memcontrol.c 169 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682
  1. /* memcontrol.c - Memory Controller
  2. *
  3. * Copyright IBM Corporation, 2007
  4. * Author Balbir Singh <balbir@linux.vnet.ibm.com>
  5. *
  6. * Copyright 2007 OpenVZ SWsoft Inc
  7. * Author: Pavel Emelianov <xemul@openvz.org>
  8. *
  9. * Memory thresholds
  10. * Copyright (C) 2009 Nokia Corporation
  11. * Author: Kirill A. Shutemov
  12. *
  13. * Kernel Memory Controller
  14. * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15. * Authors: Glauber Costa and Suleiman Souhlal
  16. *
  17. * Native page reclaim
  18. * Charge lifetime sanitation
  19. * Lockless page tracking & accounting
  20. * Unified hierarchy configuration model
  21. * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  22. *
  23. * This program is free software; you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation; either version 2 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. */
  33. #include <linux/page_counter.h>
  34. #include <linux/memcontrol.h>
  35. #include <linux/cgroup.h>
  36. #include <linux/mm.h>
  37. #include <linux/sched/mm.h>
  38. #include <linux/shmem_fs.h>
  39. #include <linux/hugetlb.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/smp.h>
  42. #include <linux/page-flags.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/bit_spinlock.h>
  45. #include <linux/rcupdate.h>
  46. #include <linux/limits.h>
  47. #include <linux/export.h>
  48. #include <linux/mutex.h>
  49. #include <linux/rbtree.h>
  50. #include <linux/slab.h>
  51. #include <linux/swap.h>
  52. #include <linux/swapops.h>
  53. #include <linux/spinlock.h>
  54. #include <linux/eventfd.h>
  55. #include <linux/poll.h>
  56. #include <linux/sort.h>
  57. #include <linux/fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/vmpressure.h>
  60. #include <linux/mm_inline.h>
  61. #include <linux/swap_cgroup.h>
  62. #include <linux/cpu.h>
  63. #include <linux/oom.h>
  64. #include <linux/lockdep.h>
  65. #include <linux/file.h>
  66. #include <linux/tracehook.h>
  67. #include "internal.h"
  68. #include <net/sock.h>
  69. #include <net/ip.h>
  70. #include "slab.h"
  71. #include <linux/uaccess.h>
  72. #include <trace/events/vmscan.h>
  73. struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  74. EXPORT_SYMBOL(memory_cgrp_subsys);
  75. struct mem_cgroup *root_mem_cgroup __read_mostly;
  76. #define MEM_CGROUP_RECLAIM_RETRIES 5
  77. /* Socket memory accounting disabled? */
  78. static bool cgroup_memory_nosocket;
  79. /* Kernel memory accounting disabled? */
  80. static bool cgroup_memory_nokmem;
  81. /* Whether the swap controller is active */
  82. #ifdef CONFIG_MEMCG_SWAP
  83. int do_swap_account __read_mostly;
  84. #else
  85. #define do_swap_account 0
  86. #endif
  87. /* Whether legacy memory+swap accounting is active */
  88. static bool do_memsw_account(void)
  89. {
  90. return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
  91. }
  92. static const char *const mem_cgroup_lru_names[] = {
  93. "inactive_anon",
  94. "active_anon",
  95. "inactive_file",
  96. "active_file",
  97. "unevictable",
  98. };
  99. #define THRESHOLDS_EVENTS_TARGET 128
  100. #define SOFTLIMIT_EVENTS_TARGET 1024
  101. #define NUMAINFO_EVENTS_TARGET 1024
  102. /*
  103. * Cgroups above their limits are maintained in a RB-Tree, independent of
  104. * their hierarchy representation
  105. */
  106. struct mem_cgroup_tree_per_node {
  107. struct rb_root rb_root;
  108. struct rb_node *rb_rightmost;
  109. spinlock_t lock;
  110. };
  111. struct mem_cgroup_tree {
  112. struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
  113. };
  114. static struct mem_cgroup_tree soft_limit_tree __read_mostly;
  115. /* for OOM */
  116. struct mem_cgroup_eventfd_list {
  117. struct list_head list;
  118. struct eventfd_ctx *eventfd;
  119. };
  120. /*
  121. * cgroup_event represents events which userspace want to receive.
  122. */
  123. struct mem_cgroup_event {
  124. /*
  125. * memcg which the event belongs to.
  126. */
  127. struct mem_cgroup *memcg;
  128. /*
  129. * eventfd to signal userspace about the event.
  130. */
  131. struct eventfd_ctx *eventfd;
  132. /*
  133. * Each of these stored in a list by the cgroup.
  134. */
  135. struct list_head list;
  136. /*
  137. * register_event() callback will be used to add new userspace
  138. * waiter for changes related to this event. Use eventfd_signal()
  139. * on eventfd to send notification to userspace.
  140. */
  141. int (*register_event)(struct mem_cgroup *memcg,
  142. struct eventfd_ctx *eventfd, const char *args);
  143. /*
  144. * unregister_event() callback will be called when userspace closes
  145. * the eventfd or on cgroup removing. This callback must be set,
  146. * if you want provide notification functionality.
  147. */
  148. void (*unregister_event)(struct mem_cgroup *memcg,
  149. struct eventfd_ctx *eventfd);
  150. /*
  151. * All fields below needed to unregister event when
  152. * userspace closes eventfd.
  153. */
  154. poll_table pt;
  155. wait_queue_head_t *wqh;
  156. wait_queue_entry_t wait;
  157. struct work_struct remove;
  158. };
  159. static void mem_cgroup_threshold(struct mem_cgroup *memcg);
  160. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
  161. /* Stuffs for move charges at task migration. */
  162. /*
  163. * Types of charges to be moved.
  164. */
  165. #define MOVE_ANON 0x1U
  166. #define MOVE_FILE 0x2U
  167. #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
  168. /* "mc" and its members are protected by cgroup_mutex */
  169. static struct move_charge_struct {
  170. spinlock_t lock; /* for from, to */
  171. struct mm_struct *mm;
  172. struct mem_cgroup *from;
  173. struct mem_cgroup *to;
  174. unsigned long flags;
  175. unsigned long precharge;
  176. unsigned long moved_charge;
  177. unsigned long moved_swap;
  178. struct task_struct *moving_task; /* a task moving charges */
  179. wait_queue_head_t waitq; /* a waitq for other context */
  180. } mc = {
  181. .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
  182. .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
  183. };
  184. /*
  185. * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
  186. * limit reclaim to prevent infinite loops, if they ever occur.
  187. */
  188. #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
  189. #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
  190. enum charge_type {
  191. MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
  192. MEM_CGROUP_CHARGE_TYPE_ANON,
  193. MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
  194. MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
  195. NR_CHARGE_TYPE,
  196. };
  197. /* for encoding cft->private value on file */
  198. enum res_type {
  199. _MEM,
  200. _MEMSWAP,
  201. _OOM_TYPE,
  202. _KMEM,
  203. _TCP,
  204. };
  205. #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
  206. #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
  207. #define MEMFILE_ATTR(val) ((val) & 0xffff)
  208. /* Used for OOM nofiier */
  209. #define OOM_CONTROL (0)
  210. /*
  211. * Iteration constructs for visiting all cgroups (under a tree). If
  212. * loops are exited prematurely (break), mem_cgroup_iter_break() must
  213. * be used for reference counting.
  214. */
  215. #define for_each_mem_cgroup_tree(iter, root) \
  216. for (iter = mem_cgroup_iter(root, NULL, NULL); \
  217. iter != NULL; \
  218. iter = mem_cgroup_iter(root, iter, NULL))
  219. #define for_each_mem_cgroup(iter) \
  220. for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
  221. iter != NULL; \
  222. iter = mem_cgroup_iter(NULL, iter, NULL))
  223. /* Some nice accessors for the vmpressure. */
  224. struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
  225. {
  226. if (!memcg)
  227. memcg = root_mem_cgroup;
  228. return &memcg->vmpressure;
  229. }
  230. struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
  231. {
  232. return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
  233. }
  234. #ifdef CONFIG_MEMCG_KMEM
  235. /*
  236. * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
  237. * The main reason for not using cgroup id for this:
  238. * this works better in sparse environments, where we have a lot of memcgs,
  239. * but only a few kmem-limited. Or also, if we have, for instance, 200
  240. * memcgs, and none but the 200th is kmem-limited, we'd have to have a
  241. * 200 entry array for that.
  242. *
  243. * The current size of the caches array is stored in memcg_nr_cache_ids. It
  244. * will double each time we have to increase it.
  245. */
  246. static DEFINE_IDA(memcg_cache_ida);
  247. int memcg_nr_cache_ids;
  248. /* Protects memcg_nr_cache_ids */
  249. static DECLARE_RWSEM(memcg_cache_ids_sem);
  250. void memcg_get_cache_ids(void)
  251. {
  252. down_read(&memcg_cache_ids_sem);
  253. }
  254. void memcg_put_cache_ids(void)
  255. {
  256. up_read(&memcg_cache_ids_sem);
  257. }
  258. /*
  259. * MIN_SIZE is different than 1, because we would like to avoid going through
  260. * the alloc/free process all the time. In a small machine, 4 kmem-limited
  261. * cgroups is a reasonable guess. In the future, it could be a parameter or
  262. * tunable, but that is strictly not necessary.
  263. *
  264. * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
  265. * this constant directly from cgroup, but it is understandable that this is
  266. * better kept as an internal representation in cgroup.c. In any case, the
  267. * cgrp_id space is not getting any smaller, and we don't have to necessarily
  268. * increase ours as well if it increases.
  269. */
  270. #define MEMCG_CACHES_MIN_SIZE 4
  271. #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
  272. /*
  273. * A lot of the calls to the cache allocation functions are expected to be
  274. * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
  275. * conditional to this static branch, we'll have to allow modules that does
  276. * kmem_cache_alloc and the such to see this symbol as well
  277. */
  278. DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
  279. EXPORT_SYMBOL(memcg_kmem_enabled_key);
  280. struct workqueue_struct *memcg_kmem_cache_wq;
  281. static int memcg_shrinker_map_size;
  282. static DEFINE_MUTEX(memcg_shrinker_map_mutex);
  283. static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
  284. {
  285. kvfree(container_of(head, struct memcg_shrinker_map, rcu));
  286. }
  287. static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
  288. int size, int old_size)
  289. {
  290. struct memcg_shrinker_map *new, *old;
  291. int nid;
  292. lockdep_assert_held(&memcg_shrinker_map_mutex);
  293. for_each_node(nid) {
  294. old = rcu_dereference_protected(
  295. mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
  296. /* Not yet online memcg */
  297. if (!old)
  298. return 0;
  299. new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
  300. if (!new)
  301. return -ENOMEM;
  302. /* Set all old bits, clear all new bits */
  303. memset(new->map, (int)0xff, old_size);
  304. memset((void *)new->map + old_size, 0, size - old_size);
  305. rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
  306. call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
  307. }
  308. return 0;
  309. }
  310. static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
  311. {
  312. struct mem_cgroup_per_node *pn;
  313. struct memcg_shrinker_map *map;
  314. int nid;
  315. if (mem_cgroup_is_root(memcg))
  316. return;
  317. for_each_node(nid) {
  318. pn = mem_cgroup_nodeinfo(memcg, nid);
  319. map = rcu_dereference_protected(pn->shrinker_map, true);
  320. if (map)
  321. kvfree(map);
  322. rcu_assign_pointer(pn->shrinker_map, NULL);
  323. }
  324. }
  325. static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
  326. {
  327. struct memcg_shrinker_map *map;
  328. int nid, size, ret = 0;
  329. if (mem_cgroup_is_root(memcg))
  330. return 0;
  331. mutex_lock(&memcg_shrinker_map_mutex);
  332. size = memcg_shrinker_map_size;
  333. for_each_node(nid) {
  334. map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
  335. if (!map) {
  336. memcg_free_shrinker_maps(memcg);
  337. ret = -ENOMEM;
  338. break;
  339. }
  340. rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
  341. }
  342. mutex_unlock(&memcg_shrinker_map_mutex);
  343. return ret;
  344. }
  345. int memcg_expand_shrinker_maps(int new_id)
  346. {
  347. int size, old_size, ret = 0;
  348. struct mem_cgroup *memcg;
  349. size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
  350. old_size = memcg_shrinker_map_size;
  351. if (size <= old_size)
  352. return 0;
  353. mutex_lock(&memcg_shrinker_map_mutex);
  354. if (!root_mem_cgroup)
  355. goto unlock;
  356. for_each_mem_cgroup(memcg) {
  357. if (mem_cgroup_is_root(memcg))
  358. continue;
  359. ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
  360. if (ret)
  361. goto unlock;
  362. }
  363. unlock:
  364. if (!ret)
  365. memcg_shrinker_map_size = size;
  366. mutex_unlock(&memcg_shrinker_map_mutex);
  367. return ret;
  368. }
  369. void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
  370. {
  371. if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
  372. struct memcg_shrinker_map *map;
  373. rcu_read_lock();
  374. map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
  375. /* Pairs with smp mb in shrink_slab() */
  376. smp_mb__before_atomic();
  377. set_bit(shrinker_id, map->map);
  378. rcu_read_unlock();
  379. }
  380. }
  381. #else /* CONFIG_MEMCG_KMEM */
  382. static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
  383. {
  384. return 0;
  385. }
  386. static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
  387. #endif /* CONFIG_MEMCG_KMEM */
  388. /**
  389. * mem_cgroup_css_from_page - css of the memcg associated with a page
  390. * @page: page of interest
  391. *
  392. * If memcg is bound to the default hierarchy, css of the memcg associated
  393. * with @page is returned. The returned css remains associated with @page
  394. * until it is released.
  395. *
  396. * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
  397. * is returned.
  398. */
  399. struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
  400. {
  401. struct mem_cgroup *memcg;
  402. memcg = page->mem_cgroup;
  403. if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
  404. memcg = root_mem_cgroup;
  405. return &memcg->css;
  406. }
  407. /**
  408. * page_cgroup_ino - return inode number of the memcg a page is charged to
  409. * @page: the page
  410. *
  411. * Look up the closest online ancestor of the memory cgroup @page is charged to
  412. * and return its inode number or 0 if @page is not charged to any cgroup. It
  413. * is safe to call this function without holding a reference to @page.
  414. *
  415. * Note, this function is inherently racy, because there is nothing to prevent
  416. * the cgroup inode from getting torn down and potentially reallocated a moment
  417. * after page_cgroup_ino() returns, so it only should be used by callers that
  418. * do not care (such as procfs interfaces).
  419. */
  420. ino_t page_cgroup_ino(struct page *page)
  421. {
  422. struct mem_cgroup *memcg;
  423. unsigned long ino = 0;
  424. rcu_read_lock();
  425. memcg = READ_ONCE(page->mem_cgroup);
  426. while (memcg && !(memcg->css.flags & CSS_ONLINE))
  427. memcg = parent_mem_cgroup(memcg);
  428. if (memcg)
  429. ino = cgroup_ino(memcg->css.cgroup);
  430. rcu_read_unlock();
  431. return ino;
  432. }
  433. static struct mem_cgroup_per_node *
  434. mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
  435. {
  436. int nid = page_to_nid(page);
  437. return memcg->nodeinfo[nid];
  438. }
  439. static struct mem_cgroup_tree_per_node *
  440. soft_limit_tree_node(int nid)
  441. {
  442. return soft_limit_tree.rb_tree_per_node[nid];
  443. }
  444. static struct mem_cgroup_tree_per_node *
  445. soft_limit_tree_from_page(struct page *page)
  446. {
  447. int nid = page_to_nid(page);
  448. return soft_limit_tree.rb_tree_per_node[nid];
  449. }
  450. static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
  451. struct mem_cgroup_tree_per_node *mctz,
  452. unsigned long new_usage_in_excess)
  453. {
  454. struct rb_node **p = &mctz->rb_root.rb_node;
  455. struct rb_node *parent = NULL;
  456. struct mem_cgroup_per_node *mz_node;
  457. bool rightmost = true;
  458. if (mz->on_tree)
  459. return;
  460. mz->usage_in_excess = new_usage_in_excess;
  461. if (!mz->usage_in_excess)
  462. return;
  463. while (*p) {
  464. parent = *p;
  465. mz_node = rb_entry(parent, struct mem_cgroup_per_node,
  466. tree_node);
  467. if (mz->usage_in_excess < mz_node->usage_in_excess) {
  468. p = &(*p)->rb_left;
  469. rightmost = false;
  470. }
  471. /*
  472. * We can't avoid mem cgroups that are over their soft
  473. * limit by the same amount
  474. */
  475. else if (mz->usage_in_excess >= mz_node->usage_in_excess)
  476. p = &(*p)->rb_right;
  477. }
  478. if (rightmost)
  479. mctz->rb_rightmost = &mz->tree_node;
  480. rb_link_node(&mz->tree_node, parent, p);
  481. rb_insert_color(&mz->tree_node, &mctz->rb_root);
  482. mz->on_tree = true;
  483. }
  484. static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
  485. struct mem_cgroup_tree_per_node *mctz)
  486. {
  487. if (!mz->on_tree)
  488. return;
  489. if (&mz->tree_node == mctz->rb_rightmost)
  490. mctz->rb_rightmost = rb_prev(&mz->tree_node);
  491. rb_erase(&mz->tree_node, &mctz->rb_root);
  492. mz->on_tree = false;
  493. }
  494. static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
  495. struct mem_cgroup_tree_per_node *mctz)
  496. {
  497. unsigned long flags;
  498. spin_lock_irqsave(&mctz->lock, flags);
  499. __mem_cgroup_remove_exceeded(mz, mctz);
  500. spin_unlock_irqrestore(&mctz->lock, flags);
  501. }
  502. static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
  503. {
  504. unsigned long nr_pages = page_counter_read(&memcg->memory);
  505. unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
  506. unsigned long excess = 0;
  507. if (nr_pages > soft_limit)
  508. excess = nr_pages - soft_limit;
  509. return excess;
  510. }
  511. static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
  512. {
  513. unsigned long excess;
  514. struct mem_cgroup_per_node *mz;
  515. struct mem_cgroup_tree_per_node *mctz;
  516. mctz = soft_limit_tree_from_page(page);
  517. if (!mctz)
  518. return;
  519. /*
  520. * Necessary to update all ancestors when hierarchy is used.
  521. * because their event counter is not touched.
  522. */
  523. for (; memcg; memcg = parent_mem_cgroup(memcg)) {
  524. mz = mem_cgroup_page_nodeinfo(memcg, page);
  525. excess = soft_limit_excess(memcg);
  526. /*
  527. * We have to update the tree if mz is on RB-tree or
  528. * mem is over its softlimit.
  529. */
  530. if (excess || mz->on_tree) {
  531. unsigned long flags;
  532. spin_lock_irqsave(&mctz->lock, flags);
  533. /* if on-tree, remove it */
  534. if (mz->on_tree)
  535. __mem_cgroup_remove_exceeded(mz, mctz);
  536. /*
  537. * Insert again. mz->usage_in_excess will be updated.
  538. * If excess is 0, no tree ops.
  539. */
  540. __mem_cgroup_insert_exceeded(mz, mctz, excess);
  541. spin_unlock_irqrestore(&mctz->lock, flags);
  542. }
  543. }
  544. }
  545. static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
  546. {
  547. struct mem_cgroup_tree_per_node *mctz;
  548. struct mem_cgroup_per_node *mz;
  549. int nid;
  550. for_each_node(nid) {
  551. mz = mem_cgroup_nodeinfo(memcg, nid);
  552. mctz = soft_limit_tree_node(nid);
  553. if (mctz)
  554. mem_cgroup_remove_exceeded(mz, mctz);
  555. }
  556. }
  557. static struct mem_cgroup_per_node *
  558. __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
  559. {
  560. struct mem_cgroup_per_node *mz;
  561. retry:
  562. mz = NULL;
  563. if (!mctz->rb_rightmost)
  564. goto done; /* Nothing to reclaim from */
  565. mz = rb_entry(mctz->rb_rightmost,
  566. struct mem_cgroup_per_node, tree_node);
  567. /*
  568. * Remove the node now but someone else can add it back,
  569. * we will to add it back at the end of reclaim to its correct
  570. * position in the tree.
  571. */
  572. __mem_cgroup_remove_exceeded(mz, mctz);
  573. if (!soft_limit_excess(mz->memcg) ||
  574. !css_tryget_online(&mz->memcg->css))
  575. goto retry;
  576. done:
  577. return mz;
  578. }
  579. static struct mem_cgroup_per_node *
  580. mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
  581. {
  582. struct mem_cgroup_per_node *mz;
  583. spin_lock_irq(&mctz->lock);
  584. mz = __mem_cgroup_largest_soft_limit_node(mctz);
  585. spin_unlock_irq(&mctz->lock);
  586. return mz;
  587. }
  588. static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
  589. int event)
  590. {
  591. return atomic_long_read(&memcg->events[event]);
  592. }
  593. static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
  594. struct page *page,
  595. bool compound, int nr_pages)
  596. {
  597. /*
  598. * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
  599. * counted as CACHE even if it's on ANON LRU.
  600. */
  601. if (PageAnon(page))
  602. __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
  603. else {
  604. __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
  605. if (PageSwapBacked(page))
  606. __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
  607. }
  608. if (compound) {
  609. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  610. __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
  611. }
  612. /* pagein of a big page is an event. So, ignore page size */
  613. if (nr_pages > 0)
  614. __count_memcg_events(memcg, PGPGIN, 1);
  615. else {
  616. __count_memcg_events(memcg, PGPGOUT, 1);
  617. nr_pages = -nr_pages; /* for event */
  618. }
  619. __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
  620. }
  621. unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
  622. int nid, unsigned int lru_mask)
  623. {
  624. struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
  625. unsigned long nr = 0;
  626. enum lru_list lru;
  627. VM_BUG_ON((unsigned)nid >= nr_node_ids);
  628. for_each_lru(lru) {
  629. if (!(BIT(lru) & lru_mask))
  630. continue;
  631. nr += mem_cgroup_get_lru_size(lruvec, lru);
  632. }
  633. return nr;
  634. }
  635. static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
  636. unsigned int lru_mask)
  637. {
  638. unsigned long nr = 0;
  639. int nid;
  640. for_each_node_state(nid, N_MEMORY)
  641. nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
  642. return nr;
  643. }
  644. static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
  645. enum mem_cgroup_events_target target)
  646. {
  647. unsigned long val, next;
  648. val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
  649. next = __this_cpu_read(memcg->stat_cpu->targets[target]);
  650. /* from time_after() in jiffies.h */
  651. if ((long)(next - val) < 0) {
  652. switch (target) {
  653. case MEM_CGROUP_TARGET_THRESH:
  654. next = val + THRESHOLDS_EVENTS_TARGET;
  655. break;
  656. case MEM_CGROUP_TARGET_SOFTLIMIT:
  657. next = val + SOFTLIMIT_EVENTS_TARGET;
  658. break;
  659. case MEM_CGROUP_TARGET_NUMAINFO:
  660. next = val + NUMAINFO_EVENTS_TARGET;
  661. break;
  662. default:
  663. break;
  664. }
  665. __this_cpu_write(memcg->stat_cpu->targets[target], next);
  666. return true;
  667. }
  668. return false;
  669. }
  670. /*
  671. * Check events in order.
  672. *
  673. */
  674. static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
  675. {
  676. /* threshold event is triggered in finer grain than soft limit */
  677. if (unlikely(mem_cgroup_event_ratelimit(memcg,
  678. MEM_CGROUP_TARGET_THRESH))) {
  679. bool do_softlimit;
  680. bool do_numainfo __maybe_unused;
  681. do_softlimit = mem_cgroup_event_ratelimit(memcg,
  682. MEM_CGROUP_TARGET_SOFTLIMIT);
  683. #if MAX_NUMNODES > 1
  684. do_numainfo = mem_cgroup_event_ratelimit(memcg,
  685. MEM_CGROUP_TARGET_NUMAINFO);
  686. #endif
  687. mem_cgroup_threshold(memcg);
  688. if (unlikely(do_softlimit))
  689. mem_cgroup_update_tree(memcg, page);
  690. #if MAX_NUMNODES > 1
  691. if (unlikely(do_numainfo))
  692. atomic_inc(&memcg->numainfo_events);
  693. #endif
  694. }
  695. }
  696. struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
  697. {
  698. /*
  699. * mm_update_next_owner() may clear mm->owner to NULL
  700. * if it races with swapoff, page migration, etc.
  701. * So this can be called with p == NULL.
  702. */
  703. if (unlikely(!p))
  704. return NULL;
  705. return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
  706. }
  707. EXPORT_SYMBOL(mem_cgroup_from_task);
  708. /**
  709. * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
  710. * @mm: mm from which memcg should be extracted. It can be NULL.
  711. *
  712. * Obtain a reference on mm->memcg and returns it if successful. Otherwise
  713. * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
  714. * returned.
  715. */
  716. struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
  717. {
  718. struct mem_cgroup *memcg;
  719. if (mem_cgroup_disabled())
  720. return NULL;
  721. rcu_read_lock();
  722. do {
  723. /*
  724. * Page cache insertions can happen withou an
  725. * actual mm context, e.g. during disk probing
  726. * on boot, loopback IO, acct() writes etc.
  727. */
  728. if (unlikely(!mm))
  729. memcg = root_mem_cgroup;
  730. else {
  731. memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
  732. if (unlikely(!memcg))
  733. memcg = root_mem_cgroup;
  734. }
  735. } while (!css_tryget_online(&memcg->css));
  736. rcu_read_unlock();
  737. return memcg;
  738. }
  739. EXPORT_SYMBOL(get_mem_cgroup_from_mm);
  740. /**
  741. * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
  742. * @page: page from which memcg should be extracted.
  743. *
  744. * Obtain a reference on page->memcg and returns it if successful. Otherwise
  745. * root_mem_cgroup is returned.
  746. */
  747. struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
  748. {
  749. struct mem_cgroup *memcg = page->mem_cgroup;
  750. if (mem_cgroup_disabled())
  751. return NULL;
  752. rcu_read_lock();
  753. if (!memcg || !css_tryget_online(&memcg->css))
  754. memcg = root_mem_cgroup;
  755. rcu_read_unlock();
  756. return memcg;
  757. }
  758. EXPORT_SYMBOL(get_mem_cgroup_from_page);
  759. /**
  760. * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
  761. */
  762. static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
  763. {
  764. if (unlikely(current->active_memcg)) {
  765. struct mem_cgroup *memcg = root_mem_cgroup;
  766. rcu_read_lock();
  767. if (css_tryget_online(&current->active_memcg->css))
  768. memcg = current->active_memcg;
  769. rcu_read_unlock();
  770. return memcg;
  771. }
  772. return get_mem_cgroup_from_mm(current->mm);
  773. }
  774. /**
  775. * mem_cgroup_iter - iterate over memory cgroup hierarchy
  776. * @root: hierarchy root
  777. * @prev: previously returned memcg, NULL on first invocation
  778. * @reclaim: cookie for shared reclaim walks, NULL for full walks
  779. *
  780. * Returns references to children of the hierarchy below @root, or
  781. * @root itself, or %NULL after a full round-trip.
  782. *
  783. * Caller must pass the return value in @prev on subsequent
  784. * invocations for reference counting, or use mem_cgroup_iter_break()
  785. * to cancel a hierarchy walk before the round-trip is complete.
  786. *
  787. * Reclaimers can specify a node and a priority level in @reclaim to
  788. * divide up the memcgs in the hierarchy among all concurrent
  789. * reclaimers operating on the same node and priority.
  790. */
  791. struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
  792. struct mem_cgroup *prev,
  793. struct mem_cgroup_reclaim_cookie *reclaim)
  794. {
  795. struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
  796. struct cgroup_subsys_state *css = NULL;
  797. struct mem_cgroup *memcg = NULL;
  798. struct mem_cgroup *pos = NULL;
  799. if (mem_cgroup_disabled())
  800. return NULL;
  801. if (!root)
  802. root = root_mem_cgroup;
  803. if (prev && !reclaim)
  804. pos = prev;
  805. if (!root->use_hierarchy && root != root_mem_cgroup) {
  806. if (prev)
  807. goto out;
  808. return root;
  809. }
  810. rcu_read_lock();
  811. if (reclaim) {
  812. struct mem_cgroup_per_node *mz;
  813. mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
  814. iter = &mz->iter[reclaim->priority];
  815. if (prev && reclaim->generation != iter->generation)
  816. goto out_unlock;
  817. while (1) {
  818. pos = READ_ONCE(iter->position);
  819. if (!pos || css_tryget(&pos->css))
  820. break;
  821. /*
  822. * css reference reached zero, so iter->position will
  823. * be cleared by ->css_released. However, we should not
  824. * rely on this happening soon, because ->css_released
  825. * is called from a work queue, and by busy-waiting we
  826. * might block it. So we clear iter->position right
  827. * away.
  828. */
  829. (void)cmpxchg(&iter->position, pos, NULL);
  830. }
  831. }
  832. if (pos)
  833. css = &pos->css;
  834. for (;;) {
  835. css = css_next_descendant_pre(css, &root->css);
  836. if (!css) {
  837. /*
  838. * Reclaimers share the hierarchy walk, and a
  839. * new one might jump in right at the end of
  840. * the hierarchy - make sure they see at least
  841. * one group and restart from the beginning.
  842. */
  843. if (!prev)
  844. continue;
  845. break;
  846. }
  847. /*
  848. * Verify the css and acquire a reference. The root
  849. * is provided by the caller, so we know it's alive
  850. * and kicking, and don't take an extra reference.
  851. */
  852. memcg = mem_cgroup_from_css(css);
  853. if (css == &root->css)
  854. break;
  855. if (css_tryget(css))
  856. break;
  857. memcg = NULL;
  858. }
  859. if (reclaim) {
  860. /*
  861. * The position could have already been updated by a competing
  862. * thread, so check that the value hasn't changed since we read
  863. * it to avoid reclaiming from the same cgroup twice.
  864. */
  865. (void)cmpxchg(&iter->position, pos, memcg);
  866. if (pos)
  867. css_put(&pos->css);
  868. if (!memcg)
  869. iter->generation++;
  870. else if (!prev)
  871. reclaim->generation = iter->generation;
  872. }
  873. out_unlock:
  874. rcu_read_unlock();
  875. out:
  876. if (prev && prev != root)
  877. css_put(&prev->css);
  878. return memcg;
  879. }
  880. /**
  881. * mem_cgroup_iter_break - abort a hierarchy walk prematurely
  882. * @root: hierarchy root
  883. * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
  884. */
  885. void mem_cgroup_iter_break(struct mem_cgroup *root,
  886. struct mem_cgroup *prev)
  887. {
  888. if (!root)
  889. root = root_mem_cgroup;
  890. if (prev && prev != root)
  891. css_put(&prev->css);
  892. }
  893. static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
  894. {
  895. struct mem_cgroup *memcg = dead_memcg;
  896. struct mem_cgroup_reclaim_iter *iter;
  897. struct mem_cgroup_per_node *mz;
  898. int nid;
  899. int i;
  900. for (; memcg; memcg = parent_mem_cgroup(memcg)) {
  901. for_each_node(nid) {
  902. mz = mem_cgroup_nodeinfo(memcg, nid);
  903. for (i = 0; i <= DEF_PRIORITY; i++) {
  904. iter = &mz->iter[i];
  905. cmpxchg(&iter->position,
  906. dead_memcg, NULL);
  907. }
  908. }
  909. }
  910. }
  911. /**
  912. * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
  913. * @memcg: hierarchy root
  914. * @fn: function to call for each task
  915. * @arg: argument passed to @fn
  916. *
  917. * This function iterates over tasks attached to @memcg or to any of its
  918. * descendants and calls @fn for each task. If @fn returns a non-zero
  919. * value, the function breaks the iteration loop and returns the value.
  920. * Otherwise, it will iterate over all tasks and return 0.
  921. *
  922. * This function must not be called for the root memory cgroup.
  923. */
  924. int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
  925. int (*fn)(struct task_struct *, void *), void *arg)
  926. {
  927. struct mem_cgroup *iter;
  928. int ret = 0;
  929. BUG_ON(memcg == root_mem_cgroup);
  930. for_each_mem_cgroup_tree(iter, memcg) {
  931. struct css_task_iter it;
  932. struct task_struct *task;
  933. css_task_iter_start(&iter->css, 0, &it);
  934. while (!ret && (task = css_task_iter_next(&it)))
  935. ret = fn(task, arg);
  936. css_task_iter_end(&it);
  937. if (ret) {
  938. mem_cgroup_iter_break(memcg, iter);
  939. break;
  940. }
  941. }
  942. return ret;
  943. }
  944. /**
  945. * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
  946. * @page: the page
  947. * @pgdat: pgdat of the page
  948. *
  949. * This function is only safe when following the LRU page isolation
  950. * and putback protocol: the LRU lock must be held, and the page must
  951. * either be PageLRU() or the caller must have isolated/allocated it.
  952. */
  953. struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
  954. {
  955. struct mem_cgroup_per_node *mz;
  956. struct mem_cgroup *memcg;
  957. struct lruvec *lruvec;
  958. if (mem_cgroup_disabled()) {
  959. lruvec = &pgdat->lruvec;
  960. goto out;
  961. }
  962. memcg = page->mem_cgroup;
  963. /*
  964. * Swapcache readahead pages are added to the LRU - and
  965. * possibly migrated - before they are charged.
  966. */
  967. if (!memcg)
  968. memcg = root_mem_cgroup;
  969. mz = mem_cgroup_page_nodeinfo(memcg, page);
  970. lruvec = &mz->lruvec;
  971. out:
  972. /*
  973. * Since a node can be onlined after the mem_cgroup was created,
  974. * we have to be prepared to initialize lruvec->zone here;
  975. * and if offlined then reonlined, we need to reinitialize it.
  976. */
  977. if (unlikely(lruvec->pgdat != pgdat))
  978. lruvec->pgdat = pgdat;
  979. return lruvec;
  980. }
  981. /**
  982. * mem_cgroup_update_lru_size - account for adding or removing an lru page
  983. * @lruvec: mem_cgroup per zone lru vector
  984. * @lru: index of lru list the page is sitting on
  985. * @zid: zone id of the accounted pages
  986. * @nr_pages: positive when adding or negative when removing
  987. *
  988. * This function must be called under lru_lock, just before a page is added
  989. * to or just after a page is removed from an lru list (that ordering being
  990. * so as to allow it to check that lru_size 0 is consistent with list_empty).
  991. */
  992. void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
  993. int zid, int nr_pages)
  994. {
  995. struct mem_cgroup_per_node *mz;
  996. unsigned long *lru_size;
  997. long size;
  998. if (mem_cgroup_disabled())
  999. return;
  1000. mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
  1001. lru_size = &mz->lru_zone_size[zid][lru];
  1002. if (nr_pages < 0)
  1003. *lru_size += nr_pages;
  1004. size = *lru_size;
  1005. if (WARN_ONCE(size < 0,
  1006. "%s(%p, %d, %d): lru_size %ld\n",
  1007. __func__, lruvec, lru, nr_pages, size)) {
  1008. VM_BUG_ON(1);
  1009. *lru_size = 0;
  1010. }
  1011. if (nr_pages > 0)
  1012. *lru_size += nr_pages;
  1013. }
  1014. bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
  1015. {
  1016. struct mem_cgroup *task_memcg;
  1017. struct task_struct *p;
  1018. bool ret;
  1019. p = find_lock_task_mm(task);
  1020. if (p) {
  1021. task_memcg = get_mem_cgroup_from_mm(p->mm);
  1022. task_unlock(p);
  1023. } else {
  1024. /*
  1025. * All threads may have already detached their mm's, but the oom
  1026. * killer still needs to detect if they have already been oom
  1027. * killed to prevent needlessly killing additional tasks.
  1028. */
  1029. rcu_read_lock();
  1030. task_memcg = mem_cgroup_from_task(task);
  1031. css_get(&task_memcg->css);
  1032. rcu_read_unlock();
  1033. }
  1034. ret = mem_cgroup_is_descendant(task_memcg, memcg);
  1035. css_put(&task_memcg->css);
  1036. return ret;
  1037. }
  1038. /**
  1039. * mem_cgroup_margin - calculate chargeable space of a memory cgroup
  1040. * @memcg: the memory cgroup
  1041. *
  1042. * Returns the maximum amount of memory @mem can be charged with, in
  1043. * pages.
  1044. */
  1045. static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
  1046. {
  1047. unsigned long margin = 0;
  1048. unsigned long count;
  1049. unsigned long limit;
  1050. count = page_counter_read(&memcg->memory);
  1051. limit = READ_ONCE(memcg->memory.max);
  1052. if (count < limit)
  1053. margin = limit - count;
  1054. if (do_memsw_account()) {
  1055. count = page_counter_read(&memcg->memsw);
  1056. limit = READ_ONCE(memcg->memsw.max);
  1057. if (count <= limit)
  1058. margin = min(margin, limit - count);
  1059. else
  1060. margin = 0;
  1061. }
  1062. return margin;
  1063. }
  1064. /*
  1065. * A routine for checking "mem" is under move_account() or not.
  1066. *
  1067. * Checking a cgroup is mc.from or mc.to or under hierarchy of
  1068. * moving cgroups. This is for waiting at high-memory pressure
  1069. * caused by "move".
  1070. */
  1071. static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
  1072. {
  1073. struct mem_cgroup *from;
  1074. struct mem_cgroup *to;
  1075. bool ret = false;
  1076. /*
  1077. * Unlike task_move routines, we access mc.to, mc.from not under
  1078. * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
  1079. */
  1080. spin_lock(&mc.lock);
  1081. from = mc.from;
  1082. to = mc.to;
  1083. if (!from)
  1084. goto unlock;
  1085. ret = mem_cgroup_is_descendant(from, memcg) ||
  1086. mem_cgroup_is_descendant(to, memcg);
  1087. unlock:
  1088. spin_unlock(&mc.lock);
  1089. return ret;
  1090. }
  1091. static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
  1092. {
  1093. if (mc.moving_task && current != mc.moving_task) {
  1094. if (mem_cgroup_under_move(memcg)) {
  1095. DEFINE_WAIT(wait);
  1096. prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
  1097. /* moving charge context might have finished. */
  1098. if (mc.moving_task)
  1099. schedule();
  1100. finish_wait(&mc.waitq, &wait);
  1101. return true;
  1102. }
  1103. }
  1104. return false;
  1105. }
  1106. static const unsigned int memcg1_stats[] = {
  1107. MEMCG_CACHE,
  1108. MEMCG_RSS,
  1109. MEMCG_RSS_HUGE,
  1110. NR_SHMEM,
  1111. NR_FILE_MAPPED,
  1112. NR_FILE_DIRTY,
  1113. NR_WRITEBACK,
  1114. MEMCG_SWAP,
  1115. };
  1116. static const char *const memcg1_stat_names[] = {
  1117. "cache",
  1118. "rss",
  1119. "rss_huge",
  1120. "shmem",
  1121. "mapped_file",
  1122. "dirty",
  1123. "writeback",
  1124. "swap",
  1125. };
  1126. #define K(x) ((x) << (PAGE_SHIFT-10))
  1127. /**
  1128. * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
  1129. * @memcg: The memory cgroup that went over limit
  1130. * @p: Task that is going to be killed
  1131. *
  1132. * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
  1133. * enabled
  1134. */
  1135. void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
  1136. {
  1137. struct mem_cgroup *iter;
  1138. unsigned int i;
  1139. rcu_read_lock();
  1140. if (p) {
  1141. pr_info("Task in ");
  1142. pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
  1143. pr_cont(" killed as a result of limit of ");
  1144. } else {
  1145. pr_info("Memory limit reached of cgroup ");
  1146. }
  1147. pr_cont_cgroup_path(memcg->css.cgroup);
  1148. pr_cont("\n");
  1149. rcu_read_unlock();
  1150. pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
  1151. K((u64)page_counter_read(&memcg->memory)),
  1152. K((u64)memcg->memory.max), memcg->memory.failcnt);
  1153. pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
  1154. K((u64)page_counter_read(&memcg->memsw)),
  1155. K((u64)memcg->memsw.max), memcg->memsw.failcnt);
  1156. pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
  1157. K((u64)page_counter_read(&memcg->kmem)),
  1158. K((u64)memcg->kmem.max), memcg->kmem.failcnt);
  1159. for_each_mem_cgroup_tree(iter, memcg) {
  1160. pr_info("Memory cgroup stats for ");
  1161. pr_cont_cgroup_path(iter->css.cgroup);
  1162. pr_cont(":");
  1163. for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
  1164. if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
  1165. continue;
  1166. pr_cont(" %s:%luKB", memcg1_stat_names[i],
  1167. K(memcg_page_state(iter, memcg1_stats[i])));
  1168. }
  1169. for (i = 0; i < NR_LRU_LISTS; i++)
  1170. pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
  1171. K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
  1172. pr_cont("\n");
  1173. }
  1174. }
  1175. /*
  1176. * Return the memory (and swap, if configured) limit for a memcg.
  1177. */
  1178. unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
  1179. {
  1180. unsigned long max;
  1181. max = memcg->memory.max;
  1182. if (mem_cgroup_swappiness(memcg)) {
  1183. unsigned long memsw_max;
  1184. unsigned long swap_max;
  1185. memsw_max = memcg->memsw.max;
  1186. swap_max = memcg->swap.max;
  1187. swap_max = min(swap_max, (unsigned long)total_swap_pages);
  1188. max = min(max + swap_max, memsw_max);
  1189. }
  1190. return max;
  1191. }
  1192. static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
  1193. int order)
  1194. {
  1195. struct oom_control oc = {
  1196. .zonelist = NULL,
  1197. .nodemask = NULL,
  1198. .memcg = memcg,
  1199. .gfp_mask = gfp_mask,
  1200. .order = order,
  1201. };
  1202. bool ret;
  1203. mutex_lock(&oom_lock);
  1204. ret = out_of_memory(&oc);
  1205. mutex_unlock(&oom_lock);
  1206. return ret;
  1207. }
  1208. #if MAX_NUMNODES > 1
  1209. /**
  1210. * test_mem_cgroup_node_reclaimable
  1211. * @memcg: the target memcg
  1212. * @nid: the node ID to be checked.
  1213. * @noswap : specify true here if the user wants flle only information.
  1214. *
  1215. * This function returns whether the specified memcg contains any
  1216. * reclaimable pages on a node. Returns true if there are any reclaimable
  1217. * pages in the node.
  1218. */
  1219. static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
  1220. int nid, bool noswap)
  1221. {
  1222. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
  1223. return true;
  1224. if (noswap || !total_swap_pages)
  1225. return false;
  1226. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
  1227. return true;
  1228. return false;
  1229. }
  1230. /*
  1231. * Always updating the nodemask is not very good - even if we have an empty
  1232. * list or the wrong list here, we can start from some node and traverse all
  1233. * nodes based on the zonelist. So update the list loosely once per 10 secs.
  1234. *
  1235. */
  1236. static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
  1237. {
  1238. int nid;
  1239. /*
  1240. * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
  1241. * pagein/pageout changes since the last update.
  1242. */
  1243. if (!atomic_read(&memcg->numainfo_events))
  1244. return;
  1245. if (atomic_inc_return(&memcg->numainfo_updating) > 1)
  1246. return;
  1247. /* make a nodemask where this memcg uses memory from */
  1248. memcg->scan_nodes = node_states[N_MEMORY];
  1249. for_each_node_mask(nid, node_states[N_MEMORY]) {
  1250. if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
  1251. node_clear(nid, memcg->scan_nodes);
  1252. }
  1253. atomic_set(&memcg->numainfo_events, 0);
  1254. atomic_set(&memcg->numainfo_updating, 0);
  1255. }
  1256. /*
  1257. * Selecting a node where we start reclaim from. Because what we need is just
  1258. * reducing usage counter, start from anywhere is O,K. Considering
  1259. * memory reclaim from current node, there are pros. and cons.
  1260. *
  1261. * Freeing memory from current node means freeing memory from a node which
  1262. * we'll use or we've used. So, it may make LRU bad. And if several threads
  1263. * hit limits, it will see a contention on a node. But freeing from remote
  1264. * node means more costs for memory reclaim because of memory latency.
  1265. *
  1266. * Now, we use round-robin. Better algorithm is welcomed.
  1267. */
  1268. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1269. {
  1270. int node;
  1271. mem_cgroup_may_update_nodemask(memcg);
  1272. node = memcg->last_scanned_node;
  1273. node = next_node_in(node, memcg->scan_nodes);
  1274. /*
  1275. * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
  1276. * last time it really checked all the LRUs due to rate limiting.
  1277. * Fallback to the current node in that case for simplicity.
  1278. */
  1279. if (unlikely(node == MAX_NUMNODES))
  1280. node = numa_node_id();
  1281. memcg->last_scanned_node = node;
  1282. return node;
  1283. }
  1284. #else
  1285. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1286. {
  1287. return 0;
  1288. }
  1289. #endif
  1290. static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
  1291. pg_data_t *pgdat,
  1292. gfp_t gfp_mask,
  1293. unsigned long *total_scanned)
  1294. {
  1295. struct mem_cgroup *victim = NULL;
  1296. int total = 0;
  1297. int loop = 0;
  1298. unsigned long excess;
  1299. unsigned long nr_scanned;
  1300. struct mem_cgroup_reclaim_cookie reclaim = {
  1301. .pgdat = pgdat,
  1302. .priority = 0,
  1303. };
  1304. excess = soft_limit_excess(root_memcg);
  1305. while (1) {
  1306. victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
  1307. if (!victim) {
  1308. loop++;
  1309. if (loop >= 2) {
  1310. /*
  1311. * If we have not been able to reclaim
  1312. * anything, it might because there are
  1313. * no reclaimable pages under this hierarchy
  1314. */
  1315. if (!total)
  1316. break;
  1317. /*
  1318. * We want to do more targeted reclaim.
  1319. * excess >> 2 is not to excessive so as to
  1320. * reclaim too much, nor too less that we keep
  1321. * coming back to reclaim from this cgroup
  1322. */
  1323. if (total >= (excess >> 2) ||
  1324. (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
  1325. break;
  1326. }
  1327. continue;
  1328. }
  1329. total += mem_cgroup_shrink_node(victim, gfp_mask, false,
  1330. pgdat, &nr_scanned);
  1331. *total_scanned += nr_scanned;
  1332. if (!soft_limit_excess(root_memcg))
  1333. break;
  1334. }
  1335. mem_cgroup_iter_break(root_memcg, victim);
  1336. return total;
  1337. }
  1338. #ifdef CONFIG_LOCKDEP
  1339. static struct lockdep_map memcg_oom_lock_dep_map = {
  1340. .name = "memcg_oom_lock",
  1341. };
  1342. #endif
  1343. static DEFINE_SPINLOCK(memcg_oom_lock);
  1344. /*
  1345. * Check OOM-Killer is already running under our hierarchy.
  1346. * If someone is running, return false.
  1347. */
  1348. static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
  1349. {
  1350. struct mem_cgroup *iter, *failed = NULL;
  1351. spin_lock(&memcg_oom_lock);
  1352. for_each_mem_cgroup_tree(iter, memcg) {
  1353. if (iter->oom_lock) {
  1354. /*
  1355. * this subtree of our hierarchy is already locked
  1356. * so we cannot give a lock.
  1357. */
  1358. failed = iter;
  1359. mem_cgroup_iter_break(memcg, iter);
  1360. break;
  1361. } else
  1362. iter->oom_lock = true;
  1363. }
  1364. if (failed) {
  1365. /*
  1366. * OK, we failed to lock the whole subtree so we have
  1367. * to clean up what we set up to the failing subtree
  1368. */
  1369. for_each_mem_cgroup_tree(iter, memcg) {
  1370. if (iter == failed) {
  1371. mem_cgroup_iter_break(memcg, iter);
  1372. break;
  1373. }
  1374. iter->oom_lock = false;
  1375. }
  1376. } else
  1377. mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
  1378. spin_unlock(&memcg_oom_lock);
  1379. return !failed;
  1380. }
  1381. static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
  1382. {
  1383. struct mem_cgroup *iter;
  1384. spin_lock(&memcg_oom_lock);
  1385. mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
  1386. for_each_mem_cgroup_tree(iter, memcg)
  1387. iter->oom_lock = false;
  1388. spin_unlock(&memcg_oom_lock);
  1389. }
  1390. static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
  1391. {
  1392. struct mem_cgroup *iter;
  1393. spin_lock(&memcg_oom_lock);
  1394. for_each_mem_cgroup_tree(iter, memcg)
  1395. iter->under_oom++;
  1396. spin_unlock(&memcg_oom_lock);
  1397. }
  1398. static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
  1399. {
  1400. struct mem_cgroup *iter;
  1401. /*
  1402. * When a new child is created while the hierarchy is under oom,
  1403. * mem_cgroup_oom_lock() may not be called. Watch for underflow.
  1404. */
  1405. spin_lock(&memcg_oom_lock);
  1406. for_each_mem_cgroup_tree(iter, memcg)
  1407. if (iter->under_oom > 0)
  1408. iter->under_oom--;
  1409. spin_unlock(&memcg_oom_lock);
  1410. }
  1411. static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
  1412. struct oom_wait_info {
  1413. struct mem_cgroup *memcg;
  1414. wait_queue_entry_t wait;
  1415. };
  1416. static int memcg_oom_wake_function(wait_queue_entry_t *wait,
  1417. unsigned mode, int sync, void *arg)
  1418. {
  1419. struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
  1420. struct mem_cgroup *oom_wait_memcg;
  1421. struct oom_wait_info *oom_wait_info;
  1422. oom_wait_info = container_of(wait, struct oom_wait_info, wait);
  1423. oom_wait_memcg = oom_wait_info->memcg;
  1424. if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
  1425. !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
  1426. return 0;
  1427. return autoremove_wake_function(wait, mode, sync, arg);
  1428. }
  1429. static void memcg_oom_recover(struct mem_cgroup *memcg)
  1430. {
  1431. /*
  1432. * For the following lockless ->under_oom test, the only required
  1433. * guarantee is that it must see the state asserted by an OOM when
  1434. * this function is called as a result of userland actions
  1435. * triggered by the notification of the OOM. This is trivially
  1436. * achieved by invoking mem_cgroup_mark_under_oom() before
  1437. * triggering notification.
  1438. */
  1439. if (memcg && memcg->under_oom)
  1440. __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
  1441. }
  1442. enum oom_status {
  1443. OOM_SUCCESS,
  1444. OOM_FAILED,
  1445. OOM_ASYNC,
  1446. OOM_SKIPPED
  1447. };
  1448. static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
  1449. {
  1450. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1451. return OOM_SKIPPED;
  1452. memcg_memory_event(memcg, MEMCG_OOM);
  1453. /*
  1454. * We are in the middle of the charge context here, so we
  1455. * don't want to block when potentially sitting on a callstack
  1456. * that holds all kinds of filesystem and mm locks.
  1457. *
  1458. * cgroup1 allows disabling the OOM killer and waiting for outside
  1459. * handling until the charge can succeed; remember the context and put
  1460. * the task to sleep at the end of the page fault when all locks are
  1461. * released.
  1462. *
  1463. * On the other hand, in-kernel OOM killer allows for an async victim
  1464. * memory reclaim (oom_reaper) and that means that we are not solely
  1465. * relying on the oom victim to make a forward progress and we can
  1466. * invoke the oom killer here.
  1467. *
  1468. * Please note that mem_cgroup_out_of_memory might fail to find a
  1469. * victim and then we have to bail out from the charge path.
  1470. */
  1471. if (memcg->oom_kill_disable) {
  1472. if (!current->in_user_fault)
  1473. return OOM_SKIPPED;
  1474. css_get(&memcg->css);
  1475. current->memcg_in_oom = memcg;
  1476. current->memcg_oom_gfp_mask = mask;
  1477. current->memcg_oom_order = order;
  1478. return OOM_ASYNC;
  1479. }
  1480. if (mem_cgroup_out_of_memory(memcg, mask, order))
  1481. return OOM_SUCCESS;
  1482. return OOM_FAILED;
  1483. }
  1484. /**
  1485. * mem_cgroup_oom_synchronize - complete memcg OOM handling
  1486. * @handle: actually kill/wait or just clean up the OOM state
  1487. *
  1488. * This has to be called at the end of a page fault if the memcg OOM
  1489. * handler was enabled.
  1490. *
  1491. * Memcg supports userspace OOM handling where failed allocations must
  1492. * sleep on a waitqueue until the userspace task resolves the
  1493. * situation. Sleeping directly in the charge context with all kinds
  1494. * of locks held is not a good idea, instead we remember an OOM state
  1495. * in the task and mem_cgroup_oom_synchronize() has to be called at
  1496. * the end of the page fault to complete the OOM handling.
  1497. *
  1498. * Returns %true if an ongoing memcg OOM situation was detected and
  1499. * completed, %false otherwise.
  1500. */
  1501. bool mem_cgroup_oom_synchronize(bool handle)
  1502. {
  1503. struct mem_cgroup *memcg = current->memcg_in_oom;
  1504. struct oom_wait_info owait;
  1505. bool locked;
  1506. /* OOM is global, do not handle */
  1507. if (!memcg)
  1508. return false;
  1509. if (!handle)
  1510. goto cleanup;
  1511. owait.memcg = memcg;
  1512. owait.wait.flags = 0;
  1513. owait.wait.func = memcg_oom_wake_function;
  1514. owait.wait.private = current;
  1515. INIT_LIST_HEAD(&owait.wait.entry);
  1516. prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
  1517. mem_cgroup_mark_under_oom(memcg);
  1518. locked = mem_cgroup_oom_trylock(memcg);
  1519. if (locked)
  1520. mem_cgroup_oom_notify(memcg);
  1521. if (locked && !memcg->oom_kill_disable) {
  1522. mem_cgroup_unmark_under_oom(memcg);
  1523. finish_wait(&memcg_oom_waitq, &owait.wait);
  1524. mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
  1525. current->memcg_oom_order);
  1526. } else {
  1527. schedule();
  1528. mem_cgroup_unmark_under_oom(memcg);
  1529. finish_wait(&memcg_oom_waitq, &owait.wait);
  1530. }
  1531. if (locked) {
  1532. mem_cgroup_oom_unlock(memcg);
  1533. /*
  1534. * There is no guarantee that an OOM-lock contender
  1535. * sees the wakeups triggered by the OOM kill
  1536. * uncharges. Wake any sleepers explicitely.
  1537. */
  1538. memcg_oom_recover(memcg);
  1539. }
  1540. cleanup:
  1541. current->memcg_in_oom = NULL;
  1542. css_put(&memcg->css);
  1543. return true;
  1544. }
  1545. /**
  1546. * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
  1547. * @victim: task to be killed by the OOM killer
  1548. * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
  1549. *
  1550. * Returns a pointer to a memory cgroup, which has to be cleaned up
  1551. * by killing all belonging OOM-killable tasks.
  1552. *
  1553. * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
  1554. */
  1555. struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
  1556. struct mem_cgroup *oom_domain)
  1557. {
  1558. struct mem_cgroup *oom_group = NULL;
  1559. struct mem_cgroup *memcg;
  1560. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
  1561. return NULL;
  1562. if (!oom_domain)
  1563. oom_domain = root_mem_cgroup;
  1564. rcu_read_lock();
  1565. memcg = mem_cgroup_from_task(victim);
  1566. if (memcg == root_mem_cgroup)
  1567. goto out;
  1568. /*
  1569. * Traverse the memory cgroup hierarchy from the victim task's
  1570. * cgroup up to the OOMing cgroup (or root) to find the
  1571. * highest-level memory cgroup with oom.group set.
  1572. */
  1573. for (; memcg; memcg = parent_mem_cgroup(memcg)) {
  1574. if (memcg->oom_group)
  1575. oom_group = memcg;
  1576. if (memcg == oom_domain)
  1577. break;
  1578. }
  1579. if (oom_group)
  1580. css_get(&oom_group->css);
  1581. out:
  1582. rcu_read_unlock();
  1583. return oom_group;
  1584. }
  1585. void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
  1586. {
  1587. pr_info("Tasks in ");
  1588. pr_cont_cgroup_path(memcg->css.cgroup);
  1589. pr_cont(" are going to be killed due to memory.oom.group set\n");
  1590. }
  1591. /**
  1592. * lock_page_memcg - lock a page->mem_cgroup binding
  1593. * @page: the page
  1594. *
  1595. * This function protects unlocked LRU pages from being moved to
  1596. * another cgroup.
  1597. *
  1598. * It ensures lifetime of the returned memcg. Caller is responsible
  1599. * for the lifetime of the page; __unlock_page_memcg() is available
  1600. * when @page might get freed inside the locked section.
  1601. */
  1602. struct mem_cgroup *lock_page_memcg(struct page *page)
  1603. {
  1604. struct mem_cgroup *memcg;
  1605. unsigned long flags;
  1606. /*
  1607. * The RCU lock is held throughout the transaction. The fast
  1608. * path can get away without acquiring the memcg->move_lock
  1609. * because page moving starts with an RCU grace period.
  1610. *
  1611. * The RCU lock also protects the memcg from being freed when
  1612. * the page state that is going to change is the only thing
  1613. * preventing the page itself from being freed. E.g. writeback
  1614. * doesn't hold a page reference and relies on PG_writeback to
  1615. * keep off truncation, migration and so forth.
  1616. */
  1617. rcu_read_lock();
  1618. if (mem_cgroup_disabled())
  1619. return NULL;
  1620. again:
  1621. memcg = page->mem_cgroup;
  1622. if (unlikely(!memcg))
  1623. return NULL;
  1624. if (atomic_read(&memcg->moving_account) <= 0)
  1625. return memcg;
  1626. spin_lock_irqsave(&memcg->move_lock, flags);
  1627. if (memcg != page->mem_cgroup) {
  1628. spin_unlock_irqrestore(&memcg->move_lock, flags);
  1629. goto again;
  1630. }
  1631. /*
  1632. * When charge migration first begins, we can have locked and
  1633. * unlocked page stat updates happening concurrently. Track
  1634. * the task who has the lock for unlock_page_memcg().
  1635. */
  1636. memcg->move_lock_task = current;
  1637. memcg->move_lock_flags = flags;
  1638. return memcg;
  1639. }
  1640. EXPORT_SYMBOL(lock_page_memcg);
  1641. /**
  1642. * __unlock_page_memcg - unlock and unpin a memcg
  1643. * @memcg: the memcg
  1644. *
  1645. * Unlock and unpin a memcg returned by lock_page_memcg().
  1646. */
  1647. void __unlock_page_memcg(struct mem_cgroup *memcg)
  1648. {
  1649. if (memcg && memcg->move_lock_task == current) {
  1650. unsigned long flags = memcg->move_lock_flags;
  1651. memcg->move_lock_task = NULL;
  1652. memcg->move_lock_flags = 0;
  1653. spin_unlock_irqrestore(&memcg->move_lock, flags);
  1654. }
  1655. rcu_read_unlock();
  1656. }
  1657. /**
  1658. * unlock_page_memcg - unlock a page->mem_cgroup binding
  1659. * @page: the page
  1660. */
  1661. void unlock_page_memcg(struct page *page)
  1662. {
  1663. __unlock_page_memcg(page->mem_cgroup);
  1664. }
  1665. EXPORT_SYMBOL(unlock_page_memcg);
  1666. struct memcg_stock_pcp {
  1667. struct mem_cgroup *cached; /* this never be root cgroup */
  1668. unsigned int nr_pages;
  1669. struct work_struct work;
  1670. unsigned long flags;
  1671. #define FLUSHING_CACHED_CHARGE 0
  1672. };
  1673. static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
  1674. static DEFINE_MUTEX(percpu_charge_mutex);
  1675. /**
  1676. * consume_stock: Try to consume stocked charge on this cpu.
  1677. * @memcg: memcg to consume from.
  1678. * @nr_pages: how many pages to charge.
  1679. *
  1680. * The charges will only happen if @memcg matches the current cpu's memcg
  1681. * stock, and at least @nr_pages are available in that stock. Failure to
  1682. * service an allocation will refill the stock.
  1683. *
  1684. * returns true if successful, false otherwise.
  1685. */
  1686. static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  1687. {
  1688. struct memcg_stock_pcp *stock;
  1689. unsigned long flags;
  1690. bool ret = false;
  1691. if (nr_pages > MEMCG_CHARGE_BATCH)
  1692. return ret;
  1693. local_irq_save(flags);
  1694. stock = this_cpu_ptr(&memcg_stock);
  1695. if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
  1696. stock->nr_pages -= nr_pages;
  1697. ret = true;
  1698. }
  1699. local_irq_restore(flags);
  1700. return ret;
  1701. }
  1702. /*
  1703. * Returns stocks cached in percpu and reset cached information.
  1704. */
  1705. static void drain_stock(struct memcg_stock_pcp *stock)
  1706. {
  1707. struct mem_cgroup *old = stock->cached;
  1708. if (stock->nr_pages) {
  1709. page_counter_uncharge(&old->memory, stock->nr_pages);
  1710. if (do_memsw_account())
  1711. page_counter_uncharge(&old->memsw, stock->nr_pages);
  1712. css_put_many(&old->css, stock->nr_pages);
  1713. stock->nr_pages = 0;
  1714. }
  1715. stock->cached = NULL;
  1716. }
  1717. static void drain_local_stock(struct work_struct *dummy)
  1718. {
  1719. struct memcg_stock_pcp *stock;
  1720. unsigned long flags;
  1721. /*
  1722. * The only protection from memory hotplug vs. drain_stock races is
  1723. * that we always operate on local CPU stock here with IRQ disabled
  1724. */
  1725. local_irq_save(flags);
  1726. stock = this_cpu_ptr(&memcg_stock);
  1727. drain_stock(stock);
  1728. clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
  1729. local_irq_restore(flags);
  1730. }
  1731. /*
  1732. * Cache charges(val) to local per_cpu area.
  1733. * This will be consumed by consume_stock() function, later.
  1734. */
  1735. static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  1736. {
  1737. struct memcg_stock_pcp *stock;
  1738. unsigned long flags;
  1739. local_irq_save(flags);
  1740. stock = this_cpu_ptr(&memcg_stock);
  1741. if (stock->cached != memcg) { /* reset if necessary */
  1742. drain_stock(stock);
  1743. stock->cached = memcg;
  1744. }
  1745. stock->nr_pages += nr_pages;
  1746. if (stock->nr_pages > MEMCG_CHARGE_BATCH)
  1747. drain_stock(stock);
  1748. local_irq_restore(flags);
  1749. }
  1750. /*
  1751. * Drains all per-CPU charge caches for given root_memcg resp. subtree
  1752. * of the hierarchy under it.
  1753. */
  1754. static void drain_all_stock(struct mem_cgroup *root_memcg)
  1755. {
  1756. int cpu, curcpu;
  1757. /* If someone's already draining, avoid adding running more workers. */
  1758. if (!mutex_trylock(&percpu_charge_mutex))
  1759. return;
  1760. /*
  1761. * Notify other cpus that system-wide "drain" is running
  1762. * We do not care about races with the cpu hotplug because cpu down
  1763. * as well as workers from this path always operate on the local
  1764. * per-cpu data. CPU up doesn't touch memcg_stock at all.
  1765. */
  1766. curcpu = get_cpu();
  1767. for_each_online_cpu(cpu) {
  1768. struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
  1769. struct mem_cgroup *memcg;
  1770. memcg = stock->cached;
  1771. if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
  1772. continue;
  1773. if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
  1774. css_put(&memcg->css);
  1775. continue;
  1776. }
  1777. if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
  1778. if (cpu == curcpu)
  1779. drain_local_stock(&stock->work);
  1780. else
  1781. schedule_work_on(cpu, &stock->work);
  1782. }
  1783. css_put(&memcg->css);
  1784. }
  1785. put_cpu();
  1786. mutex_unlock(&percpu_charge_mutex);
  1787. }
  1788. static int memcg_hotplug_cpu_dead(unsigned int cpu)
  1789. {
  1790. struct memcg_stock_pcp *stock;
  1791. struct mem_cgroup *memcg;
  1792. stock = &per_cpu(memcg_stock, cpu);
  1793. drain_stock(stock);
  1794. for_each_mem_cgroup(memcg) {
  1795. int i;
  1796. for (i = 0; i < MEMCG_NR_STAT; i++) {
  1797. int nid;
  1798. long x;
  1799. x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
  1800. if (x)
  1801. atomic_long_add(x, &memcg->stat[i]);
  1802. if (i >= NR_VM_NODE_STAT_ITEMS)
  1803. continue;
  1804. for_each_node(nid) {
  1805. struct mem_cgroup_per_node *pn;
  1806. pn = mem_cgroup_nodeinfo(memcg, nid);
  1807. x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
  1808. if (x)
  1809. atomic_long_add(x, &pn->lruvec_stat[i]);
  1810. }
  1811. }
  1812. for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
  1813. long x;
  1814. x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
  1815. if (x)
  1816. atomic_long_add(x, &memcg->events[i]);
  1817. }
  1818. }
  1819. return 0;
  1820. }
  1821. static void reclaim_high(struct mem_cgroup *memcg,
  1822. unsigned int nr_pages,
  1823. gfp_t gfp_mask)
  1824. {
  1825. do {
  1826. if (page_counter_read(&memcg->memory) <= memcg->high)
  1827. continue;
  1828. memcg_memory_event(memcg, MEMCG_HIGH);
  1829. try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
  1830. } while ((memcg = parent_mem_cgroup(memcg)));
  1831. }
  1832. static void high_work_func(struct work_struct *work)
  1833. {
  1834. struct mem_cgroup *memcg;
  1835. memcg = container_of(work, struct mem_cgroup, high_work);
  1836. reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
  1837. }
  1838. /*
  1839. * Scheduled by try_charge() to be executed from the userland return path
  1840. * and reclaims memory over the high limit.
  1841. */
  1842. void mem_cgroup_handle_over_high(void)
  1843. {
  1844. unsigned int nr_pages = current->memcg_nr_pages_over_high;
  1845. struct mem_cgroup *memcg;
  1846. if (likely(!nr_pages))
  1847. return;
  1848. memcg = get_mem_cgroup_from_mm(current->mm);
  1849. reclaim_high(memcg, nr_pages, GFP_KERNEL);
  1850. css_put(&memcg->css);
  1851. current->memcg_nr_pages_over_high = 0;
  1852. }
  1853. static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
  1854. unsigned int nr_pages)
  1855. {
  1856. unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
  1857. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  1858. struct mem_cgroup *mem_over_limit;
  1859. struct page_counter *counter;
  1860. unsigned long nr_reclaimed;
  1861. bool may_swap = true;
  1862. bool drained = false;
  1863. bool oomed = false;
  1864. enum oom_status oom_status;
  1865. if (mem_cgroup_is_root(memcg))
  1866. return 0;
  1867. retry:
  1868. if (consume_stock(memcg, nr_pages))
  1869. return 0;
  1870. if (!do_memsw_account() ||
  1871. page_counter_try_charge(&memcg->memsw, batch, &counter)) {
  1872. if (page_counter_try_charge(&memcg->memory, batch, &counter))
  1873. goto done_restock;
  1874. if (do_memsw_account())
  1875. page_counter_uncharge(&memcg->memsw, batch);
  1876. mem_over_limit = mem_cgroup_from_counter(counter, memory);
  1877. } else {
  1878. mem_over_limit = mem_cgroup_from_counter(counter, memsw);
  1879. may_swap = false;
  1880. }
  1881. if (batch > nr_pages) {
  1882. batch = nr_pages;
  1883. goto retry;
  1884. }
  1885. /*
  1886. * Unlike in global OOM situations, memcg is not in a physical
  1887. * memory shortage. Allow dying and OOM-killed tasks to
  1888. * bypass the last charges so that they can exit quickly and
  1889. * free their memory.
  1890. */
  1891. if (unlikely(tsk_is_oom_victim(current) ||
  1892. fatal_signal_pending(current) ||
  1893. current->flags & PF_EXITING))
  1894. goto force;
  1895. /*
  1896. * Prevent unbounded recursion when reclaim operations need to
  1897. * allocate memory. This might exceed the limits temporarily,
  1898. * but we prefer facilitating memory reclaim and getting back
  1899. * under the limit over triggering OOM kills in these cases.
  1900. */
  1901. if (unlikely(current->flags & PF_MEMALLOC))
  1902. goto force;
  1903. if (unlikely(task_in_memcg_oom(current)))
  1904. goto nomem;
  1905. if (!gfpflags_allow_blocking(gfp_mask))
  1906. goto nomem;
  1907. memcg_memory_event(mem_over_limit, MEMCG_MAX);
  1908. nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
  1909. gfp_mask, may_swap);
  1910. if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
  1911. goto retry;
  1912. if (!drained) {
  1913. drain_all_stock(mem_over_limit);
  1914. drained = true;
  1915. goto retry;
  1916. }
  1917. if (gfp_mask & __GFP_NORETRY)
  1918. goto nomem;
  1919. /*
  1920. * Even though the limit is exceeded at this point, reclaim
  1921. * may have been able to free some pages. Retry the charge
  1922. * before killing the task.
  1923. *
  1924. * Only for regular pages, though: huge pages are rather
  1925. * unlikely to succeed so close to the limit, and we fall back
  1926. * to regular pages anyway in case of failure.
  1927. */
  1928. if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
  1929. goto retry;
  1930. /*
  1931. * At task move, charge accounts can be doubly counted. So, it's
  1932. * better to wait until the end of task_move if something is going on.
  1933. */
  1934. if (mem_cgroup_wait_acct_move(mem_over_limit))
  1935. goto retry;
  1936. if (nr_retries--)
  1937. goto retry;
  1938. if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
  1939. goto nomem;
  1940. if (gfp_mask & __GFP_NOFAIL)
  1941. goto force;
  1942. if (fatal_signal_pending(current))
  1943. goto force;
  1944. /*
  1945. * keep retrying as long as the memcg oom killer is able to make
  1946. * a forward progress or bypass the charge if the oom killer
  1947. * couldn't make any progress.
  1948. */
  1949. oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
  1950. get_order(nr_pages * PAGE_SIZE));
  1951. switch (oom_status) {
  1952. case OOM_SUCCESS:
  1953. nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  1954. oomed = true;
  1955. goto retry;
  1956. case OOM_FAILED:
  1957. goto force;
  1958. default:
  1959. goto nomem;
  1960. }
  1961. nomem:
  1962. if (!(gfp_mask & __GFP_NOFAIL))
  1963. return -ENOMEM;
  1964. force:
  1965. /*
  1966. * The allocation either can't fail or will lead to more memory
  1967. * being freed very soon. Allow memory usage go over the limit
  1968. * temporarily by force charging it.
  1969. */
  1970. page_counter_charge(&memcg->memory, nr_pages);
  1971. if (do_memsw_account())
  1972. page_counter_charge(&memcg->memsw, nr_pages);
  1973. css_get_many(&memcg->css, nr_pages);
  1974. return 0;
  1975. done_restock:
  1976. css_get_many(&memcg->css, batch);
  1977. if (batch > nr_pages)
  1978. refill_stock(memcg, batch - nr_pages);
  1979. /*
  1980. * If the hierarchy is above the normal consumption range, schedule
  1981. * reclaim on returning to userland. We can perform reclaim here
  1982. * if __GFP_RECLAIM but let's always punt for simplicity and so that
  1983. * GFP_KERNEL can consistently be used during reclaim. @memcg is
  1984. * not recorded as it most likely matches current's and won't
  1985. * change in the meantime. As high limit is checked again before
  1986. * reclaim, the cost of mismatch is negligible.
  1987. */
  1988. do {
  1989. if (page_counter_read(&memcg->memory) > memcg->high) {
  1990. /* Don't bother a random interrupted task */
  1991. if (in_interrupt()) {
  1992. schedule_work(&memcg->high_work);
  1993. break;
  1994. }
  1995. current->memcg_nr_pages_over_high += batch;
  1996. set_notify_resume(current);
  1997. break;
  1998. }
  1999. } while ((memcg = parent_mem_cgroup(memcg)));
  2000. return 0;
  2001. }
  2002. static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
  2003. {
  2004. if (mem_cgroup_is_root(memcg))
  2005. return;
  2006. page_counter_uncharge(&memcg->memory, nr_pages);
  2007. if (do_memsw_account())
  2008. page_counter_uncharge(&memcg->memsw, nr_pages);
  2009. css_put_many(&memcg->css, nr_pages);
  2010. }
  2011. static void lock_page_lru(struct page *page, int *isolated)
  2012. {
  2013. struct zone *zone = page_zone(page);
  2014. spin_lock_irq(zone_lru_lock(zone));
  2015. if (PageLRU(page)) {
  2016. struct lruvec *lruvec;
  2017. lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
  2018. ClearPageLRU(page);
  2019. del_page_from_lru_list(page, lruvec, page_lru(page));
  2020. *isolated = 1;
  2021. } else
  2022. *isolated = 0;
  2023. }
  2024. static void unlock_page_lru(struct page *page, int isolated)
  2025. {
  2026. struct zone *zone = page_zone(page);
  2027. if (isolated) {
  2028. struct lruvec *lruvec;
  2029. lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
  2030. VM_BUG_ON_PAGE(PageLRU(page), page);
  2031. SetPageLRU(page);
  2032. add_page_to_lru_list(page, lruvec, page_lru(page));
  2033. }
  2034. spin_unlock_irq(zone_lru_lock(zone));
  2035. }
  2036. static void commit_charge(struct page *page, struct mem_cgroup *memcg,
  2037. bool lrucare)
  2038. {
  2039. int isolated;
  2040. VM_BUG_ON_PAGE(page->mem_cgroup, page);
  2041. /*
  2042. * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
  2043. * may already be on some other mem_cgroup's LRU. Take care of it.
  2044. */
  2045. if (lrucare)
  2046. lock_page_lru(page, &isolated);
  2047. /*
  2048. * Nobody should be changing or seriously looking at
  2049. * page->mem_cgroup at this point:
  2050. *
  2051. * - the page is uncharged
  2052. *
  2053. * - the page is off-LRU
  2054. *
  2055. * - an anonymous fault has exclusive page access, except for
  2056. * a locked page table
  2057. *
  2058. * - a page cache insertion, a swapin fault, or a migration
  2059. * have the page locked
  2060. */
  2061. page->mem_cgroup = memcg;
  2062. if (lrucare)
  2063. unlock_page_lru(page, isolated);
  2064. }
  2065. #ifdef CONFIG_MEMCG_KMEM
  2066. static int memcg_alloc_cache_id(void)
  2067. {
  2068. int id, size;
  2069. int err;
  2070. id = ida_simple_get(&memcg_cache_ida,
  2071. 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
  2072. if (id < 0)
  2073. return id;
  2074. if (id < memcg_nr_cache_ids)
  2075. return id;
  2076. /*
  2077. * There's no space for the new id in memcg_caches arrays,
  2078. * so we have to grow them.
  2079. */
  2080. down_write(&memcg_cache_ids_sem);
  2081. size = 2 * (id + 1);
  2082. if (size < MEMCG_CACHES_MIN_SIZE)
  2083. size = MEMCG_CACHES_MIN_SIZE;
  2084. else if (size > MEMCG_CACHES_MAX_SIZE)
  2085. size = MEMCG_CACHES_MAX_SIZE;
  2086. err = memcg_update_all_caches(size);
  2087. if (!err)
  2088. err = memcg_update_all_list_lrus(size);
  2089. if (!err)
  2090. memcg_nr_cache_ids = size;
  2091. up_write(&memcg_cache_ids_sem);
  2092. if (err) {
  2093. ida_simple_remove(&memcg_cache_ida, id);
  2094. return err;
  2095. }
  2096. return id;
  2097. }
  2098. static void memcg_free_cache_id(int id)
  2099. {
  2100. ida_simple_remove(&memcg_cache_ida, id);
  2101. }
  2102. struct memcg_kmem_cache_create_work {
  2103. struct mem_cgroup *memcg;
  2104. struct kmem_cache *cachep;
  2105. struct work_struct work;
  2106. };
  2107. static void memcg_kmem_cache_create_func(struct work_struct *w)
  2108. {
  2109. struct memcg_kmem_cache_create_work *cw =
  2110. container_of(w, struct memcg_kmem_cache_create_work, work);
  2111. struct mem_cgroup *memcg = cw->memcg;
  2112. struct kmem_cache *cachep = cw->cachep;
  2113. memcg_create_kmem_cache(memcg, cachep);
  2114. css_put(&memcg->css);
  2115. kfree(cw);
  2116. }
  2117. /*
  2118. * Enqueue the creation of a per-memcg kmem_cache.
  2119. */
  2120. static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
  2121. struct kmem_cache *cachep)
  2122. {
  2123. struct memcg_kmem_cache_create_work *cw;
  2124. cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
  2125. if (!cw)
  2126. return;
  2127. css_get(&memcg->css);
  2128. cw->memcg = memcg;
  2129. cw->cachep = cachep;
  2130. INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
  2131. queue_work(memcg_kmem_cache_wq, &cw->work);
  2132. }
  2133. static inline bool memcg_kmem_bypass(void)
  2134. {
  2135. if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
  2136. return true;
  2137. return false;
  2138. }
  2139. /**
  2140. * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
  2141. * @cachep: the original global kmem cache
  2142. *
  2143. * Return the kmem_cache we're supposed to use for a slab allocation.
  2144. * We try to use the current memcg's version of the cache.
  2145. *
  2146. * If the cache does not exist yet, if we are the first user of it, we
  2147. * create it asynchronously in a workqueue and let the current allocation
  2148. * go through with the original cache.
  2149. *
  2150. * This function takes a reference to the cache it returns to assure it
  2151. * won't get destroyed while we are working with it. Once the caller is
  2152. * done with it, memcg_kmem_put_cache() must be called to release the
  2153. * reference.
  2154. */
  2155. struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
  2156. {
  2157. struct mem_cgroup *memcg;
  2158. struct kmem_cache *memcg_cachep;
  2159. int kmemcg_id;
  2160. VM_BUG_ON(!is_root_cache(cachep));
  2161. if (memcg_kmem_bypass())
  2162. return cachep;
  2163. memcg = get_mem_cgroup_from_current();
  2164. kmemcg_id = READ_ONCE(memcg->kmemcg_id);
  2165. if (kmemcg_id < 0)
  2166. goto out;
  2167. memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
  2168. if (likely(memcg_cachep))
  2169. return memcg_cachep;
  2170. /*
  2171. * If we are in a safe context (can wait, and not in interrupt
  2172. * context), we could be be predictable and return right away.
  2173. * This would guarantee that the allocation being performed
  2174. * already belongs in the new cache.
  2175. *
  2176. * However, there are some clashes that can arrive from locking.
  2177. * For instance, because we acquire the slab_mutex while doing
  2178. * memcg_create_kmem_cache, this means no further allocation
  2179. * could happen with the slab_mutex held. So it's better to
  2180. * defer everything.
  2181. */
  2182. memcg_schedule_kmem_cache_create(memcg, cachep);
  2183. out:
  2184. css_put(&memcg->css);
  2185. return cachep;
  2186. }
  2187. /**
  2188. * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
  2189. * @cachep: the cache returned by memcg_kmem_get_cache
  2190. */
  2191. void memcg_kmem_put_cache(struct kmem_cache *cachep)
  2192. {
  2193. if (!is_root_cache(cachep))
  2194. css_put(&cachep->memcg_params.memcg->css);
  2195. }
  2196. /**
  2197. * memcg_kmem_charge_memcg: charge a kmem page
  2198. * @page: page to charge
  2199. * @gfp: reclaim mode
  2200. * @order: allocation order
  2201. * @memcg: memory cgroup to charge
  2202. *
  2203. * Returns 0 on success, an error code on failure.
  2204. */
  2205. int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
  2206. struct mem_cgroup *memcg)
  2207. {
  2208. unsigned int nr_pages = 1 << order;
  2209. struct page_counter *counter;
  2210. int ret;
  2211. ret = try_charge(memcg, gfp, nr_pages);
  2212. if (ret)
  2213. return ret;
  2214. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
  2215. !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
  2216. cancel_charge(memcg, nr_pages);
  2217. return -ENOMEM;
  2218. }
  2219. page->mem_cgroup = memcg;
  2220. return 0;
  2221. }
  2222. /**
  2223. * memcg_kmem_charge: charge a kmem page to the current memory cgroup
  2224. * @page: page to charge
  2225. * @gfp: reclaim mode
  2226. * @order: allocation order
  2227. *
  2228. * Returns 0 on success, an error code on failure.
  2229. */
  2230. int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
  2231. {
  2232. struct mem_cgroup *memcg;
  2233. int ret = 0;
  2234. if (memcg_kmem_bypass())
  2235. return 0;
  2236. memcg = get_mem_cgroup_from_current();
  2237. if (!mem_cgroup_is_root(memcg)) {
  2238. ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
  2239. if (!ret)
  2240. __SetPageKmemcg(page);
  2241. }
  2242. css_put(&memcg->css);
  2243. return ret;
  2244. }
  2245. /**
  2246. * memcg_kmem_uncharge: uncharge a kmem page
  2247. * @page: page to uncharge
  2248. * @order: allocation order
  2249. */
  2250. void memcg_kmem_uncharge(struct page *page, int order)
  2251. {
  2252. struct mem_cgroup *memcg = page->mem_cgroup;
  2253. unsigned int nr_pages = 1 << order;
  2254. if (!memcg)
  2255. return;
  2256. VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
  2257. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
  2258. page_counter_uncharge(&memcg->kmem, nr_pages);
  2259. page_counter_uncharge(&memcg->memory, nr_pages);
  2260. if (do_memsw_account())
  2261. page_counter_uncharge(&memcg->memsw, nr_pages);
  2262. page->mem_cgroup = NULL;
  2263. /* slab pages do not have PageKmemcg flag set */
  2264. if (PageKmemcg(page))
  2265. __ClearPageKmemcg(page);
  2266. css_put_many(&memcg->css, nr_pages);
  2267. }
  2268. #endif /* CONFIG_MEMCG_KMEM */
  2269. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  2270. /*
  2271. * Because tail pages are not marked as "used", set it. We're under
  2272. * zone_lru_lock and migration entries setup in all page mappings.
  2273. */
  2274. void mem_cgroup_split_huge_fixup(struct page *head)
  2275. {
  2276. int i;
  2277. if (mem_cgroup_disabled())
  2278. return;
  2279. for (i = 1; i < HPAGE_PMD_NR; i++)
  2280. head[i].mem_cgroup = head->mem_cgroup;
  2281. __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
  2282. }
  2283. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  2284. #ifdef CONFIG_MEMCG_SWAP
  2285. /**
  2286. * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
  2287. * @entry: swap entry to be moved
  2288. * @from: mem_cgroup which the entry is moved from
  2289. * @to: mem_cgroup which the entry is moved to
  2290. *
  2291. * It succeeds only when the swap_cgroup's record for this entry is the same
  2292. * as the mem_cgroup's id of @from.
  2293. *
  2294. * Returns 0 on success, -EINVAL on failure.
  2295. *
  2296. * The caller must have charged to @to, IOW, called page_counter_charge() about
  2297. * both res and memsw, and called css_get().
  2298. */
  2299. static int mem_cgroup_move_swap_account(swp_entry_t entry,
  2300. struct mem_cgroup *from, struct mem_cgroup *to)
  2301. {
  2302. unsigned short old_id, new_id;
  2303. old_id = mem_cgroup_id(from);
  2304. new_id = mem_cgroup_id(to);
  2305. if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
  2306. mod_memcg_state(from, MEMCG_SWAP, -1);
  2307. mod_memcg_state(to, MEMCG_SWAP, 1);
  2308. return 0;
  2309. }
  2310. return -EINVAL;
  2311. }
  2312. #else
  2313. static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
  2314. struct mem_cgroup *from, struct mem_cgroup *to)
  2315. {
  2316. return -EINVAL;
  2317. }
  2318. #endif
  2319. static DEFINE_MUTEX(memcg_max_mutex);
  2320. static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
  2321. unsigned long max, bool memsw)
  2322. {
  2323. bool enlarge = false;
  2324. bool drained = false;
  2325. int ret;
  2326. bool limits_invariant;
  2327. struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
  2328. do {
  2329. if (signal_pending(current)) {
  2330. ret = -EINTR;
  2331. break;
  2332. }
  2333. mutex_lock(&memcg_max_mutex);
  2334. /*
  2335. * Make sure that the new limit (memsw or memory limit) doesn't
  2336. * break our basic invariant rule memory.max <= memsw.max.
  2337. */
  2338. limits_invariant = memsw ? max >= memcg->memory.max :
  2339. max <= memcg->memsw.max;
  2340. if (!limits_invariant) {
  2341. mutex_unlock(&memcg_max_mutex);
  2342. ret = -EINVAL;
  2343. break;
  2344. }
  2345. if (max > counter->max)
  2346. enlarge = true;
  2347. ret = page_counter_set_max(counter, max);
  2348. mutex_unlock(&memcg_max_mutex);
  2349. if (!ret)
  2350. break;
  2351. if (!drained) {
  2352. drain_all_stock(memcg);
  2353. drained = true;
  2354. continue;
  2355. }
  2356. if (!try_to_free_mem_cgroup_pages(memcg, 1,
  2357. GFP_KERNEL, !memsw)) {
  2358. ret = -EBUSY;
  2359. break;
  2360. }
  2361. } while (true);
  2362. if (!ret && enlarge)
  2363. memcg_oom_recover(memcg);
  2364. return ret;
  2365. }
  2366. unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
  2367. gfp_t gfp_mask,
  2368. unsigned long *total_scanned)
  2369. {
  2370. unsigned long nr_reclaimed = 0;
  2371. struct mem_cgroup_per_node *mz, *next_mz = NULL;
  2372. unsigned long reclaimed;
  2373. int loop = 0;
  2374. struct mem_cgroup_tree_per_node *mctz;
  2375. unsigned long excess;
  2376. unsigned long nr_scanned;
  2377. if (order > 0)
  2378. return 0;
  2379. mctz = soft_limit_tree_node(pgdat->node_id);
  2380. /*
  2381. * Do not even bother to check the largest node if the root
  2382. * is empty. Do it lockless to prevent lock bouncing. Races
  2383. * are acceptable as soft limit is best effort anyway.
  2384. */
  2385. if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
  2386. return 0;
  2387. /*
  2388. * This loop can run a while, specially if mem_cgroup's continuously
  2389. * keep exceeding their soft limit and putting the system under
  2390. * pressure
  2391. */
  2392. do {
  2393. if (next_mz)
  2394. mz = next_mz;
  2395. else
  2396. mz = mem_cgroup_largest_soft_limit_node(mctz);
  2397. if (!mz)
  2398. break;
  2399. nr_scanned = 0;
  2400. reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
  2401. gfp_mask, &nr_scanned);
  2402. nr_reclaimed += reclaimed;
  2403. *total_scanned += nr_scanned;
  2404. spin_lock_irq(&mctz->lock);
  2405. __mem_cgroup_remove_exceeded(mz, mctz);
  2406. /*
  2407. * If we failed to reclaim anything from this memory cgroup
  2408. * it is time to move on to the next cgroup
  2409. */
  2410. next_mz = NULL;
  2411. if (!reclaimed)
  2412. next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
  2413. excess = soft_limit_excess(mz->memcg);
  2414. /*
  2415. * One school of thought says that we should not add
  2416. * back the node to the tree if reclaim returns 0.
  2417. * But our reclaim could return 0, simply because due
  2418. * to priority we are exposing a smaller subset of
  2419. * memory to reclaim from. Consider this as a longer
  2420. * term TODO.
  2421. */
  2422. /* If excess == 0, no tree ops */
  2423. __mem_cgroup_insert_exceeded(mz, mctz, excess);
  2424. spin_unlock_irq(&mctz->lock);
  2425. css_put(&mz->memcg->css);
  2426. loop++;
  2427. /*
  2428. * Could not reclaim anything and there are no more
  2429. * mem cgroups to try or we seem to be looping without
  2430. * reclaiming anything.
  2431. */
  2432. if (!nr_reclaimed &&
  2433. (next_mz == NULL ||
  2434. loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
  2435. break;
  2436. } while (!nr_reclaimed);
  2437. if (next_mz)
  2438. css_put(&next_mz->memcg->css);
  2439. return nr_reclaimed;
  2440. }
  2441. /*
  2442. * Test whether @memcg has children, dead or alive. Note that this
  2443. * function doesn't care whether @memcg has use_hierarchy enabled and
  2444. * returns %true if there are child csses according to the cgroup
  2445. * hierarchy. Testing use_hierarchy is the caller's responsiblity.
  2446. */
  2447. static inline bool memcg_has_children(struct mem_cgroup *memcg)
  2448. {
  2449. bool ret;
  2450. rcu_read_lock();
  2451. ret = css_next_child(NULL, &memcg->css);
  2452. rcu_read_unlock();
  2453. return ret;
  2454. }
  2455. /*
  2456. * Reclaims as many pages from the given memcg as possible.
  2457. *
  2458. * Caller is responsible for holding css reference for memcg.
  2459. */
  2460. static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
  2461. {
  2462. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  2463. /* we call try-to-free pages for make this cgroup empty */
  2464. lru_add_drain_all();
  2465. drain_all_stock(memcg);
  2466. /* try to free all pages in this cgroup */
  2467. while (nr_retries && page_counter_read(&memcg->memory)) {
  2468. int progress;
  2469. if (signal_pending(current))
  2470. return -EINTR;
  2471. progress = try_to_free_mem_cgroup_pages(memcg, 1,
  2472. GFP_KERNEL, true);
  2473. if (!progress) {
  2474. nr_retries--;
  2475. /* maybe some writeback is necessary */
  2476. congestion_wait(BLK_RW_ASYNC, HZ/10);
  2477. }
  2478. }
  2479. return 0;
  2480. }
  2481. static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
  2482. char *buf, size_t nbytes,
  2483. loff_t off)
  2484. {
  2485. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2486. if (mem_cgroup_is_root(memcg))
  2487. return -EINVAL;
  2488. return mem_cgroup_force_empty(memcg) ?: nbytes;
  2489. }
  2490. static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
  2491. struct cftype *cft)
  2492. {
  2493. return mem_cgroup_from_css(css)->use_hierarchy;
  2494. }
  2495. static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
  2496. struct cftype *cft, u64 val)
  2497. {
  2498. int retval = 0;
  2499. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2500. struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
  2501. if (memcg->use_hierarchy == val)
  2502. return 0;
  2503. /*
  2504. * If parent's use_hierarchy is set, we can't make any modifications
  2505. * in the child subtrees. If it is unset, then the change can
  2506. * occur, provided the current cgroup has no children.
  2507. *
  2508. * For the root cgroup, parent_mem is NULL, we allow value to be
  2509. * set if there are no children.
  2510. */
  2511. if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
  2512. (val == 1 || val == 0)) {
  2513. if (!memcg_has_children(memcg))
  2514. memcg->use_hierarchy = val;
  2515. else
  2516. retval = -EBUSY;
  2517. } else
  2518. retval = -EINVAL;
  2519. return retval;
  2520. }
  2521. struct accumulated_stats {
  2522. unsigned long stat[MEMCG_NR_STAT];
  2523. unsigned long events[NR_VM_EVENT_ITEMS];
  2524. unsigned long lru_pages[NR_LRU_LISTS];
  2525. const unsigned int *stats_array;
  2526. const unsigned int *events_array;
  2527. int stats_size;
  2528. int events_size;
  2529. };
  2530. static void accumulate_memcg_tree(struct mem_cgroup *memcg,
  2531. struct accumulated_stats *acc)
  2532. {
  2533. struct mem_cgroup *mi;
  2534. int i;
  2535. for_each_mem_cgroup_tree(mi, memcg) {
  2536. for (i = 0; i < acc->stats_size; i++)
  2537. acc->stat[i] += memcg_page_state(mi,
  2538. acc->stats_array ? acc->stats_array[i] : i);
  2539. for (i = 0; i < acc->events_size; i++)
  2540. acc->events[i] += memcg_sum_events(mi,
  2541. acc->events_array ? acc->events_array[i] : i);
  2542. for (i = 0; i < NR_LRU_LISTS; i++)
  2543. acc->lru_pages[i] +=
  2544. mem_cgroup_nr_lru_pages(mi, BIT(i));
  2545. }
  2546. }
  2547. static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
  2548. {
  2549. unsigned long val = 0;
  2550. if (mem_cgroup_is_root(memcg)) {
  2551. struct mem_cgroup *iter;
  2552. for_each_mem_cgroup_tree(iter, memcg) {
  2553. val += memcg_page_state(iter, MEMCG_CACHE);
  2554. val += memcg_page_state(iter, MEMCG_RSS);
  2555. if (swap)
  2556. val += memcg_page_state(iter, MEMCG_SWAP);
  2557. }
  2558. } else {
  2559. if (!swap)
  2560. val = page_counter_read(&memcg->memory);
  2561. else
  2562. val = page_counter_read(&memcg->memsw);
  2563. }
  2564. return val;
  2565. }
  2566. enum {
  2567. RES_USAGE,
  2568. RES_LIMIT,
  2569. RES_MAX_USAGE,
  2570. RES_FAILCNT,
  2571. RES_SOFT_LIMIT,
  2572. };
  2573. static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
  2574. struct cftype *cft)
  2575. {
  2576. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2577. struct page_counter *counter;
  2578. switch (MEMFILE_TYPE(cft->private)) {
  2579. case _MEM:
  2580. counter = &memcg->memory;
  2581. break;
  2582. case _MEMSWAP:
  2583. counter = &memcg->memsw;
  2584. break;
  2585. case _KMEM:
  2586. counter = &memcg->kmem;
  2587. break;
  2588. case _TCP:
  2589. counter = &memcg->tcpmem;
  2590. break;
  2591. default:
  2592. BUG();
  2593. }
  2594. switch (MEMFILE_ATTR(cft->private)) {
  2595. case RES_USAGE:
  2596. if (counter == &memcg->memory)
  2597. return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
  2598. if (counter == &memcg->memsw)
  2599. return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
  2600. return (u64)page_counter_read(counter) * PAGE_SIZE;
  2601. case RES_LIMIT:
  2602. return (u64)counter->max * PAGE_SIZE;
  2603. case RES_MAX_USAGE:
  2604. return (u64)counter->watermark * PAGE_SIZE;
  2605. case RES_FAILCNT:
  2606. return counter->failcnt;
  2607. case RES_SOFT_LIMIT:
  2608. return (u64)memcg->soft_limit * PAGE_SIZE;
  2609. default:
  2610. BUG();
  2611. }
  2612. }
  2613. #ifdef CONFIG_MEMCG_KMEM
  2614. static int memcg_online_kmem(struct mem_cgroup *memcg)
  2615. {
  2616. int memcg_id;
  2617. if (cgroup_memory_nokmem)
  2618. return 0;
  2619. BUG_ON(memcg->kmemcg_id >= 0);
  2620. BUG_ON(memcg->kmem_state);
  2621. memcg_id = memcg_alloc_cache_id();
  2622. if (memcg_id < 0)
  2623. return memcg_id;
  2624. static_branch_inc(&memcg_kmem_enabled_key);
  2625. /*
  2626. * A memory cgroup is considered kmem-online as soon as it gets
  2627. * kmemcg_id. Setting the id after enabling static branching will
  2628. * guarantee no one starts accounting before all call sites are
  2629. * patched.
  2630. */
  2631. memcg->kmemcg_id = memcg_id;
  2632. memcg->kmem_state = KMEM_ONLINE;
  2633. INIT_LIST_HEAD(&memcg->kmem_caches);
  2634. return 0;
  2635. }
  2636. static void memcg_offline_kmem(struct mem_cgroup *memcg)
  2637. {
  2638. struct cgroup_subsys_state *css;
  2639. struct mem_cgroup *parent, *child;
  2640. int kmemcg_id;
  2641. if (memcg->kmem_state != KMEM_ONLINE)
  2642. return;
  2643. /*
  2644. * Clear the online state before clearing memcg_caches array
  2645. * entries. The slab_mutex in memcg_deactivate_kmem_caches()
  2646. * guarantees that no cache will be created for this cgroup
  2647. * after we are done (see memcg_create_kmem_cache()).
  2648. */
  2649. memcg->kmem_state = KMEM_ALLOCATED;
  2650. memcg_deactivate_kmem_caches(memcg);
  2651. kmemcg_id = memcg->kmemcg_id;
  2652. BUG_ON(kmemcg_id < 0);
  2653. parent = parent_mem_cgroup(memcg);
  2654. if (!parent)
  2655. parent = root_mem_cgroup;
  2656. /*
  2657. * Change kmemcg_id of this cgroup and all its descendants to the
  2658. * parent's id, and then move all entries from this cgroup's list_lrus
  2659. * to ones of the parent. After we have finished, all list_lrus
  2660. * corresponding to this cgroup are guaranteed to remain empty. The
  2661. * ordering is imposed by list_lru_node->lock taken by
  2662. * memcg_drain_all_list_lrus().
  2663. */
  2664. rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
  2665. css_for_each_descendant_pre(css, &memcg->css) {
  2666. child = mem_cgroup_from_css(css);
  2667. BUG_ON(child->kmemcg_id != kmemcg_id);
  2668. child->kmemcg_id = parent->kmemcg_id;
  2669. if (!memcg->use_hierarchy)
  2670. break;
  2671. }
  2672. rcu_read_unlock();
  2673. memcg_drain_all_list_lrus(kmemcg_id, parent);
  2674. memcg_free_cache_id(kmemcg_id);
  2675. }
  2676. static void memcg_free_kmem(struct mem_cgroup *memcg)
  2677. {
  2678. /* css_alloc() failed, offlining didn't happen */
  2679. if (unlikely(memcg->kmem_state == KMEM_ONLINE))
  2680. memcg_offline_kmem(memcg);
  2681. if (memcg->kmem_state == KMEM_ALLOCATED) {
  2682. memcg_destroy_kmem_caches(memcg);
  2683. static_branch_dec(&memcg_kmem_enabled_key);
  2684. WARN_ON(page_counter_read(&memcg->kmem));
  2685. }
  2686. }
  2687. #else
  2688. static int memcg_online_kmem(struct mem_cgroup *memcg)
  2689. {
  2690. return 0;
  2691. }
  2692. static void memcg_offline_kmem(struct mem_cgroup *memcg)
  2693. {
  2694. }
  2695. static void memcg_free_kmem(struct mem_cgroup *memcg)
  2696. {
  2697. }
  2698. #endif /* CONFIG_MEMCG_KMEM */
  2699. static int memcg_update_kmem_max(struct mem_cgroup *memcg,
  2700. unsigned long max)
  2701. {
  2702. int ret;
  2703. mutex_lock(&memcg_max_mutex);
  2704. ret = page_counter_set_max(&memcg->kmem, max);
  2705. mutex_unlock(&memcg_max_mutex);
  2706. return ret;
  2707. }
  2708. static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
  2709. {
  2710. int ret;
  2711. mutex_lock(&memcg_max_mutex);
  2712. ret = page_counter_set_max(&memcg->tcpmem, max);
  2713. if (ret)
  2714. goto out;
  2715. if (!memcg->tcpmem_active) {
  2716. /*
  2717. * The active flag needs to be written after the static_key
  2718. * update. This is what guarantees that the socket activation
  2719. * function is the last one to run. See mem_cgroup_sk_alloc()
  2720. * for details, and note that we don't mark any socket as
  2721. * belonging to this memcg until that flag is up.
  2722. *
  2723. * We need to do this, because static_keys will span multiple
  2724. * sites, but we can't control their order. If we mark a socket
  2725. * as accounted, but the accounting functions are not patched in
  2726. * yet, we'll lose accounting.
  2727. *
  2728. * We never race with the readers in mem_cgroup_sk_alloc(),
  2729. * because when this value change, the code to process it is not
  2730. * patched in yet.
  2731. */
  2732. static_branch_inc(&memcg_sockets_enabled_key);
  2733. memcg->tcpmem_active = true;
  2734. }
  2735. out:
  2736. mutex_unlock(&memcg_max_mutex);
  2737. return ret;
  2738. }
  2739. /*
  2740. * The user of this function is...
  2741. * RES_LIMIT.
  2742. */
  2743. static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
  2744. char *buf, size_t nbytes, loff_t off)
  2745. {
  2746. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2747. unsigned long nr_pages;
  2748. int ret;
  2749. buf = strstrip(buf);
  2750. ret = page_counter_memparse(buf, "-1", &nr_pages);
  2751. if (ret)
  2752. return ret;
  2753. switch (MEMFILE_ATTR(of_cft(of)->private)) {
  2754. case RES_LIMIT:
  2755. if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
  2756. ret = -EINVAL;
  2757. break;
  2758. }
  2759. switch (MEMFILE_TYPE(of_cft(of)->private)) {
  2760. case _MEM:
  2761. ret = mem_cgroup_resize_max(memcg, nr_pages, false);
  2762. break;
  2763. case _MEMSWAP:
  2764. ret = mem_cgroup_resize_max(memcg, nr_pages, true);
  2765. break;
  2766. case _KMEM:
  2767. ret = memcg_update_kmem_max(memcg, nr_pages);
  2768. break;
  2769. case _TCP:
  2770. ret = memcg_update_tcp_max(memcg, nr_pages);
  2771. break;
  2772. }
  2773. break;
  2774. case RES_SOFT_LIMIT:
  2775. memcg->soft_limit = nr_pages;
  2776. ret = 0;
  2777. break;
  2778. }
  2779. return ret ?: nbytes;
  2780. }
  2781. static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
  2782. size_t nbytes, loff_t off)
  2783. {
  2784. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2785. struct page_counter *counter;
  2786. switch (MEMFILE_TYPE(of_cft(of)->private)) {
  2787. case _MEM:
  2788. counter = &memcg->memory;
  2789. break;
  2790. case _MEMSWAP:
  2791. counter = &memcg->memsw;
  2792. break;
  2793. case _KMEM:
  2794. counter = &memcg->kmem;
  2795. break;
  2796. case _TCP:
  2797. counter = &memcg->tcpmem;
  2798. break;
  2799. default:
  2800. BUG();
  2801. }
  2802. switch (MEMFILE_ATTR(of_cft(of)->private)) {
  2803. case RES_MAX_USAGE:
  2804. page_counter_reset_watermark(counter);
  2805. break;
  2806. case RES_FAILCNT:
  2807. counter->failcnt = 0;
  2808. break;
  2809. default:
  2810. BUG();
  2811. }
  2812. return nbytes;
  2813. }
  2814. static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
  2815. struct cftype *cft)
  2816. {
  2817. return mem_cgroup_from_css(css)->move_charge_at_immigrate;
  2818. }
  2819. #ifdef CONFIG_MMU
  2820. static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
  2821. struct cftype *cft, u64 val)
  2822. {
  2823. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2824. if (val & ~MOVE_MASK)
  2825. return -EINVAL;
  2826. /*
  2827. * No kind of locking is needed in here, because ->can_attach() will
  2828. * check this value once in the beginning of the process, and then carry
  2829. * on with stale data. This means that changes to this value will only
  2830. * affect task migrations starting after the change.
  2831. */
  2832. memcg->move_charge_at_immigrate = val;
  2833. return 0;
  2834. }
  2835. #else
  2836. static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
  2837. struct cftype *cft, u64 val)
  2838. {
  2839. return -ENOSYS;
  2840. }
  2841. #endif
  2842. #ifdef CONFIG_NUMA
  2843. static int memcg_numa_stat_show(struct seq_file *m, void *v)
  2844. {
  2845. struct numa_stat {
  2846. const char *name;
  2847. unsigned int lru_mask;
  2848. };
  2849. static const struct numa_stat stats[] = {
  2850. { "total", LRU_ALL },
  2851. { "file", LRU_ALL_FILE },
  2852. { "anon", LRU_ALL_ANON },
  2853. { "unevictable", BIT(LRU_UNEVICTABLE) },
  2854. };
  2855. const struct numa_stat *stat;
  2856. int nid;
  2857. unsigned long nr;
  2858. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  2859. for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
  2860. nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
  2861. seq_printf(m, "%s=%lu", stat->name, nr);
  2862. for_each_node_state(nid, N_MEMORY) {
  2863. nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  2864. stat->lru_mask);
  2865. seq_printf(m, " N%d=%lu", nid, nr);
  2866. }
  2867. seq_putc(m, '\n');
  2868. }
  2869. for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
  2870. struct mem_cgroup *iter;
  2871. nr = 0;
  2872. for_each_mem_cgroup_tree(iter, memcg)
  2873. nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
  2874. seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
  2875. for_each_node_state(nid, N_MEMORY) {
  2876. nr = 0;
  2877. for_each_mem_cgroup_tree(iter, memcg)
  2878. nr += mem_cgroup_node_nr_lru_pages(
  2879. iter, nid, stat->lru_mask);
  2880. seq_printf(m, " N%d=%lu", nid, nr);
  2881. }
  2882. seq_putc(m, '\n');
  2883. }
  2884. return 0;
  2885. }
  2886. #endif /* CONFIG_NUMA */
  2887. /* Universal VM events cgroup1 shows, original sort order */
  2888. static const unsigned int memcg1_events[] = {
  2889. PGPGIN,
  2890. PGPGOUT,
  2891. PGFAULT,
  2892. PGMAJFAULT,
  2893. };
  2894. static const char *const memcg1_event_names[] = {
  2895. "pgpgin",
  2896. "pgpgout",
  2897. "pgfault",
  2898. "pgmajfault",
  2899. };
  2900. static int memcg_stat_show(struct seq_file *m, void *v)
  2901. {
  2902. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  2903. unsigned long memory, memsw;
  2904. struct mem_cgroup *mi;
  2905. unsigned int i;
  2906. struct accumulated_stats acc;
  2907. BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
  2908. BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
  2909. for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
  2910. if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
  2911. continue;
  2912. seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
  2913. memcg_page_state(memcg, memcg1_stats[i]) *
  2914. PAGE_SIZE);
  2915. }
  2916. for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
  2917. seq_printf(m, "%s %lu\n", memcg1_event_names[i],
  2918. memcg_sum_events(memcg, memcg1_events[i]));
  2919. for (i = 0; i < NR_LRU_LISTS; i++)
  2920. seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
  2921. mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
  2922. /* Hierarchical information */
  2923. memory = memsw = PAGE_COUNTER_MAX;
  2924. for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
  2925. memory = min(memory, mi->memory.max);
  2926. memsw = min(memsw, mi->memsw.max);
  2927. }
  2928. seq_printf(m, "hierarchical_memory_limit %llu\n",
  2929. (u64)memory * PAGE_SIZE);
  2930. if (do_memsw_account())
  2931. seq_printf(m, "hierarchical_memsw_limit %llu\n",
  2932. (u64)memsw * PAGE_SIZE);
  2933. memset(&acc, 0, sizeof(acc));
  2934. acc.stats_size = ARRAY_SIZE(memcg1_stats);
  2935. acc.stats_array = memcg1_stats;
  2936. acc.events_size = ARRAY_SIZE(memcg1_events);
  2937. acc.events_array = memcg1_events;
  2938. accumulate_memcg_tree(memcg, &acc);
  2939. for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
  2940. if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
  2941. continue;
  2942. seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
  2943. (u64)acc.stat[i] * PAGE_SIZE);
  2944. }
  2945. for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
  2946. seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
  2947. (u64)acc.events[i]);
  2948. for (i = 0; i < NR_LRU_LISTS; i++)
  2949. seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
  2950. (u64)acc.lru_pages[i] * PAGE_SIZE);
  2951. #ifdef CONFIG_DEBUG_VM
  2952. {
  2953. pg_data_t *pgdat;
  2954. struct mem_cgroup_per_node *mz;
  2955. struct zone_reclaim_stat *rstat;
  2956. unsigned long recent_rotated[2] = {0, 0};
  2957. unsigned long recent_scanned[2] = {0, 0};
  2958. for_each_online_pgdat(pgdat) {
  2959. mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
  2960. rstat = &mz->lruvec.reclaim_stat;
  2961. recent_rotated[0] += rstat->recent_rotated[0];
  2962. recent_rotated[1] += rstat->recent_rotated[1];
  2963. recent_scanned[0] += rstat->recent_scanned[0];
  2964. recent_scanned[1] += rstat->recent_scanned[1];
  2965. }
  2966. seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
  2967. seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
  2968. seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
  2969. seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
  2970. }
  2971. #endif
  2972. return 0;
  2973. }
  2974. static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
  2975. struct cftype *cft)
  2976. {
  2977. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2978. return mem_cgroup_swappiness(memcg);
  2979. }
  2980. static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
  2981. struct cftype *cft, u64 val)
  2982. {
  2983. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2984. if (val > 100)
  2985. return -EINVAL;
  2986. if (css->parent)
  2987. memcg->swappiness = val;
  2988. else
  2989. vm_swappiness = val;
  2990. return 0;
  2991. }
  2992. static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
  2993. {
  2994. struct mem_cgroup_threshold_ary *t;
  2995. unsigned long usage;
  2996. int i;
  2997. rcu_read_lock();
  2998. if (!swap)
  2999. t = rcu_dereference(memcg->thresholds.primary);
  3000. else
  3001. t = rcu_dereference(memcg->memsw_thresholds.primary);
  3002. if (!t)
  3003. goto unlock;
  3004. usage = mem_cgroup_usage(memcg, swap);
  3005. /*
  3006. * current_threshold points to threshold just below or equal to usage.
  3007. * If it's not true, a threshold was crossed after last
  3008. * call of __mem_cgroup_threshold().
  3009. */
  3010. i = t->current_threshold;
  3011. /*
  3012. * Iterate backward over array of thresholds starting from
  3013. * current_threshold and check if a threshold is crossed.
  3014. * If none of thresholds below usage is crossed, we read
  3015. * only one element of the array here.
  3016. */
  3017. for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
  3018. eventfd_signal(t->entries[i].eventfd, 1);
  3019. /* i = current_threshold + 1 */
  3020. i++;
  3021. /*
  3022. * Iterate forward over array of thresholds starting from
  3023. * current_threshold+1 and check if a threshold is crossed.
  3024. * If none of thresholds above usage is crossed, we read
  3025. * only one element of the array here.
  3026. */
  3027. for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
  3028. eventfd_signal(t->entries[i].eventfd, 1);
  3029. /* Update current_threshold */
  3030. t->current_threshold = i - 1;
  3031. unlock:
  3032. rcu_read_unlock();
  3033. }
  3034. static void mem_cgroup_threshold(struct mem_cgroup *memcg)
  3035. {
  3036. while (memcg) {
  3037. __mem_cgroup_threshold(memcg, false);
  3038. if (do_memsw_account())
  3039. __mem_cgroup_threshold(memcg, true);
  3040. memcg = parent_mem_cgroup(memcg);
  3041. }
  3042. }
  3043. static int compare_thresholds(const void *a, const void *b)
  3044. {
  3045. const struct mem_cgroup_threshold *_a = a;
  3046. const struct mem_cgroup_threshold *_b = b;
  3047. if (_a->threshold > _b->threshold)
  3048. return 1;
  3049. if (_a->threshold < _b->threshold)
  3050. return -1;
  3051. return 0;
  3052. }
  3053. static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
  3054. {
  3055. struct mem_cgroup_eventfd_list *ev;
  3056. spin_lock(&memcg_oom_lock);
  3057. list_for_each_entry(ev, &memcg->oom_notify, list)
  3058. eventfd_signal(ev->eventfd, 1);
  3059. spin_unlock(&memcg_oom_lock);
  3060. return 0;
  3061. }
  3062. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
  3063. {
  3064. struct mem_cgroup *iter;
  3065. for_each_mem_cgroup_tree(iter, memcg)
  3066. mem_cgroup_oom_notify_cb(iter);
  3067. }
  3068. static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
  3069. struct eventfd_ctx *eventfd, const char *args, enum res_type type)
  3070. {
  3071. struct mem_cgroup_thresholds *thresholds;
  3072. struct mem_cgroup_threshold_ary *new;
  3073. unsigned long threshold;
  3074. unsigned long usage;
  3075. int i, size, ret;
  3076. ret = page_counter_memparse(args, "-1", &threshold);
  3077. if (ret)
  3078. return ret;
  3079. mutex_lock(&memcg->thresholds_lock);
  3080. if (type == _MEM) {
  3081. thresholds = &memcg->thresholds;
  3082. usage = mem_cgroup_usage(memcg, false);
  3083. } else if (type == _MEMSWAP) {
  3084. thresholds = &memcg->memsw_thresholds;
  3085. usage = mem_cgroup_usage(memcg, true);
  3086. } else
  3087. BUG();
  3088. /* Check if a threshold crossed before adding a new one */
  3089. if (thresholds->primary)
  3090. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  3091. size = thresholds->primary ? thresholds->primary->size + 1 : 1;
  3092. /* Allocate memory for new array of thresholds */
  3093. new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
  3094. GFP_KERNEL);
  3095. if (!new) {
  3096. ret = -ENOMEM;
  3097. goto unlock;
  3098. }
  3099. new->size = size;
  3100. /* Copy thresholds (if any) to new array */
  3101. if (thresholds->primary) {
  3102. memcpy(new->entries, thresholds->primary->entries, (size - 1) *
  3103. sizeof(struct mem_cgroup_threshold));
  3104. }
  3105. /* Add new threshold */
  3106. new->entries[size - 1].eventfd = eventfd;
  3107. new->entries[size - 1].threshold = threshold;
  3108. /* Sort thresholds. Registering of new threshold isn't time-critical */
  3109. sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
  3110. compare_thresholds, NULL);
  3111. /* Find current threshold */
  3112. new->current_threshold = -1;
  3113. for (i = 0; i < size; i++) {
  3114. if (new->entries[i].threshold <= usage) {
  3115. /*
  3116. * new->current_threshold will not be used until
  3117. * rcu_assign_pointer(), so it's safe to increment
  3118. * it here.
  3119. */
  3120. ++new->current_threshold;
  3121. } else
  3122. break;
  3123. }
  3124. /* Free old spare buffer and save old primary buffer as spare */
  3125. kfree(thresholds->spare);
  3126. thresholds->spare = thresholds->primary;
  3127. rcu_assign_pointer(thresholds->primary, new);
  3128. /* To be sure that nobody uses thresholds */
  3129. synchronize_rcu();
  3130. unlock:
  3131. mutex_unlock(&memcg->thresholds_lock);
  3132. return ret;
  3133. }
  3134. static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
  3135. struct eventfd_ctx *eventfd, const char *args)
  3136. {
  3137. return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
  3138. }
  3139. static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
  3140. struct eventfd_ctx *eventfd, const char *args)
  3141. {
  3142. return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
  3143. }
  3144. static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  3145. struct eventfd_ctx *eventfd, enum res_type type)
  3146. {
  3147. struct mem_cgroup_thresholds *thresholds;
  3148. struct mem_cgroup_threshold_ary *new;
  3149. unsigned long usage;
  3150. int i, j, size;
  3151. mutex_lock(&memcg->thresholds_lock);
  3152. if (type == _MEM) {
  3153. thresholds = &memcg->thresholds;
  3154. usage = mem_cgroup_usage(memcg, false);
  3155. } else if (type == _MEMSWAP) {
  3156. thresholds = &memcg->memsw_thresholds;
  3157. usage = mem_cgroup_usage(memcg, true);
  3158. } else
  3159. BUG();
  3160. if (!thresholds->primary)
  3161. goto unlock;
  3162. /* Check if a threshold crossed before removing */
  3163. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  3164. /* Calculate new number of threshold */
  3165. size = 0;
  3166. for (i = 0; i < thresholds->primary->size; i++) {
  3167. if (thresholds->primary->entries[i].eventfd != eventfd)
  3168. size++;
  3169. }
  3170. new = thresholds->spare;
  3171. /* Set thresholds array to NULL if we don't have thresholds */
  3172. if (!size) {
  3173. kfree(new);
  3174. new = NULL;
  3175. goto swap_buffers;
  3176. }
  3177. new->size = size;
  3178. /* Copy thresholds and find current threshold */
  3179. new->current_threshold = -1;
  3180. for (i = 0, j = 0; i < thresholds->primary->size; i++) {
  3181. if (thresholds->primary->entries[i].eventfd == eventfd)
  3182. continue;
  3183. new->entries[j] = thresholds->primary->entries[i];
  3184. if (new->entries[j].threshold <= usage) {
  3185. /*
  3186. * new->current_threshold will not be used
  3187. * until rcu_assign_pointer(), so it's safe to increment
  3188. * it here.
  3189. */
  3190. ++new->current_threshold;
  3191. }
  3192. j++;
  3193. }
  3194. swap_buffers:
  3195. /* Swap primary and spare array */
  3196. thresholds->spare = thresholds->primary;
  3197. rcu_assign_pointer(thresholds->primary, new);
  3198. /* To be sure that nobody uses thresholds */
  3199. synchronize_rcu();
  3200. /* If all events are unregistered, free the spare array */
  3201. if (!new) {
  3202. kfree(thresholds->spare);
  3203. thresholds->spare = NULL;
  3204. }
  3205. unlock:
  3206. mutex_unlock(&memcg->thresholds_lock);
  3207. }
  3208. static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  3209. struct eventfd_ctx *eventfd)
  3210. {
  3211. return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
  3212. }
  3213. static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  3214. struct eventfd_ctx *eventfd)
  3215. {
  3216. return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
  3217. }
  3218. static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
  3219. struct eventfd_ctx *eventfd, const char *args)
  3220. {
  3221. struct mem_cgroup_eventfd_list *event;
  3222. event = kmalloc(sizeof(*event), GFP_KERNEL);
  3223. if (!event)
  3224. return -ENOMEM;
  3225. spin_lock(&memcg_oom_lock);
  3226. event->eventfd = eventfd;
  3227. list_add(&event->list, &memcg->oom_notify);
  3228. /* already in OOM ? */
  3229. if (memcg->under_oom)
  3230. eventfd_signal(eventfd, 1);
  3231. spin_unlock(&memcg_oom_lock);
  3232. return 0;
  3233. }
  3234. static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
  3235. struct eventfd_ctx *eventfd)
  3236. {
  3237. struct mem_cgroup_eventfd_list *ev, *tmp;
  3238. spin_lock(&memcg_oom_lock);
  3239. list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
  3240. if (ev->eventfd == eventfd) {
  3241. list_del(&ev->list);
  3242. kfree(ev);
  3243. }
  3244. }
  3245. spin_unlock(&memcg_oom_lock);
  3246. }
  3247. static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
  3248. {
  3249. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
  3250. seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
  3251. seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
  3252. seq_printf(sf, "oom_kill %lu\n",
  3253. atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
  3254. return 0;
  3255. }
  3256. static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
  3257. struct cftype *cft, u64 val)
  3258. {
  3259. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3260. /* cannot set to root cgroup and only 0 and 1 are allowed */
  3261. if (!css->parent || !((val == 0) || (val == 1)))
  3262. return -EINVAL;
  3263. memcg->oom_kill_disable = val;
  3264. if (!val)
  3265. memcg_oom_recover(memcg);
  3266. return 0;
  3267. }
  3268. #ifdef CONFIG_CGROUP_WRITEBACK
  3269. static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
  3270. {
  3271. return wb_domain_init(&memcg->cgwb_domain, gfp);
  3272. }
  3273. static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
  3274. {
  3275. wb_domain_exit(&memcg->cgwb_domain);
  3276. }
  3277. static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
  3278. {
  3279. wb_domain_size_changed(&memcg->cgwb_domain);
  3280. }
  3281. struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
  3282. {
  3283. struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
  3284. if (!memcg->css.parent)
  3285. return NULL;
  3286. return &memcg->cgwb_domain;
  3287. }
  3288. /**
  3289. * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
  3290. * @wb: bdi_writeback in question
  3291. * @pfilepages: out parameter for number of file pages
  3292. * @pheadroom: out parameter for number of allocatable pages according to memcg
  3293. * @pdirty: out parameter for number of dirty pages
  3294. * @pwriteback: out parameter for number of pages under writeback
  3295. *
  3296. * Determine the numbers of file, headroom, dirty, and writeback pages in
  3297. * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
  3298. * is a bit more involved.
  3299. *
  3300. * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
  3301. * headroom is calculated as the lowest headroom of itself and the
  3302. * ancestors. Note that this doesn't consider the actual amount of
  3303. * available memory in the system. The caller should further cap
  3304. * *@pheadroom accordingly.
  3305. */
  3306. void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
  3307. unsigned long *pheadroom, unsigned long *pdirty,
  3308. unsigned long *pwriteback)
  3309. {
  3310. struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
  3311. struct mem_cgroup *parent;
  3312. *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
  3313. /* this should eventually include NR_UNSTABLE_NFS */
  3314. *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
  3315. *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
  3316. (1 << LRU_ACTIVE_FILE));
  3317. *pheadroom = PAGE_COUNTER_MAX;
  3318. while ((parent = parent_mem_cgroup(memcg))) {
  3319. unsigned long ceiling = min(memcg->memory.max, memcg->high);
  3320. unsigned long used = page_counter_read(&memcg->memory);
  3321. *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
  3322. memcg = parent;
  3323. }
  3324. }
  3325. #else /* CONFIG_CGROUP_WRITEBACK */
  3326. static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
  3327. {
  3328. return 0;
  3329. }
  3330. static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
  3331. {
  3332. }
  3333. static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
  3334. {
  3335. }
  3336. #endif /* CONFIG_CGROUP_WRITEBACK */
  3337. /*
  3338. * DO NOT USE IN NEW FILES.
  3339. *
  3340. * "cgroup.event_control" implementation.
  3341. *
  3342. * This is way over-engineered. It tries to support fully configurable
  3343. * events for each user. Such level of flexibility is completely
  3344. * unnecessary especially in the light of the planned unified hierarchy.
  3345. *
  3346. * Please deprecate this and replace with something simpler if at all
  3347. * possible.
  3348. */
  3349. /*
  3350. * Unregister event and free resources.
  3351. *
  3352. * Gets called from workqueue.
  3353. */
  3354. static void memcg_event_remove(struct work_struct *work)
  3355. {
  3356. struct mem_cgroup_event *event =
  3357. container_of(work, struct mem_cgroup_event, remove);
  3358. struct mem_cgroup *memcg = event->memcg;
  3359. remove_wait_queue(event->wqh, &event->wait);
  3360. event->unregister_event(memcg, event->eventfd);
  3361. /* Notify userspace the event is going away. */
  3362. eventfd_signal(event->eventfd, 1);
  3363. eventfd_ctx_put(event->eventfd);
  3364. kfree(event);
  3365. css_put(&memcg->css);
  3366. }
  3367. /*
  3368. * Gets called on EPOLLHUP on eventfd when user closes it.
  3369. *
  3370. * Called with wqh->lock held and interrupts disabled.
  3371. */
  3372. static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
  3373. int sync, void *key)
  3374. {
  3375. struct mem_cgroup_event *event =
  3376. container_of(wait, struct mem_cgroup_event, wait);
  3377. struct mem_cgroup *memcg = event->memcg;
  3378. __poll_t flags = key_to_poll(key);
  3379. if (flags & EPOLLHUP) {
  3380. /*
  3381. * If the event has been detached at cgroup removal, we
  3382. * can simply return knowing the other side will cleanup
  3383. * for us.
  3384. *
  3385. * We can't race against event freeing since the other
  3386. * side will require wqh->lock via remove_wait_queue(),
  3387. * which we hold.
  3388. */
  3389. spin_lock(&memcg->event_list_lock);
  3390. if (!list_empty(&event->list)) {
  3391. list_del_init(&event->list);
  3392. /*
  3393. * We are in atomic context, but cgroup_event_remove()
  3394. * may sleep, so we have to call it in workqueue.
  3395. */
  3396. schedule_work(&event->remove);
  3397. }
  3398. spin_unlock(&memcg->event_list_lock);
  3399. }
  3400. return 0;
  3401. }
  3402. static void memcg_event_ptable_queue_proc(struct file *file,
  3403. wait_queue_head_t *wqh, poll_table *pt)
  3404. {
  3405. struct mem_cgroup_event *event =
  3406. container_of(pt, struct mem_cgroup_event, pt);
  3407. event->wqh = wqh;
  3408. add_wait_queue(wqh, &event->wait);
  3409. }
  3410. /*
  3411. * DO NOT USE IN NEW FILES.
  3412. *
  3413. * Parse input and register new cgroup event handler.
  3414. *
  3415. * Input must be in format '<event_fd> <control_fd> <args>'.
  3416. * Interpretation of args is defined by control file implementation.
  3417. */
  3418. static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
  3419. char *buf, size_t nbytes, loff_t off)
  3420. {
  3421. struct cgroup_subsys_state *css = of_css(of);
  3422. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3423. struct mem_cgroup_event *event;
  3424. struct cgroup_subsys_state *cfile_css;
  3425. unsigned int efd, cfd;
  3426. struct fd efile;
  3427. struct fd cfile;
  3428. const char *name;
  3429. char *endp;
  3430. int ret;
  3431. buf = strstrip(buf);
  3432. efd = simple_strtoul(buf, &endp, 10);
  3433. if (*endp != ' ')
  3434. return -EINVAL;
  3435. buf = endp + 1;
  3436. cfd = simple_strtoul(buf, &endp, 10);
  3437. if ((*endp != ' ') && (*endp != '\0'))
  3438. return -EINVAL;
  3439. buf = endp + 1;
  3440. event = kzalloc(sizeof(*event), GFP_KERNEL);
  3441. if (!event)
  3442. return -ENOMEM;
  3443. event->memcg = memcg;
  3444. INIT_LIST_HEAD(&event->list);
  3445. init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
  3446. init_waitqueue_func_entry(&event->wait, memcg_event_wake);
  3447. INIT_WORK(&event->remove, memcg_event_remove);
  3448. efile = fdget(efd);
  3449. if (!efile.file) {
  3450. ret = -EBADF;
  3451. goto out_kfree;
  3452. }
  3453. event->eventfd = eventfd_ctx_fileget(efile.file);
  3454. if (IS_ERR(event->eventfd)) {
  3455. ret = PTR_ERR(event->eventfd);
  3456. goto out_put_efile;
  3457. }
  3458. cfile = fdget(cfd);
  3459. if (!cfile.file) {
  3460. ret = -EBADF;
  3461. goto out_put_eventfd;
  3462. }
  3463. /* the process need read permission on control file */
  3464. /* AV: shouldn't we check that it's been opened for read instead? */
  3465. ret = inode_permission(file_inode(cfile.file), MAY_READ);
  3466. if (ret < 0)
  3467. goto out_put_cfile;
  3468. /*
  3469. * Determine the event callbacks and set them in @event. This used
  3470. * to be done via struct cftype but cgroup core no longer knows
  3471. * about these events. The following is crude but the whole thing
  3472. * is for compatibility anyway.
  3473. *
  3474. * DO NOT ADD NEW FILES.
  3475. */
  3476. name = cfile.file->f_path.dentry->d_name.name;
  3477. if (!strcmp(name, "memory.usage_in_bytes")) {
  3478. event->register_event = mem_cgroup_usage_register_event;
  3479. event->unregister_event = mem_cgroup_usage_unregister_event;
  3480. } else if (!strcmp(name, "memory.oom_control")) {
  3481. event->register_event = mem_cgroup_oom_register_event;
  3482. event->unregister_event = mem_cgroup_oom_unregister_event;
  3483. } else if (!strcmp(name, "memory.pressure_level")) {
  3484. event->register_event = vmpressure_register_event;
  3485. event->unregister_event = vmpressure_unregister_event;
  3486. } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
  3487. event->register_event = memsw_cgroup_usage_register_event;
  3488. event->unregister_event = memsw_cgroup_usage_unregister_event;
  3489. } else {
  3490. ret = -EINVAL;
  3491. goto out_put_cfile;
  3492. }
  3493. /*
  3494. * Verify @cfile should belong to @css. Also, remaining events are
  3495. * automatically removed on cgroup destruction but the removal is
  3496. * asynchronous, so take an extra ref on @css.
  3497. */
  3498. cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
  3499. &memory_cgrp_subsys);
  3500. ret = -EINVAL;
  3501. if (IS_ERR(cfile_css))
  3502. goto out_put_cfile;
  3503. if (cfile_css != css) {
  3504. css_put(cfile_css);
  3505. goto out_put_cfile;
  3506. }
  3507. ret = event->register_event(memcg, event->eventfd, buf);
  3508. if (ret)
  3509. goto out_put_css;
  3510. vfs_poll(efile.file, &event->pt);
  3511. spin_lock(&memcg->event_list_lock);
  3512. list_add(&event->list, &memcg->event_list);
  3513. spin_unlock(&memcg->event_list_lock);
  3514. fdput(cfile);
  3515. fdput(efile);
  3516. return nbytes;
  3517. out_put_css:
  3518. css_put(css);
  3519. out_put_cfile:
  3520. fdput(cfile);
  3521. out_put_eventfd:
  3522. eventfd_ctx_put(event->eventfd);
  3523. out_put_efile:
  3524. fdput(efile);
  3525. out_kfree:
  3526. kfree(event);
  3527. return ret;
  3528. }
  3529. static struct cftype mem_cgroup_legacy_files[] = {
  3530. {
  3531. .name = "usage_in_bytes",
  3532. .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
  3533. .read_u64 = mem_cgroup_read_u64,
  3534. },
  3535. {
  3536. .name = "max_usage_in_bytes",
  3537. .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
  3538. .write = mem_cgroup_reset,
  3539. .read_u64 = mem_cgroup_read_u64,
  3540. },
  3541. {
  3542. .name = "limit_in_bytes",
  3543. .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
  3544. .write = mem_cgroup_write,
  3545. .read_u64 = mem_cgroup_read_u64,
  3546. },
  3547. {
  3548. .name = "soft_limit_in_bytes",
  3549. .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
  3550. .write = mem_cgroup_write,
  3551. .read_u64 = mem_cgroup_read_u64,
  3552. },
  3553. {
  3554. .name = "failcnt",
  3555. .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
  3556. .write = mem_cgroup_reset,
  3557. .read_u64 = mem_cgroup_read_u64,
  3558. },
  3559. {
  3560. .name = "stat",
  3561. .seq_show = memcg_stat_show,
  3562. },
  3563. {
  3564. .name = "force_empty",
  3565. .write = mem_cgroup_force_empty_write,
  3566. },
  3567. {
  3568. .name = "use_hierarchy",
  3569. .write_u64 = mem_cgroup_hierarchy_write,
  3570. .read_u64 = mem_cgroup_hierarchy_read,
  3571. },
  3572. {
  3573. .name = "cgroup.event_control", /* XXX: for compat */
  3574. .write = memcg_write_event_control,
  3575. .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
  3576. },
  3577. {
  3578. .name = "swappiness",
  3579. .read_u64 = mem_cgroup_swappiness_read,
  3580. .write_u64 = mem_cgroup_swappiness_write,
  3581. },
  3582. {
  3583. .name = "move_charge_at_immigrate",
  3584. .read_u64 = mem_cgroup_move_charge_read,
  3585. .write_u64 = mem_cgroup_move_charge_write,
  3586. },
  3587. {
  3588. .name = "oom_control",
  3589. .seq_show = mem_cgroup_oom_control_read,
  3590. .write_u64 = mem_cgroup_oom_control_write,
  3591. .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
  3592. },
  3593. {
  3594. .name = "pressure_level",
  3595. },
  3596. #ifdef CONFIG_NUMA
  3597. {
  3598. .name = "numa_stat",
  3599. .seq_show = memcg_numa_stat_show,
  3600. },
  3601. #endif
  3602. {
  3603. .name = "kmem.limit_in_bytes",
  3604. .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
  3605. .write = mem_cgroup_write,
  3606. .read_u64 = mem_cgroup_read_u64,
  3607. },
  3608. {
  3609. .name = "kmem.usage_in_bytes",
  3610. .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
  3611. .read_u64 = mem_cgroup_read_u64,
  3612. },
  3613. {
  3614. .name = "kmem.failcnt",
  3615. .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
  3616. .write = mem_cgroup_reset,
  3617. .read_u64 = mem_cgroup_read_u64,
  3618. },
  3619. {
  3620. .name = "kmem.max_usage_in_bytes",
  3621. .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
  3622. .write = mem_cgroup_reset,
  3623. .read_u64 = mem_cgroup_read_u64,
  3624. },
  3625. #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
  3626. {
  3627. .name = "kmem.slabinfo",
  3628. .seq_start = memcg_slab_start,
  3629. .seq_next = memcg_slab_next,
  3630. .seq_stop = memcg_slab_stop,
  3631. .seq_show = memcg_slab_show,
  3632. },
  3633. #endif
  3634. {
  3635. .name = "kmem.tcp.limit_in_bytes",
  3636. .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
  3637. .write = mem_cgroup_write,
  3638. .read_u64 = mem_cgroup_read_u64,
  3639. },
  3640. {
  3641. .name = "kmem.tcp.usage_in_bytes",
  3642. .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
  3643. .read_u64 = mem_cgroup_read_u64,
  3644. },
  3645. {
  3646. .name = "kmem.tcp.failcnt",
  3647. .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
  3648. .write = mem_cgroup_reset,
  3649. .read_u64 = mem_cgroup_read_u64,
  3650. },
  3651. {
  3652. .name = "kmem.tcp.max_usage_in_bytes",
  3653. .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
  3654. .write = mem_cgroup_reset,
  3655. .read_u64 = mem_cgroup_read_u64,
  3656. },
  3657. { }, /* terminate */
  3658. };
  3659. /*
  3660. * Private memory cgroup IDR
  3661. *
  3662. * Swap-out records and page cache shadow entries need to store memcg
  3663. * references in constrained space, so we maintain an ID space that is
  3664. * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
  3665. * memory-controlled cgroups to 64k.
  3666. *
  3667. * However, there usually are many references to the oflline CSS after
  3668. * the cgroup has been destroyed, such as page cache or reclaimable
  3669. * slab objects, that don't need to hang on to the ID. We want to keep
  3670. * those dead CSS from occupying IDs, or we might quickly exhaust the
  3671. * relatively small ID space and prevent the creation of new cgroups
  3672. * even when there are much fewer than 64k cgroups - possibly none.
  3673. *
  3674. * Maintain a private 16-bit ID space for memcg, and allow the ID to
  3675. * be freed and recycled when it's no longer needed, which is usually
  3676. * when the CSS is offlined.
  3677. *
  3678. * The only exception to that are records of swapped out tmpfs/shmem
  3679. * pages that need to be attributed to live ancestors on swapin. But
  3680. * those references are manageable from userspace.
  3681. */
  3682. static DEFINE_IDR(mem_cgroup_idr);
  3683. static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
  3684. {
  3685. if (memcg->id.id > 0) {
  3686. idr_remove(&mem_cgroup_idr, memcg->id.id);
  3687. memcg->id.id = 0;
  3688. }
  3689. }
  3690. static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
  3691. {
  3692. refcount_add(n, &memcg->id.ref);
  3693. }
  3694. static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
  3695. {
  3696. if (refcount_sub_and_test(n, &memcg->id.ref)) {
  3697. mem_cgroup_id_remove(memcg);
  3698. /* Memcg ID pins CSS */
  3699. css_put(&memcg->css);
  3700. }
  3701. }
  3702. static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
  3703. {
  3704. mem_cgroup_id_get_many(memcg, 1);
  3705. }
  3706. static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
  3707. {
  3708. mem_cgroup_id_put_many(memcg, 1);
  3709. }
  3710. /**
  3711. * mem_cgroup_from_id - look up a memcg from a memcg id
  3712. * @id: the memcg id to look up
  3713. *
  3714. * Caller must hold rcu_read_lock().
  3715. */
  3716. struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
  3717. {
  3718. WARN_ON_ONCE(!rcu_read_lock_held());
  3719. return idr_find(&mem_cgroup_idr, id);
  3720. }
  3721. static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
  3722. {
  3723. struct mem_cgroup_per_node *pn;
  3724. int tmp = node;
  3725. /*
  3726. * This routine is called against possible nodes.
  3727. * But it's BUG to call kmalloc() against offline node.
  3728. *
  3729. * TODO: this routine can waste much memory for nodes which will
  3730. * never be onlined. It's better to use memory hotplug callback
  3731. * function.
  3732. */
  3733. if (!node_state(node, N_NORMAL_MEMORY))
  3734. tmp = -1;
  3735. pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
  3736. if (!pn)
  3737. return 1;
  3738. pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
  3739. if (!pn->lruvec_stat_cpu) {
  3740. kfree(pn);
  3741. return 1;
  3742. }
  3743. lruvec_init(&pn->lruvec);
  3744. pn->usage_in_excess = 0;
  3745. pn->on_tree = false;
  3746. pn->memcg = memcg;
  3747. memcg->nodeinfo[node] = pn;
  3748. return 0;
  3749. }
  3750. static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
  3751. {
  3752. struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
  3753. if (!pn)
  3754. return;
  3755. free_percpu(pn->lruvec_stat_cpu);
  3756. kfree(pn);
  3757. }
  3758. static void __mem_cgroup_free(struct mem_cgroup *memcg)
  3759. {
  3760. int node;
  3761. for_each_node(node)
  3762. free_mem_cgroup_per_node_info(memcg, node);
  3763. free_percpu(memcg->stat_cpu);
  3764. kfree(memcg);
  3765. }
  3766. static void mem_cgroup_free(struct mem_cgroup *memcg)
  3767. {
  3768. memcg_wb_domain_exit(memcg);
  3769. __mem_cgroup_free(memcg);
  3770. }
  3771. static struct mem_cgroup *mem_cgroup_alloc(void)
  3772. {
  3773. struct mem_cgroup *memcg;
  3774. size_t size;
  3775. int node;
  3776. size = sizeof(struct mem_cgroup);
  3777. size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
  3778. memcg = kzalloc(size, GFP_KERNEL);
  3779. if (!memcg)
  3780. return NULL;
  3781. memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
  3782. 1, MEM_CGROUP_ID_MAX,
  3783. GFP_KERNEL);
  3784. if (memcg->id.id < 0)
  3785. goto fail;
  3786. memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
  3787. if (!memcg->stat_cpu)
  3788. goto fail;
  3789. for_each_node(node)
  3790. if (alloc_mem_cgroup_per_node_info(memcg, node))
  3791. goto fail;
  3792. if (memcg_wb_domain_init(memcg, GFP_KERNEL))
  3793. goto fail;
  3794. INIT_WORK(&memcg->high_work, high_work_func);
  3795. memcg->last_scanned_node = MAX_NUMNODES;
  3796. INIT_LIST_HEAD(&memcg->oom_notify);
  3797. mutex_init(&memcg->thresholds_lock);
  3798. spin_lock_init(&memcg->move_lock);
  3799. vmpressure_init(&memcg->vmpressure);
  3800. INIT_LIST_HEAD(&memcg->event_list);
  3801. spin_lock_init(&memcg->event_list_lock);
  3802. memcg->socket_pressure = jiffies;
  3803. #ifdef CONFIG_MEMCG_KMEM
  3804. memcg->kmemcg_id = -1;
  3805. #endif
  3806. #ifdef CONFIG_CGROUP_WRITEBACK
  3807. INIT_LIST_HEAD(&memcg->cgwb_list);
  3808. #endif
  3809. idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
  3810. return memcg;
  3811. fail:
  3812. mem_cgroup_id_remove(memcg);
  3813. __mem_cgroup_free(memcg);
  3814. return NULL;
  3815. }
  3816. static struct cgroup_subsys_state * __ref
  3817. mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  3818. {
  3819. struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
  3820. struct mem_cgroup *memcg;
  3821. long error = -ENOMEM;
  3822. memcg = mem_cgroup_alloc();
  3823. if (!memcg)
  3824. return ERR_PTR(error);
  3825. memcg->high = PAGE_COUNTER_MAX;
  3826. memcg->soft_limit = PAGE_COUNTER_MAX;
  3827. if (parent) {
  3828. memcg->swappiness = mem_cgroup_swappiness(parent);
  3829. memcg->oom_kill_disable = parent->oom_kill_disable;
  3830. }
  3831. if (parent && parent->use_hierarchy) {
  3832. memcg->use_hierarchy = true;
  3833. page_counter_init(&memcg->memory, &parent->memory);
  3834. page_counter_init(&memcg->swap, &parent->swap);
  3835. page_counter_init(&memcg->memsw, &parent->memsw);
  3836. page_counter_init(&memcg->kmem, &parent->kmem);
  3837. page_counter_init(&memcg->tcpmem, &parent->tcpmem);
  3838. } else {
  3839. page_counter_init(&memcg->memory, NULL);
  3840. page_counter_init(&memcg->swap, NULL);
  3841. page_counter_init(&memcg->memsw, NULL);
  3842. page_counter_init(&memcg->kmem, NULL);
  3843. page_counter_init(&memcg->tcpmem, NULL);
  3844. /*
  3845. * Deeper hierachy with use_hierarchy == false doesn't make
  3846. * much sense so let cgroup subsystem know about this
  3847. * unfortunate state in our controller.
  3848. */
  3849. if (parent != root_mem_cgroup)
  3850. memory_cgrp_subsys.broken_hierarchy = true;
  3851. }
  3852. /* The following stuff does not apply to the root */
  3853. if (!parent) {
  3854. root_mem_cgroup = memcg;
  3855. return &memcg->css;
  3856. }
  3857. error = memcg_online_kmem(memcg);
  3858. if (error)
  3859. goto fail;
  3860. if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
  3861. static_branch_inc(&memcg_sockets_enabled_key);
  3862. return &memcg->css;
  3863. fail:
  3864. mem_cgroup_id_remove(memcg);
  3865. mem_cgroup_free(memcg);
  3866. return ERR_PTR(-ENOMEM);
  3867. }
  3868. static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
  3869. {
  3870. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3871. /*
  3872. * A memcg must be visible for memcg_expand_shrinker_maps()
  3873. * by the time the maps are allocated. So, we allocate maps
  3874. * here, when for_each_mem_cgroup() can't skip it.
  3875. */
  3876. if (memcg_alloc_shrinker_maps(memcg)) {
  3877. mem_cgroup_id_remove(memcg);
  3878. return -ENOMEM;
  3879. }
  3880. /* Online state pins memcg ID, memcg ID pins CSS */
  3881. refcount_set(&memcg->id.ref, 1);
  3882. css_get(css);
  3883. return 0;
  3884. }
  3885. static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
  3886. {
  3887. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3888. struct mem_cgroup_event *event, *tmp;
  3889. /*
  3890. * Unregister events and notify userspace.
  3891. * Notify userspace about cgroup removing only after rmdir of cgroup
  3892. * directory to avoid race between userspace and kernelspace.
  3893. */
  3894. spin_lock(&memcg->event_list_lock);
  3895. list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
  3896. list_del_init(&event->list);
  3897. schedule_work(&event->remove);
  3898. }
  3899. spin_unlock(&memcg->event_list_lock);
  3900. page_counter_set_min(&memcg->memory, 0);
  3901. page_counter_set_low(&memcg->memory, 0);
  3902. memcg_offline_kmem(memcg);
  3903. wb_memcg_offline(memcg);
  3904. drain_all_stock(memcg);
  3905. mem_cgroup_id_put(memcg);
  3906. }
  3907. static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
  3908. {
  3909. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3910. invalidate_reclaim_iterators(memcg);
  3911. }
  3912. static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
  3913. {
  3914. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3915. if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
  3916. static_branch_dec(&memcg_sockets_enabled_key);
  3917. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
  3918. static_branch_dec(&memcg_sockets_enabled_key);
  3919. vmpressure_cleanup(&memcg->vmpressure);
  3920. cancel_work_sync(&memcg->high_work);
  3921. mem_cgroup_remove_from_trees(memcg);
  3922. memcg_free_shrinker_maps(memcg);
  3923. memcg_free_kmem(memcg);
  3924. mem_cgroup_free(memcg);
  3925. }
  3926. /**
  3927. * mem_cgroup_css_reset - reset the states of a mem_cgroup
  3928. * @css: the target css
  3929. *
  3930. * Reset the states of the mem_cgroup associated with @css. This is
  3931. * invoked when the userland requests disabling on the default hierarchy
  3932. * but the memcg is pinned through dependency. The memcg should stop
  3933. * applying policies and should revert to the vanilla state as it may be
  3934. * made visible again.
  3935. *
  3936. * The current implementation only resets the essential configurations.
  3937. * This needs to be expanded to cover all the visible parts.
  3938. */
  3939. static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
  3940. {
  3941. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3942. page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
  3943. page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
  3944. page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
  3945. page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
  3946. page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
  3947. page_counter_set_min(&memcg->memory, 0);
  3948. page_counter_set_low(&memcg->memory, 0);
  3949. memcg->high = PAGE_COUNTER_MAX;
  3950. memcg->soft_limit = PAGE_COUNTER_MAX;
  3951. memcg_wb_domain_size_changed(memcg);
  3952. }
  3953. #ifdef CONFIG_MMU
  3954. /* Handlers for move charge at task migration. */
  3955. static int mem_cgroup_do_precharge(unsigned long count)
  3956. {
  3957. int ret;
  3958. /* Try a single bulk charge without reclaim first, kswapd may wake */
  3959. ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
  3960. if (!ret) {
  3961. mc.precharge += count;
  3962. return ret;
  3963. }
  3964. /* Try charges one by one with reclaim, but do not retry */
  3965. while (count--) {
  3966. ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
  3967. if (ret)
  3968. return ret;
  3969. mc.precharge++;
  3970. cond_resched();
  3971. }
  3972. return 0;
  3973. }
  3974. union mc_target {
  3975. struct page *page;
  3976. swp_entry_t ent;
  3977. };
  3978. enum mc_target_type {
  3979. MC_TARGET_NONE = 0,
  3980. MC_TARGET_PAGE,
  3981. MC_TARGET_SWAP,
  3982. MC_TARGET_DEVICE,
  3983. };
  3984. static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
  3985. unsigned long addr, pte_t ptent)
  3986. {
  3987. struct page *page = _vm_normal_page(vma, addr, ptent, true);
  3988. if (!page || !page_mapped(page))
  3989. return NULL;
  3990. if (PageAnon(page)) {
  3991. if (!(mc.flags & MOVE_ANON))
  3992. return NULL;
  3993. } else {
  3994. if (!(mc.flags & MOVE_FILE))
  3995. return NULL;
  3996. }
  3997. if (!get_page_unless_zero(page))
  3998. return NULL;
  3999. return page;
  4000. }
  4001. #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
  4002. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  4003. pte_t ptent, swp_entry_t *entry)
  4004. {
  4005. struct page *page = NULL;
  4006. swp_entry_t ent = pte_to_swp_entry(ptent);
  4007. if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
  4008. return NULL;
  4009. /*
  4010. * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
  4011. * a device and because they are not accessible by CPU they are store
  4012. * as special swap entry in the CPU page table.
  4013. */
  4014. if (is_device_private_entry(ent)) {
  4015. page = device_private_entry_to_page(ent);
  4016. /*
  4017. * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
  4018. * a refcount of 1 when free (unlike normal page)
  4019. */
  4020. if (!page_ref_add_unless(page, 1, 1))
  4021. return NULL;
  4022. return page;
  4023. }
  4024. /*
  4025. * Because lookup_swap_cache() updates some statistics counter,
  4026. * we call find_get_page() with swapper_space directly.
  4027. */
  4028. page = find_get_page(swap_address_space(ent), swp_offset(ent));
  4029. if (do_memsw_account())
  4030. entry->val = ent.val;
  4031. return page;
  4032. }
  4033. #else
  4034. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  4035. pte_t ptent, swp_entry_t *entry)
  4036. {
  4037. return NULL;
  4038. }
  4039. #endif
  4040. static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
  4041. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  4042. {
  4043. struct page *page = NULL;
  4044. struct address_space *mapping;
  4045. pgoff_t pgoff;
  4046. if (!vma->vm_file) /* anonymous vma */
  4047. return NULL;
  4048. if (!(mc.flags & MOVE_FILE))
  4049. return NULL;
  4050. mapping = vma->vm_file->f_mapping;
  4051. pgoff = linear_page_index(vma, addr);
  4052. /* page is moved even if it's not RSS of this task(page-faulted). */
  4053. #ifdef CONFIG_SWAP
  4054. /* shmem/tmpfs may report page out on swap: account for that too. */
  4055. if (shmem_mapping(mapping)) {
  4056. page = find_get_entry(mapping, pgoff);
  4057. if (xa_is_value(page)) {
  4058. swp_entry_t swp = radix_to_swp_entry(page);
  4059. if (do_memsw_account())
  4060. *entry = swp;
  4061. page = find_get_page(swap_address_space(swp),
  4062. swp_offset(swp));
  4063. }
  4064. } else
  4065. page = find_get_page(mapping, pgoff);
  4066. #else
  4067. page = find_get_page(mapping, pgoff);
  4068. #endif
  4069. return page;
  4070. }
  4071. /**
  4072. * mem_cgroup_move_account - move account of the page
  4073. * @page: the page
  4074. * @compound: charge the page as compound or small page
  4075. * @from: mem_cgroup which the page is moved from.
  4076. * @to: mem_cgroup which the page is moved to. @from != @to.
  4077. *
  4078. * The caller must make sure the page is not on LRU (isolate_page() is useful.)
  4079. *
  4080. * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
  4081. * from old cgroup.
  4082. */
  4083. static int mem_cgroup_move_account(struct page *page,
  4084. bool compound,
  4085. struct mem_cgroup *from,
  4086. struct mem_cgroup *to)
  4087. {
  4088. unsigned long flags;
  4089. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  4090. int ret;
  4091. bool anon;
  4092. VM_BUG_ON(from == to);
  4093. VM_BUG_ON_PAGE(PageLRU(page), page);
  4094. VM_BUG_ON(compound && !PageTransHuge(page));
  4095. /*
  4096. * Prevent mem_cgroup_migrate() from looking at
  4097. * page->mem_cgroup of its source page while we change it.
  4098. */
  4099. ret = -EBUSY;
  4100. if (!trylock_page(page))
  4101. goto out;
  4102. ret = -EINVAL;
  4103. if (page->mem_cgroup != from)
  4104. goto out_unlock;
  4105. anon = PageAnon(page);
  4106. spin_lock_irqsave(&from->move_lock, flags);
  4107. if (!anon && page_mapped(page)) {
  4108. __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
  4109. __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
  4110. }
  4111. /*
  4112. * move_lock grabbed above and caller set from->moving_account, so
  4113. * mod_memcg_page_state will serialize updates to PageDirty.
  4114. * So mapping should be stable for dirty pages.
  4115. */
  4116. if (!anon && PageDirty(page)) {
  4117. struct address_space *mapping = page_mapping(page);
  4118. if (mapping_cap_account_dirty(mapping)) {
  4119. __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
  4120. __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
  4121. }
  4122. }
  4123. if (PageWriteback(page)) {
  4124. __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
  4125. __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
  4126. }
  4127. /*
  4128. * It is safe to change page->mem_cgroup here because the page
  4129. * is referenced, charged, and isolated - we can't race with
  4130. * uncharging, charging, migration, or LRU putback.
  4131. */
  4132. /* caller should have done css_get */
  4133. page->mem_cgroup = to;
  4134. spin_unlock_irqrestore(&from->move_lock, flags);
  4135. ret = 0;
  4136. local_irq_disable();
  4137. mem_cgroup_charge_statistics(to, page, compound, nr_pages);
  4138. memcg_check_events(to, page);
  4139. mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
  4140. memcg_check_events(from, page);
  4141. local_irq_enable();
  4142. out_unlock:
  4143. unlock_page(page);
  4144. out:
  4145. return ret;
  4146. }
  4147. /**
  4148. * get_mctgt_type - get target type of moving charge
  4149. * @vma: the vma the pte to be checked belongs
  4150. * @addr: the address corresponding to the pte to be checked
  4151. * @ptent: the pte to be checked
  4152. * @target: the pointer the target page or swap ent will be stored(can be NULL)
  4153. *
  4154. * Returns
  4155. * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
  4156. * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
  4157. * move charge. if @target is not NULL, the page is stored in target->page
  4158. * with extra refcnt got(Callers should handle it).
  4159. * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
  4160. * target for charge migration. if @target is not NULL, the entry is stored
  4161. * in target->ent.
  4162. * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
  4163. * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
  4164. * For now we such page is charge like a regular page would be as for all
  4165. * intent and purposes it is just special memory taking the place of a
  4166. * regular page.
  4167. *
  4168. * See Documentations/vm/hmm.txt and include/linux/hmm.h
  4169. *
  4170. * Called with pte lock held.
  4171. */
  4172. static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
  4173. unsigned long addr, pte_t ptent, union mc_target *target)
  4174. {
  4175. struct page *page = NULL;
  4176. enum mc_target_type ret = MC_TARGET_NONE;
  4177. swp_entry_t ent = { .val = 0 };
  4178. if (pte_present(ptent))
  4179. page = mc_handle_present_pte(vma, addr, ptent);
  4180. else if (is_swap_pte(ptent))
  4181. page = mc_handle_swap_pte(vma, ptent, &ent);
  4182. else if (pte_none(ptent))
  4183. page = mc_handle_file_pte(vma, addr, ptent, &ent);
  4184. if (!page && !ent.val)
  4185. return ret;
  4186. if (page) {
  4187. /*
  4188. * Do only loose check w/o serialization.
  4189. * mem_cgroup_move_account() checks the page is valid or
  4190. * not under LRU exclusion.
  4191. */
  4192. if (page->mem_cgroup == mc.from) {
  4193. ret = MC_TARGET_PAGE;
  4194. if (is_device_private_page(page) ||
  4195. is_device_public_page(page))
  4196. ret = MC_TARGET_DEVICE;
  4197. if (target)
  4198. target->page = page;
  4199. }
  4200. if (!ret || !target)
  4201. put_page(page);
  4202. }
  4203. /*
  4204. * There is a swap entry and a page doesn't exist or isn't charged.
  4205. * But we cannot move a tail-page in a THP.
  4206. */
  4207. if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
  4208. mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
  4209. ret = MC_TARGET_SWAP;
  4210. if (target)
  4211. target->ent = ent;
  4212. }
  4213. return ret;
  4214. }
  4215. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  4216. /*
  4217. * We don't consider PMD mapped swapping or file mapped pages because THP does
  4218. * not support them for now.
  4219. * Caller should make sure that pmd_trans_huge(pmd) is true.
  4220. */
  4221. static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  4222. unsigned long addr, pmd_t pmd, union mc_target *target)
  4223. {
  4224. struct page *page = NULL;
  4225. enum mc_target_type ret = MC_TARGET_NONE;
  4226. if (unlikely(is_swap_pmd(pmd))) {
  4227. VM_BUG_ON(thp_migration_supported() &&
  4228. !is_pmd_migration_entry(pmd));
  4229. return ret;
  4230. }
  4231. page = pmd_page(pmd);
  4232. VM_BUG_ON_PAGE(!page || !PageHead(page), page);
  4233. if (!(mc.flags & MOVE_ANON))
  4234. return ret;
  4235. if (page->mem_cgroup == mc.from) {
  4236. ret = MC_TARGET_PAGE;
  4237. if (target) {
  4238. get_page(page);
  4239. target->page = page;
  4240. }
  4241. }
  4242. return ret;
  4243. }
  4244. #else
  4245. static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  4246. unsigned long addr, pmd_t pmd, union mc_target *target)
  4247. {
  4248. return MC_TARGET_NONE;
  4249. }
  4250. #endif
  4251. static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
  4252. unsigned long addr, unsigned long end,
  4253. struct mm_walk *walk)
  4254. {
  4255. struct vm_area_struct *vma = walk->vma;
  4256. pte_t *pte;
  4257. spinlock_t *ptl;
  4258. ptl = pmd_trans_huge_lock(pmd, vma);
  4259. if (ptl) {
  4260. /*
  4261. * Note their can not be MC_TARGET_DEVICE for now as we do not
  4262. * support transparent huge page with MEMORY_DEVICE_PUBLIC or
  4263. * MEMORY_DEVICE_PRIVATE but this might change.
  4264. */
  4265. if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
  4266. mc.precharge += HPAGE_PMD_NR;
  4267. spin_unlock(ptl);
  4268. return 0;
  4269. }
  4270. if (pmd_trans_unstable(pmd))
  4271. return 0;
  4272. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  4273. for (; addr != end; pte++, addr += PAGE_SIZE)
  4274. if (get_mctgt_type(vma, addr, *pte, NULL))
  4275. mc.precharge++; /* increment precharge temporarily */
  4276. pte_unmap_unlock(pte - 1, ptl);
  4277. cond_resched();
  4278. return 0;
  4279. }
  4280. static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
  4281. {
  4282. unsigned long precharge;
  4283. struct mm_walk mem_cgroup_count_precharge_walk = {
  4284. .pmd_entry = mem_cgroup_count_precharge_pte_range,
  4285. .mm = mm,
  4286. };
  4287. down_read(&mm->mmap_sem);
  4288. walk_page_range(0, mm->highest_vm_end,
  4289. &mem_cgroup_count_precharge_walk);
  4290. up_read(&mm->mmap_sem);
  4291. precharge = mc.precharge;
  4292. mc.precharge = 0;
  4293. return precharge;
  4294. }
  4295. static int mem_cgroup_precharge_mc(struct mm_struct *mm)
  4296. {
  4297. unsigned long precharge = mem_cgroup_count_precharge(mm);
  4298. VM_BUG_ON(mc.moving_task);
  4299. mc.moving_task = current;
  4300. return mem_cgroup_do_precharge(precharge);
  4301. }
  4302. /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
  4303. static void __mem_cgroup_clear_mc(void)
  4304. {
  4305. struct mem_cgroup *from = mc.from;
  4306. struct mem_cgroup *to = mc.to;
  4307. /* we must uncharge all the leftover precharges from mc.to */
  4308. if (mc.precharge) {
  4309. cancel_charge(mc.to, mc.precharge);
  4310. mc.precharge = 0;
  4311. }
  4312. /*
  4313. * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
  4314. * we must uncharge here.
  4315. */
  4316. if (mc.moved_charge) {
  4317. cancel_charge(mc.from, mc.moved_charge);
  4318. mc.moved_charge = 0;
  4319. }
  4320. /* we must fixup refcnts and charges */
  4321. if (mc.moved_swap) {
  4322. /* uncharge swap account from the old cgroup */
  4323. if (!mem_cgroup_is_root(mc.from))
  4324. page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
  4325. mem_cgroup_id_put_many(mc.from, mc.moved_swap);
  4326. /*
  4327. * we charged both to->memory and to->memsw, so we
  4328. * should uncharge to->memory.
  4329. */
  4330. if (!mem_cgroup_is_root(mc.to))
  4331. page_counter_uncharge(&mc.to->memory, mc.moved_swap);
  4332. mem_cgroup_id_get_many(mc.to, mc.moved_swap);
  4333. css_put_many(&mc.to->css, mc.moved_swap);
  4334. mc.moved_swap = 0;
  4335. }
  4336. memcg_oom_recover(from);
  4337. memcg_oom_recover(to);
  4338. wake_up_all(&mc.waitq);
  4339. }
  4340. static void mem_cgroup_clear_mc(void)
  4341. {
  4342. struct mm_struct *mm = mc.mm;
  4343. /*
  4344. * we must clear moving_task before waking up waiters at the end of
  4345. * task migration.
  4346. */
  4347. mc.moving_task = NULL;
  4348. __mem_cgroup_clear_mc();
  4349. spin_lock(&mc.lock);
  4350. mc.from = NULL;
  4351. mc.to = NULL;
  4352. mc.mm = NULL;
  4353. spin_unlock(&mc.lock);
  4354. mmput(mm);
  4355. }
  4356. static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
  4357. {
  4358. struct cgroup_subsys_state *css;
  4359. struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
  4360. struct mem_cgroup *from;
  4361. struct task_struct *leader, *p;
  4362. struct mm_struct *mm;
  4363. unsigned long move_flags;
  4364. int ret = 0;
  4365. /* charge immigration isn't supported on the default hierarchy */
  4366. if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
  4367. return 0;
  4368. /*
  4369. * Multi-process migrations only happen on the default hierarchy
  4370. * where charge immigration is not used. Perform charge
  4371. * immigration if @tset contains a leader and whine if there are
  4372. * multiple.
  4373. */
  4374. p = NULL;
  4375. cgroup_taskset_for_each_leader(leader, css, tset) {
  4376. WARN_ON_ONCE(p);
  4377. p = leader;
  4378. memcg = mem_cgroup_from_css(css);
  4379. }
  4380. if (!p)
  4381. return 0;
  4382. /*
  4383. * We are now commited to this value whatever it is. Changes in this
  4384. * tunable will only affect upcoming migrations, not the current one.
  4385. * So we need to save it, and keep it going.
  4386. */
  4387. move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
  4388. if (!move_flags)
  4389. return 0;
  4390. from = mem_cgroup_from_task(p);
  4391. VM_BUG_ON(from == memcg);
  4392. mm = get_task_mm(p);
  4393. if (!mm)
  4394. return 0;
  4395. /* We move charges only when we move a owner of the mm */
  4396. if (mm->owner == p) {
  4397. VM_BUG_ON(mc.from);
  4398. VM_BUG_ON(mc.to);
  4399. VM_BUG_ON(mc.precharge);
  4400. VM_BUG_ON(mc.moved_charge);
  4401. VM_BUG_ON(mc.moved_swap);
  4402. spin_lock(&mc.lock);
  4403. mc.mm = mm;
  4404. mc.from = from;
  4405. mc.to = memcg;
  4406. mc.flags = move_flags;
  4407. spin_unlock(&mc.lock);
  4408. /* We set mc.moving_task later */
  4409. ret = mem_cgroup_precharge_mc(mm);
  4410. if (ret)
  4411. mem_cgroup_clear_mc();
  4412. } else {
  4413. mmput(mm);
  4414. }
  4415. return ret;
  4416. }
  4417. static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
  4418. {
  4419. if (mc.to)
  4420. mem_cgroup_clear_mc();
  4421. }
  4422. static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
  4423. unsigned long addr, unsigned long end,
  4424. struct mm_walk *walk)
  4425. {
  4426. int ret = 0;
  4427. struct vm_area_struct *vma = walk->vma;
  4428. pte_t *pte;
  4429. spinlock_t *ptl;
  4430. enum mc_target_type target_type;
  4431. union mc_target target;
  4432. struct page *page;
  4433. ptl = pmd_trans_huge_lock(pmd, vma);
  4434. if (ptl) {
  4435. if (mc.precharge < HPAGE_PMD_NR) {
  4436. spin_unlock(ptl);
  4437. return 0;
  4438. }
  4439. target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
  4440. if (target_type == MC_TARGET_PAGE) {
  4441. page = target.page;
  4442. if (!isolate_lru_page(page)) {
  4443. if (!mem_cgroup_move_account(page, true,
  4444. mc.from, mc.to)) {
  4445. mc.precharge -= HPAGE_PMD_NR;
  4446. mc.moved_charge += HPAGE_PMD_NR;
  4447. }
  4448. putback_lru_page(page);
  4449. }
  4450. put_page(page);
  4451. } else if (target_type == MC_TARGET_DEVICE) {
  4452. page = target.page;
  4453. if (!mem_cgroup_move_account(page, true,
  4454. mc.from, mc.to)) {
  4455. mc.precharge -= HPAGE_PMD_NR;
  4456. mc.moved_charge += HPAGE_PMD_NR;
  4457. }
  4458. put_page(page);
  4459. }
  4460. spin_unlock(ptl);
  4461. return 0;
  4462. }
  4463. if (pmd_trans_unstable(pmd))
  4464. return 0;
  4465. retry:
  4466. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  4467. for (; addr != end; addr += PAGE_SIZE) {
  4468. pte_t ptent = *(pte++);
  4469. bool device = false;
  4470. swp_entry_t ent;
  4471. if (!mc.precharge)
  4472. break;
  4473. switch (get_mctgt_type(vma, addr, ptent, &target)) {
  4474. case MC_TARGET_DEVICE:
  4475. device = true;
  4476. /* fall through */
  4477. case MC_TARGET_PAGE:
  4478. page = target.page;
  4479. /*
  4480. * We can have a part of the split pmd here. Moving it
  4481. * can be done but it would be too convoluted so simply
  4482. * ignore such a partial THP and keep it in original
  4483. * memcg. There should be somebody mapping the head.
  4484. */
  4485. if (PageTransCompound(page))
  4486. goto put;
  4487. if (!device && isolate_lru_page(page))
  4488. goto put;
  4489. if (!mem_cgroup_move_account(page, false,
  4490. mc.from, mc.to)) {
  4491. mc.precharge--;
  4492. /* we uncharge from mc.from later. */
  4493. mc.moved_charge++;
  4494. }
  4495. if (!device)
  4496. putback_lru_page(page);
  4497. put: /* get_mctgt_type() gets the page */
  4498. put_page(page);
  4499. break;
  4500. case MC_TARGET_SWAP:
  4501. ent = target.ent;
  4502. if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
  4503. mc.precharge--;
  4504. /* we fixup refcnts and charges later. */
  4505. mc.moved_swap++;
  4506. }
  4507. break;
  4508. default:
  4509. break;
  4510. }
  4511. }
  4512. pte_unmap_unlock(pte - 1, ptl);
  4513. cond_resched();
  4514. if (addr != end) {
  4515. /*
  4516. * We have consumed all precharges we got in can_attach().
  4517. * We try charge one by one, but don't do any additional
  4518. * charges to mc.to if we have failed in charge once in attach()
  4519. * phase.
  4520. */
  4521. ret = mem_cgroup_do_precharge(1);
  4522. if (!ret)
  4523. goto retry;
  4524. }
  4525. return ret;
  4526. }
  4527. static void mem_cgroup_move_charge(void)
  4528. {
  4529. struct mm_walk mem_cgroup_move_charge_walk = {
  4530. .pmd_entry = mem_cgroup_move_charge_pte_range,
  4531. .mm = mc.mm,
  4532. };
  4533. lru_add_drain_all();
  4534. /*
  4535. * Signal lock_page_memcg() to take the memcg's move_lock
  4536. * while we're moving its pages to another memcg. Then wait
  4537. * for already started RCU-only updates to finish.
  4538. */
  4539. atomic_inc(&mc.from->moving_account);
  4540. synchronize_rcu();
  4541. retry:
  4542. if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
  4543. /*
  4544. * Someone who are holding the mmap_sem might be waiting in
  4545. * waitq. So we cancel all extra charges, wake up all waiters,
  4546. * and retry. Because we cancel precharges, we might not be able
  4547. * to move enough charges, but moving charge is a best-effort
  4548. * feature anyway, so it wouldn't be a big problem.
  4549. */
  4550. __mem_cgroup_clear_mc();
  4551. cond_resched();
  4552. goto retry;
  4553. }
  4554. /*
  4555. * When we have consumed all precharges and failed in doing
  4556. * additional charge, the page walk just aborts.
  4557. */
  4558. walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
  4559. up_read(&mc.mm->mmap_sem);
  4560. atomic_dec(&mc.from->moving_account);
  4561. }
  4562. static void mem_cgroup_move_task(void)
  4563. {
  4564. if (mc.to) {
  4565. mem_cgroup_move_charge();
  4566. mem_cgroup_clear_mc();
  4567. }
  4568. }
  4569. #else /* !CONFIG_MMU */
  4570. static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
  4571. {
  4572. return 0;
  4573. }
  4574. static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
  4575. {
  4576. }
  4577. static void mem_cgroup_move_task(void)
  4578. {
  4579. }
  4580. #endif
  4581. /*
  4582. * Cgroup retains root cgroups across [un]mount cycles making it necessary
  4583. * to verify whether we're attached to the default hierarchy on each mount
  4584. * attempt.
  4585. */
  4586. static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
  4587. {
  4588. /*
  4589. * use_hierarchy is forced on the default hierarchy. cgroup core
  4590. * guarantees that @root doesn't have any children, so turning it
  4591. * on for the root memcg is enough.
  4592. */
  4593. if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
  4594. root_mem_cgroup->use_hierarchy = true;
  4595. else
  4596. root_mem_cgroup->use_hierarchy = false;
  4597. }
  4598. static u64 memory_current_read(struct cgroup_subsys_state *css,
  4599. struct cftype *cft)
  4600. {
  4601. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  4602. return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
  4603. }
  4604. static int memory_min_show(struct seq_file *m, void *v)
  4605. {
  4606. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4607. unsigned long min = READ_ONCE(memcg->memory.min);
  4608. if (min == PAGE_COUNTER_MAX)
  4609. seq_puts(m, "max\n");
  4610. else
  4611. seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
  4612. return 0;
  4613. }
  4614. static ssize_t memory_min_write(struct kernfs_open_file *of,
  4615. char *buf, size_t nbytes, loff_t off)
  4616. {
  4617. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4618. unsigned long min;
  4619. int err;
  4620. buf = strstrip(buf);
  4621. err = page_counter_memparse(buf, "max", &min);
  4622. if (err)
  4623. return err;
  4624. page_counter_set_min(&memcg->memory, min);
  4625. return nbytes;
  4626. }
  4627. static int memory_low_show(struct seq_file *m, void *v)
  4628. {
  4629. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4630. unsigned long low = READ_ONCE(memcg->memory.low);
  4631. if (low == PAGE_COUNTER_MAX)
  4632. seq_puts(m, "max\n");
  4633. else
  4634. seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
  4635. return 0;
  4636. }
  4637. static ssize_t memory_low_write(struct kernfs_open_file *of,
  4638. char *buf, size_t nbytes, loff_t off)
  4639. {
  4640. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4641. unsigned long low;
  4642. int err;
  4643. buf = strstrip(buf);
  4644. err = page_counter_memparse(buf, "max", &low);
  4645. if (err)
  4646. return err;
  4647. page_counter_set_low(&memcg->memory, low);
  4648. return nbytes;
  4649. }
  4650. static int memory_high_show(struct seq_file *m, void *v)
  4651. {
  4652. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4653. unsigned long high = READ_ONCE(memcg->high);
  4654. if (high == PAGE_COUNTER_MAX)
  4655. seq_puts(m, "max\n");
  4656. else
  4657. seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
  4658. return 0;
  4659. }
  4660. static ssize_t memory_high_write(struct kernfs_open_file *of,
  4661. char *buf, size_t nbytes, loff_t off)
  4662. {
  4663. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4664. unsigned long nr_pages;
  4665. unsigned long high;
  4666. int err;
  4667. buf = strstrip(buf);
  4668. err = page_counter_memparse(buf, "max", &high);
  4669. if (err)
  4670. return err;
  4671. memcg->high = high;
  4672. nr_pages = page_counter_read(&memcg->memory);
  4673. if (nr_pages > high)
  4674. try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
  4675. GFP_KERNEL, true);
  4676. memcg_wb_domain_size_changed(memcg);
  4677. return nbytes;
  4678. }
  4679. static int memory_max_show(struct seq_file *m, void *v)
  4680. {
  4681. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4682. unsigned long max = READ_ONCE(memcg->memory.max);
  4683. if (max == PAGE_COUNTER_MAX)
  4684. seq_puts(m, "max\n");
  4685. else
  4686. seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
  4687. return 0;
  4688. }
  4689. static ssize_t memory_max_write(struct kernfs_open_file *of,
  4690. char *buf, size_t nbytes, loff_t off)
  4691. {
  4692. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4693. unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
  4694. bool drained = false;
  4695. unsigned long max;
  4696. int err;
  4697. buf = strstrip(buf);
  4698. err = page_counter_memparse(buf, "max", &max);
  4699. if (err)
  4700. return err;
  4701. xchg(&memcg->memory.max, max);
  4702. for (;;) {
  4703. unsigned long nr_pages = page_counter_read(&memcg->memory);
  4704. if (nr_pages <= max)
  4705. break;
  4706. if (signal_pending(current)) {
  4707. err = -EINTR;
  4708. break;
  4709. }
  4710. if (!drained) {
  4711. drain_all_stock(memcg);
  4712. drained = true;
  4713. continue;
  4714. }
  4715. if (nr_reclaims) {
  4716. if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
  4717. GFP_KERNEL, true))
  4718. nr_reclaims--;
  4719. continue;
  4720. }
  4721. memcg_memory_event(memcg, MEMCG_OOM);
  4722. if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
  4723. break;
  4724. }
  4725. memcg_wb_domain_size_changed(memcg);
  4726. return nbytes;
  4727. }
  4728. static int memory_events_show(struct seq_file *m, void *v)
  4729. {
  4730. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4731. seq_printf(m, "low %lu\n",
  4732. atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
  4733. seq_printf(m, "high %lu\n",
  4734. atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
  4735. seq_printf(m, "max %lu\n",
  4736. atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
  4737. seq_printf(m, "oom %lu\n",
  4738. atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
  4739. seq_printf(m, "oom_kill %lu\n",
  4740. atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
  4741. return 0;
  4742. }
  4743. static int memory_stat_show(struct seq_file *m, void *v)
  4744. {
  4745. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4746. struct accumulated_stats acc;
  4747. int i;
  4748. /*
  4749. * Provide statistics on the state of the memory subsystem as
  4750. * well as cumulative event counters that show past behavior.
  4751. *
  4752. * This list is ordered following a combination of these gradients:
  4753. * 1) generic big picture -> specifics and details
  4754. * 2) reflecting userspace activity -> reflecting kernel heuristics
  4755. *
  4756. * Current memory state:
  4757. */
  4758. memset(&acc, 0, sizeof(acc));
  4759. acc.stats_size = MEMCG_NR_STAT;
  4760. acc.events_size = NR_VM_EVENT_ITEMS;
  4761. accumulate_memcg_tree(memcg, &acc);
  4762. seq_printf(m, "anon %llu\n",
  4763. (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
  4764. seq_printf(m, "file %llu\n",
  4765. (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
  4766. seq_printf(m, "kernel_stack %llu\n",
  4767. (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
  4768. seq_printf(m, "slab %llu\n",
  4769. (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
  4770. acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
  4771. seq_printf(m, "sock %llu\n",
  4772. (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
  4773. seq_printf(m, "shmem %llu\n",
  4774. (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
  4775. seq_printf(m, "file_mapped %llu\n",
  4776. (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
  4777. seq_printf(m, "file_dirty %llu\n",
  4778. (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
  4779. seq_printf(m, "file_writeback %llu\n",
  4780. (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
  4781. for (i = 0; i < NR_LRU_LISTS; i++)
  4782. seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
  4783. (u64)acc.lru_pages[i] * PAGE_SIZE);
  4784. seq_printf(m, "slab_reclaimable %llu\n",
  4785. (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
  4786. seq_printf(m, "slab_unreclaimable %llu\n",
  4787. (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
  4788. /* Accumulated memory events */
  4789. seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
  4790. seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
  4791. seq_printf(m, "workingset_refault %lu\n",
  4792. acc.stat[WORKINGSET_REFAULT]);
  4793. seq_printf(m, "workingset_activate %lu\n",
  4794. acc.stat[WORKINGSET_ACTIVATE]);
  4795. seq_printf(m, "workingset_nodereclaim %lu\n",
  4796. acc.stat[WORKINGSET_NODERECLAIM]);
  4797. seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
  4798. seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
  4799. acc.events[PGSCAN_DIRECT]);
  4800. seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
  4801. acc.events[PGSTEAL_DIRECT]);
  4802. seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
  4803. seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
  4804. seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
  4805. seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
  4806. return 0;
  4807. }
  4808. static int memory_oom_group_show(struct seq_file *m, void *v)
  4809. {
  4810. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4811. seq_printf(m, "%d\n", memcg->oom_group);
  4812. return 0;
  4813. }
  4814. static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
  4815. char *buf, size_t nbytes, loff_t off)
  4816. {
  4817. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4818. int ret, oom_group;
  4819. buf = strstrip(buf);
  4820. if (!buf)
  4821. return -EINVAL;
  4822. ret = kstrtoint(buf, 0, &oom_group);
  4823. if (ret)
  4824. return ret;
  4825. if (oom_group != 0 && oom_group != 1)
  4826. return -EINVAL;
  4827. memcg->oom_group = oom_group;
  4828. return nbytes;
  4829. }
  4830. static struct cftype memory_files[] = {
  4831. {
  4832. .name = "current",
  4833. .flags = CFTYPE_NOT_ON_ROOT,
  4834. .read_u64 = memory_current_read,
  4835. },
  4836. {
  4837. .name = "min",
  4838. .flags = CFTYPE_NOT_ON_ROOT,
  4839. .seq_show = memory_min_show,
  4840. .write = memory_min_write,
  4841. },
  4842. {
  4843. .name = "low",
  4844. .flags = CFTYPE_NOT_ON_ROOT,
  4845. .seq_show = memory_low_show,
  4846. .write = memory_low_write,
  4847. },
  4848. {
  4849. .name = "high",
  4850. .flags = CFTYPE_NOT_ON_ROOT,
  4851. .seq_show = memory_high_show,
  4852. .write = memory_high_write,
  4853. },
  4854. {
  4855. .name = "max",
  4856. .flags = CFTYPE_NOT_ON_ROOT,
  4857. .seq_show = memory_max_show,
  4858. .write = memory_max_write,
  4859. },
  4860. {
  4861. .name = "events",
  4862. .flags = CFTYPE_NOT_ON_ROOT,
  4863. .file_offset = offsetof(struct mem_cgroup, events_file),
  4864. .seq_show = memory_events_show,
  4865. },
  4866. {
  4867. .name = "stat",
  4868. .flags = CFTYPE_NOT_ON_ROOT,
  4869. .seq_show = memory_stat_show,
  4870. },
  4871. {
  4872. .name = "oom.group",
  4873. .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
  4874. .seq_show = memory_oom_group_show,
  4875. .write = memory_oom_group_write,
  4876. },
  4877. { } /* terminate */
  4878. };
  4879. struct cgroup_subsys memory_cgrp_subsys = {
  4880. .css_alloc = mem_cgroup_css_alloc,
  4881. .css_online = mem_cgroup_css_online,
  4882. .css_offline = mem_cgroup_css_offline,
  4883. .css_released = mem_cgroup_css_released,
  4884. .css_free = mem_cgroup_css_free,
  4885. .css_reset = mem_cgroup_css_reset,
  4886. .can_attach = mem_cgroup_can_attach,
  4887. .cancel_attach = mem_cgroup_cancel_attach,
  4888. .post_attach = mem_cgroup_move_task,
  4889. .bind = mem_cgroup_bind,
  4890. .dfl_cftypes = memory_files,
  4891. .legacy_cftypes = mem_cgroup_legacy_files,
  4892. .early_init = 0,
  4893. };
  4894. /**
  4895. * mem_cgroup_protected - check if memory consumption is in the normal range
  4896. * @root: the top ancestor of the sub-tree being checked
  4897. * @memcg: the memory cgroup to check
  4898. *
  4899. * WARNING: This function is not stateless! It can only be used as part
  4900. * of a top-down tree iteration, not for isolated queries.
  4901. *
  4902. * Returns one of the following:
  4903. * MEMCG_PROT_NONE: cgroup memory is not protected
  4904. * MEMCG_PROT_LOW: cgroup memory is protected as long there is
  4905. * an unprotected supply of reclaimable memory from other cgroups.
  4906. * MEMCG_PROT_MIN: cgroup memory is protected
  4907. *
  4908. * @root is exclusive; it is never protected when looked at directly
  4909. *
  4910. * To provide a proper hierarchical behavior, effective memory.min/low values
  4911. * are used. Below is the description of how effective memory.low is calculated.
  4912. * Effective memory.min values is calculated in the same way.
  4913. *
  4914. * Effective memory.low is always equal or less than the original memory.low.
  4915. * If there is no memory.low overcommittment (which is always true for
  4916. * top-level memory cgroups), these two values are equal.
  4917. * Otherwise, it's a part of parent's effective memory.low,
  4918. * calculated as a cgroup's memory.low usage divided by sum of sibling's
  4919. * memory.low usages, where memory.low usage is the size of actually
  4920. * protected memory.
  4921. *
  4922. * low_usage
  4923. * elow = min( memory.low, parent->elow * ------------------ ),
  4924. * siblings_low_usage
  4925. *
  4926. * | memory.current, if memory.current < memory.low
  4927. * low_usage = |
  4928. | 0, otherwise.
  4929. *
  4930. *
  4931. * Such definition of the effective memory.low provides the expected
  4932. * hierarchical behavior: parent's memory.low value is limiting
  4933. * children, unprotected memory is reclaimed first and cgroups,
  4934. * which are not using their guarantee do not affect actual memory
  4935. * distribution.
  4936. *
  4937. * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
  4938. *
  4939. * A A/memory.low = 2G, A/memory.current = 6G
  4940. * //\\
  4941. * BC DE B/memory.low = 3G B/memory.current = 2G
  4942. * C/memory.low = 1G C/memory.current = 2G
  4943. * D/memory.low = 0 D/memory.current = 2G
  4944. * E/memory.low = 10G E/memory.current = 0
  4945. *
  4946. * and the memory pressure is applied, the following memory distribution
  4947. * is expected (approximately):
  4948. *
  4949. * A/memory.current = 2G
  4950. *
  4951. * B/memory.current = 1.3G
  4952. * C/memory.current = 0.6G
  4953. * D/memory.current = 0
  4954. * E/memory.current = 0
  4955. *
  4956. * These calculations require constant tracking of the actual low usages
  4957. * (see propagate_protected_usage()), as well as recursive calculation of
  4958. * effective memory.low values. But as we do call mem_cgroup_protected()
  4959. * path for each memory cgroup top-down from the reclaim,
  4960. * it's possible to optimize this part, and save calculated elow
  4961. * for next usage. This part is intentionally racy, but it's ok,
  4962. * as memory.low is a best-effort mechanism.
  4963. */
  4964. enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
  4965. struct mem_cgroup *memcg)
  4966. {
  4967. struct mem_cgroup *parent;
  4968. unsigned long emin, parent_emin;
  4969. unsigned long elow, parent_elow;
  4970. unsigned long usage;
  4971. if (mem_cgroup_disabled())
  4972. return MEMCG_PROT_NONE;
  4973. if (!root)
  4974. root = root_mem_cgroup;
  4975. if (memcg == root)
  4976. return MEMCG_PROT_NONE;
  4977. usage = page_counter_read(&memcg->memory);
  4978. if (!usage)
  4979. return MEMCG_PROT_NONE;
  4980. emin = memcg->memory.min;
  4981. elow = memcg->memory.low;
  4982. parent = parent_mem_cgroup(memcg);
  4983. /* No parent means a non-hierarchical mode on v1 memcg */
  4984. if (!parent)
  4985. return MEMCG_PROT_NONE;
  4986. if (parent == root)
  4987. goto exit;
  4988. parent_emin = READ_ONCE(parent->memory.emin);
  4989. emin = min(emin, parent_emin);
  4990. if (emin && parent_emin) {
  4991. unsigned long min_usage, siblings_min_usage;
  4992. min_usage = min(usage, memcg->memory.min);
  4993. siblings_min_usage = atomic_long_read(
  4994. &parent->memory.children_min_usage);
  4995. if (min_usage && siblings_min_usage)
  4996. emin = min(emin, parent_emin * min_usage /
  4997. siblings_min_usage);
  4998. }
  4999. parent_elow = READ_ONCE(parent->memory.elow);
  5000. elow = min(elow, parent_elow);
  5001. if (elow && parent_elow) {
  5002. unsigned long low_usage, siblings_low_usage;
  5003. low_usage = min(usage, memcg->memory.low);
  5004. siblings_low_usage = atomic_long_read(
  5005. &parent->memory.children_low_usage);
  5006. if (low_usage && siblings_low_usage)
  5007. elow = min(elow, parent_elow * low_usage /
  5008. siblings_low_usage);
  5009. }
  5010. exit:
  5011. memcg->memory.emin = emin;
  5012. memcg->memory.elow = elow;
  5013. if (usage <= emin)
  5014. return MEMCG_PROT_MIN;
  5015. else if (usage <= elow)
  5016. return MEMCG_PROT_LOW;
  5017. else
  5018. return MEMCG_PROT_NONE;
  5019. }
  5020. /**
  5021. * mem_cgroup_try_charge - try charging a page
  5022. * @page: page to charge
  5023. * @mm: mm context of the victim
  5024. * @gfp_mask: reclaim mode
  5025. * @memcgp: charged memcg return
  5026. * @compound: charge the page as compound or small page
  5027. *
  5028. * Try to charge @page to the memcg that @mm belongs to, reclaiming
  5029. * pages according to @gfp_mask if necessary.
  5030. *
  5031. * Returns 0 on success, with *@memcgp pointing to the charged memcg.
  5032. * Otherwise, an error code is returned.
  5033. *
  5034. * After page->mapping has been set up, the caller must finalize the
  5035. * charge with mem_cgroup_commit_charge(). Or abort the transaction
  5036. * with mem_cgroup_cancel_charge() in case page instantiation fails.
  5037. */
  5038. int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
  5039. gfp_t gfp_mask, struct mem_cgroup **memcgp,
  5040. bool compound)
  5041. {
  5042. struct mem_cgroup *memcg = NULL;
  5043. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  5044. int ret = 0;
  5045. if (mem_cgroup_disabled())
  5046. goto out;
  5047. if (PageSwapCache(page)) {
  5048. /*
  5049. * Every swap fault against a single page tries to charge the
  5050. * page, bail as early as possible. shmem_unuse() encounters
  5051. * already charged pages, too. The USED bit is protected by
  5052. * the page lock, which serializes swap cache removal, which
  5053. * in turn serializes uncharging.
  5054. */
  5055. VM_BUG_ON_PAGE(!PageLocked(page), page);
  5056. if (compound_head(page)->mem_cgroup)
  5057. goto out;
  5058. if (do_swap_account) {
  5059. swp_entry_t ent = { .val = page_private(page), };
  5060. unsigned short id = lookup_swap_cgroup_id(ent);
  5061. rcu_read_lock();
  5062. memcg = mem_cgroup_from_id(id);
  5063. if (memcg && !css_tryget_online(&memcg->css))
  5064. memcg = NULL;
  5065. rcu_read_unlock();
  5066. }
  5067. }
  5068. if (!memcg)
  5069. memcg = get_mem_cgroup_from_mm(mm);
  5070. ret = try_charge(memcg, gfp_mask, nr_pages);
  5071. css_put(&memcg->css);
  5072. out:
  5073. *memcgp = memcg;
  5074. return ret;
  5075. }
  5076. int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
  5077. gfp_t gfp_mask, struct mem_cgroup **memcgp,
  5078. bool compound)
  5079. {
  5080. struct mem_cgroup *memcg;
  5081. int ret;
  5082. ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
  5083. memcg = *memcgp;
  5084. mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
  5085. return ret;
  5086. }
  5087. /**
  5088. * mem_cgroup_commit_charge - commit a page charge
  5089. * @page: page to charge
  5090. * @memcg: memcg to charge the page to
  5091. * @lrucare: page might be on LRU already
  5092. * @compound: charge the page as compound or small page
  5093. *
  5094. * Finalize a charge transaction started by mem_cgroup_try_charge(),
  5095. * after page->mapping has been set up. This must happen atomically
  5096. * as part of the page instantiation, i.e. under the page table lock
  5097. * for anonymous pages, under the page lock for page and swap cache.
  5098. *
  5099. * In addition, the page must not be on the LRU during the commit, to
  5100. * prevent racing with task migration. If it might be, use @lrucare.
  5101. *
  5102. * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
  5103. */
  5104. void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
  5105. bool lrucare, bool compound)
  5106. {
  5107. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  5108. VM_BUG_ON_PAGE(!page->mapping, page);
  5109. VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
  5110. if (mem_cgroup_disabled())
  5111. return;
  5112. /*
  5113. * Swap faults will attempt to charge the same page multiple
  5114. * times. But reuse_swap_page() might have removed the page
  5115. * from swapcache already, so we can't check PageSwapCache().
  5116. */
  5117. if (!memcg)
  5118. return;
  5119. commit_charge(page, memcg, lrucare);
  5120. local_irq_disable();
  5121. mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
  5122. memcg_check_events(memcg, page);
  5123. local_irq_enable();
  5124. if (do_memsw_account() && PageSwapCache(page)) {
  5125. swp_entry_t entry = { .val = page_private(page) };
  5126. /*
  5127. * The swap entry might not get freed for a long time,
  5128. * let's not wait for it. The page already received a
  5129. * memory+swap charge, drop the swap entry duplicate.
  5130. */
  5131. mem_cgroup_uncharge_swap(entry, nr_pages);
  5132. }
  5133. }
  5134. /**
  5135. * mem_cgroup_cancel_charge - cancel a page charge
  5136. * @page: page to charge
  5137. * @memcg: memcg to charge the page to
  5138. * @compound: charge the page as compound or small page
  5139. *
  5140. * Cancel a charge transaction started by mem_cgroup_try_charge().
  5141. */
  5142. void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
  5143. bool compound)
  5144. {
  5145. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  5146. if (mem_cgroup_disabled())
  5147. return;
  5148. /*
  5149. * Swap faults will attempt to charge the same page multiple
  5150. * times. But reuse_swap_page() might have removed the page
  5151. * from swapcache already, so we can't check PageSwapCache().
  5152. */
  5153. if (!memcg)
  5154. return;
  5155. cancel_charge(memcg, nr_pages);
  5156. }
  5157. struct uncharge_gather {
  5158. struct mem_cgroup *memcg;
  5159. unsigned long pgpgout;
  5160. unsigned long nr_anon;
  5161. unsigned long nr_file;
  5162. unsigned long nr_kmem;
  5163. unsigned long nr_huge;
  5164. unsigned long nr_shmem;
  5165. struct page *dummy_page;
  5166. };
  5167. static inline void uncharge_gather_clear(struct uncharge_gather *ug)
  5168. {
  5169. memset(ug, 0, sizeof(*ug));
  5170. }
  5171. static void uncharge_batch(const struct uncharge_gather *ug)
  5172. {
  5173. unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
  5174. unsigned long flags;
  5175. if (!mem_cgroup_is_root(ug->memcg)) {
  5176. page_counter_uncharge(&ug->memcg->memory, nr_pages);
  5177. if (do_memsw_account())
  5178. page_counter_uncharge(&ug->memcg->memsw, nr_pages);
  5179. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
  5180. page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
  5181. memcg_oom_recover(ug->memcg);
  5182. }
  5183. local_irq_save(flags);
  5184. __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
  5185. __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
  5186. __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
  5187. __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
  5188. __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
  5189. __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
  5190. memcg_check_events(ug->memcg, ug->dummy_page);
  5191. local_irq_restore(flags);
  5192. if (!mem_cgroup_is_root(ug->memcg))
  5193. css_put_many(&ug->memcg->css, nr_pages);
  5194. }
  5195. static void uncharge_page(struct page *page, struct uncharge_gather *ug)
  5196. {
  5197. VM_BUG_ON_PAGE(PageLRU(page), page);
  5198. VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
  5199. !PageHWPoison(page) , page);
  5200. if (!page->mem_cgroup)
  5201. return;
  5202. /*
  5203. * Nobody should be changing or seriously looking at
  5204. * page->mem_cgroup at this point, we have fully
  5205. * exclusive access to the page.
  5206. */
  5207. if (ug->memcg != page->mem_cgroup) {
  5208. if (ug->memcg) {
  5209. uncharge_batch(ug);
  5210. uncharge_gather_clear(ug);
  5211. }
  5212. ug->memcg = page->mem_cgroup;
  5213. }
  5214. if (!PageKmemcg(page)) {
  5215. unsigned int nr_pages = 1;
  5216. if (PageTransHuge(page)) {
  5217. nr_pages <<= compound_order(page);
  5218. ug->nr_huge += nr_pages;
  5219. }
  5220. if (PageAnon(page))
  5221. ug->nr_anon += nr_pages;
  5222. else {
  5223. ug->nr_file += nr_pages;
  5224. if (PageSwapBacked(page))
  5225. ug->nr_shmem += nr_pages;
  5226. }
  5227. ug->pgpgout++;
  5228. } else {
  5229. ug->nr_kmem += 1 << compound_order(page);
  5230. __ClearPageKmemcg(page);
  5231. }
  5232. ug->dummy_page = page;
  5233. page->mem_cgroup = NULL;
  5234. }
  5235. static void uncharge_list(struct list_head *page_list)
  5236. {
  5237. struct uncharge_gather ug;
  5238. struct list_head *next;
  5239. uncharge_gather_clear(&ug);
  5240. /*
  5241. * Note that the list can be a single page->lru; hence the
  5242. * do-while loop instead of a simple list_for_each_entry().
  5243. */
  5244. next = page_list->next;
  5245. do {
  5246. struct page *page;
  5247. page = list_entry(next, struct page, lru);
  5248. next = page->lru.next;
  5249. uncharge_page(page, &ug);
  5250. } while (next != page_list);
  5251. if (ug.memcg)
  5252. uncharge_batch(&ug);
  5253. }
  5254. /**
  5255. * mem_cgroup_uncharge - uncharge a page
  5256. * @page: page to uncharge
  5257. *
  5258. * Uncharge a page previously charged with mem_cgroup_try_charge() and
  5259. * mem_cgroup_commit_charge().
  5260. */
  5261. void mem_cgroup_uncharge(struct page *page)
  5262. {
  5263. struct uncharge_gather ug;
  5264. if (mem_cgroup_disabled())
  5265. return;
  5266. /* Don't touch page->lru of any random page, pre-check: */
  5267. if (!page->mem_cgroup)
  5268. return;
  5269. uncharge_gather_clear(&ug);
  5270. uncharge_page(page, &ug);
  5271. uncharge_batch(&ug);
  5272. }
  5273. /**
  5274. * mem_cgroup_uncharge_list - uncharge a list of page
  5275. * @page_list: list of pages to uncharge
  5276. *
  5277. * Uncharge a list of pages previously charged with
  5278. * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
  5279. */
  5280. void mem_cgroup_uncharge_list(struct list_head *page_list)
  5281. {
  5282. if (mem_cgroup_disabled())
  5283. return;
  5284. if (!list_empty(page_list))
  5285. uncharge_list(page_list);
  5286. }
  5287. /**
  5288. * mem_cgroup_migrate - charge a page's replacement
  5289. * @oldpage: currently circulating page
  5290. * @newpage: replacement page
  5291. *
  5292. * Charge @newpage as a replacement page for @oldpage. @oldpage will
  5293. * be uncharged upon free.
  5294. *
  5295. * Both pages must be locked, @newpage->mapping must be set up.
  5296. */
  5297. void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
  5298. {
  5299. struct mem_cgroup *memcg;
  5300. unsigned int nr_pages;
  5301. bool compound;
  5302. unsigned long flags;
  5303. VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
  5304. VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
  5305. VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
  5306. VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
  5307. newpage);
  5308. if (mem_cgroup_disabled())
  5309. return;
  5310. /* Page cache replacement: new page already charged? */
  5311. if (newpage->mem_cgroup)
  5312. return;
  5313. /* Swapcache readahead pages can get replaced before being charged */
  5314. memcg = oldpage->mem_cgroup;
  5315. if (!memcg)
  5316. return;
  5317. /* Force-charge the new page. The old one will be freed soon */
  5318. compound = PageTransHuge(newpage);
  5319. nr_pages = compound ? hpage_nr_pages(newpage) : 1;
  5320. page_counter_charge(&memcg->memory, nr_pages);
  5321. if (do_memsw_account())
  5322. page_counter_charge(&memcg->memsw, nr_pages);
  5323. css_get_many(&memcg->css, nr_pages);
  5324. commit_charge(newpage, memcg, false);
  5325. local_irq_save(flags);
  5326. mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
  5327. memcg_check_events(memcg, newpage);
  5328. local_irq_restore(flags);
  5329. }
  5330. DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
  5331. EXPORT_SYMBOL(memcg_sockets_enabled_key);
  5332. void mem_cgroup_sk_alloc(struct sock *sk)
  5333. {
  5334. struct mem_cgroup *memcg;
  5335. if (!mem_cgroup_sockets_enabled)
  5336. return;
  5337. /*
  5338. * Socket cloning can throw us here with sk_memcg already
  5339. * filled. It won't however, necessarily happen from
  5340. * process context. So the test for root memcg given
  5341. * the current task's memcg won't help us in this case.
  5342. *
  5343. * Respecting the original socket's memcg is a better
  5344. * decision in this case.
  5345. */
  5346. if (sk->sk_memcg) {
  5347. css_get(&sk->sk_memcg->css);
  5348. return;
  5349. }
  5350. rcu_read_lock();
  5351. memcg = mem_cgroup_from_task(current);
  5352. if (memcg == root_mem_cgroup)
  5353. goto out;
  5354. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
  5355. goto out;
  5356. if (css_tryget_online(&memcg->css))
  5357. sk->sk_memcg = memcg;
  5358. out:
  5359. rcu_read_unlock();
  5360. }
  5361. void mem_cgroup_sk_free(struct sock *sk)
  5362. {
  5363. if (sk->sk_memcg)
  5364. css_put(&sk->sk_memcg->css);
  5365. }
  5366. /**
  5367. * mem_cgroup_charge_skmem - charge socket memory
  5368. * @memcg: memcg to charge
  5369. * @nr_pages: number of pages to charge
  5370. *
  5371. * Charges @nr_pages to @memcg. Returns %true if the charge fit within
  5372. * @memcg's configured limit, %false if the charge had to be forced.
  5373. */
  5374. bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
  5375. {
  5376. gfp_t gfp_mask = GFP_KERNEL;
  5377. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
  5378. struct page_counter *fail;
  5379. if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
  5380. memcg->tcpmem_pressure = 0;
  5381. return true;
  5382. }
  5383. page_counter_charge(&memcg->tcpmem, nr_pages);
  5384. memcg->tcpmem_pressure = 1;
  5385. return false;
  5386. }
  5387. /* Don't block in the packet receive path */
  5388. if (in_softirq())
  5389. gfp_mask = GFP_NOWAIT;
  5390. mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
  5391. if (try_charge(memcg, gfp_mask, nr_pages) == 0)
  5392. return true;
  5393. try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
  5394. return false;
  5395. }
  5396. /**
  5397. * mem_cgroup_uncharge_skmem - uncharge socket memory
  5398. * @memcg: memcg to uncharge
  5399. * @nr_pages: number of pages to uncharge
  5400. */
  5401. void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
  5402. {
  5403. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
  5404. page_counter_uncharge(&memcg->tcpmem, nr_pages);
  5405. return;
  5406. }
  5407. mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
  5408. refill_stock(memcg, nr_pages);
  5409. }
  5410. static int __init cgroup_memory(char *s)
  5411. {
  5412. char *token;
  5413. while ((token = strsep(&s, ",")) != NULL) {
  5414. if (!*token)
  5415. continue;
  5416. if (!strcmp(token, "nosocket"))
  5417. cgroup_memory_nosocket = true;
  5418. if (!strcmp(token, "nokmem"))
  5419. cgroup_memory_nokmem = true;
  5420. }
  5421. return 0;
  5422. }
  5423. __setup("cgroup.memory=", cgroup_memory);
  5424. /*
  5425. * subsys_initcall() for memory controller.
  5426. *
  5427. * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
  5428. * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
  5429. * basically everything that doesn't depend on a specific mem_cgroup structure
  5430. * should be initialized from here.
  5431. */
  5432. static int __init mem_cgroup_init(void)
  5433. {
  5434. int cpu, node;
  5435. #ifdef CONFIG_MEMCG_KMEM
  5436. /*
  5437. * Kmem cache creation is mostly done with the slab_mutex held,
  5438. * so use a workqueue with limited concurrency to avoid stalling
  5439. * all worker threads in case lots of cgroups are created and
  5440. * destroyed simultaneously.
  5441. */
  5442. memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
  5443. BUG_ON(!memcg_kmem_cache_wq);
  5444. #endif
  5445. cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
  5446. memcg_hotplug_cpu_dead);
  5447. for_each_possible_cpu(cpu)
  5448. INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
  5449. drain_local_stock);
  5450. for_each_node(node) {
  5451. struct mem_cgroup_tree_per_node *rtpn;
  5452. rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
  5453. node_online(node) ? node : NUMA_NO_NODE);
  5454. rtpn->rb_root = RB_ROOT;
  5455. rtpn->rb_rightmost = NULL;
  5456. spin_lock_init(&rtpn->lock);
  5457. soft_limit_tree.rb_tree_per_node[node] = rtpn;
  5458. }
  5459. return 0;
  5460. }
  5461. subsys_initcall(mem_cgroup_init);
  5462. #ifdef CONFIG_MEMCG_SWAP
  5463. static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
  5464. {
  5465. while (!refcount_inc_not_zero(&memcg->id.ref)) {
  5466. /*
  5467. * The root cgroup cannot be destroyed, so it's refcount must
  5468. * always be >= 1.
  5469. */
  5470. if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
  5471. VM_BUG_ON(1);
  5472. break;
  5473. }
  5474. memcg = parent_mem_cgroup(memcg);
  5475. if (!memcg)
  5476. memcg = root_mem_cgroup;
  5477. }
  5478. return memcg;
  5479. }
  5480. /**
  5481. * mem_cgroup_swapout - transfer a memsw charge to swap
  5482. * @page: page whose memsw charge to transfer
  5483. * @entry: swap entry to move the charge to
  5484. *
  5485. * Transfer the memsw charge of @page to @entry.
  5486. */
  5487. void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
  5488. {
  5489. struct mem_cgroup *memcg, *swap_memcg;
  5490. unsigned int nr_entries;
  5491. unsigned short oldid;
  5492. VM_BUG_ON_PAGE(PageLRU(page), page);
  5493. VM_BUG_ON_PAGE(page_count(page), page);
  5494. if (!do_memsw_account())
  5495. return;
  5496. memcg = page->mem_cgroup;
  5497. /* Readahead page, never charged */
  5498. if (!memcg)
  5499. return;
  5500. /*
  5501. * In case the memcg owning these pages has been offlined and doesn't
  5502. * have an ID allocated to it anymore, charge the closest online
  5503. * ancestor for the swap instead and transfer the memory+swap charge.
  5504. */
  5505. swap_memcg = mem_cgroup_id_get_online(memcg);
  5506. nr_entries = hpage_nr_pages(page);
  5507. /* Get references for the tail pages, too */
  5508. if (nr_entries > 1)
  5509. mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
  5510. oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
  5511. nr_entries);
  5512. VM_BUG_ON_PAGE(oldid, page);
  5513. mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
  5514. page->mem_cgroup = NULL;
  5515. if (!mem_cgroup_is_root(memcg))
  5516. page_counter_uncharge(&memcg->memory, nr_entries);
  5517. if (memcg != swap_memcg) {
  5518. if (!mem_cgroup_is_root(swap_memcg))
  5519. page_counter_charge(&swap_memcg->memsw, nr_entries);
  5520. page_counter_uncharge(&memcg->memsw, nr_entries);
  5521. }
  5522. /*
  5523. * Interrupts should be disabled here because the caller holds the
  5524. * i_pages lock which is taken with interrupts-off. It is
  5525. * important here to have the interrupts disabled because it is the
  5526. * only synchronisation we have for updating the per-CPU variables.
  5527. */
  5528. VM_BUG_ON(!irqs_disabled());
  5529. mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
  5530. -nr_entries);
  5531. memcg_check_events(memcg, page);
  5532. if (!mem_cgroup_is_root(memcg))
  5533. css_put_many(&memcg->css, nr_entries);
  5534. }
  5535. /**
  5536. * mem_cgroup_try_charge_swap - try charging swap space for a page
  5537. * @page: page being added to swap
  5538. * @entry: swap entry to charge
  5539. *
  5540. * Try to charge @page's memcg for the swap space at @entry.
  5541. *
  5542. * Returns 0 on success, -ENOMEM on failure.
  5543. */
  5544. int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
  5545. {
  5546. unsigned int nr_pages = hpage_nr_pages(page);
  5547. struct page_counter *counter;
  5548. struct mem_cgroup *memcg;
  5549. unsigned short oldid;
  5550. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
  5551. return 0;
  5552. memcg = page->mem_cgroup;
  5553. /* Readahead page, never charged */
  5554. if (!memcg)
  5555. return 0;
  5556. if (!entry.val) {
  5557. memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
  5558. return 0;
  5559. }
  5560. memcg = mem_cgroup_id_get_online(memcg);
  5561. if (!mem_cgroup_is_root(memcg) &&
  5562. !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
  5563. memcg_memory_event(memcg, MEMCG_SWAP_MAX);
  5564. memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
  5565. mem_cgroup_id_put(memcg);
  5566. return -ENOMEM;
  5567. }
  5568. /* Get references for the tail pages, too */
  5569. if (nr_pages > 1)
  5570. mem_cgroup_id_get_many(memcg, nr_pages - 1);
  5571. oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
  5572. VM_BUG_ON_PAGE(oldid, page);
  5573. mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
  5574. return 0;
  5575. }
  5576. /**
  5577. * mem_cgroup_uncharge_swap - uncharge swap space
  5578. * @entry: swap entry to uncharge
  5579. * @nr_pages: the amount of swap space to uncharge
  5580. */
  5581. void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
  5582. {
  5583. struct mem_cgroup *memcg;
  5584. unsigned short id;
  5585. if (!do_swap_account)
  5586. return;
  5587. id = swap_cgroup_record(entry, 0, nr_pages);
  5588. rcu_read_lock();
  5589. memcg = mem_cgroup_from_id(id);
  5590. if (memcg) {
  5591. if (!mem_cgroup_is_root(memcg)) {
  5592. if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
  5593. page_counter_uncharge(&memcg->swap, nr_pages);
  5594. else
  5595. page_counter_uncharge(&memcg->memsw, nr_pages);
  5596. }
  5597. mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
  5598. mem_cgroup_id_put_many(memcg, nr_pages);
  5599. }
  5600. rcu_read_unlock();
  5601. }
  5602. long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
  5603. {
  5604. long nr_swap_pages = get_nr_swap_pages();
  5605. if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
  5606. return nr_swap_pages;
  5607. for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
  5608. nr_swap_pages = min_t(long, nr_swap_pages,
  5609. READ_ONCE(memcg->swap.max) -
  5610. page_counter_read(&memcg->swap));
  5611. return nr_swap_pages;
  5612. }
  5613. bool mem_cgroup_swap_full(struct page *page)
  5614. {
  5615. struct mem_cgroup *memcg;
  5616. VM_BUG_ON_PAGE(!PageLocked(page), page);
  5617. if (vm_swap_full())
  5618. return true;
  5619. if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
  5620. return false;
  5621. memcg = page->mem_cgroup;
  5622. if (!memcg)
  5623. return false;
  5624. for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
  5625. if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
  5626. return true;
  5627. return false;
  5628. }
  5629. /* for remember boot option*/
  5630. #ifdef CONFIG_MEMCG_SWAP_ENABLED
  5631. static int really_do_swap_account __initdata = 1;
  5632. #else
  5633. static int really_do_swap_account __initdata;
  5634. #endif
  5635. static int __init enable_swap_account(char *s)
  5636. {
  5637. if (!strcmp(s, "1"))
  5638. really_do_swap_account = 1;
  5639. else if (!strcmp(s, "0"))
  5640. really_do_swap_account = 0;
  5641. return 1;
  5642. }
  5643. __setup("swapaccount=", enable_swap_account);
  5644. static u64 swap_current_read(struct cgroup_subsys_state *css,
  5645. struct cftype *cft)
  5646. {
  5647. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  5648. return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
  5649. }
  5650. static int swap_max_show(struct seq_file *m, void *v)
  5651. {
  5652. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  5653. unsigned long max = READ_ONCE(memcg->swap.max);
  5654. if (max == PAGE_COUNTER_MAX)
  5655. seq_puts(m, "max\n");
  5656. else
  5657. seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
  5658. return 0;
  5659. }
  5660. static ssize_t swap_max_write(struct kernfs_open_file *of,
  5661. char *buf, size_t nbytes, loff_t off)
  5662. {
  5663. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  5664. unsigned long max;
  5665. int err;
  5666. buf = strstrip(buf);
  5667. err = page_counter_memparse(buf, "max", &max);
  5668. if (err)
  5669. return err;
  5670. xchg(&memcg->swap.max, max);
  5671. return nbytes;
  5672. }
  5673. static int swap_events_show(struct seq_file *m, void *v)
  5674. {
  5675. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  5676. seq_printf(m, "max %lu\n",
  5677. atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
  5678. seq_printf(m, "fail %lu\n",
  5679. atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
  5680. return 0;
  5681. }
  5682. static struct cftype swap_files[] = {
  5683. {
  5684. .name = "swap.current",
  5685. .flags = CFTYPE_NOT_ON_ROOT,
  5686. .read_u64 = swap_current_read,
  5687. },
  5688. {
  5689. .name = "swap.max",
  5690. .flags = CFTYPE_NOT_ON_ROOT,
  5691. .seq_show = swap_max_show,
  5692. .write = swap_max_write,
  5693. },
  5694. {
  5695. .name = "swap.events",
  5696. .flags = CFTYPE_NOT_ON_ROOT,
  5697. .file_offset = offsetof(struct mem_cgroup, swap_events_file),
  5698. .seq_show = swap_events_show,
  5699. },
  5700. { } /* terminate */
  5701. };
  5702. static struct cftype memsw_cgroup_files[] = {
  5703. {
  5704. .name = "memsw.usage_in_bytes",
  5705. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
  5706. .read_u64 = mem_cgroup_read_u64,
  5707. },
  5708. {
  5709. .name = "memsw.max_usage_in_bytes",
  5710. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
  5711. .write = mem_cgroup_reset,
  5712. .read_u64 = mem_cgroup_read_u64,
  5713. },
  5714. {
  5715. .name = "memsw.limit_in_bytes",
  5716. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
  5717. .write = mem_cgroup_write,
  5718. .read_u64 = mem_cgroup_read_u64,
  5719. },
  5720. {
  5721. .name = "memsw.failcnt",
  5722. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
  5723. .write = mem_cgroup_reset,
  5724. .read_u64 = mem_cgroup_read_u64,
  5725. },
  5726. { }, /* terminate */
  5727. };
  5728. static int __init mem_cgroup_swap_init(void)
  5729. {
  5730. if (!mem_cgroup_disabled() && really_do_swap_account) {
  5731. do_swap_account = 1;
  5732. WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
  5733. swap_files));
  5734. WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
  5735. memsw_cgroup_files));
  5736. }
  5737. return 0;
  5738. }
  5739. subsys_initcall(mem_cgroup_swap_init);
  5740. #endif /* CONFIG_MEMCG_SWAP */