sdma_v3_0.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  52. MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
  53. MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
  54. MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
  55. MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
  56. MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
  57. MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
  58. MODULE_FIRMWARE("amdgpu/vegam_sdma.bin");
  59. MODULE_FIRMWARE("amdgpu/vegam_sdma1.bin");
  60. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  61. {
  62. SDMA0_REGISTER_OFFSET,
  63. SDMA1_REGISTER_OFFSET
  64. };
  65. static const u32 golden_settings_tonga_a11[] =
  66. {
  67. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  68. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  69. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  70. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  71. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  72. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  73. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  74. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  75. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  76. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  77. };
  78. static const u32 tonga_mgcg_cgcg_init[] =
  79. {
  80. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  81. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  82. };
  83. static const u32 golden_settings_fiji_a10[] =
  84. {
  85. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  86. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  87. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  88. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  89. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  90. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  91. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  92. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  93. };
  94. static const u32 fiji_mgcg_cgcg_init[] =
  95. {
  96. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  97. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  98. };
  99. static const u32 golden_settings_polaris11_a11[] =
  100. {
  101. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  102. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  103. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  104. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  105. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  106. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  107. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  108. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  109. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  110. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  111. };
  112. static const u32 golden_settings_polaris10_a11[] =
  113. {
  114. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  115. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  116. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  117. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  118. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  119. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  120. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  121. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  122. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  123. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  124. };
  125. static const u32 cz_golden_settings_a11[] =
  126. {
  127. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  128. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  129. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  130. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  131. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  132. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  133. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  134. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  135. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  136. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  137. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  138. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  139. };
  140. static const u32 cz_mgcg_cgcg_init[] =
  141. {
  142. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  143. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  144. };
  145. static const u32 stoney_golden_settings_a11[] =
  146. {
  147. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  148. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  149. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  150. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  151. };
  152. static const u32 stoney_mgcg_cgcg_init[] =
  153. {
  154. mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
  155. };
  156. /*
  157. * sDMA - System DMA
  158. * Starting with CIK, the GPU has new asynchronous
  159. * DMA engines. These engines are used for compute
  160. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  161. * and each one supports 1 ring buffer used for gfx
  162. * and 2 queues used for compute.
  163. *
  164. * The programming model is very similar to the CP
  165. * (ring buffer, IBs, etc.), but sDMA has it's own
  166. * packet format that is different from the PM4 format
  167. * used by the CP. sDMA supports copying data, writing
  168. * embedded data, solid fills, and a number of other
  169. * things. It also has support for tiling/detiling of
  170. * buffers.
  171. */
  172. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  173. {
  174. switch (adev->asic_type) {
  175. case CHIP_FIJI:
  176. amdgpu_device_program_register_sequence(adev,
  177. fiji_mgcg_cgcg_init,
  178. ARRAY_SIZE(fiji_mgcg_cgcg_init));
  179. amdgpu_device_program_register_sequence(adev,
  180. golden_settings_fiji_a10,
  181. ARRAY_SIZE(golden_settings_fiji_a10));
  182. break;
  183. case CHIP_TONGA:
  184. amdgpu_device_program_register_sequence(adev,
  185. tonga_mgcg_cgcg_init,
  186. ARRAY_SIZE(tonga_mgcg_cgcg_init));
  187. amdgpu_device_program_register_sequence(adev,
  188. golden_settings_tonga_a11,
  189. ARRAY_SIZE(golden_settings_tonga_a11));
  190. break;
  191. case CHIP_POLARIS11:
  192. case CHIP_POLARIS12:
  193. case CHIP_VEGAM:
  194. amdgpu_device_program_register_sequence(adev,
  195. golden_settings_polaris11_a11,
  196. ARRAY_SIZE(golden_settings_polaris11_a11));
  197. break;
  198. case CHIP_POLARIS10:
  199. amdgpu_device_program_register_sequence(adev,
  200. golden_settings_polaris10_a11,
  201. ARRAY_SIZE(golden_settings_polaris10_a11));
  202. break;
  203. case CHIP_CARRIZO:
  204. amdgpu_device_program_register_sequence(adev,
  205. cz_mgcg_cgcg_init,
  206. ARRAY_SIZE(cz_mgcg_cgcg_init));
  207. amdgpu_device_program_register_sequence(adev,
  208. cz_golden_settings_a11,
  209. ARRAY_SIZE(cz_golden_settings_a11));
  210. break;
  211. case CHIP_STONEY:
  212. amdgpu_device_program_register_sequence(adev,
  213. stoney_mgcg_cgcg_init,
  214. ARRAY_SIZE(stoney_mgcg_cgcg_init));
  215. amdgpu_device_program_register_sequence(adev,
  216. stoney_golden_settings_a11,
  217. ARRAY_SIZE(stoney_golden_settings_a11));
  218. break;
  219. default:
  220. break;
  221. }
  222. }
  223. static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
  224. {
  225. int i;
  226. for (i = 0; i < adev->sdma.num_instances; i++) {
  227. release_firmware(adev->sdma.instance[i].fw);
  228. adev->sdma.instance[i].fw = NULL;
  229. }
  230. }
  231. /**
  232. * sdma_v3_0_init_microcode - load ucode images from disk
  233. *
  234. * @adev: amdgpu_device pointer
  235. *
  236. * Use the firmware interface to load the ucode images into
  237. * the driver (not loaded into hw).
  238. * Returns 0 on success, error on failure.
  239. */
  240. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  241. {
  242. const char *chip_name;
  243. char fw_name[30];
  244. int err = 0, i;
  245. struct amdgpu_firmware_info *info = NULL;
  246. const struct common_firmware_header *header = NULL;
  247. const struct sdma_firmware_header_v1_0 *hdr;
  248. DRM_DEBUG("\n");
  249. switch (adev->asic_type) {
  250. case CHIP_TONGA:
  251. chip_name = "tonga";
  252. break;
  253. case CHIP_FIJI:
  254. chip_name = "fiji";
  255. break;
  256. case CHIP_POLARIS10:
  257. chip_name = "polaris10";
  258. break;
  259. case CHIP_POLARIS11:
  260. chip_name = "polaris11";
  261. break;
  262. case CHIP_POLARIS12:
  263. chip_name = "polaris12";
  264. break;
  265. case CHIP_VEGAM:
  266. chip_name = "vegam";
  267. break;
  268. case CHIP_CARRIZO:
  269. chip_name = "carrizo";
  270. break;
  271. case CHIP_STONEY:
  272. chip_name = "stoney";
  273. break;
  274. default: BUG();
  275. }
  276. for (i = 0; i < adev->sdma.num_instances; i++) {
  277. if (i == 0)
  278. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  279. else
  280. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  281. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  282. if (err)
  283. goto out;
  284. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  285. if (err)
  286. goto out;
  287. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  288. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  289. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  290. if (adev->sdma.instance[i].feature_version >= 20)
  291. adev->sdma.instance[i].burst_nop = true;
  292. if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) {
  293. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  294. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  295. info->fw = adev->sdma.instance[i].fw;
  296. header = (const struct common_firmware_header *)info->fw->data;
  297. adev->firmware.fw_size +=
  298. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  299. }
  300. }
  301. out:
  302. if (err) {
  303. pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
  304. for (i = 0; i < adev->sdma.num_instances; i++) {
  305. release_firmware(adev->sdma.instance[i].fw);
  306. adev->sdma.instance[i].fw = NULL;
  307. }
  308. }
  309. return err;
  310. }
  311. /**
  312. * sdma_v3_0_ring_get_rptr - get the current read pointer
  313. *
  314. * @ring: amdgpu ring pointer
  315. *
  316. * Get the current rptr from the hardware (VI+).
  317. */
  318. static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  319. {
  320. /* XXX check if swapping is necessary on BE */
  321. return ring->adev->wb.wb[ring->rptr_offs] >> 2;
  322. }
  323. /**
  324. * sdma_v3_0_ring_get_wptr - get the current write pointer
  325. *
  326. * @ring: amdgpu ring pointer
  327. *
  328. * Get the current wptr from the hardware (VI+).
  329. */
  330. static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  331. {
  332. struct amdgpu_device *adev = ring->adev;
  333. u32 wptr;
  334. if (ring->use_doorbell || ring->use_pollmem) {
  335. /* XXX check if swapping is necessary on BE */
  336. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  337. } else {
  338. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  339. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  340. }
  341. return wptr;
  342. }
  343. /**
  344. * sdma_v3_0_ring_set_wptr - commit the write pointer
  345. *
  346. * @ring: amdgpu ring pointer
  347. *
  348. * Write the wptr back to the hardware (VI+).
  349. */
  350. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  351. {
  352. struct amdgpu_device *adev = ring->adev;
  353. if (ring->use_doorbell) {
  354. u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
  355. /* XXX check if swapping is necessary on BE */
  356. WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
  357. WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
  358. } else if (ring->use_pollmem) {
  359. u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
  360. WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
  361. } else {
  362. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  363. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], lower_32_bits(ring->wptr) << 2);
  364. }
  365. }
  366. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  367. {
  368. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  369. int i;
  370. for (i = 0; i < count; i++)
  371. if (sdma && sdma->burst_nop && (i == 0))
  372. amdgpu_ring_write(ring, ring->funcs->nop |
  373. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  374. else
  375. amdgpu_ring_write(ring, ring->funcs->nop);
  376. }
  377. /**
  378. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  379. *
  380. * @ring: amdgpu ring pointer
  381. * @ib: IB object to schedule
  382. *
  383. * Schedule an IB in the DMA ring (VI).
  384. */
  385. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  386. struct amdgpu_ib *ib,
  387. unsigned vmid, bool ctx_switch)
  388. {
  389. /* IB packet must end on a 8 DW boundary */
  390. sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
  391. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  392. SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
  393. /* base must be 32 byte aligned */
  394. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  395. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  396. amdgpu_ring_write(ring, ib->length_dw);
  397. amdgpu_ring_write(ring, 0);
  398. amdgpu_ring_write(ring, 0);
  399. }
  400. /**
  401. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  402. *
  403. * @ring: amdgpu ring pointer
  404. *
  405. * Emit an hdp flush packet on the requested DMA ring.
  406. */
  407. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  408. {
  409. u32 ref_and_mask = 0;
  410. if (ring == &ring->adev->sdma.instance[0].ring)
  411. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  412. else
  413. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  414. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  415. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  416. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  417. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  418. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  419. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  420. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  421. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  422. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  423. }
  424. /**
  425. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  426. *
  427. * @ring: amdgpu ring pointer
  428. * @fence: amdgpu fence object
  429. *
  430. * Add a DMA fence packet to the ring to write
  431. * the fence seq number and DMA trap packet to generate
  432. * an interrupt if needed (VI).
  433. */
  434. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  435. unsigned flags)
  436. {
  437. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  438. /* write the fence */
  439. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  440. amdgpu_ring_write(ring, lower_32_bits(addr));
  441. amdgpu_ring_write(ring, upper_32_bits(addr));
  442. amdgpu_ring_write(ring, lower_32_bits(seq));
  443. /* optionally write high bits as well */
  444. if (write64bit) {
  445. addr += 4;
  446. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  447. amdgpu_ring_write(ring, lower_32_bits(addr));
  448. amdgpu_ring_write(ring, upper_32_bits(addr));
  449. amdgpu_ring_write(ring, upper_32_bits(seq));
  450. }
  451. /* generate an interrupt */
  452. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  453. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  454. }
  455. /**
  456. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  457. *
  458. * @adev: amdgpu_device pointer
  459. *
  460. * Stop the gfx async dma ring buffers (VI).
  461. */
  462. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  463. {
  464. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  465. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  466. u32 rb_cntl, ib_cntl;
  467. int i;
  468. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  469. (adev->mman.buffer_funcs_ring == sdma1))
  470. amdgpu_ttm_set_buffer_funcs_status(adev, false);
  471. for (i = 0; i < adev->sdma.num_instances; i++) {
  472. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  473. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  474. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  475. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  476. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  477. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  478. }
  479. sdma0->ready = false;
  480. sdma1->ready = false;
  481. }
  482. /**
  483. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  484. *
  485. * @adev: amdgpu_device pointer
  486. *
  487. * Stop the compute async dma queues (VI).
  488. */
  489. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  490. {
  491. /* XXX todo */
  492. }
  493. /**
  494. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  495. *
  496. * @adev: amdgpu_device pointer
  497. * @enable: enable/disable the DMA MEs context switch.
  498. *
  499. * Halt or unhalt the async dma engines context switch (VI).
  500. */
  501. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  502. {
  503. u32 f32_cntl, phase_quantum = 0;
  504. int i;
  505. if (amdgpu_sdma_phase_quantum) {
  506. unsigned value = amdgpu_sdma_phase_quantum;
  507. unsigned unit = 0;
  508. while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  509. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
  510. value = (value + 1) >> 1;
  511. unit++;
  512. }
  513. if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  514. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
  515. value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  516. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
  517. unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  518. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
  519. WARN_ONCE(1,
  520. "clamping sdma_phase_quantum to %uK clock cycles\n",
  521. value << unit);
  522. }
  523. phase_quantum =
  524. value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
  525. unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
  526. }
  527. for (i = 0; i < adev->sdma.num_instances; i++) {
  528. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  529. if (enable) {
  530. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  531. AUTO_CTXSW_ENABLE, 1);
  532. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  533. ATC_L1_ENABLE, 1);
  534. if (amdgpu_sdma_phase_quantum) {
  535. WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
  536. phase_quantum);
  537. WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
  538. phase_quantum);
  539. }
  540. } else {
  541. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  542. AUTO_CTXSW_ENABLE, 0);
  543. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  544. ATC_L1_ENABLE, 1);
  545. }
  546. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  547. }
  548. }
  549. /**
  550. * sdma_v3_0_enable - stop the async dma engines
  551. *
  552. * @adev: amdgpu_device pointer
  553. * @enable: enable/disable the DMA MEs.
  554. *
  555. * Halt or unhalt the async dma engines (VI).
  556. */
  557. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  558. {
  559. u32 f32_cntl;
  560. int i;
  561. if (!enable) {
  562. sdma_v3_0_gfx_stop(adev);
  563. sdma_v3_0_rlc_stop(adev);
  564. }
  565. for (i = 0; i < adev->sdma.num_instances; i++) {
  566. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  567. if (enable)
  568. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  569. else
  570. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  571. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  572. }
  573. }
  574. /**
  575. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  576. *
  577. * @adev: amdgpu_device pointer
  578. *
  579. * Set up the gfx DMA ring buffers and enable them (VI).
  580. * Returns 0 for success, error for failure.
  581. */
  582. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  583. {
  584. struct amdgpu_ring *ring;
  585. u32 rb_cntl, ib_cntl, wptr_poll_cntl;
  586. u32 rb_bufsz;
  587. u32 wb_offset;
  588. u32 doorbell;
  589. u64 wptr_gpu_addr;
  590. int i, j, r;
  591. for (i = 0; i < adev->sdma.num_instances; i++) {
  592. ring = &adev->sdma.instance[i].ring;
  593. amdgpu_ring_clear_ring(ring);
  594. wb_offset = (ring->rptr_offs * 4);
  595. mutex_lock(&adev->srbm_mutex);
  596. for (j = 0; j < 16; j++) {
  597. vi_srbm_select(adev, 0, 0, 0, j);
  598. /* SDMA GFX */
  599. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  600. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  601. }
  602. vi_srbm_select(adev, 0, 0, 0, 0);
  603. mutex_unlock(&adev->srbm_mutex);
  604. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  605. adev->gfx.config.gb_addr_config & 0x70);
  606. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  607. /* Set ring buffer size in dwords */
  608. rb_bufsz = order_base_2(ring->ring_size / 4);
  609. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  610. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  611. #ifdef __BIG_ENDIAN
  612. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  613. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  614. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  615. #endif
  616. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  617. /* Initialize the ring buffer's read and write pointers */
  618. ring->wptr = 0;
  619. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  620. sdma_v3_0_ring_set_wptr(ring);
  621. WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
  622. WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
  623. /* set the wb address whether it's enabled or not */
  624. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  625. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  626. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  627. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  628. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  629. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  630. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  631. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  632. if (ring->use_doorbell) {
  633. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  634. OFFSET, ring->doorbell_index);
  635. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  636. } else {
  637. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  638. }
  639. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  640. /* setup the wptr shadow polling */
  641. wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
  642. WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
  643. lower_32_bits(wptr_gpu_addr));
  644. WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
  645. upper_32_bits(wptr_gpu_addr));
  646. wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
  647. if (ring->use_pollmem) {
  648. /*wptr polling is not enogh fast, directly clean the wptr register */
  649. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  650. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
  651. SDMA0_GFX_RB_WPTR_POLL_CNTL,
  652. ENABLE, 1);
  653. } else {
  654. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
  655. SDMA0_GFX_RB_WPTR_POLL_CNTL,
  656. ENABLE, 0);
  657. }
  658. WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
  659. /* enable DMA RB */
  660. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  661. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  662. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  663. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  664. #ifdef __BIG_ENDIAN
  665. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  666. #endif
  667. /* enable DMA IBs */
  668. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  669. ring->ready = true;
  670. }
  671. /* unhalt the MEs */
  672. sdma_v3_0_enable(adev, true);
  673. /* enable sdma ring preemption */
  674. sdma_v3_0_ctx_switch_enable(adev, true);
  675. for (i = 0; i < adev->sdma.num_instances; i++) {
  676. ring = &adev->sdma.instance[i].ring;
  677. r = amdgpu_ring_test_ring(ring);
  678. if (r) {
  679. ring->ready = false;
  680. return r;
  681. }
  682. if (adev->mman.buffer_funcs_ring == ring)
  683. amdgpu_ttm_set_buffer_funcs_status(adev, true);
  684. }
  685. return 0;
  686. }
  687. /**
  688. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  689. *
  690. * @adev: amdgpu_device pointer
  691. *
  692. * Set up the compute DMA queues and enable them (VI).
  693. * Returns 0 for success, error for failure.
  694. */
  695. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  696. {
  697. /* XXX todo */
  698. return 0;
  699. }
  700. /**
  701. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  702. *
  703. * @adev: amdgpu_device pointer
  704. *
  705. * Loads the sDMA0/1 ucode.
  706. * Returns 0 for success, -EINVAL if the ucode is not available.
  707. */
  708. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  709. {
  710. const struct sdma_firmware_header_v1_0 *hdr;
  711. const __le32 *fw_data;
  712. u32 fw_size;
  713. int i, j;
  714. /* halt the MEs */
  715. sdma_v3_0_enable(adev, false);
  716. for (i = 0; i < adev->sdma.num_instances; i++) {
  717. if (!adev->sdma.instance[i].fw)
  718. return -EINVAL;
  719. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  720. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  721. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  722. fw_data = (const __le32 *)
  723. (adev->sdma.instance[i].fw->data +
  724. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  725. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  726. for (j = 0; j < fw_size; j++)
  727. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  728. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  729. }
  730. return 0;
  731. }
  732. /**
  733. * sdma_v3_0_start - setup and start the async dma engines
  734. *
  735. * @adev: amdgpu_device pointer
  736. *
  737. * Set up the DMA engines and enable them (VI).
  738. * Returns 0 for success, error for failure.
  739. */
  740. static int sdma_v3_0_start(struct amdgpu_device *adev)
  741. {
  742. int r;
  743. if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
  744. r = sdma_v3_0_load_microcode(adev);
  745. if (r)
  746. return r;
  747. }
  748. /* disable sdma engine before programing it */
  749. sdma_v3_0_ctx_switch_enable(adev, false);
  750. sdma_v3_0_enable(adev, false);
  751. /* start the gfx rings and rlc compute queues */
  752. r = sdma_v3_0_gfx_resume(adev);
  753. if (r)
  754. return r;
  755. r = sdma_v3_0_rlc_resume(adev);
  756. if (r)
  757. return r;
  758. return 0;
  759. }
  760. /**
  761. * sdma_v3_0_ring_test_ring - simple async dma engine test
  762. *
  763. * @ring: amdgpu_ring structure holding ring information
  764. *
  765. * Test the DMA engine by writing using it to write an
  766. * value to memory. (VI).
  767. * Returns 0 for success, error for failure.
  768. */
  769. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  770. {
  771. struct amdgpu_device *adev = ring->adev;
  772. unsigned i;
  773. unsigned index;
  774. int r;
  775. u32 tmp;
  776. u64 gpu_addr;
  777. r = amdgpu_device_wb_get(adev, &index);
  778. if (r) {
  779. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  780. return r;
  781. }
  782. gpu_addr = adev->wb.gpu_addr + (index * 4);
  783. tmp = 0xCAFEDEAD;
  784. adev->wb.wb[index] = cpu_to_le32(tmp);
  785. r = amdgpu_ring_alloc(ring, 5);
  786. if (r) {
  787. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  788. amdgpu_device_wb_free(adev, index);
  789. return r;
  790. }
  791. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  792. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  793. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  794. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  795. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  796. amdgpu_ring_write(ring, 0xDEADBEEF);
  797. amdgpu_ring_commit(ring);
  798. for (i = 0; i < adev->usec_timeout; i++) {
  799. tmp = le32_to_cpu(adev->wb.wb[index]);
  800. if (tmp == 0xDEADBEEF)
  801. break;
  802. DRM_UDELAY(1);
  803. }
  804. if (i < adev->usec_timeout) {
  805. DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  806. } else {
  807. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  808. ring->idx, tmp);
  809. r = -EINVAL;
  810. }
  811. amdgpu_device_wb_free(adev, index);
  812. return r;
  813. }
  814. /**
  815. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  816. *
  817. * @ring: amdgpu_ring structure holding ring information
  818. *
  819. * Test a simple IB in the DMA ring (VI).
  820. * Returns 0 on success, error on failure.
  821. */
  822. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  823. {
  824. struct amdgpu_device *adev = ring->adev;
  825. struct amdgpu_ib ib;
  826. struct dma_fence *f = NULL;
  827. unsigned index;
  828. u32 tmp = 0;
  829. u64 gpu_addr;
  830. long r;
  831. r = amdgpu_device_wb_get(adev, &index);
  832. if (r) {
  833. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  834. return r;
  835. }
  836. gpu_addr = adev->wb.gpu_addr + (index * 4);
  837. tmp = 0xCAFEDEAD;
  838. adev->wb.wb[index] = cpu_to_le32(tmp);
  839. memset(&ib, 0, sizeof(ib));
  840. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  841. if (r) {
  842. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  843. goto err0;
  844. }
  845. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  846. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  847. ib.ptr[1] = lower_32_bits(gpu_addr);
  848. ib.ptr[2] = upper_32_bits(gpu_addr);
  849. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  850. ib.ptr[4] = 0xDEADBEEF;
  851. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  852. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  853. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  854. ib.length_dw = 8;
  855. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  856. if (r)
  857. goto err1;
  858. r = dma_fence_wait_timeout(f, false, timeout);
  859. if (r == 0) {
  860. DRM_ERROR("amdgpu: IB test timed out\n");
  861. r = -ETIMEDOUT;
  862. goto err1;
  863. } else if (r < 0) {
  864. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  865. goto err1;
  866. }
  867. tmp = le32_to_cpu(adev->wb.wb[index]);
  868. if (tmp == 0xDEADBEEF) {
  869. DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
  870. r = 0;
  871. } else {
  872. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  873. r = -EINVAL;
  874. }
  875. err1:
  876. amdgpu_ib_free(adev, &ib, NULL);
  877. dma_fence_put(f);
  878. err0:
  879. amdgpu_device_wb_free(adev, index);
  880. return r;
  881. }
  882. /**
  883. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  884. *
  885. * @ib: indirect buffer to fill with commands
  886. * @pe: addr of the page entry
  887. * @src: src addr to copy from
  888. * @count: number of page entries to update
  889. *
  890. * Update PTEs by copying them from the GART using sDMA (CIK).
  891. */
  892. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  893. uint64_t pe, uint64_t src,
  894. unsigned count)
  895. {
  896. unsigned bytes = count * 8;
  897. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  898. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  899. ib->ptr[ib->length_dw++] = bytes;
  900. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  901. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  902. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  903. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  904. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  905. }
  906. /**
  907. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  908. *
  909. * @ib: indirect buffer to fill with commands
  910. * @pe: addr of the page entry
  911. * @value: dst addr to write into pe
  912. * @count: number of page entries to update
  913. * @incr: increase next addr by incr bytes
  914. *
  915. * Update PTEs by writing them manually using sDMA (CIK).
  916. */
  917. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  918. uint64_t value, unsigned count,
  919. uint32_t incr)
  920. {
  921. unsigned ndw = count * 2;
  922. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  923. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  924. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  925. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  926. ib->ptr[ib->length_dw++] = ndw;
  927. for (; ndw > 0; ndw -= 2) {
  928. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  929. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  930. value += incr;
  931. }
  932. }
  933. /**
  934. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  935. *
  936. * @ib: indirect buffer to fill with commands
  937. * @pe: addr of the page entry
  938. * @addr: dst addr to write into pe
  939. * @count: number of page entries to update
  940. * @incr: increase next addr by incr bytes
  941. * @flags: access flags
  942. *
  943. * Update the page tables using sDMA (CIK).
  944. */
  945. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
  946. uint64_t addr, unsigned count,
  947. uint32_t incr, uint64_t flags)
  948. {
  949. /* for physically contiguous pages (vram) */
  950. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  951. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  952. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  953. ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
  954. ib->ptr[ib->length_dw++] = upper_32_bits(flags);
  955. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  956. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  957. ib->ptr[ib->length_dw++] = incr; /* increment size */
  958. ib->ptr[ib->length_dw++] = 0;
  959. ib->ptr[ib->length_dw++] = count; /* number of entries */
  960. }
  961. /**
  962. * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
  963. *
  964. * @ib: indirect buffer to fill with padding
  965. *
  966. */
  967. static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  968. {
  969. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  970. u32 pad_count;
  971. int i;
  972. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  973. for (i = 0; i < pad_count; i++)
  974. if (sdma && sdma->burst_nop && (i == 0))
  975. ib->ptr[ib->length_dw++] =
  976. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  977. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  978. else
  979. ib->ptr[ib->length_dw++] =
  980. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  981. }
  982. /**
  983. * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
  984. *
  985. * @ring: amdgpu_ring pointer
  986. *
  987. * Make sure all previous operations are completed (CIK).
  988. */
  989. static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  990. {
  991. uint32_t seq = ring->fence_drv.sync_seq;
  992. uint64_t addr = ring->fence_drv.gpu_addr;
  993. /* wait for idle */
  994. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  995. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  996. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  997. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  998. amdgpu_ring_write(ring, addr & 0xfffffffc);
  999. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  1000. amdgpu_ring_write(ring, seq); /* reference */
  1001. amdgpu_ring_write(ring, 0xffffffff); /* mask */
  1002. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1003. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  1004. }
  1005. /**
  1006. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  1007. *
  1008. * @ring: amdgpu_ring pointer
  1009. * @vm: amdgpu_vm pointer
  1010. *
  1011. * Update the page table base and flush the VM TLB
  1012. * using sDMA (VI).
  1013. */
  1014. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  1015. unsigned vmid, uint64_t pd_addr)
  1016. {
  1017. amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
  1018. /* wait for flush */
  1019. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1020. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1021. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  1022. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  1023. amdgpu_ring_write(ring, 0);
  1024. amdgpu_ring_write(ring, 0); /* reference */
  1025. amdgpu_ring_write(ring, 0); /* mask */
  1026. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1027. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  1028. }
  1029. static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring,
  1030. uint32_t reg, uint32_t val)
  1031. {
  1032. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1033. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1034. amdgpu_ring_write(ring, reg);
  1035. amdgpu_ring_write(ring, val);
  1036. }
  1037. static int sdma_v3_0_early_init(void *handle)
  1038. {
  1039. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1040. switch (adev->asic_type) {
  1041. case CHIP_STONEY:
  1042. adev->sdma.num_instances = 1;
  1043. break;
  1044. default:
  1045. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  1046. break;
  1047. }
  1048. sdma_v3_0_set_ring_funcs(adev);
  1049. sdma_v3_0_set_buffer_funcs(adev);
  1050. sdma_v3_0_set_vm_pte_funcs(adev);
  1051. sdma_v3_0_set_irq_funcs(adev);
  1052. return 0;
  1053. }
  1054. static int sdma_v3_0_sw_init(void *handle)
  1055. {
  1056. struct amdgpu_ring *ring;
  1057. int r, i;
  1058. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1059. /* SDMA trap event */
  1060. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 224,
  1061. &adev->sdma.trap_irq);
  1062. if (r)
  1063. return r;
  1064. /* SDMA Privileged inst */
  1065. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 241,
  1066. &adev->sdma.illegal_inst_irq);
  1067. if (r)
  1068. return r;
  1069. /* SDMA Privileged inst */
  1070. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 247,
  1071. &adev->sdma.illegal_inst_irq);
  1072. if (r)
  1073. return r;
  1074. r = sdma_v3_0_init_microcode(adev);
  1075. if (r) {
  1076. DRM_ERROR("Failed to load sdma firmware!\n");
  1077. return r;
  1078. }
  1079. for (i = 0; i < adev->sdma.num_instances; i++) {
  1080. ring = &adev->sdma.instance[i].ring;
  1081. ring->ring_obj = NULL;
  1082. if (!amdgpu_sriov_vf(adev)) {
  1083. ring->use_doorbell = true;
  1084. ring->doorbell_index = (i == 0) ?
  1085. AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
  1086. } else {
  1087. ring->use_pollmem = true;
  1088. }
  1089. sprintf(ring->name, "sdma%d", i);
  1090. r = amdgpu_ring_init(adev, ring, 1024,
  1091. &adev->sdma.trap_irq,
  1092. (i == 0) ?
  1093. AMDGPU_SDMA_IRQ_TRAP0 :
  1094. AMDGPU_SDMA_IRQ_TRAP1);
  1095. if (r)
  1096. return r;
  1097. }
  1098. return r;
  1099. }
  1100. static int sdma_v3_0_sw_fini(void *handle)
  1101. {
  1102. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1103. int i;
  1104. for (i = 0; i < adev->sdma.num_instances; i++)
  1105. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1106. sdma_v3_0_free_microcode(adev);
  1107. return 0;
  1108. }
  1109. static int sdma_v3_0_hw_init(void *handle)
  1110. {
  1111. int r;
  1112. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1113. sdma_v3_0_init_golden_registers(adev);
  1114. r = sdma_v3_0_start(adev);
  1115. if (r)
  1116. return r;
  1117. return r;
  1118. }
  1119. static int sdma_v3_0_hw_fini(void *handle)
  1120. {
  1121. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1122. sdma_v3_0_ctx_switch_enable(adev, false);
  1123. sdma_v3_0_enable(adev, false);
  1124. return 0;
  1125. }
  1126. static int sdma_v3_0_suspend(void *handle)
  1127. {
  1128. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1129. return sdma_v3_0_hw_fini(adev);
  1130. }
  1131. static int sdma_v3_0_resume(void *handle)
  1132. {
  1133. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1134. return sdma_v3_0_hw_init(adev);
  1135. }
  1136. static bool sdma_v3_0_is_idle(void *handle)
  1137. {
  1138. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1139. u32 tmp = RREG32(mmSRBM_STATUS2);
  1140. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1141. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1142. return false;
  1143. return true;
  1144. }
  1145. static int sdma_v3_0_wait_for_idle(void *handle)
  1146. {
  1147. unsigned i;
  1148. u32 tmp;
  1149. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1150. for (i = 0; i < adev->usec_timeout; i++) {
  1151. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1152. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1153. if (!tmp)
  1154. return 0;
  1155. udelay(1);
  1156. }
  1157. return -ETIMEDOUT;
  1158. }
  1159. static bool sdma_v3_0_check_soft_reset(void *handle)
  1160. {
  1161. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1162. u32 srbm_soft_reset = 0;
  1163. u32 tmp = RREG32(mmSRBM_STATUS2);
  1164. if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
  1165. (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
  1166. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1167. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1168. }
  1169. if (srbm_soft_reset) {
  1170. adev->sdma.srbm_soft_reset = srbm_soft_reset;
  1171. return true;
  1172. } else {
  1173. adev->sdma.srbm_soft_reset = 0;
  1174. return false;
  1175. }
  1176. }
  1177. static int sdma_v3_0_pre_soft_reset(void *handle)
  1178. {
  1179. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1180. u32 srbm_soft_reset = 0;
  1181. if (!adev->sdma.srbm_soft_reset)
  1182. return 0;
  1183. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1184. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1185. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1186. sdma_v3_0_ctx_switch_enable(adev, false);
  1187. sdma_v3_0_enable(adev, false);
  1188. }
  1189. return 0;
  1190. }
  1191. static int sdma_v3_0_post_soft_reset(void *handle)
  1192. {
  1193. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1194. u32 srbm_soft_reset = 0;
  1195. if (!adev->sdma.srbm_soft_reset)
  1196. return 0;
  1197. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1198. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1199. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1200. sdma_v3_0_gfx_resume(adev);
  1201. sdma_v3_0_rlc_resume(adev);
  1202. }
  1203. return 0;
  1204. }
  1205. static int sdma_v3_0_soft_reset(void *handle)
  1206. {
  1207. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1208. u32 srbm_soft_reset = 0;
  1209. u32 tmp;
  1210. if (!adev->sdma.srbm_soft_reset)
  1211. return 0;
  1212. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1213. if (srbm_soft_reset) {
  1214. tmp = RREG32(mmSRBM_SOFT_RESET);
  1215. tmp |= srbm_soft_reset;
  1216. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1217. WREG32(mmSRBM_SOFT_RESET, tmp);
  1218. tmp = RREG32(mmSRBM_SOFT_RESET);
  1219. udelay(50);
  1220. tmp &= ~srbm_soft_reset;
  1221. WREG32(mmSRBM_SOFT_RESET, tmp);
  1222. tmp = RREG32(mmSRBM_SOFT_RESET);
  1223. /* Wait a little for things to settle down */
  1224. udelay(50);
  1225. }
  1226. return 0;
  1227. }
  1228. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1229. struct amdgpu_irq_src *source,
  1230. unsigned type,
  1231. enum amdgpu_interrupt_state state)
  1232. {
  1233. u32 sdma_cntl;
  1234. switch (type) {
  1235. case AMDGPU_SDMA_IRQ_TRAP0:
  1236. switch (state) {
  1237. case AMDGPU_IRQ_STATE_DISABLE:
  1238. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1239. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1240. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1241. break;
  1242. case AMDGPU_IRQ_STATE_ENABLE:
  1243. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1244. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1245. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1246. break;
  1247. default:
  1248. break;
  1249. }
  1250. break;
  1251. case AMDGPU_SDMA_IRQ_TRAP1:
  1252. switch (state) {
  1253. case AMDGPU_IRQ_STATE_DISABLE:
  1254. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1255. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1256. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1257. break;
  1258. case AMDGPU_IRQ_STATE_ENABLE:
  1259. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1260. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1261. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1262. break;
  1263. default:
  1264. break;
  1265. }
  1266. break;
  1267. default:
  1268. break;
  1269. }
  1270. return 0;
  1271. }
  1272. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1273. struct amdgpu_irq_src *source,
  1274. struct amdgpu_iv_entry *entry)
  1275. {
  1276. u8 instance_id, queue_id;
  1277. instance_id = (entry->ring_id & 0x3) >> 0;
  1278. queue_id = (entry->ring_id & 0xc) >> 2;
  1279. DRM_DEBUG("IH: SDMA trap\n");
  1280. switch (instance_id) {
  1281. case 0:
  1282. switch (queue_id) {
  1283. case 0:
  1284. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1285. break;
  1286. case 1:
  1287. /* XXX compute */
  1288. break;
  1289. case 2:
  1290. /* XXX compute */
  1291. break;
  1292. }
  1293. break;
  1294. case 1:
  1295. switch (queue_id) {
  1296. case 0:
  1297. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1298. break;
  1299. case 1:
  1300. /* XXX compute */
  1301. break;
  1302. case 2:
  1303. /* XXX compute */
  1304. break;
  1305. }
  1306. break;
  1307. }
  1308. return 0;
  1309. }
  1310. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1311. struct amdgpu_irq_src *source,
  1312. struct amdgpu_iv_entry *entry)
  1313. {
  1314. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1315. schedule_work(&adev->reset_work);
  1316. return 0;
  1317. }
  1318. static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
  1319. struct amdgpu_device *adev,
  1320. bool enable)
  1321. {
  1322. uint32_t temp, data;
  1323. int i;
  1324. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1325. for (i = 0; i < adev->sdma.num_instances; i++) {
  1326. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1327. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1328. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1329. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1330. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1331. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1332. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1333. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1334. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1335. if (data != temp)
  1336. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1337. }
  1338. } else {
  1339. for (i = 0; i < adev->sdma.num_instances; i++) {
  1340. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1341. data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1342. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1343. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1344. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1345. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1346. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1347. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1348. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1349. if (data != temp)
  1350. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1351. }
  1352. }
  1353. }
  1354. static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
  1355. struct amdgpu_device *adev,
  1356. bool enable)
  1357. {
  1358. uint32_t temp, data;
  1359. int i;
  1360. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1361. for (i = 0; i < adev->sdma.num_instances; i++) {
  1362. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1363. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1364. if (temp != data)
  1365. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1366. }
  1367. } else {
  1368. for (i = 0; i < adev->sdma.num_instances; i++) {
  1369. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1370. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1371. if (temp != data)
  1372. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1373. }
  1374. }
  1375. }
  1376. static int sdma_v3_0_set_clockgating_state(void *handle,
  1377. enum amd_clockgating_state state)
  1378. {
  1379. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1380. if (amdgpu_sriov_vf(adev))
  1381. return 0;
  1382. switch (adev->asic_type) {
  1383. case CHIP_FIJI:
  1384. case CHIP_CARRIZO:
  1385. case CHIP_STONEY:
  1386. sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
  1387. state == AMD_CG_STATE_GATE);
  1388. sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
  1389. state == AMD_CG_STATE_GATE);
  1390. break;
  1391. default:
  1392. break;
  1393. }
  1394. return 0;
  1395. }
  1396. static int sdma_v3_0_set_powergating_state(void *handle,
  1397. enum amd_powergating_state state)
  1398. {
  1399. return 0;
  1400. }
  1401. static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
  1402. {
  1403. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1404. int data;
  1405. if (amdgpu_sriov_vf(adev))
  1406. *flags = 0;
  1407. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1408. data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
  1409. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
  1410. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1411. /* AMD_CG_SUPPORT_SDMA_LS */
  1412. data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
  1413. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1414. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1415. }
  1416. static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1417. .name = "sdma_v3_0",
  1418. .early_init = sdma_v3_0_early_init,
  1419. .late_init = NULL,
  1420. .sw_init = sdma_v3_0_sw_init,
  1421. .sw_fini = sdma_v3_0_sw_fini,
  1422. .hw_init = sdma_v3_0_hw_init,
  1423. .hw_fini = sdma_v3_0_hw_fini,
  1424. .suspend = sdma_v3_0_suspend,
  1425. .resume = sdma_v3_0_resume,
  1426. .is_idle = sdma_v3_0_is_idle,
  1427. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1428. .check_soft_reset = sdma_v3_0_check_soft_reset,
  1429. .pre_soft_reset = sdma_v3_0_pre_soft_reset,
  1430. .post_soft_reset = sdma_v3_0_post_soft_reset,
  1431. .soft_reset = sdma_v3_0_soft_reset,
  1432. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1433. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1434. .get_clockgating_state = sdma_v3_0_get_clockgating_state,
  1435. };
  1436. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1437. .type = AMDGPU_RING_TYPE_SDMA,
  1438. .align_mask = 0xf,
  1439. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1440. .support_64bit_ptrs = false,
  1441. .get_rptr = sdma_v3_0_ring_get_rptr,
  1442. .get_wptr = sdma_v3_0_ring_get_wptr,
  1443. .set_wptr = sdma_v3_0_ring_set_wptr,
  1444. .emit_frame_size =
  1445. 6 + /* sdma_v3_0_ring_emit_hdp_flush */
  1446. 3 + /* hdp invalidate */
  1447. 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
  1448. VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */
  1449. 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
  1450. .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
  1451. .emit_ib = sdma_v3_0_ring_emit_ib,
  1452. .emit_fence = sdma_v3_0_ring_emit_fence,
  1453. .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
  1454. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1455. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1456. .test_ring = sdma_v3_0_ring_test_ring,
  1457. .test_ib = sdma_v3_0_ring_test_ib,
  1458. .insert_nop = sdma_v3_0_ring_insert_nop,
  1459. .pad_ib = sdma_v3_0_ring_pad_ib,
  1460. .emit_wreg = sdma_v3_0_ring_emit_wreg,
  1461. };
  1462. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1463. {
  1464. int i;
  1465. for (i = 0; i < adev->sdma.num_instances; i++)
  1466. adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
  1467. }
  1468. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1469. .set = sdma_v3_0_set_trap_irq_state,
  1470. .process = sdma_v3_0_process_trap_irq,
  1471. };
  1472. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1473. .process = sdma_v3_0_process_illegal_inst_irq,
  1474. };
  1475. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1476. {
  1477. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1478. adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1479. adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1480. }
  1481. /**
  1482. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1483. *
  1484. * @ring: amdgpu_ring structure holding ring information
  1485. * @src_offset: src GPU address
  1486. * @dst_offset: dst GPU address
  1487. * @byte_count: number of bytes to xfer
  1488. *
  1489. * Copy GPU buffers using the DMA engine (VI).
  1490. * Used by the amdgpu ttm implementation to move pages if
  1491. * registered as the asic copy callback.
  1492. */
  1493. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1494. uint64_t src_offset,
  1495. uint64_t dst_offset,
  1496. uint32_t byte_count)
  1497. {
  1498. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1499. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1500. ib->ptr[ib->length_dw++] = byte_count;
  1501. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1502. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1503. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1504. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1505. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1506. }
  1507. /**
  1508. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1509. *
  1510. * @ring: amdgpu_ring structure holding ring information
  1511. * @src_data: value to write to buffer
  1512. * @dst_offset: dst GPU address
  1513. * @byte_count: number of bytes to xfer
  1514. *
  1515. * Fill GPU buffers using the DMA engine (VI).
  1516. */
  1517. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1518. uint32_t src_data,
  1519. uint64_t dst_offset,
  1520. uint32_t byte_count)
  1521. {
  1522. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1523. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1524. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1525. ib->ptr[ib->length_dw++] = src_data;
  1526. ib->ptr[ib->length_dw++] = byte_count;
  1527. }
  1528. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1529. .copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
  1530. .copy_num_dw = 7,
  1531. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1532. .fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
  1533. .fill_num_dw = 5,
  1534. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1535. };
  1536. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1537. {
  1538. if (adev->mman.buffer_funcs == NULL) {
  1539. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1540. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1541. }
  1542. }
  1543. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1544. .copy_pte_num_dw = 7,
  1545. .copy_pte = sdma_v3_0_vm_copy_pte,
  1546. .write_pte = sdma_v3_0_vm_write_pte,
  1547. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1548. };
  1549. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1550. {
  1551. unsigned i;
  1552. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1553. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1554. for (i = 0; i < adev->sdma.num_instances; i++)
  1555. adev->vm_manager.vm_pte_rings[i] =
  1556. &adev->sdma.instance[i].ring;
  1557. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1558. }
  1559. }
  1560. const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
  1561. {
  1562. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1563. .major = 3,
  1564. .minor = 0,
  1565. .rev = 0,
  1566. .funcs = &sdma_v3_0_ip_funcs,
  1567. };
  1568. const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
  1569. {
  1570. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1571. .major = 3,
  1572. .minor = 1,
  1573. .rev = 0,
  1574. .funcs = &sdma_v3_0_ip_funcs,
  1575. };