSharing:skl */
  944. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
  945. WA_SET_BIT_MASKED(
  946. GEN7_HALF_SLICE_CHICKEN1,
  947. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  948. /* WaDisableGafsUnitClkGating:skl */
  949. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  950. /* WaDisableLSQCROPERFforOCL:skl */
  951. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  952. if (ret)
  953. return ret;
  954. return skl_tune_iz_hashing(engine);
  955. }
  956. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  957. {
  958. struct drm_i915_private *dev_priv = engine->i915;
  959. int ret;
  960. ret = gen9_init_workarounds(engine);
  961. if (ret)
  962. return ret;
  963. /* WaStoreMultiplePTEenable:bxt */
  964. /* This is a requirement according to Hardware specification */
  965. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  966. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  967. /* WaSetClckGatingDisableMedia:bxt */
  968. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  969. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  970. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  971. }
  972. /* WaDisableThreadStallDopClockGating:bxt */
  973. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  974. STALL_DOP_GATING_DISABLE);
  975. /* WaDisablePooledEuLoadBalancingFix:bxt */
  976. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
  977. WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
  978. GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
  979. }
  980. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  981. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
  982. WA_SET_BIT_MASKED(
  983. GEN7_HALF_SLICE_CHICKEN1,
  984. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  985. }
  986. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  987. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  988. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  989. /* WaDisableLSQCROPERFforOCL:bxt */
  990. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  991. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  992. if (ret)
  993. return ret;
  994. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  995. if (ret)
  996. return ret;
  997. }
  998. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  999. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  1000. I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
  1001. L3_HIGH_PRIO_CREDITS(2));
  1002. /* WaInsertDummyPushConstPs:bxt */
  1003. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  1004. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  1005. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  1006. return 0;
  1007. }
  1008. static int kbl_init_workarounds(struct intel_engine_cs *engine)
  1009. {
  1010. struct drm_i915_private *dev_priv = engine->i915;
  1011. int ret;
  1012. ret = gen9_init_workarounds(engine);
  1013. if (ret)
  1014. return ret;
  1015. /* WaEnableGapsTsvCreditFix:kbl */
  1016. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  1017. GEN9_GAPS_TSV_CREDIT_DISABLE));
  1018. /* WaDisableDynamicCreditSharing:kbl */
  1019. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  1020. WA_SET_BIT(GAMT_CHKN_BIT_REG,
  1021. GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
  1022. /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
  1023. if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
  1024. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  1025. HDC_FENCE_DEST_SLM_DISABLE);
  1026. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  1027. * involving this register should also be added to WA batch as required.
  1028. */
  1029. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
  1030. /* WaDisableLSQCROPERFforOCL:kbl */
  1031. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  1032. GEN8_LQSC_RO_PERF_DIS);
  1033. /* WaInsertDummyPushConstPs:kbl */
  1034. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  1035. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  1036. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  1037. /* WaDisableGafsUnitClkGating:kbl */
  1038. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  1039. /* WaDisableSbeCacheDispatchPortSharing:kbl */
  1040. WA_SET_BIT_MASKED(
  1041. GEN7_HALF_SLICE_CHICKEN1,
  1042. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  1043. /* WaDisableLSQCROPERFforOCL:kbl */
  1044. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  1045. if (ret)
  1046. return ret;
  1047. return 0;
  1048. }
  1049. int init_workarounds_ring(struct intel_engine_cs *engine)
  1050. {
  1051. struct drm_i915_private *dev_priv = engine->i915;
  1052. WARN_ON(engine->id != RCS);
  1053. dev_priv->workarounds.count = 0;
  1054. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  1055. if (IS_BROADWELL(dev_priv))
  1056. return bdw_init_workarounds(engine);
  1057. if (IS_CHERRYVIEW(dev_priv))
  1058. return chv_init_workarounds(engine);
  1059. if (IS_SKYLAKE(dev_priv))
  1060. return skl_init_workarounds(engine);
  1061. if (IS_BROXTON(dev_priv))
  1062. return bxt_init_workarounds(engine);
  1063. if (IS_KABYLAKE(dev_priv))
  1064. return kbl_init_workarounds(engine);
  1065. return 0;
  1066. }
  1067. static int init_render_ring(struct intel_engine_cs *engine)
  1068. {
  1069. struct drm_i915_private *dev_priv = engine->i915;
  1070. int ret = init_ring_common(engine);
  1071. if (ret)
  1072. return ret;
  1073. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1074. if (IS_GEN(dev_priv, 4, 6))
  1075. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1076. /* We need to disable the AsyncFlip performance optimisations in order
  1077. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1078. * programmed to '1' on all products.
  1079. *
  1080. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1081. */
  1082. if (IS_GEN(dev_priv, 6, 7))
  1083. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1084. /* Required for the hardware to program scanline values for waiting */
  1085. /* WaEnableFlushTlbInvalidationMode:snb */
  1086. if (IS_GEN6(dev_priv))
  1087. I915_WRITE(GFX_MODE,
  1088. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1089. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1090. if (IS_GEN7(dev_priv))
  1091. I915_WRITE(GFX_MODE_GEN7,
  1092. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1093. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1094. if (IS_GEN6(dev_priv)) {
  1095. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1096. * "If this bit is set, STCunit will have LRA as replacement
  1097. * policy. [...] This bit must be reset. LRA replacement
  1098. * policy is not supported."
  1099. */
  1100. I915_WRITE(CACHE_MODE_0,
  1101. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1102. }
  1103. if (IS_GEN(dev_priv, 6, 7))
  1104. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1105. if (HAS_L3_DPF(dev_priv))
  1106. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
  1107. return init_workarounds_ring(engine);
  1108. }
  1109. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1110. {
  1111. struct drm_i915_private *dev_priv = engine->i915;
  1112. if (dev_priv->semaphore_obj) {
  1113. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1114. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  1115. dev_priv->semaphore_obj = NULL;
  1116. }
  1117. intel_fini_pipe_control(engine);
  1118. }
  1119. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1120. unsigned int num_dwords)
  1121. {
  1122. #define MBOX_UPDATE_DWORDS 8
  1123. struct intel_engine_cs *signaller = signaller_req->engine;
  1124. struct drm_i915_private *dev_priv = signaller_req->i915;
  1125. struct intel_engine_cs *waiter;
  1126. enum intel_engine_id id;
  1127. int ret, num_rings;
  1128. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1129. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1130. #undef MBOX_UPDATE_DWORDS
  1131. ret = intel_ring_begin(signaller_req, num_dwords);
  1132. if (ret)
  1133. return ret;
  1134. for_each_engine_id(waiter, dev_priv, id) {
  1135. u32 seqno;
  1136. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1137. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1138. continue;
  1139. seqno = i915_gem_request_get_seqno(signaller_req);
  1140. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1141. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1142. PIPE_CONTROL_QW_WRITE |
  1143. PIPE_CONTROL_CS_STALL);
  1144. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1145. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1146. intel_ring_emit(signaller, seqno);
  1147. intel_ring_emit(signaller, 0);
  1148. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1149. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1150. intel_ring_emit(signaller, 0);
  1151. }
  1152. return 0;
  1153. }
  1154. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1155. unsigned int num_dwords)
  1156. {
  1157. #define MBOX_UPDATE_DWORDS 6
  1158. struct intel_engine_cs *signaller = signaller_req->engine;
  1159. struct drm_i915_private *dev_priv = signaller_req->i915;
  1160. struct intel_engine_cs *waiter;
  1161. enum intel_engine_id id;
  1162. int ret, num_rings;
  1163. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1164. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1165. #undef MBOX_UPDATE_DWORDS
  1166. ret = intel_ring_begin(signaller_req, num_dwords);
  1167. if (ret)
  1168. return ret;
  1169. for_each_engine_id(waiter, dev_priv, id) {
  1170. u32 seqno;
  1171. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1172. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1173. continue;
  1174. seqno = i915_gem_request_get_seqno(signaller_req);
  1175. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1176. MI_FLUSH_DW_OP_STOREDW);
  1177. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1178. MI_FLUSH_DW_USE_GTT);
  1179. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1180. intel_ring_emit(signaller, seqno);
  1181. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1182. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1183. intel_ring_emit(signaller, 0);
  1184. }
  1185. return 0;
  1186. }
  1187. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1188. unsigned int num_dwords)
  1189. {
  1190. struct intel_engine_cs *signaller = signaller_req->engine;
  1191. struct drm_i915_private *dev_priv = signaller_req->i915;
  1192. struct intel_engine_cs *useless;
  1193. enum intel_engine_id id;
  1194. int ret, num_rings;
  1195. #define MBOX_UPDATE_DWORDS 3
  1196. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1197. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1198. #undef MBOX_UPDATE_DWORDS
  1199. ret = intel_ring_begin(signaller_req, num_dwords);
  1200. if (ret)
  1201. return ret;
  1202. for_each_engine_id(useless, dev_priv, id) {
  1203. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
  1204. if (i915_mmio_reg_valid(mbox_reg)) {
  1205. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1206. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1207. intel_ring_emit_reg(signaller, mbox_reg);
  1208. intel_ring_emit(signaller, seqno);
  1209. }
  1210. }
  1211. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1212. if (num_rings % 2 == 0)
  1213. intel_ring_emit(signaller, MI_NOOP);
  1214. return 0;
  1215. }
  1216. /**
  1217. * gen6_add_request - Update the semaphore mailbox registers
  1218. *
  1219. * @request - request to write to the ring
  1220. *
  1221. * Update the mailbox registers in the *other* rings with the current seqno.
  1222. * This acts like a signal in the canonical semaphore.
  1223. */
  1224. static int
  1225. gen6_add_request(struct drm_i915_gem_request *req)
  1226. {
  1227. struct intel_engine_cs *engine = req->engine;
  1228. int ret;
  1229. if (engine->semaphore.signal)
  1230. ret = engine->semaphore.signal(req, 4);
  1231. else
  1232. ret = intel_ring_begin(req, 4);
  1233. if (ret)
  1234. return ret;
  1235. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1236. intel_ring_emit(engine,
  1237. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1238. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1239. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1240. __intel_ring_advance(engine);
  1241. return 0;
  1242. }
  1243. static int
  1244. gen8_render_add_request(struct drm_i915_gem_request *req)
  1245. {
  1246. struct intel_engine_cs *engine = req->engine;
  1247. int ret;
  1248. if (engine->semaphore.signal)
  1249. ret = engine->semaphore.signal(req, 8);
  1250. else
  1251. ret = intel_ring_begin(req, 8);
  1252. if (ret)
  1253. return ret;
  1254. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  1255. intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1256. PIPE_CONTROL_CS_STALL |
  1257. PIPE_CONTROL_QW_WRITE));
  1258. intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
  1259. intel_ring_emit(engine, 0);
  1260. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1261. /* We're thrashing one dword of HWS. */
  1262. intel_ring_emit(engine, 0);
  1263. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1264. intel_ring_emit(engine, MI_NOOP);
  1265. __intel_ring_advance(engine);
  1266. return 0;
  1267. }
  1268. static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
  1269. u32 seqno)
  1270. {
  1271. return dev_priv->last_seqno < seqno;
  1272. }
  1273. /**
  1274. * intel_ring_sync - sync the waiter to the signaller on seqno
  1275. *
  1276. * @waiter - ring that is waiting
  1277. * @signaller - ring which has, or will signal
  1278. * @seqno - seqno which the waiter will block on
  1279. */
  1280. static int
  1281. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1282. struct intel_engine_cs *signaller,
  1283. u32 seqno)
  1284. {
  1285. struct intel_engine_cs *waiter = waiter_req->engine;
  1286. struct drm_i915_private *dev_priv = waiter_req->i915;
  1287. struct i915_hw_ppgtt *ppgtt;
  1288. int ret;
  1289. ret = intel_ring_begin(waiter_req, 4);
  1290. if (ret)
  1291. return ret;
  1292. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1293. MI_SEMAPHORE_GLOBAL_GTT |
  1294. MI_SEMAPHORE_SAD_GTE_SDD);
  1295. intel_ring_emit(waiter, seqno);
  1296. intel_ring_emit(waiter,
  1297. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1298. intel_ring_emit(waiter,
  1299. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1300. intel_ring_advance(waiter);
  1301. /* When the !RCS engines idle waiting upon a semaphore, they lose their
  1302. * pagetables and we must reload them before executing the batch.
  1303. * We do this on the i915_switch_context() following the wait and
  1304. * before the dispatch.
  1305. */
  1306. ppgtt = waiter_req->ctx->ppgtt;
  1307. if (ppgtt && waiter_req->engine->id != RCS)
  1308. ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
  1309. return 0;
  1310. }
  1311. static int
  1312. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1313. struct intel_engine_cs *signaller,
  1314. u32 seqno)
  1315. {
  1316. struct intel_engine_cs *waiter = waiter_req->engine;
  1317. u32 dw1 = MI_SEMAPHORE_MBOX |
  1318. MI_SEMAPHORE_COMPARE |
  1319. MI_SEMAPHORE_REGISTER;
  1320. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1321. int ret;
  1322. /* Throughout all of the GEM code, seqno passed implies our current
  1323. * seqno is >= the last seqno executed. However for hardware the
  1324. * comparison is strictly greater than.
  1325. */
  1326. seqno -= 1;
  1327. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1328. ret = intel_ring_begin(waiter_req, 4);
  1329. if (ret)
  1330. return ret;
  1331. /* If seqno wrap happened, omit the wait with no-ops */
  1332. if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
  1333. intel_ring_emit(waiter, dw1 | wait_mbox);
  1334. intel_ring_emit(waiter, seqno);
  1335. intel_ring_emit(waiter, 0);
  1336. intel_ring_emit(waiter, MI_NOOP);
  1337. } else {
  1338. intel_ring_emit(waiter, MI_NOOP);
  1339. intel_ring_emit(waiter, MI_NOOP);
  1340. intel_ring_emit(waiter, MI_NOOP);
  1341. intel_ring_emit(waiter, MI_NOOP);
  1342. }
  1343. intel_ring_advance(waiter);
  1344. return 0;
  1345. }
  1346. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1347. do { \
  1348. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1349. PIPE_CONTROL_DEPTH_STALL); \
  1350. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1351. intel_ring_emit(ring__, 0); \
  1352. intel_ring_emit(ring__, 0); \
  1353. } while (0)
  1354. static int
  1355. pc_render_add_request(struct drm_i915_gem_request *req)
  1356. {
  1357. struct intel_engine_cs *engine = req->engine;
  1358. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1359. int ret;
  1360. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1361. * incoherent with writes to memory, i.e. completely fubar,
  1362. * so we need to use PIPE_NOTIFY instead.
  1363. *
  1364. * However, we also need to workaround the qword write
  1365. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1366. * memory before requesting an interrupt.
  1367. */
  1368. ret = intel_ring_begin(req, 32);
  1369. if (ret)
  1370. return ret;
  1371. intel_ring_emit(engine,
  1372. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1373. PIPE_CONTROL_WRITE_FLUSH |
  1374. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1375. intel_ring_emit(engine,
  1376. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1377. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1378. intel_ring_emit(engine, 0);
  1379. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1380. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1381. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1382. scratch_addr += 2 * CACHELINE_BYTES;
  1383. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1384. scratch_addr += 2 * CACHELINE_BYTES;
  1385. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1386. scratch_addr += 2 * CACHELINE_BYTES;
  1387. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1388. scratch_addr += 2 * CACHELINE_BYTES;
  1389. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1390. intel_ring_emit(engine,
  1391. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1392. PIPE_CONTROL_WRITE_FLUSH |
  1393. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1394. PIPE_CONTROL_NOTIFY);
  1395. intel_ring_emit(engine,
  1396. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1397. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1398. intel_ring_emit(engine, 0);
  1399. __intel_ring_advance(engine);
  1400. return 0;
  1401. }
  1402. static void
  1403. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1404. {
  1405. struct drm_i915_private *dev_priv = engine->i915;
  1406. /* Workaround to force correct ordering between irq and seqno writes on
  1407. * ivb (and maybe also on snb) by reading from a CS register (like
  1408. * ACTHD) before reading the status page.
  1409. *
  1410. * Note that this effectively stalls the read by the time it takes to
  1411. * do a memory transaction, which more or less ensures that the write
  1412. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1413. * Alternatively we could delay the interrupt from the CS ring to give
  1414. * the write time to land, but that would incur a delay after every
  1415. * batch i.e. much more frequent than a delay when waiting for the
  1416. * interrupt (with the same net latency).
  1417. *
  1418. * Also note that to prevent whole machine hangs on gen7, we have to
  1419. * take the spinlock to guard against concurrent cacheline access.
  1420. */
  1421. spin_lock_irq(&dev_priv->uncore.lock);
  1422. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1423. spin_unlock_irq(&dev_priv->uncore.lock);
  1424. }
  1425. static u32
  1426. ring_get_seqno(struct intel_engine_cs *engine)
  1427. {
  1428. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  1429. }
  1430. static void
  1431. ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1432. {
  1433. intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
  1434. }
  1435. static u32
  1436. pc_render_get_seqno(struct intel_engine_cs *engine)
  1437. {
  1438. return engine->scratch.cpu_page[0];
  1439. }
  1440. static void
  1441. pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1442. {
  1443. engine->scratch.cpu_page[0] = seqno;
  1444. }
  1445. static bool
  1446. gen5_ring_get_irq(struct intel_engine_cs *engine)
  1447. {
  1448. struct drm_i915_private *dev_priv = engine->i915;
  1449. unsigned long flags;
  1450. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1451. return false;
  1452. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1453. if (engine->irq_refcount++ == 0)
  1454. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1455. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1456. return true;
  1457. }
  1458. static void
  1459. gen5_ring_put_irq(struct intel_engine_cs *engine)
  1460. {
  1461. struct drm_i915_private *dev_priv = engine->i915;
  1462. unsigned long flags;
  1463. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1464. if (--engine->irq_refcount == 0)
  1465. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1466. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1467. }
  1468. static bool
  1469. i9xx_ring_get_irq(struct intel_engine_cs *engine)
  1470. {
  1471. struct drm_i915_private *dev_priv = engine->i915;
  1472. unsigned long flags;
  1473. if (!intel_irqs_enabled(dev_priv))
  1474. return false;
  1475. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1476. if (engine->irq_refcount++ == 0) {
  1477. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1478. I915_WRITE(IMR, dev_priv->irq_mask);
  1479. POSTING_READ(IMR);
  1480. }
  1481. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1482. return true;
  1483. }
  1484. static void
  1485. i9xx_ring_put_irq(struct intel_engine_cs *engine)
  1486. {
  1487. struct drm_i915_private *dev_priv = engine->i915;
  1488. unsigned long flags;
  1489. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1490. if (--engine->irq_refcount == 0) {
  1491. dev_priv->irq_mask |= engine->irq_enable_mask;
  1492. I915_WRITE(IMR, dev_priv->irq_mask);
  1493. POSTING_READ(IMR);
  1494. }
  1495. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1496. }
  1497. static bool
  1498. i8xx_ring_get_irq(struct intel_engine_cs *engine)
  1499. {
  1500. struct drm_i915_private *dev_priv = engine->i915;
  1501. unsigned long flags;
  1502. if (!intel_irqs_enabled(dev_priv))
  1503. return false;
  1504. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1505. if (engine->irq_refcount++ == 0) {
  1506. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1507. I915_WRITE16(IMR, dev_priv->irq_mask);
  1508. POSTING_READ16(IMR);
  1509. }
  1510. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1511. return true;
  1512. }
  1513. static void
  1514. i8xx_ring_put_irq(struct intel_engine_cs *engine)
  1515. {
  1516. struct drm_i915_private *dev_priv = engine->i915;
  1517. unsigned long flags;
  1518. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1519. if (--engine->irq_refcount == 0) {
  1520. dev_priv->irq_mask |= engine->irq_enable_mask;
  1521. I915_WRITE16(IMR, dev_priv->irq_mask);
  1522. POSTING_READ16(IMR);
  1523. }
  1524. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1525. }
  1526. static int
  1527. bsd_ring_flush(struct drm_i915_gem_request *req,
  1528. u32 invalidate_domains,
  1529. u32 flush_domains)
  1530. {
  1531. struct intel_engine_cs *engine = req->engine;
  1532. int ret;
  1533. ret = intel_ring_begin(req, 2);
  1534. if (ret)
  1535. return ret;
  1536. intel_ring_emit(engine, MI_FLUSH);
  1537. intel_ring_emit(engine, MI_NOOP);
  1538. intel_ring_advance(engine);
  1539. return 0;
  1540. }
  1541. static int
  1542. i9xx_add_request(struct drm_i915_gem_request *req)
  1543. {
  1544. struct intel_engine_cs *engine = req->engine;
  1545. int ret;
  1546. ret = intel_ring_begin(req, 4);
  1547. if (ret)
  1548. return ret;
  1549. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1550. intel_ring_emit(engine,
  1551. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1552. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1553. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1554. __intel_ring_advance(engine);
  1555. return 0;
  1556. }
  1557. static bool
  1558. gen6_ring_get_irq(struct intel_engine_cs *engine)
  1559. {
  1560. struct drm_i915_private *dev_priv = engine->i915;
  1561. unsigned long flags;
  1562. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1563. return false;
  1564. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1565. if (engine->irq_refcount++ == 0) {
  1566. if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
  1567. I915_WRITE_IMR(engine,
  1568. ~(engine->irq_enable_mask |
  1569. GT_PARITY_ERROR(dev_priv)));
  1570. else
  1571. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1572. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1573. }
  1574. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1575. return true;
  1576. }
  1577. static void
  1578. gen6_ring_put_irq(struct intel_engine_cs *engine)
  1579. {
  1580. struct drm_i915_private *dev_priv = engine->i915;
  1581. unsigned long flags;
  1582. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1583. if (--engine->irq_refcount == 0) {
  1584. if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
  1585. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
  1586. else
  1587. I915_WRITE_IMR(engine, ~0);
  1588. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1589. }
  1590. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1591. }
  1592. static bool
  1593. hsw_vebox_get_irq(struct intel_engine_cs *engine)
  1594. {
  1595. struct drm_i915_private *dev_priv = engine->i915;
  1596. unsigned long flags;
  1597. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1598. return false;
  1599. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1600. if (engine->irq_refcount++ == 0) {
  1601. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1602. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1603. }
  1604. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1605. return true;
  1606. }
  1607. static void
  1608. hsw_vebox_put_irq(struct intel_engine_cs *engine)
  1609. {
  1610. struct drm_i915_private *dev_priv = engine->i915;
  1611. unsigned long flags;
  1612. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1613. if (--engine->irq_refcount == 0) {
  1614. I915_WRITE_IMR(engine, ~0);
  1615. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1616. }
  1617. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1618. }
  1619. static bool
  1620. gen8_ring_get_irq(struct intel_engine_cs *engine)
  1621. {
  1622. struct drm_i915_private *dev_priv = engine->i915;
  1623. unsigned long flags;
  1624. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1625. return false;
  1626. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1627. if (engine->irq_refcount++ == 0) {
  1628. if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
  1629. I915_WRITE_IMR(engine,
  1630. ~(engine->irq_enable_mask |
  1631. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1632. } else {
  1633. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1634. }
  1635. POSTING_READ(RING_IMR(engine->mmio_base));
  1636. }
  1637. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1638. return true;
  1639. }
  1640. static void
  1641. gen8_ring_put_irq(struct intel_engine_cs *engine)
  1642. {
  1643. struct drm_i915_private *dev_priv = engine->i915;
  1644. unsigned long flags;
  1645. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1646. if (--engine->irq_refcount == 0) {
  1647. if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
  1648. I915_WRITE_IMR(engine,
  1649. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1650. } else {
  1651. I915_WRITE_IMR(engine, ~0);
  1652. }
  1653. POSTING_READ(RING_IMR(engine->mmio_base));
  1654. }
  1655. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1656. }
  1657. static int
  1658. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1659. u64 offset, u32 length,
  1660. unsigned dispatch_flags)
  1661. {
  1662. struct intel_engine_cs *engine = req->engine;
  1663. int ret;
  1664. ret = intel_ring_begin(req, 2);
  1665. if (ret)
  1666. return ret;
  1667. intel_ring_emit(engine,
  1668. MI_BATCH_BUFFER_START |
  1669. MI_BATCH_GTT |
  1670. (dispatch_flags & I915_DISPATCH_SECURE ?
  1671. 0 : MI_BATCH_NON_SECURE_I965));
  1672. intel_ring_emit(engine, offset);
  1673. intel_ring_advance(engine);
  1674. return 0;
  1675. }
  1676. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1677. #define I830_BATCH_LIMIT (256*1024)
  1678. #define I830_TLB_ENTRIES (2)
  1679. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1680. static int
  1681. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1682. u64 offset, u32 len,
  1683. unsigned dispatch_flags)
  1684. {
  1685. struct intel_engine_cs *engine = req->engine;
  1686. u32 cs_offset = engine->scratch.gtt_offset;
  1687. int ret;
  1688. ret = intel_ring_begin(req, 6);
  1689. if (ret)
  1690. return ret;
  1691. /* Evict the invalid PTE TLBs */
  1692. intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1693. intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1694. intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1695. intel_ring_emit(engine, cs_offset);
  1696. intel_ring_emit(engine, 0xdeadbeef);
  1697. intel_ring_emit(engine, MI_NOOP);
  1698. intel_ring_advance(engine);
  1699. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1700. if (len > I830_BATCH_LIMIT)
  1701. return -ENOSPC;
  1702. ret = intel_ring_begin(req, 6 + 2);
  1703. if (ret)
  1704. return ret;
  1705. /* Blit the batch (which has now all relocs applied) to the
  1706. * stable batch scratch bo area (so that the CS never
  1707. * stumbles over its tlb invalidation bug) ...
  1708. */
  1709. intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1710. intel_ring_emit(engine,
  1711. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1712. intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1713. intel_ring_emit(engine, cs_offset);
  1714. intel_ring_emit(engine, 4096);
  1715. intel_ring_emit(engine, offset);
  1716. intel_ring_emit(engine, MI_FLUSH);
  1717. intel_ring_emit(engine, MI_NOOP);
  1718. intel_ring_advance(engine);
  1719. /* ... and execute it. */
  1720. offset = cs_offset;
  1721. }
  1722. ret = intel_ring_begin(req, 2);
  1723. if (ret)
  1724. return ret;
  1725. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1726. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1727. 0 : MI_BATCH_NON_SECURE));
  1728. intel_ring_advance(engine);
  1729. return 0;
  1730. }
  1731. static int
  1732. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1733. u64 offset, u32 len,
  1734. unsigned dispatch_flags)
  1735. {
  1736. struct intel_engine_cs *engine = req->engine;
  1737. int ret;
  1738. ret = intel_ring_begin(req, 2);
  1739. if (ret)
  1740. return ret;
  1741. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1742. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1743. 0 : MI_BATCH_NON_SECURE));
  1744. intel_ring_advance(engine);
  1745. return 0;
  1746. }
  1747. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1748. {
  1749. struct drm_i915_private *dev_priv = engine->i915;
  1750. if (!dev_priv->status_page_dmah)
  1751. return;
  1752. drm_pci_free(dev_priv->dev, dev_priv->status_page_dmah);
  1753. engine->status_page.page_addr = NULL;
  1754. }
  1755. static void cleanup_status_page(struct intel_engine_cs *engine)
  1756. {
  1757. struct drm_i915_gem_object *obj;
  1758. obj = engine->status_page.obj;
  1759. if (obj == NULL)
  1760. return;
  1761. kunmap(sg_page(obj->pages->sgl));
  1762. i915_gem_object_ggtt_unpin(obj);
  1763. drm_gem_object_unreference(&obj->base);
  1764. engine->status_page.obj = NULL;
  1765. }
  1766. static int init_status_page(struct intel_engine_cs *engine)
  1767. {
  1768. struct drm_i915_gem_object *obj = engine->status_page.obj;
  1769. if (obj == NULL) {
  1770. unsigned flags;
  1771. int ret;
  1772. obj = i915_gem_object_create(engine->i915->dev, 4096);
  1773. if (IS_ERR(obj)) {
  1774. DRM_ERROR("Failed to allocate status page\n");
  1775. return PTR_ERR(obj);
  1776. }
  1777. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1778. if (ret)
  1779. goto err_unref;
  1780. flags = 0;
  1781. if (!HAS_LLC(engine->i915))
  1782. /* On g33, we cannot place HWS above 256MiB, so
  1783. * restrict its pinning to the low mappable arena.
  1784. * Though this restriction is not documented for
  1785. * gen4, gen5, or byt, they also behave similarly
  1786. * and hang if the HWS is placed at the top of the
  1787. * GTT. To generalise, it appears that all !llc
  1788. * platforms have issues with us placing the HWS
  1789. * above the mappable region (even though we never
  1790. * actualy map it).
  1791. */
  1792. flags |= PIN_MAPPABLE;
  1793. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1794. if (ret) {
  1795. err_unref:
  1796. drm_gem_object_unreference(&obj->base);
  1797. return ret;
  1798. }
  1799. engine->status_page.obj = obj;
  1800. }
  1801. engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1802. engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1803. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1804. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1805. engine->name, engine->status_page.gfx_addr);
  1806. return 0;
  1807. }
  1808. static int init_phys_status_page(struct intel_engine_cs *engine)
  1809. {
  1810. struct drm_i915_private *dev_priv = engine->i915;
  1811. if (!dev_priv->status_page_dmah) {
  1812. dev_priv->status_page_dmah =
  1813. drm_pci_alloc(dev_priv->dev, PAGE_SIZE, PAGE_SIZE);
  1814. if (!dev_priv->status_page_dmah)
  1815. return -ENOMEM;
  1816. }
  1817. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1818. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1819. return 0;
  1820. }
  1821. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1822. {
  1823. GEM_BUG_ON(ringbuf->vma == NULL);
  1824. GEM_BUG_ON(ringbuf->virtual_start == NULL);
  1825. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1826. i915_gem_object_unpin_map(ringbuf->obj);
  1827. else
  1828. i915_vma_unpin_iomap(ringbuf->vma);
  1829. ringbuf->virtual_start = NULL;
  1830. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1831. ringbuf->vma = NULL;
  1832. }
  1833. int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
  1834. struct intel_ringbuffer *ringbuf)
  1835. {
  1836. struct drm_i915_gem_object *obj = ringbuf->obj;
  1837. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1838. unsigned flags = PIN_OFFSET_BIAS | 4096;
  1839. void *addr;
  1840. int ret;
  1841. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1842. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
  1843. if (ret)
  1844. return ret;
  1845. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1846. if (ret)
  1847. goto err_unpin;
  1848. addr = i915_gem_object_pin_map(obj);
  1849. if (IS_ERR(addr)) {
  1850. ret = PTR_ERR(addr);
  1851. goto err_unpin;
  1852. }
  1853. } else {
  1854. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
  1855. flags | PIN_MAPPABLE);
  1856. if (ret)
  1857. return ret;
  1858. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1859. if (ret)
  1860. goto err_unpin;
  1861. /* Access through the GTT requires the device to be awake. */
  1862. assert_rpm_wakelock_held(dev_priv);
  1863. addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
  1864. if (IS_ERR(addr)) {
  1865. ret = PTR_ERR(addr);
  1866. goto err_unpin;
  1867. }
  1868. }
  1869. ringbuf->virtual_start = addr;
  1870. ringbuf->vma = i915_gem_obj_to_ggtt(obj);
  1871. return 0;
  1872. err_unpin:
  1873. i915_gem_object_ggtt_unpin(obj);
  1874. return ret;
  1875. }
  1876. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1877. {
  1878. drm_gem_object_unreference(&ringbuf->obj->base);
  1879. ringbuf->obj = NULL;
  1880. }
  1881. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1882. struct intel_ringbuffer *ringbuf)
  1883. {
  1884. struct drm_i915_gem_object *obj;
  1885. obj = NULL;
  1886. if (!HAS_LLC(dev))
  1887. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1888. if (obj == NULL)
  1889. obj = i915_gem_object_create(dev, ringbuf->size);
  1890. if (IS_ERR(obj))
  1891. return PTR_ERR(obj);
  1892. /* mark ring buffers as read-only from GPU side by default */
  1893. obj->gt_ro = 1;
  1894. ringbuf->obj = obj;
  1895. return 0;
  1896. }
  1897. struct intel_ringbuffer *
  1898. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1899. {
  1900. struct intel_ringbuffer *ring;
  1901. int ret;
  1902. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1903. if (ring == NULL) {
  1904. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1905. engine->name);
  1906. return ERR_PTR(-ENOMEM);
  1907. }
  1908. ring->engine = engine;
  1909. list_add(&ring->link, &engine->buffers);
  1910. ring->size = size;
  1911. /* Workaround an erratum on the i830 which causes a hang if
  1912. * the TAIL pointer points to within the last 2 cachelines
  1913. * of the buffer.
  1914. */
  1915. ring->effective_size = size;
  1916. if (IS_I830(engine->i915) || IS_845G(engine->i915))
  1917. ring->effective_size -= 2 * CACHELINE_BYTES;
  1918. ring->last_retired_head = -1;
  1919. intel_ring_update_space(ring);
  1920. ret = intel_alloc_ringbuffer_obj(engine->i915->dev, ring);
  1921. if (ret) {
  1922. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1923. engine->name, ret);
  1924. list_del(&ring->link);
  1925. kfree(ring);
  1926. return ERR_PTR(ret);
  1927. }
  1928. return ring;
  1929. }
  1930. void
  1931. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1932. {
  1933. intel_destroy_ringbuffer_obj(ring);
  1934. list_del(&ring->link);
  1935. kfree(ring);
  1936. }
  1937. static int intel_ring_context_pin(struct i915_gem_context *ctx,
  1938. struct intel_engine_cs *engine)
  1939. {
  1940. struct intel_context *ce = &ctx->engine[engine->id];
  1941. int ret;
  1942. lockdep_assert_held(&ctx->i915->dev->struct_mutex);
  1943. if (ce->pin_count++)
  1944. return 0;
  1945. if (ce->state) {
  1946. ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
  1947. if (ret)
  1948. goto error;
  1949. }
  1950. /* The kernel context is only used as a placeholder for flushing the
  1951. * active context. It is never used for submitting user rendering and
  1952. * as such never requires the golden render context, and so we can skip
  1953. * emitting it when we switch to the kernel context. This is required
  1954. * as during eviction we cannot allocate and pin the renderstate in
  1955. * order to initialise the context.
  1956. */
  1957. if (ctx == ctx->i915->kernel_context)
  1958. ce->initialised = true;
  1959. i915_gem_context_reference(ctx);
  1960. return 0;
  1961. error:
  1962. ce->pin_count = 0;
  1963. return ret;
  1964. }
  1965. static void intel_ring_context_unpin(struct i915_gem_context *ctx,
  1966. struct intel_engine_cs *engine)
  1967. {
  1968. struct intel_context *ce = &ctx->engine[engine->id];
  1969. lockdep_assert_held(&ctx->i915->dev->struct_mutex);
  1970. if (--ce->pin_count)
  1971. return;
  1972. if (ce->state)
  1973. i915_gem_object_ggtt_unpin(ce->state);
  1974. i915_gem_context_unreference(ctx);
  1975. }
  1976. static int intel_init_ring_buffer(struct drm_device *dev,
  1977. struct intel_engine_cs *engine)
  1978. {
  1979. struct drm_i915_private *dev_priv = to_i915(dev);
  1980. struct intel_ringbuffer *ringbuf;
  1981. int ret;
  1982. WARN_ON(engine->buffer);
  1983. engine->i915 = dev_priv;
  1984. INIT_LIST_HEAD(&engine->active_list);
  1985. INIT_LIST_HEAD(&engine->request_list);
  1986. INIT_LIST_HEAD(&engine->execlist_queue);
  1987. INIT_LIST_HEAD(&engine->buffers);
  1988. i915_gem_batch_pool_init(dev, &engine->batch_pool);
  1989. memset(engine->semaphore.sync_seqno, 0,
  1990. sizeof(engine->semaphore.sync_seqno));
  1991. init_waitqueue_head(&engine->irq_queue);
  1992. /* We may need to do things with the shrinker which
  1993. * require us to immediately switch back to the default
  1994. * context. This can cause a problem as pinning the
  1995. * default context also requires GTT space which may not
  1996. * be available. To avoid this we always pin the default
  1997. * context.
  1998. */
  1999. ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
  2000. if (ret)
  2001. goto error;
  2002. ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
  2003. if (IS_ERR(ringbuf)) {
  2004. ret = PTR_ERR(ringbuf);
  2005. goto error;
  2006. }
  2007. engine->buffer = ringbuf;
  2008. if (I915_NEED_GFX_HWS(dev_priv)) {
  2009. ret = init_status_page(engine);
  2010. if (ret)
  2011. goto error;
  2012. } else {
  2013. WARN_ON(engine->id != RCS);
  2014. ret = init_phys_status_page(engine);
  2015. if (ret)
  2016. goto error;
  2017. }
  2018. ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
  2019. if (ret) {
  2020. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  2021. engine->name, ret);
  2022. intel_destroy_ringbuffer_obj(ringbuf);
  2023. goto error;
  2024. }
  2025. ret = i915_cmd_parser_init_ring(engine);
  2026. if (ret)
  2027. goto error;
  2028. return 0;
  2029. error:
  2030. intel_cleanup_engine(engine);
  2031. return ret;
  2032. }
  2033. void intel_cleanup_engine(struct intel_engine_cs *engine)
  2034. {
  2035. struct drm_i915_private *dev_priv;
  2036. if (!intel_engine_initialized(engine))
  2037. return;
  2038. dev_priv = engine->i915;
  2039. if (engine->buffer) {
  2040. intel_stop_engine(engine);
  2041. WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  2042. intel_unpin_ringbuffer_obj(engine->buffer);
  2043. intel_ringbuffer_free(engine->buffer);
  2044. engine->buffer = NULL;
  2045. }
  2046. if (engine->cleanup)
  2047. engine->cleanup(engine);
  2048. if (I915_NEED_GFX_HWS(dev_priv)) {
  2049. cleanup_status_page(engine);
  2050. } else {
  2051. WARN_ON(engine->id != RCS);
  2052. cleanup_phys_status_page(engine);
  2053. }
  2054. i915_cmd_parser_fini_ring(engine);
  2055. i915_gem_batch_pool_fini(&engine->batch_pool);
  2056. intel_ring_context_unpin(dev_priv->kernel_context, engine);
  2057. engine->i915 = NULL;
  2058. }
  2059. int intel_engine_idle(struct intel_engine_cs *engine)
  2060. {
  2061. struct drm_i915_gem_request *req;
  2062. /* Wait upon the last request to be completed */
  2063. if (list_empty(&engine->request_list))
  2064. return 0;
  2065. req = list_entry(engine->request_list.prev,
  2066. struct drm_i915_gem_request,
  2067. list);
  2068. /* Make sure we do not trigger any retires */
  2069. return __i915_wait_request(req,
  2070. req->i915->mm.interruptible,
  2071. NULL, NULL);
  2072. }
  2073. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  2074. {
  2075. int ret;
  2076. /* Flush enough space to reduce the likelihood of waiting after
  2077. * we start building the request - in which case we will just
  2078. * have to repeat work.
  2079. */
  2080. request->reserved_space += LEGACY_REQUEST_SIZE;
  2081. request->ringbuf = request->engine->buffer;
  2082. ret = intel_ring_begin(request, 0);
  2083. if (ret)
  2084. return ret;
  2085. request->reserved_space -= LEGACY_REQUEST_SIZE;
  2086. return 0;
  2087. }
  2088. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  2089. {
  2090. struct intel_ringbuffer *ringbuf = req->ringbuf;
  2091. struct intel_engine_cs *engine = req->engine;
  2092. struct drm_i915_gem_request *target;
  2093. intel_ring_update_space(ringbuf);
  2094. if (ringbuf->space >= bytes)
  2095. return 0;
  2096. /*
  2097. * Space is reserved in the ringbuffer for finalising the request,
  2098. * as that cannot be allowed to fail. During request finalisation,
  2099. * reserved_space is set to 0 to stop the overallocation and the
  2100. * assumption is that then we never need to wait (which has the
  2101. * risk of failing with EINTR).
  2102. *
  2103. * See also i915_gem_request_alloc() and i915_add_request().
  2104. */
  2105. GEM_BUG_ON(!req->reserved_space);
  2106. list_for_each_entry(target, &engine->request_list, list) {
  2107. unsigned space;
  2108. /*
  2109. * The request queue is per-engine, so can contain requests
  2110. * from multiple ringbuffers. Here, we must ignore any that
  2111. * aren't from the ringbuffer we're considering.
  2112. */
  2113. if (target->ringbuf != ringbuf)
  2114. continue;
  2115. /* Would completion of this request free enough space? */
  2116. space = __intel_ring_space(target->postfix, ringbuf->tail,
  2117. ringbuf->size);
  2118. if (space >= bytes)
  2119. break;
  2120. }
  2121. if (WARN_ON(&target->list == &engine->request_list))
  2122. return -ENOSPC;
  2123. return i915_wait_request(target);
  2124. }
  2125. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  2126. {
  2127. struct intel_ringbuffer *ringbuf = req->ringbuf;
  2128. int remain_actual = ringbuf->size - ringbuf->tail;
  2129. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  2130. int bytes = num_dwords * sizeof(u32);
  2131. int total_bytes, wait_bytes;
  2132. bool need_wrap = false;
  2133. total_bytes = bytes + req->reserved_space;
  2134. if (unlikely(bytes > remain_usable)) {
  2135. /*
  2136. * Not enough space for the basic request. So need to flush
  2137. * out the remainder and then wait for base + reserved.
  2138. */
  2139. wait_bytes = remain_actual + total_bytes;
  2140. need_wrap = true;
  2141. } else if (unlikely(total_bytes > remain_usable)) {
  2142. /*
  2143. * The base request will fit but the reserved space
  2144. * falls off the end. So we don't need an immediate wrap
  2145. * and only need to effectively wait for the reserved
  2146. * size space from the start of ringbuffer.
  2147. */
  2148. wait_bytes = remain_actual + req->reserved_space;
  2149. } else {
  2150. /* No wrapping required, just waiting. */
  2151. wait_bytes = total_bytes;
  2152. }
  2153. if (wait_bytes > ringbuf->space) {
  2154. int ret = wait_for_space(req, wait_bytes);
  2155. if (unlikely(ret))
  2156. return ret;
  2157. intel_ring_update_space(ringbuf);
  2158. if (unlikely(ringbuf->space < wait_bytes))
  2159. return -EAGAIN;
  2160. }
  2161. if (unlikely(need_wrap)) {
  2162. GEM_BUG_ON(remain_actual > ringbuf->space);
  2163. GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
  2164. /* Fill the tail with MI_NOOP */
  2165. memset(ringbuf->virtual_start + ringbuf->tail,
  2166. 0, remain_actual);
  2167. ringbuf->tail = 0;
  2168. ringbuf->space -= remain_actual;
  2169. }
  2170. ringbuf->space -= bytes;
  2171. GEM_BUG_ON(ringbuf->space < 0);
  2172. return 0;
  2173. }
  2174. /* Align the ring tail to a cacheline boundary */
  2175. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2176. {
  2177. struct intel_engine_cs *engine = req->engine;
  2178. int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2179. int ret;
  2180. if (num_dwords == 0)
  2181. return 0;
  2182. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2183. ret = intel_ring_begin(req, num_dwords);
  2184. if (ret)
  2185. return ret;
  2186. while (num_dwords--)
  2187. intel_ring_emit(engine, MI_NOOP);
  2188. intel_ring_advance(engine);
  2189. return 0;
  2190. }
  2191. void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
  2192. {
  2193. struct drm_i915_private *dev_priv = engine->i915;
  2194. /* Our semaphore implementation is strictly monotonic (i.e. we proceed
  2195. * so long as the semaphore value in the register/page is greater
  2196. * than the sync value), so whenever we reset the seqno,
  2197. * so long as we reset the tracking semaphore value to 0, it will
  2198. * always be before the next request's seqno. If we don't reset
  2199. * the semaphore value, then when the seqno moves backwards all
  2200. * future waits will complete instantly (causing rendering corruption).
  2201. */
  2202. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  2203. I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
  2204. I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
  2205. if (HAS_VEBOX(dev_priv))
  2206. I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
  2207. }
  2208. if (dev_priv->semaphore_obj) {
  2209. struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
  2210. struct page *page = i915_gem_object_get_dirty_page(obj, 0);
  2211. void *semaphores = kmap(page);
  2212. memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
  2213. 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
  2214. kunmap(page);
  2215. }
  2216. memset(engine->semaphore.sync_seqno, 0,
  2217. sizeof(engine->semaphore.sync_seqno));
  2218. engine->set_seqno(engine, seqno);
  2219. engine->last_submitted_seqno = seqno;
  2220. engine->hangcheck.seqno = seqno;
  2221. }
  2222. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
  2223. u32 value)
  2224. {
  2225. struct drm_i915_private *dev_priv = engine->i915;
  2226. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  2227. /* Every tail move must follow the sequence below */
  2228. /* Disable notification that the ring is IDLE. The GT
  2229. * will then assume that it is busy and bring it out of rc6.
  2230. */
  2231. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2232. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2233. /* Clear the context id. Here be magic! */
  2234. I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
  2235. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2236. if (intel_wait_for_register_fw(dev_priv,
  2237. GEN6_BSD_SLEEP_PSMI_CONTROL,
  2238. GEN6_BSD_SLEEP_INDICATOR,
  2239. 0,
  2240. 50))
  2241. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2242. /* Now that the ring is fully powered up, update the tail */
  2243. I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
  2244. POSTING_READ_FW(RING_TAIL(engine->mmio_base));
  2245. /* Let the ring send IDLE messages to the GT again,
  2246. * and so let it sleep to conserve power when idle.
  2247. */
  2248. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2249. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2250. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  2251. }
  2252. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2253. u32 invalidate, u32 flush)
  2254. {
  2255. struct intel_engine_cs *engine = req->engine;
  2256. uint32_t cmd;
  2257. int ret;
  2258. ret = intel_ring_begin(req, 4);
  2259. if (ret)
  2260. return ret;
  2261. cmd = MI_FLUSH_DW;
  2262. if (INTEL_GEN(req->i915) >= 8)
  2263. cmd += 1;
  2264. /* We always require a command barrier so that subsequent
  2265. * commands, such as breadcrumb interrupts, are strictly ordered
  2266. * wrt the contents of the write cache being flushed to memory
  2267. * (and thus being coherent from the CPU).
  2268. */
  2269. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2270. /*
  2271. * Bspec vol 1c.5 - video engine command streamer:
  2272. * "If ENABLED, all TLBs will be invalidated once the flush
  2273. * operation is complete. This bit is only valid when the
  2274. * Post-Sync Operation field is a value of 1h or 3h."
  2275. */
  2276. if (invalidate & I915_GEM_GPU_DOMAINS)
  2277. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2278. intel_ring_emit(engine, cmd);
  2279. intel_ring_emit(engine,
  2280. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2281. if (INTEL_GEN(req->i915) >= 8) {
  2282. intel_ring_emit(engine, 0); /* upper addr */
  2283. intel_ring_emit(engine, 0); /* value */
  2284. } else {
  2285. intel_ring_emit(engine, 0);
  2286. intel_ring_emit(engine, MI_NOOP);
  2287. }
  2288. intel_ring_advance(engine);
  2289. return 0;
  2290. }
  2291. static int
  2292. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2293. u64 offset, u32 len,
  2294. unsigned dispatch_flags)
  2295. {
  2296. struct intel_engine_cs *engine = req->engine;
  2297. bool ppgtt = USES_PPGTT(engine->dev) &&
  2298. !(dispatch_flags & I915_DISPATCH_SECURE);
  2299. int ret;
  2300. ret = intel_ring_begin(req, 4);
  2301. if (ret)
  2302. return ret;
  2303. /* FIXME(BDW): Address space and security selectors. */
  2304. intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2305. (dispatch_flags & I915_DISPATCH_RS ?
  2306. MI_BATCH_RESOURCE_STREAMER : 0));
  2307. intel_ring_emit(engine, lower_32_bits(offset));
  2308. intel_ring_emit(engine, upper_32_bits(offset));
  2309. intel_ring_emit(engine, MI_NOOP);
  2310. intel_ring_advance(engine);
  2311. return 0;
  2312. }
  2313. static int
  2314. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2315. u64 offset, u32 len,
  2316. unsigned dispatch_flags)
  2317. {
  2318. struct intel_engine_cs *engine = req->engine;
  2319. int ret;
  2320. ret = intel_ring_begin(req, 2);
  2321. if (ret)
  2322. return ret;
  2323. intel_ring_emit(engine,
  2324. MI_BATCH_BUFFER_START |
  2325. (dispatch_flags & I915_DISPATCH_SECURE ?
  2326. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2327. (dispatch_flags & I915_DISPATCH_RS ?
  2328. MI_BATCH_RESOURCE_STREAMER : 0));
  2329. /* bit0-7 is the length on GEN6+ */
  2330. intel_ring_emit(engine, offset);
  2331. intel_ring_advance(engine);
  2332. return 0;
  2333. }
  2334. static int
  2335. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2336. u64 offset, u32 len,
  2337. unsigned dispatch_flags)
  2338. {
  2339. struct intel_engine_cs *engine = req->engine;
  2340. int ret;
  2341. ret = intel_ring_begin(req, 2);
  2342. if (ret)
  2343. return ret;
  2344. intel_ring_emit(engine,
  2345. MI_BATCH_BUFFER_START |
  2346. (dispatch_flags & I915_DISPATCH_SECURE ?
  2347. 0 : MI_BATCH_NON_SECURE_I965));
  2348. /* bit0-7 is the length on GEN6+ */
  2349. intel_ring_emit(engine, offset);
  2350. intel_ring_advance(engine);
  2351. return 0;
  2352. }
  2353. /* Blitter support (SandyBridge+) */
  2354. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2355. u32 invalidate, u32 flush)
  2356. {
  2357. struct intel_engine_cs *engine = req->engine;
  2358. uint32_t cmd;
  2359. int ret;
  2360. ret = intel_ring_begin(req, 4);
  2361. if (ret)
  2362. return ret;
  2363. cmd = MI_FLUSH_DW;
  2364. if (INTEL_GEN(req->i915) >= 8)
  2365. cmd += 1;
  2366. /* We always require a command barrier so that subsequent
  2367. * commands, such as breadcrumb interrupts, are strictly ordered
  2368. * wrt the contents of the write cache being flushed to memory
  2369. * (and thus being coherent from the CPU).
  2370. */
  2371. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2372. /*
  2373. * Bspec vol 1c.3 - blitter engine command streamer:
  2374. * "If ENABLED, all TLBs will be invalidated once the flush
  2375. * operation is complete. This bit is only valid when the
  2376. * Post-Sync Operation field is a value of 1h or 3h."
  2377. */
  2378. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2379. cmd |= MI_INVALIDATE_TLB;
  2380. intel_ring_emit(engine, cmd);
  2381. intel_ring_emit(engine,
  2382. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2383. if (INTEL_GEN(req->i915) >= 8) {
  2384. intel_ring_emit(engine, 0); /* upper addr */
  2385. intel_ring_emit(engine, 0); /* value */
  2386. } else {
  2387. intel_ring_emit(engine, 0);
  2388. intel_ring_emit(engine, MI_NOOP);
  2389. }
  2390. intel_ring_advance(engine);
  2391. return 0;
  2392. }
  2393. static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
  2394. struct intel_engine_cs *engine)
  2395. {
  2396. struct drm_i915_gem_object *obj;
  2397. int ret;
  2398. if (!i915_semaphore_is_enabled(dev_priv))
  2399. return;
  2400. if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
  2401. obj = i915_gem_object_create(dev_priv->dev, 4096);
  2402. if (IS_ERR(obj)) {
  2403. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2404. i915.semaphores = 0;
  2405. } else {
  2406. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2407. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2408. if (ret != 0) {
  2409. drm_gem_object_unreference(&obj->base);
  2410. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2411. i915.semaphores = 0;
  2412. } else {
  2413. dev_priv->semaphore_obj = obj;
  2414. }
  2415. }
  2416. }
  2417. if (!i915_semaphore_is_enabled(dev_priv))
  2418. return;
  2419. if (INTEL_GEN(dev_priv) >= 8) {
  2420. engine->semaphore.sync_to = gen8_ring_sync;
  2421. engine->semaphore.signal = gen8_xcs_signal;
  2422. GEN8_RING_SEMAPHORE_INIT(engine);
  2423. } else if (INTEL_GEN(dev_priv) >= 6) {
  2424. engine->semaphore.sync_to = gen6_ring_sync;
  2425. engine->semaphore.signal = gen6_signal;
  2426. }
  2427. }
  2428. static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
  2429. struct intel_engine_cs *engine)
  2430. {
  2431. engine->init_hw = init_ring_common;
  2432. engine->write_tail = ring_write_tail;
  2433. engine->get_seqno = ring_get_seqno;
  2434. engine->set_seqno = ring_set_seqno;
  2435. if (INTEL_GEN(dev_priv) >= 8) {
  2436. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2437. engine->add_request = gen6_add_request;
  2438. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2439. } else if (INTEL_GEN(dev_priv) >= 6) {
  2440. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2441. engine->add_request = gen6_add_request;
  2442. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2443. } else {
  2444. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2445. engine->add_request = i9xx_add_request;
  2446. }
  2447. if (INTEL_GEN(dev_priv) >= 8) {
  2448. engine->irq_get = gen8_ring_get_irq;
  2449. engine->irq_put = gen8_ring_put_irq;
  2450. } else if (INTEL_GEN(dev_priv) >= 6) {
  2451. engine->irq_get = gen6_ring_get_irq;
  2452. engine->irq_put = gen6_ring_put_irq;
  2453. } else if (INTEL_GEN(dev_priv) >= 5) {
  2454. engine->irq_get = gen5_ring_get_irq;
  2455. engine->irq_put = gen5_ring_put_irq;
  2456. } else if (INTEL_GEN(dev_priv) >= 3) {
  2457. engine->irq_get = i9xx_ring_get_irq;
  2458. engine->irq_put = i9xx_ring_put_irq;
  2459. } else {
  2460. engine->irq_get = i8xx_ring_get_irq;
  2461. engine->irq_put = i8xx_ring_put_irq;
  2462. }
  2463. intel_ring_init_semaphores(dev_priv, engine);
  2464. }
  2465. int intel_init_render_ring_buffer(struct drm_device *dev)
  2466. {
  2467. struct drm_i915_private *dev_priv = dev->dev_private;
  2468. struct intel_engine_cs *engine = &dev_priv->engine[RCS];
  2469. struct drm_i915_gem_object *obj;
  2470. int ret;
  2471. engine->name = "render ring";
  2472. engine->id = RCS;
  2473. engine->exec_id = I915_EXEC_RENDER;
  2474. engine->hw_id = 0;
  2475. engine->mmio_base = RENDER_RING_BASE;
  2476. intel_ring_default_vfuncs(dev_priv, engine);
  2477. if (INTEL_GEN(dev_priv) >= 8) {
  2478. engine->init_context = intel_rcs_ctx_init;
  2479. engine->add_request = gen8_render_add_request;
  2480. engine->flush = gen8_render_ring_flush;
  2481. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2482. if (i915_semaphore_is_enabled(dev_priv))
  2483. engine->semaphore.signal = gen8_rcs_signal;
  2484. } else if (INTEL_GEN(dev_priv) >= 6) {
  2485. engine->init_context = intel_rcs_ctx_init;
  2486. engine->flush = gen7_render_ring_flush;
  2487. if (IS_GEN6(dev_priv))
  2488. engine->flush = gen6_render_ring_flush;
  2489. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2490. if (i915_semaphore_is_enabled(dev_priv)) {
  2491. /*
  2492. * The current semaphore is only applied on pre-gen8
  2493. * platform. And there is no VCS2 ring on the pre-gen8
  2494. * platform. So the semaphore between RCS and VCS2 is
  2495. * initialized as INVALID. Gen8 will initialize the
  2496. * sema between VCS2 and RCS later.
  2497. */
  2498. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2499. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2500. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2501. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2502. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2503. engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2504. engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2505. engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2506. engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2507. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2508. }
  2509. } else if (IS_GEN5(dev_priv)) {
  2510. engine->add_request = pc_render_add_request;
  2511. engine->flush = gen4_render_ring_flush;
  2512. engine->get_seqno = pc_render_get_seqno;
  2513. engine->set_seqno = pc_render_set_seqno;
  2514. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2515. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2516. } else {
  2517. if (INTEL_GEN(dev_priv) < 4)
  2518. engine->flush = gen2_render_ring_flush;
  2519. else
  2520. engine->flush = gen4_render_ring_flush;
  2521. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2522. }
  2523. if (IS_HASWELL(dev_priv))
  2524. engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2525. else if (IS_I830(dev_priv) || IS_845G(dev_priv))
  2526. engine->dispatch_execbuffer = i830_dispatch_execbuffer;
  2527. else if (INTEL_GEN(dev_priv) <= 3)
  2528. engine->dispatch_execbuffer = i915_dispatch_execbuffer;
  2529. engine->init_hw = init_render_ring;
  2530. engine->cleanup = render_ring_cleanup;
  2531. /* Workaround batchbuffer to combat CS tlb bug. */
  2532. if (HAS_BROKEN_CS_TLB(dev_priv)) {
  2533. obj = i915_gem_object_create(dev, I830_WA_SIZE);
  2534. if (IS_ERR(obj)) {
  2535. DRM_ERROR("Failed to allocate batch bo\n");
  2536. return PTR_ERR(obj);
  2537. }
  2538. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2539. if (ret != 0) {
  2540. drm_gem_object_unreference(&obj->base);
  2541. DRM_ERROR("Failed to ping batch bo\n");
  2542. return ret;
  2543. }
  2544. engine->scratch.obj = obj;
  2545. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2546. }
  2547. ret = intel_init_ring_buffer(dev, engine);
  2548. if (ret)
  2549. return ret;
  2550. if (INTEL_GEN(dev_priv) >= 5) {
  2551. ret = intel_init_pipe_control(engine);
  2552. if (ret)
  2553. return ret;
  2554. }
  2555. return 0;
  2556. }
  2557. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2558. {
  2559. struct drm_i915_private *dev_priv = dev->dev_private;
  2560. struct intel_engine_cs *engine = &dev_priv->engine[VCS];
  2561. engine->name = "bsd ring";
  2562. engine->id = VCS;
  2563. engine->exec_id = I915_EXEC_BSD;
  2564. engine->hw_id = 1;
  2565. intel_ring_default_vfuncs(dev_priv, engine);
  2566. if (INTEL_GEN(dev_priv) >= 6) {
  2567. engine->mmio_base = GEN6_BSD_RING_BASE;
  2568. /* gen6 bsd needs a special wa for tail updates */
  2569. if (IS_GEN6(dev_priv))
  2570. engine->write_tail = gen6_bsd_ring_write_tail;
  2571. engine->flush = gen6_bsd_ring_flush;
  2572. if (INTEL_GEN(dev_priv) >= 8) {
  2573. engine->irq_enable_mask =
  2574. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2575. } else {
  2576. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2577. if (i915_semaphore_is_enabled(dev_priv)) {
  2578. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2579. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2580. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2581. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2582. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2583. engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2584. engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2585. engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2586. engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2587. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2588. }
  2589. }
  2590. } else {
  2591. engine->mmio_base = BSD_RING_BASE;
  2592. engine->flush = bsd_ring_flush;
  2593. if (IS_GEN5(dev_priv)) {
  2594. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2595. } else {
  2596. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2597. }
  2598. }
  2599. return intel_init_ring_buffer(dev, engine);
  2600. }
  2601. /**
  2602. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2603. */
  2604. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2605. {
  2606. struct drm_i915_private *dev_priv = dev->dev_private;
  2607. struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
  2608. engine->name = "bsd2 ring";
  2609. engine->id = VCS2;
  2610. engine->exec_id = I915_EXEC_BSD;
  2611. engine->hw_id = 4;
  2612. engine->mmio_base = GEN8_BSD2_RING_BASE;
  2613. intel_ring_default_vfuncs(dev_priv, engine);
  2614. engine->flush = gen6_bsd_ring_flush;
  2615. engine->irq_enable_mask =
  2616. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2617. return intel_init_ring_buffer(dev, engine);
  2618. }
  2619. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2620. {
  2621. struct drm_i915_private *dev_priv = dev->dev_private;
  2622. struct intel_engine_cs *engine = &dev_priv->engine[BCS];
  2623. engine->name = "blitter ring";
  2624. engine->id = BCS;
  2625. engine->exec_id = I915_EXEC_BLT;
  2626. engine->hw_id = 2;
  2627. engine->mmio_base = BLT_RING_BASE;
  2628. intel_ring_default_vfuncs(dev_priv, engine);
  2629. engine->flush = gen6_ring_flush;
  2630. if (INTEL_GEN(dev_priv) >= 8) {
  2631. engine->irq_enable_mask =
  2632. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2633. } else {
  2634. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2635. if (i915_semaphore_is_enabled(dev_priv)) {
  2636. /*
  2637. * The current semaphore is only applied on pre-gen8
  2638. * platform. And there is no VCS2 ring on the pre-gen8
  2639. * platform. So the semaphore between BCS and VCS2 is
  2640. * initialized as INVALID. Gen8 will initialize the
  2641. * sema between BCS and VCS2 later.
  2642. */
  2643. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2644. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2645. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2646. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2647. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2648. engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2649. engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2650. engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2651. engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2652. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2653. }
  2654. }
  2655. return intel_init_ring_buffer(dev, engine);
  2656. }
  2657. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2658. {
  2659. struct drm_i915_private *dev_priv = dev->dev_private;
  2660. struct intel_engine_cs *engine = &dev_priv->engine[VECS];
  2661. engine->name = "video enhancement ring";
  2662. engine->id = VECS;
  2663. engine->exec_id = I915_EXEC_VEBOX;
  2664. engine->hw_id = 3;
  2665. engine->mmio_base = VEBOX_RING_BASE;
  2666. intel_ring_default_vfuncs(dev_priv, engine);
  2667. engine->flush = gen6_ring_flush;
  2668. if (INTEL_GEN(dev_priv) >= 8) {
  2669. engine->irq_enable_mask =
  2670. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2671. } else {
  2672. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2673. engine->irq_get = hsw_vebox_get_irq;
  2674. engine->irq_put = hsw_vebox_put_irq;
  2675. if (i915_semaphore_is_enabled(dev_priv)) {
  2676. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2677. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2678. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2679. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2680. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2681. engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2682. engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2683. engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2684. engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2685. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2686. }
  2687. }
  2688. return intel_init_ring_buffer(dev, engine);
  2689. }
  2690. int
  2691. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2692. {
  2693. struct intel_engine_cs *engine = req->engine;
  2694. int ret;
  2695. if (!engine->gpu_caches_dirty)
  2696. return 0;
  2697. ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2698. if (ret)
  2699. return ret;
  2700. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2701. engine->gpu_caches_dirty = false;
  2702. return 0;
  2703. }
  2704. int
  2705. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2706. {
  2707. struct intel_engine_cs *engine = req->engine;
  2708. uint32_t flush_domains;
  2709. int ret;
  2710. flush_domains = 0;
  2711. if (engine->gpu_caches_dirty)
  2712. flush_domains = I915_GEM_GPU_DOMAINS;
  2713. ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2714. if (ret)
  2715. return ret;
  2716. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2717. engine->gpu_caches_dirty = false;
  2718. return 0;
  2719. }
  2720. void
  2721. intel_stop_engine(struct intel_engine_cs *engine)
  2722. {
  2723. int ret;
  2724. if (!intel_engine_initialized(engine))
  2725. return;
  2726. ret = intel_engine_idle(engine);
  2727. if (ret)
  2728. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2729. engine->name, ret);
  2730. stop_ring(engine);
  2731. }