task_mmu.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/mm.h>
  3. #include <linux/vmacache.h>
  4. #include <linux/hugetlb.h>
  5. #include <linux/huge_mm.h>
  6. #include <linux/mount.h>
  7. #include <linux/seq_file.h>
  8. #include <linux/highmem.h>
  9. #include <linux/ptrace.h>
  10. #include <linux/slab.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/mempolicy.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/sched/mm.h>
  16. #include <linux/swapops.h>
  17. #include <linux/mmu_notifier.h>
  18. #include <linux/page_idle.h>
  19. #include <linux/shmem_fs.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/pkeys.h>
  22. #include <asm/elf.h>
  23. #include <asm/tlb.h>
  24. #include <asm/tlbflush.h>
  25. #include "internal.h"
  26. #define SEQ_PUT_DEC(str, val) \
  27. seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
  28. void task_mem(struct seq_file *m, struct mm_struct *mm)
  29. {
  30. unsigned long text, lib, swap, anon, file, shmem;
  31. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  32. anon = get_mm_counter(mm, MM_ANONPAGES);
  33. file = get_mm_counter(mm, MM_FILEPAGES);
  34. shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  35. /*
  36. * Note: to minimize their overhead, mm maintains hiwater_vm and
  37. * hiwater_rss only when about to *lower* total_vm or rss. Any
  38. * collector of these hiwater stats must therefore get total_vm
  39. * and rss too, which will usually be the higher. Barriers? not
  40. * worth the effort, such snapshots can always be inconsistent.
  41. */
  42. hiwater_vm = total_vm = mm->total_vm;
  43. if (hiwater_vm < mm->hiwater_vm)
  44. hiwater_vm = mm->hiwater_vm;
  45. hiwater_rss = total_rss = anon + file + shmem;
  46. if (hiwater_rss < mm->hiwater_rss)
  47. hiwater_rss = mm->hiwater_rss;
  48. /* split executable areas between text and lib */
  49. text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
  50. text = min(text, mm->exec_vm << PAGE_SHIFT);
  51. lib = (mm->exec_vm << PAGE_SHIFT) - text;
  52. swap = get_mm_counter(mm, MM_SWAPENTS);
  53. SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
  54. SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
  55. SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
  56. SEQ_PUT_DEC(" kB\nVmPin:\t", mm->pinned_vm);
  57. SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
  58. SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
  59. SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
  60. SEQ_PUT_DEC(" kB\nRssFile:\t", file);
  61. SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
  62. SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
  63. SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
  64. seq_put_decimal_ull_width(m,
  65. " kB\nVmExe:\t", text >> 10, 8);
  66. seq_put_decimal_ull_width(m,
  67. " kB\nVmLib:\t", lib >> 10, 8);
  68. seq_put_decimal_ull_width(m,
  69. " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
  70. SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
  71. seq_puts(m, " kB\n");
  72. hugetlb_report_usage(m, mm);
  73. }
  74. #undef SEQ_PUT_DEC
  75. unsigned long task_vsize(struct mm_struct *mm)
  76. {
  77. return PAGE_SIZE * mm->total_vm;
  78. }
  79. unsigned long task_statm(struct mm_struct *mm,
  80. unsigned long *shared, unsigned long *text,
  81. unsigned long *data, unsigned long *resident)
  82. {
  83. *shared = get_mm_counter(mm, MM_FILEPAGES) +
  84. get_mm_counter(mm, MM_SHMEMPAGES);
  85. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  86. >> PAGE_SHIFT;
  87. *data = mm->data_vm + mm->stack_vm;
  88. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  89. return mm->total_vm;
  90. }
  91. #ifdef CONFIG_NUMA
  92. /*
  93. * Save get_task_policy() for show_numa_map().
  94. */
  95. static void hold_task_mempolicy(struct proc_maps_private *priv)
  96. {
  97. struct task_struct *task = priv->task;
  98. task_lock(task);
  99. priv->task_mempolicy = get_task_policy(task);
  100. mpol_get(priv->task_mempolicy);
  101. task_unlock(task);
  102. }
  103. static void release_task_mempolicy(struct proc_maps_private *priv)
  104. {
  105. mpol_put(priv->task_mempolicy);
  106. }
  107. #else
  108. static void hold_task_mempolicy(struct proc_maps_private *priv)
  109. {
  110. }
  111. static void release_task_mempolicy(struct proc_maps_private *priv)
  112. {
  113. }
  114. #endif
  115. static void vma_stop(struct proc_maps_private *priv)
  116. {
  117. struct mm_struct *mm = priv->mm;
  118. release_task_mempolicy(priv);
  119. up_read(&mm->mmap_sem);
  120. mmput(mm);
  121. }
  122. static struct vm_area_struct *
  123. m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
  124. {
  125. if (vma == priv->tail_vma)
  126. return NULL;
  127. return vma->vm_next ?: priv->tail_vma;
  128. }
  129. static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
  130. {
  131. if (m->count < m->size) /* vma is copied successfully */
  132. m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
  133. }
  134. static void *m_start(struct seq_file *m, loff_t *ppos)
  135. {
  136. struct proc_maps_private *priv = m->private;
  137. unsigned long last_addr = m->version;
  138. struct mm_struct *mm;
  139. struct vm_area_struct *vma;
  140. unsigned int pos = *ppos;
  141. /* See m_cache_vma(). Zero at the start or after lseek. */
  142. if (last_addr == -1UL)
  143. return NULL;
  144. priv->task = get_proc_task(priv->inode);
  145. if (!priv->task)
  146. return ERR_PTR(-ESRCH);
  147. mm = priv->mm;
  148. if (!mm || !mmget_not_zero(mm))
  149. return NULL;
  150. down_read(&mm->mmap_sem);
  151. hold_task_mempolicy(priv);
  152. priv->tail_vma = get_gate_vma(mm);
  153. if (last_addr) {
  154. vma = find_vma(mm, last_addr - 1);
  155. if (vma && vma->vm_start <= last_addr)
  156. vma = m_next_vma(priv, vma);
  157. if (vma)
  158. return vma;
  159. }
  160. m->version = 0;
  161. if (pos < mm->map_count) {
  162. for (vma = mm->mmap; pos; pos--) {
  163. m->version = vma->vm_start;
  164. vma = vma->vm_next;
  165. }
  166. return vma;
  167. }
  168. /* we do not bother to update m->version in this case */
  169. if (pos == mm->map_count && priv->tail_vma)
  170. return priv->tail_vma;
  171. vma_stop(priv);
  172. return NULL;
  173. }
  174. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  175. {
  176. struct proc_maps_private *priv = m->private;
  177. struct vm_area_struct *next;
  178. (*pos)++;
  179. next = m_next_vma(priv, v);
  180. if (!next)
  181. vma_stop(priv);
  182. return next;
  183. }
  184. static void m_stop(struct seq_file *m, void *v)
  185. {
  186. struct proc_maps_private *priv = m->private;
  187. if (!IS_ERR_OR_NULL(v))
  188. vma_stop(priv);
  189. if (priv->task) {
  190. put_task_struct(priv->task);
  191. priv->task = NULL;
  192. }
  193. }
  194. static int proc_maps_open(struct inode *inode, struct file *file,
  195. const struct seq_operations *ops, int psize)
  196. {
  197. struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
  198. if (!priv)
  199. return -ENOMEM;
  200. priv->inode = inode;
  201. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  202. if (IS_ERR(priv->mm)) {
  203. int err = PTR_ERR(priv->mm);
  204. seq_release_private(inode, file);
  205. return err;
  206. }
  207. return 0;
  208. }
  209. static int proc_map_release(struct inode *inode, struct file *file)
  210. {
  211. struct seq_file *seq = file->private_data;
  212. struct proc_maps_private *priv = seq->private;
  213. if (priv->mm)
  214. mmdrop(priv->mm);
  215. return seq_release_private(inode, file);
  216. }
  217. static int do_maps_open(struct inode *inode, struct file *file,
  218. const struct seq_operations *ops)
  219. {
  220. return proc_maps_open(inode, file, ops,
  221. sizeof(struct proc_maps_private));
  222. }
  223. /*
  224. * Indicate if the VMA is a stack for the given task; for
  225. * /proc/PID/maps that is the stack of the main task.
  226. */
  227. static int is_stack(struct vm_area_struct *vma)
  228. {
  229. /*
  230. * We make no effort to guess what a given thread considers to be
  231. * its "stack". It's not even well-defined for programs written
  232. * languages like Go.
  233. */
  234. return vma->vm_start <= vma->vm_mm->start_stack &&
  235. vma->vm_end >= vma->vm_mm->start_stack;
  236. }
  237. static void show_vma_header_prefix(struct seq_file *m,
  238. unsigned long start, unsigned long end,
  239. vm_flags_t flags, unsigned long long pgoff,
  240. dev_t dev, unsigned long ino)
  241. {
  242. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  243. seq_put_hex_ll(m, NULL, start, 8);
  244. seq_put_hex_ll(m, "-", end, 8);
  245. seq_putc(m, ' ');
  246. seq_putc(m, flags & VM_READ ? 'r' : '-');
  247. seq_putc(m, flags & VM_WRITE ? 'w' : '-');
  248. seq_putc(m, flags & VM_EXEC ? 'x' : '-');
  249. seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
  250. seq_put_hex_ll(m, " ", pgoff, 8);
  251. seq_put_hex_ll(m, " ", MAJOR(dev), 2);
  252. seq_put_hex_ll(m, ":", MINOR(dev), 2);
  253. seq_put_decimal_ull(m, " ", ino);
  254. seq_putc(m, ' ');
  255. }
  256. static void
  257. show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
  258. {
  259. struct mm_struct *mm = vma->vm_mm;
  260. struct file *file = vma->vm_file;
  261. vm_flags_t flags = vma->vm_flags;
  262. unsigned long ino = 0;
  263. unsigned long long pgoff = 0;
  264. unsigned long start, end;
  265. dev_t dev = 0;
  266. const char *name = NULL;
  267. if (file) {
  268. struct inode *inode = file_inode(vma->vm_file);
  269. dev = inode->i_sb->s_dev;
  270. ino = inode->i_ino;
  271. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  272. }
  273. start = vma->vm_start;
  274. end = vma->vm_end;
  275. show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
  276. /*
  277. * Print the dentry name for named mappings, and a
  278. * special [heap] marker for the heap:
  279. */
  280. if (file) {
  281. seq_pad(m, ' ');
  282. seq_file_path(m, file, "\n");
  283. goto done;
  284. }
  285. if (vma->vm_ops && vma->vm_ops->name) {
  286. name = vma->vm_ops->name(vma);
  287. if (name)
  288. goto done;
  289. }
  290. name = arch_vma_name(vma);
  291. if (!name) {
  292. if (!mm) {
  293. name = "[vdso]";
  294. goto done;
  295. }
  296. if (vma->vm_start <= mm->brk &&
  297. vma->vm_end >= mm->start_brk) {
  298. name = "[heap]";
  299. goto done;
  300. }
  301. if (is_stack(vma))
  302. name = "[stack]";
  303. }
  304. done:
  305. if (name) {
  306. seq_pad(m, ' ');
  307. seq_puts(m, name);
  308. }
  309. seq_putc(m, '\n');
  310. }
  311. static int show_map(struct seq_file *m, void *v)
  312. {
  313. show_map_vma(m, v);
  314. m_cache_vma(m, v);
  315. return 0;
  316. }
  317. static const struct seq_operations proc_pid_maps_op = {
  318. .start = m_start,
  319. .next = m_next,
  320. .stop = m_stop,
  321. .show = show_map
  322. };
  323. static int pid_maps_open(struct inode *inode, struct file *file)
  324. {
  325. return do_maps_open(inode, file, &proc_pid_maps_op);
  326. }
  327. const struct file_operations proc_pid_maps_operations = {
  328. .open = pid_maps_open,
  329. .read = seq_read,
  330. .llseek = seq_lseek,
  331. .release = proc_map_release,
  332. };
  333. /*
  334. * Proportional Set Size(PSS): my share of RSS.
  335. *
  336. * PSS of a process is the count of pages it has in memory, where each
  337. * page is divided by the number of processes sharing it. So if a
  338. * process has 1000 pages all to itself, and 1000 shared with one other
  339. * process, its PSS will be 1500.
  340. *
  341. * To keep (accumulated) division errors low, we adopt a 64bit
  342. * fixed-point pss counter to minimize division errors. So (pss >>
  343. * PSS_SHIFT) would be the real byte count.
  344. *
  345. * A shift of 12 before division means (assuming 4K page size):
  346. * - 1M 3-user-pages add up to 8KB errors;
  347. * - supports mapcount up to 2^24, or 16M;
  348. * - supports PSS up to 2^52 bytes, or 4PB.
  349. */
  350. #define PSS_SHIFT 12
  351. #ifdef CONFIG_PROC_PAGE_MONITOR
  352. struct mem_size_stats {
  353. unsigned long resident;
  354. unsigned long shared_clean;
  355. unsigned long shared_dirty;
  356. unsigned long private_clean;
  357. unsigned long private_dirty;
  358. unsigned long referenced;
  359. unsigned long anonymous;
  360. unsigned long lazyfree;
  361. unsigned long anonymous_thp;
  362. unsigned long shmem_thp;
  363. unsigned long swap;
  364. unsigned long shared_hugetlb;
  365. unsigned long private_hugetlb;
  366. u64 pss;
  367. u64 pss_locked;
  368. u64 swap_pss;
  369. bool check_shmem_swap;
  370. };
  371. static void smaps_account(struct mem_size_stats *mss, struct page *page,
  372. bool compound, bool young, bool dirty)
  373. {
  374. int i, nr = compound ? 1 << compound_order(page) : 1;
  375. unsigned long size = nr * PAGE_SIZE;
  376. if (PageAnon(page)) {
  377. mss->anonymous += size;
  378. if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
  379. mss->lazyfree += size;
  380. }
  381. mss->resident += size;
  382. /* Accumulate the size in pages that have been accessed. */
  383. if (young || page_is_young(page) || PageReferenced(page))
  384. mss->referenced += size;
  385. /*
  386. * page_count(page) == 1 guarantees the page is mapped exactly once.
  387. * If any subpage of the compound page mapped with PTE it would elevate
  388. * page_count().
  389. */
  390. if (page_count(page) == 1) {
  391. if (dirty || PageDirty(page))
  392. mss->private_dirty += size;
  393. else
  394. mss->private_clean += size;
  395. mss->pss += (u64)size << PSS_SHIFT;
  396. return;
  397. }
  398. for (i = 0; i < nr; i++, page++) {
  399. int mapcount = page_mapcount(page);
  400. if (mapcount >= 2) {
  401. if (dirty || PageDirty(page))
  402. mss->shared_dirty += PAGE_SIZE;
  403. else
  404. mss->shared_clean += PAGE_SIZE;
  405. mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
  406. } else {
  407. if (dirty || PageDirty(page))
  408. mss->private_dirty += PAGE_SIZE;
  409. else
  410. mss->private_clean += PAGE_SIZE;
  411. mss->pss += PAGE_SIZE << PSS_SHIFT;
  412. }
  413. }
  414. }
  415. #ifdef CONFIG_SHMEM
  416. static int smaps_pte_hole(unsigned long addr, unsigned long end,
  417. struct mm_walk *walk)
  418. {
  419. struct mem_size_stats *mss = walk->private;
  420. mss->swap += shmem_partial_swap_usage(
  421. walk->vma->vm_file->f_mapping, addr, end);
  422. return 0;
  423. }
  424. #endif
  425. static void smaps_pte_entry(pte_t *pte, unsigned long addr,
  426. struct mm_walk *walk)
  427. {
  428. struct mem_size_stats *mss = walk->private;
  429. struct vm_area_struct *vma = walk->vma;
  430. struct page *page = NULL;
  431. if (pte_present(*pte)) {
  432. page = vm_normal_page(vma, addr, *pte);
  433. } else if (is_swap_pte(*pte)) {
  434. swp_entry_t swpent = pte_to_swp_entry(*pte);
  435. if (!non_swap_entry(swpent)) {
  436. int mapcount;
  437. mss->swap += PAGE_SIZE;
  438. mapcount = swp_swapcount(swpent);
  439. if (mapcount >= 2) {
  440. u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
  441. do_div(pss_delta, mapcount);
  442. mss->swap_pss += pss_delta;
  443. } else {
  444. mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
  445. }
  446. } else if (is_migration_entry(swpent))
  447. page = migration_entry_to_page(swpent);
  448. else if (is_device_private_entry(swpent))
  449. page = device_private_entry_to_page(swpent);
  450. } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
  451. && pte_none(*pte))) {
  452. page = find_get_entry(vma->vm_file->f_mapping,
  453. linear_page_index(vma, addr));
  454. if (!page)
  455. return;
  456. if (xa_is_value(page))
  457. mss->swap += PAGE_SIZE;
  458. else
  459. put_page(page);
  460. return;
  461. }
  462. if (!page)
  463. return;
  464. smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
  465. }
  466. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  467. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  468. struct mm_walk *walk)
  469. {
  470. struct mem_size_stats *mss = walk->private;
  471. struct vm_area_struct *vma = walk->vma;
  472. struct page *page;
  473. /* FOLL_DUMP will return -EFAULT on huge zero page */
  474. page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
  475. if (IS_ERR_OR_NULL(page))
  476. return;
  477. if (PageAnon(page))
  478. mss->anonymous_thp += HPAGE_PMD_SIZE;
  479. else if (PageSwapBacked(page))
  480. mss->shmem_thp += HPAGE_PMD_SIZE;
  481. else if (is_zone_device_page(page))
  482. /* pass */;
  483. else
  484. VM_BUG_ON_PAGE(1, page);
  485. smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
  486. }
  487. #else
  488. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  489. struct mm_walk *walk)
  490. {
  491. }
  492. #endif
  493. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  494. struct mm_walk *walk)
  495. {
  496. struct vm_area_struct *vma = walk->vma;
  497. pte_t *pte;
  498. spinlock_t *ptl;
  499. ptl = pmd_trans_huge_lock(pmd, vma);
  500. if (ptl) {
  501. if (pmd_present(*pmd))
  502. smaps_pmd_entry(pmd, addr, walk);
  503. spin_unlock(ptl);
  504. goto out;
  505. }
  506. if (pmd_trans_unstable(pmd))
  507. goto out;
  508. /*
  509. * The mmap_sem held all the way back in m_start() is what
  510. * keeps khugepaged out of here and from collapsing things
  511. * in here.
  512. */
  513. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  514. for (; addr != end; pte++, addr += PAGE_SIZE)
  515. smaps_pte_entry(pte, addr, walk);
  516. pte_unmap_unlock(pte - 1, ptl);
  517. out:
  518. cond_resched();
  519. return 0;
  520. }
  521. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  522. {
  523. /*
  524. * Don't forget to update Documentation/ on changes.
  525. */
  526. static const char mnemonics[BITS_PER_LONG][2] = {
  527. /*
  528. * In case if we meet a flag we don't know about.
  529. */
  530. [0 ... (BITS_PER_LONG-1)] = "??",
  531. [ilog2(VM_READ)] = "rd",
  532. [ilog2(VM_WRITE)] = "wr",
  533. [ilog2(VM_EXEC)] = "ex",
  534. [ilog2(VM_SHARED)] = "sh",
  535. [ilog2(VM_MAYREAD)] = "mr",
  536. [ilog2(VM_MAYWRITE)] = "mw",
  537. [ilog2(VM_MAYEXEC)] = "me",
  538. [ilog2(VM_MAYSHARE)] = "ms",
  539. [ilog2(VM_GROWSDOWN)] = "gd",
  540. [ilog2(VM_PFNMAP)] = "pf",
  541. [ilog2(VM_DENYWRITE)] = "dw",
  542. #ifdef CONFIG_X86_INTEL_MPX
  543. [ilog2(VM_MPX)] = "mp",
  544. #endif
  545. [ilog2(VM_LOCKED)] = "lo",
  546. [ilog2(VM_IO)] = "io",
  547. [ilog2(VM_SEQ_READ)] = "sr",
  548. [ilog2(VM_RAND_READ)] = "rr",
  549. [ilog2(VM_DONTCOPY)] = "dc",
  550. [ilog2(VM_DONTEXPAND)] = "de",
  551. [ilog2(VM_ACCOUNT)] = "ac",
  552. [ilog2(VM_NORESERVE)] = "nr",
  553. [ilog2(VM_HUGETLB)] = "ht",
  554. [ilog2(VM_SYNC)] = "sf",
  555. [ilog2(VM_ARCH_1)] = "ar",
  556. [ilog2(VM_WIPEONFORK)] = "wf",
  557. [ilog2(VM_DONTDUMP)] = "dd",
  558. #ifdef CONFIG_MEM_SOFT_DIRTY
  559. [ilog2(VM_SOFTDIRTY)] = "sd",
  560. #endif
  561. [ilog2(VM_MIXEDMAP)] = "mm",
  562. [ilog2(VM_HUGEPAGE)] = "hg",
  563. [ilog2(VM_NOHUGEPAGE)] = "nh",
  564. [ilog2(VM_MERGEABLE)] = "mg",
  565. [ilog2(VM_UFFD_MISSING)]= "um",
  566. [ilog2(VM_UFFD_WP)] = "uw",
  567. #ifdef CONFIG_ARCH_HAS_PKEYS
  568. /* These come out via ProtectionKey: */
  569. [ilog2(VM_PKEY_BIT0)] = "",
  570. [ilog2(VM_PKEY_BIT1)] = "",
  571. [ilog2(VM_PKEY_BIT2)] = "",
  572. [ilog2(VM_PKEY_BIT3)] = "",
  573. #if VM_PKEY_BIT4
  574. [ilog2(VM_PKEY_BIT4)] = "",
  575. #endif
  576. #endif /* CONFIG_ARCH_HAS_PKEYS */
  577. };
  578. size_t i;
  579. seq_puts(m, "VmFlags: ");
  580. for (i = 0; i < BITS_PER_LONG; i++) {
  581. if (!mnemonics[i][0])
  582. continue;
  583. if (vma->vm_flags & (1UL << i)) {
  584. seq_putc(m, mnemonics[i][0]);
  585. seq_putc(m, mnemonics[i][1]);
  586. seq_putc(m, ' ');
  587. }
  588. }
  589. seq_putc(m, '\n');
  590. }
  591. #ifdef CONFIG_HUGETLB_PAGE
  592. static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
  593. unsigned long addr, unsigned long end,
  594. struct mm_walk *walk)
  595. {
  596. struct mem_size_stats *mss = walk->private;
  597. struct vm_area_struct *vma = walk->vma;
  598. struct page *page = NULL;
  599. if (pte_present(*pte)) {
  600. page = vm_normal_page(vma, addr, *pte);
  601. } else if (is_swap_pte(*pte)) {
  602. swp_entry_t swpent = pte_to_swp_entry(*pte);
  603. if (is_migration_entry(swpent))
  604. page = migration_entry_to_page(swpent);
  605. else if (is_device_private_entry(swpent))
  606. page = device_private_entry_to_page(swpent);
  607. }
  608. if (page) {
  609. int mapcount = page_mapcount(page);
  610. if (mapcount >= 2)
  611. mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
  612. else
  613. mss->private_hugetlb += huge_page_size(hstate_vma(vma));
  614. }
  615. return 0;
  616. }
  617. #endif /* HUGETLB_PAGE */
  618. static void smap_gather_stats(struct vm_area_struct *vma,
  619. struct mem_size_stats *mss)
  620. {
  621. struct mm_walk smaps_walk = {
  622. .pmd_entry = smaps_pte_range,
  623. #ifdef CONFIG_HUGETLB_PAGE
  624. .hugetlb_entry = smaps_hugetlb_range,
  625. #endif
  626. .mm = vma->vm_mm,
  627. };
  628. smaps_walk.private = mss;
  629. #ifdef CONFIG_SHMEM
  630. /* In case of smaps_rollup, reset the value from previous vma */
  631. mss->check_shmem_swap = false;
  632. if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
  633. /*
  634. * For shared or readonly shmem mappings we know that all
  635. * swapped out pages belong to the shmem object, and we can
  636. * obtain the swap value much more efficiently. For private
  637. * writable mappings, we might have COW pages that are
  638. * not affected by the parent swapped out pages of the shmem
  639. * object, so we have to distinguish them during the page walk.
  640. * Unless we know that the shmem object (or the part mapped by
  641. * our VMA) has no swapped out pages at all.
  642. */
  643. unsigned long shmem_swapped = shmem_swap_usage(vma);
  644. if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
  645. !(vma->vm_flags & VM_WRITE)) {
  646. mss->swap += shmem_swapped;
  647. } else {
  648. mss->check_shmem_swap = true;
  649. smaps_walk.pte_hole = smaps_pte_hole;
  650. }
  651. }
  652. #endif
  653. /* mmap_sem is held in m_start */
  654. walk_page_vma(vma, &smaps_walk);
  655. if (vma->vm_flags & VM_LOCKED)
  656. mss->pss_locked += mss->pss;
  657. }
  658. #define SEQ_PUT_DEC(str, val) \
  659. seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
  660. /* Show the contents common for smaps and smaps_rollup */
  661. static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss)
  662. {
  663. SEQ_PUT_DEC("Rss: ", mss->resident);
  664. SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
  665. SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
  666. SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
  667. SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
  668. SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
  669. SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
  670. SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
  671. SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
  672. SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
  673. SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
  674. SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
  675. seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
  676. mss->private_hugetlb >> 10, 7);
  677. SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
  678. SEQ_PUT_DEC(" kB\nSwapPss: ",
  679. mss->swap_pss >> PSS_SHIFT);
  680. SEQ_PUT_DEC(" kB\nLocked: ",
  681. mss->pss_locked >> PSS_SHIFT);
  682. seq_puts(m, " kB\n");
  683. }
  684. static int show_smap(struct seq_file *m, void *v)
  685. {
  686. struct vm_area_struct *vma = v;
  687. struct mem_size_stats mss;
  688. memset(&mss, 0, sizeof(mss));
  689. smap_gather_stats(vma, &mss);
  690. show_map_vma(m, vma);
  691. SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
  692. SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
  693. SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
  694. seq_puts(m, " kB\n");
  695. __show_smap(m, &mss);
  696. if (arch_pkeys_enabled())
  697. seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
  698. show_smap_vma_flags(m, vma);
  699. m_cache_vma(m, vma);
  700. return 0;
  701. }
  702. static int show_smaps_rollup(struct seq_file *m, void *v)
  703. {
  704. struct proc_maps_private *priv = m->private;
  705. struct mem_size_stats mss;
  706. struct mm_struct *mm;
  707. struct vm_area_struct *vma;
  708. unsigned long last_vma_end = 0;
  709. int ret = 0;
  710. priv->task = get_proc_task(priv->inode);
  711. if (!priv->task)
  712. return -ESRCH;
  713. mm = priv->mm;
  714. if (!mm || !mmget_not_zero(mm)) {
  715. ret = -ESRCH;
  716. goto out_put_task;
  717. }
  718. memset(&mss, 0, sizeof(mss));
  719. down_read(&mm->mmap_sem);
  720. hold_task_mempolicy(priv);
  721. for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
  722. smap_gather_stats(vma, &mss);
  723. last_vma_end = vma->vm_end;
  724. }
  725. show_vma_header_prefix(m, priv->mm->mmap->vm_start,
  726. last_vma_end, 0, 0, 0, 0);
  727. seq_pad(m, ' ');
  728. seq_puts(m, "[rollup]\n");
  729. __show_smap(m, &mss);
  730. release_task_mempolicy(priv);
  731. up_read(&mm->mmap_sem);
  732. mmput(mm);
  733. out_put_task:
  734. put_task_struct(priv->task);
  735. priv->task = NULL;
  736. return ret;
  737. }
  738. #undef SEQ_PUT_DEC
  739. static const struct seq_operations proc_pid_smaps_op = {
  740. .start = m_start,
  741. .next = m_next,
  742. .stop = m_stop,
  743. .show = show_smap
  744. };
  745. static int pid_smaps_open(struct inode *inode, struct file *file)
  746. {
  747. return do_maps_open(inode, file, &proc_pid_smaps_op);
  748. }
  749. static int smaps_rollup_open(struct inode *inode, struct file *file)
  750. {
  751. int ret;
  752. struct proc_maps_private *priv;
  753. priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
  754. if (!priv)
  755. return -ENOMEM;
  756. ret = single_open(file, show_smaps_rollup, priv);
  757. if (ret)
  758. goto out_free;
  759. priv->inode = inode;
  760. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  761. if (IS_ERR(priv->mm)) {
  762. ret = PTR_ERR(priv->mm);
  763. single_release(inode, file);
  764. goto out_free;
  765. }
  766. return 0;
  767. out_free:
  768. kfree(priv);
  769. return ret;
  770. }
  771. static int smaps_rollup_release(struct inode *inode, struct file *file)
  772. {
  773. struct seq_file *seq = file->private_data;
  774. struct proc_maps_private *priv = seq->private;
  775. if (priv->mm)
  776. mmdrop(priv->mm);
  777. kfree(priv);
  778. return single_release(inode, file);
  779. }
  780. const struct file_operations proc_pid_smaps_operations = {
  781. .open = pid_smaps_open,
  782. .read = seq_read,
  783. .llseek = seq_lseek,
  784. .release = proc_map_release,
  785. };
  786. const struct file_operations proc_pid_smaps_rollup_operations = {
  787. .open = smaps_rollup_open,
  788. .read = seq_read,
  789. .llseek = seq_lseek,
  790. .release = smaps_rollup_release,
  791. };
  792. enum clear_refs_types {
  793. CLEAR_REFS_ALL = 1,
  794. CLEAR_REFS_ANON,
  795. CLEAR_REFS_MAPPED,
  796. CLEAR_REFS_SOFT_DIRTY,
  797. CLEAR_REFS_MM_HIWATER_RSS,
  798. CLEAR_REFS_LAST,
  799. };
  800. struct clear_refs_private {
  801. enum clear_refs_types type;
  802. };
  803. #ifdef CONFIG_MEM_SOFT_DIRTY
  804. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  805. unsigned long addr, pte_t *pte)
  806. {
  807. /*
  808. * The soft-dirty tracker uses #PF-s to catch writes
  809. * to pages, so write-protect the pte as well. See the
  810. * Documentation/admin-guide/mm/soft-dirty.rst for full description
  811. * of how soft-dirty works.
  812. */
  813. pte_t ptent = *pte;
  814. if (pte_present(ptent)) {
  815. ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
  816. ptent = pte_wrprotect(ptent);
  817. ptent = pte_clear_soft_dirty(ptent);
  818. ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
  819. } else if (is_swap_pte(ptent)) {
  820. ptent = pte_swp_clear_soft_dirty(ptent);
  821. set_pte_at(vma->vm_mm, addr, pte, ptent);
  822. }
  823. }
  824. #else
  825. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  826. unsigned long addr, pte_t *pte)
  827. {
  828. }
  829. #endif
  830. #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
  831. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  832. unsigned long addr, pmd_t *pmdp)
  833. {
  834. pmd_t old, pmd = *pmdp;
  835. if (pmd_present(pmd)) {
  836. /* See comment in change_huge_pmd() */
  837. old = pmdp_invalidate(vma, addr, pmdp);
  838. if (pmd_dirty(old))
  839. pmd = pmd_mkdirty(pmd);
  840. if (pmd_young(old))
  841. pmd = pmd_mkyoung(pmd);
  842. pmd = pmd_wrprotect(pmd);
  843. pmd = pmd_clear_soft_dirty(pmd);
  844. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  845. } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
  846. pmd = pmd_swp_clear_soft_dirty(pmd);
  847. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  848. }
  849. }
  850. #else
  851. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  852. unsigned long addr, pmd_t *pmdp)
  853. {
  854. }
  855. #endif
  856. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  857. unsigned long end, struct mm_walk *walk)
  858. {
  859. struct clear_refs_private *cp = walk->private;
  860. struct vm_area_struct *vma = walk->vma;
  861. pte_t *pte, ptent;
  862. spinlock_t *ptl;
  863. struct page *page;
  864. ptl = pmd_trans_huge_lock(pmd, vma);
  865. if (ptl) {
  866. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  867. clear_soft_dirty_pmd(vma, addr, pmd);
  868. goto out;
  869. }
  870. if (!pmd_present(*pmd))
  871. goto out;
  872. page = pmd_page(*pmd);
  873. /* Clear accessed and referenced bits. */
  874. pmdp_test_and_clear_young(vma, addr, pmd);
  875. test_and_clear_page_young(page);
  876. ClearPageReferenced(page);
  877. out:
  878. spin_unlock(ptl);
  879. return 0;
  880. }
  881. if (pmd_trans_unstable(pmd))
  882. return 0;
  883. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  884. for (; addr != end; pte++, addr += PAGE_SIZE) {
  885. ptent = *pte;
  886. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  887. clear_soft_dirty(vma, addr, pte);
  888. continue;
  889. }
  890. if (!pte_present(ptent))
  891. continue;
  892. page = vm_normal_page(vma, addr, ptent);
  893. if (!page)
  894. continue;
  895. /* Clear accessed and referenced bits. */
  896. ptep_test_and_clear_young(vma, addr, pte);
  897. test_and_clear_page_young(page);
  898. ClearPageReferenced(page);
  899. }
  900. pte_unmap_unlock(pte - 1, ptl);
  901. cond_resched();
  902. return 0;
  903. }
  904. static int clear_refs_test_walk(unsigned long start, unsigned long end,
  905. struct mm_walk *walk)
  906. {
  907. struct clear_refs_private *cp = walk->private;
  908. struct vm_area_struct *vma = walk->vma;
  909. if (vma->vm_flags & VM_PFNMAP)
  910. return 1;
  911. /*
  912. * Writing 1 to /proc/pid/clear_refs affects all pages.
  913. * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
  914. * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
  915. * Writing 4 to /proc/pid/clear_refs affects all pages.
  916. */
  917. if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
  918. return 1;
  919. if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
  920. return 1;
  921. return 0;
  922. }
  923. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  924. size_t count, loff_t *ppos)
  925. {
  926. struct task_struct *task;
  927. char buffer[PROC_NUMBUF];
  928. struct mm_struct *mm;
  929. struct vm_area_struct *vma;
  930. enum clear_refs_types type;
  931. struct mmu_gather tlb;
  932. int itype;
  933. int rv;
  934. memset(buffer, 0, sizeof(buffer));
  935. if (count > sizeof(buffer) - 1)
  936. count = sizeof(buffer) - 1;
  937. if (copy_from_user(buffer, buf, count))
  938. return -EFAULT;
  939. rv = kstrtoint(strstrip(buffer), 10, &itype);
  940. if (rv < 0)
  941. return rv;
  942. type = (enum clear_refs_types)itype;
  943. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  944. return -EINVAL;
  945. task = get_proc_task(file_inode(file));
  946. if (!task)
  947. return -ESRCH;
  948. mm = get_task_mm(task);
  949. if (mm) {
  950. struct clear_refs_private cp = {
  951. .type = type,
  952. };
  953. struct mm_walk clear_refs_walk = {
  954. .pmd_entry = clear_refs_pte_range,
  955. .test_walk = clear_refs_test_walk,
  956. .mm = mm,
  957. .private = &cp,
  958. };
  959. if (type == CLEAR_REFS_MM_HIWATER_RSS) {
  960. if (down_write_killable(&mm->mmap_sem)) {
  961. count = -EINTR;
  962. goto out_mm;
  963. }
  964. /*
  965. * Writing 5 to /proc/pid/clear_refs resets the peak
  966. * resident set size to this mm's current rss value.
  967. */
  968. reset_mm_hiwater_rss(mm);
  969. up_write(&mm->mmap_sem);
  970. goto out_mm;
  971. }
  972. down_read(&mm->mmap_sem);
  973. tlb_gather_mmu(&tlb, mm, 0, -1);
  974. if (type == CLEAR_REFS_SOFT_DIRTY) {
  975. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  976. if (!(vma->vm_flags & VM_SOFTDIRTY))
  977. continue;
  978. up_read(&mm->mmap_sem);
  979. if (down_write_killable(&mm->mmap_sem)) {
  980. count = -EINTR;
  981. goto out_mm;
  982. }
  983. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  984. vma->vm_flags &= ~VM_SOFTDIRTY;
  985. vma_set_page_prot(vma);
  986. }
  987. downgrade_write(&mm->mmap_sem);
  988. break;
  989. }
  990. mmu_notifier_invalidate_range_start(mm, 0, -1);
  991. }
  992. walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
  993. if (type == CLEAR_REFS_SOFT_DIRTY)
  994. mmu_notifier_invalidate_range_end(mm, 0, -1);
  995. tlb_finish_mmu(&tlb, 0, -1);
  996. up_read(&mm->mmap_sem);
  997. out_mm:
  998. mmput(mm);
  999. }
  1000. put_task_struct(task);
  1001. return count;
  1002. }
  1003. const struct file_operations proc_clear_refs_operations = {
  1004. .write = clear_refs_write,
  1005. .llseek = noop_llseek,
  1006. };
  1007. typedef struct {
  1008. u64 pme;
  1009. } pagemap_entry_t;
  1010. struct pagemapread {
  1011. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  1012. pagemap_entry_t *buffer;
  1013. bool show_pfn;
  1014. };
  1015. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  1016. #define PAGEMAP_WALK_MASK (PMD_MASK)
  1017. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  1018. #define PM_PFRAME_BITS 55
  1019. #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
  1020. #define PM_SOFT_DIRTY BIT_ULL(55)
  1021. #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
  1022. #define PM_FILE BIT_ULL(61)
  1023. #define PM_SWAP BIT_ULL(62)
  1024. #define PM_PRESENT BIT_ULL(63)
  1025. #define PM_END_OF_BUFFER 1
  1026. static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
  1027. {
  1028. return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
  1029. }
  1030. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  1031. struct pagemapread *pm)
  1032. {
  1033. pm->buffer[pm->pos++] = *pme;
  1034. if (pm->pos >= pm->len)
  1035. return PM_END_OF_BUFFER;
  1036. return 0;
  1037. }
  1038. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  1039. struct mm_walk *walk)
  1040. {
  1041. struct pagemapread *pm = walk->private;
  1042. unsigned long addr = start;
  1043. int err = 0;
  1044. while (addr < end) {
  1045. struct vm_area_struct *vma = find_vma(walk->mm, addr);
  1046. pagemap_entry_t pme = make_pme(0, 0);
  1047. /* End of address space hole, which we mark as non-present. */
  1048. unsigned long hole_end;
  1049. if (vma)
  1050. hole_end = min(end, vma->vm_start);
  1051. else
  1052. hole_end = end;
  1053. for (; addr < hole_end; addr += PAGE_SIZE) {
  1054. err = add_to_pagemap(addr, &pme, pm);
  1055. if (err)
  1056. goto out;
  1057. }
  1058. if (!vma)
  1059. break;
  1060. /* Addresses in the VMA. */
  1061. if (vma->vm_flags & VM_SOFTDIRTY)
  1062. pme = make_pme(0, PM_SOFT_DIRTY);
  1063. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  1064. err = add_to_pagemap(addr, &pme, pm);
  1065. if (err)
  1066. goto out;
  1067. }
  1068. }
  1069. out:
  1070. return err;
  1071. }
  1072. static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
  1073. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  1074. {
  1075. u64 frame = 0, flags = 0;
  1076. struct page *page = NULL;
  1077. if (pte_present(pte)) {
  1078. if (pm->show_pfn)
  1079. frame = pte_pfn(pte);
  1080. flags |= PM_PRESENT;
  1081. page = _vm_normal_page(vma, addr, pte, true);
  1082. if (pte_soft_dirty(pte))
  1083. flags |= PM_SOFT_DIRTY;
  1084. } else if (is_swap_pte(pte)) {
  1085. swp_entry_t entry;
  1086. if (pte_swp_soft_dirty(pte))
  1087. flags |= PM_SOFT_DIRTY;
  1088. entry = pte_to_swp_entry(pte);
  1089. if (pm->show_pfn)
  1090. frame = swp_type(entry) |
  1091. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  1092. flags |= PM_SWAP;
  1093. if (is_migration_entry(entry))
  1094. page = migration_entry_to_page(entry);
  1095. if (is_device_private_entry(entry))
  1096. page = device_private_entry_to_page(entry);
  1097. }
  1098. if (page && !PageAnon(page))
  1099. flags |= PM_FILE;
  1100. if (page && page_mapcount(page) == 1)
  1101. flags |= PM_MMAP_EXCLUSIVE;
  1102. if (vma->vm_flags & VM_SOFTDIRTY)
  1103. flags |= PM_SOFT_DIRTY;
  1104. return make_pme(frame, flags);
  1105. }
  1106. static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
  1107. struct mm_walk *walk)
  1108. {
  1109. struct vm_area_struct *vma = walk->vma;
  1110. struct pagemapread *pm = walk->private;
  1111. spinlock_t *ptl;
  1112. pte_t *pte, *orig_pte;
  1113. int err = 0;
  1114. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1115. ptl = pmd_trans_huge_lock(pmdp, vma);
  1116. if (ptl) {
  1117. u64 flags = 0, frame = 0;
  1118. pmd_t pmd = *pmdp;
  1119. struct page *page = NULL;
  1120. if (vma->vm_flags & VM_SOFTDIRTY)
  1121. flags |= PM_SOFT_DIRTY;
  1122. if (pmd_present(pmd)) {
  1123. page = pmd_page(pmd);
  1124. flags |= PM_PRESENT;
  1125. if (pmd_soft_dirty(pmd))
  1126. flags |= PM_SOFT_DIRTY;
  1127. if (pm->show_pfn)
  1128. frame = pmd_pfn(pmd) +
  1129. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  1130. }
  1131. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  1132. else if (is_swap_pmd(pmd)) {
  1133. swp_entry_t entry = pmd_to_swp_entry(pmd);
  1134. unsigned long offset;
  1135. if (pm->show_pfn) {
  1136. offset = swp_offset(entry) +
  1137. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  1138. frame = swp_type(entry) |
  1139. (offset << MAX_SWAPFILES_SHIFT);
  1140. }
  1141. flags |= PM_SWAP;
  1142. if (pmd_swp_soft_dirty(pmd))
  1143. flags |= PM_SOFT_DIRTY;
  1144. VM_BUG_ON(!is_pmd_migration_entry(pmd));
  1145. page = migration_entry_to_page(entry);
  1146. }
  1147. #endif
  1148. if (page && page_mapcount(page) == 1)
  1149. flags |= PM_MMAP_EXCLUSIVE;
  1150. for (; addr != end; addr += PAGE_SIZE) {
  1151. pagemap_entry_t pme = make_pme(frame, flags);
  1152. err = add_to_pagemap(addr, &pme, pm);
  1153. if (err)
  1154. break;
  1155. if (pm->show_pfn) {
  1156. if (flags & PM_PRESENT)
  1157. frame++;
  1158. else if (flags & PM_SWAP)
  1159. frame += (1 << MAX_SWAPFILES_SHIFT);
  1160. }
  1161. }
  1162. spin_unlock(ptl);
  1163. return err;
  1164. }
  1165. if (pmd_trans_unstable(pmdp))
  1166. return 0;
  1167. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1168. /*
  1169. * We can assume that @vma always points to a valid one and @end never
  1170. * goes beyond vma->vm_end.
  1171. */
  1172. orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
  1173. for (; addr < end; pte++, addr += PAGE_SIZE) {
  1174. pagemap_entry_t pme;
  1175. pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
  1176. err = add_to_pagemap(addr, &pme, pm);
  1177. if (err)
  1178. break;
  1179. }
  1180. pte_unmap_unlock(orig_pte, ptl);
  1181. cond_resched();
  1182. return err;
  1183. }
  1184. #ifdef CONFIG_HUGETLB_PAGE
  1185. /* This function walks within one hugetlb entry in the single call */
  1186. static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
  1187. unsigned long addr, unsigned long end,
  1188. struct mm_walk *walk)
  1189. {
  1190. struct pagemapread *pm = walk->private;
  1191. struct vm_area_struct *vma = walk->vma;
  1192. u64 flags = 0, frame = 0;
  1193. int err = 0;
  1194. pte_t pte;
  1195. if (vma->vm_flags & VM_SOFTDIRTY)
  1196. flags |= PM_SOFT_DIRTY;
  1197. pte = huge_ptep_get(ptep);
  1198. if (pte_present(pte)) {
  1199. struct page *page = pte_page(pte);
  1200. if (!PageAnon(page))
  1201. flags |= PM_FILE;
  1202. if (page_mapcount(page) == 1)
  1203. flags |= PM_MMAP_EXCLUSIVE;
  1204. flags |= PM_PRESENT;
  1205. if (pm->show_pfn)
  1206. frame = pte_pfn(pte) +
  1207. ((addr & ~hmask) >> PAGE_SHIFT);
  1208. }
  1209. for (; addr != end; addr += PAGE_SIZE) {
  1210. pagemap_entry_t pme = make_pme(frame, flags);
  1211. err = add_to_pagemap(addr, &pme, pm);
  1212. if (err)
  1213. return err;
  1214. if (pm->show_pfn && (flags & PM_PRESENT))
  1215. frame++;
  1216. }
  1217. cond_resched();
  1218. return err;
  1219. }
  1220. #endif /* HUGETLB_PAGE */
  1221. /*
  1222. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  1223. *
  1224. * For each page in the address space, this file contains one 64-bit entry
  1225. * consisting of the following:
  1226. *
  1227. * Bits 0-54 page frame number (PFN) if present
  1228. * Bits 0-4 swap type if swapped
  1229. * Bits 5-54 swap offset if swapped
  1230. * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
  1231. * Bit 56 page exclusively mapped
  1232. * Bits 57-60 zero
  1233. * Bit 61 page is file-page or shared-anon
  1234. * Bit 62 page swapped
  1235. * Bit 63 page present
  1236. *
  1237. * If the page is not present but in swap, then the PFN contains an
  1238. * encoding of the swap file number and the page's offset into the
  1239. * swap. Unmapped pages return a null PFN. This allows determining
  1240. * precisely which pages are mapped (or in swap) and comparing mapped
  1241. * pages between processes.
  1242. *
  1243. * Efficient users of this interface will use /proc/pid/maps to
  1244. * determine which areas of memory are actually mapped and llseek to
  1245. * skip over unmapped regions.
  1246. */
  1247. static ssize_t pagemap_read(struct file *file, char __user *buf,
  1248. size_t count, loff_t *ppos)
  1249. {
  1250. struct mm_struct *mm = file->private_data;
  1251. struct pagemapread pm;
  1252. struct mm_walk pagemap_walk = {};
  1253. unsigned long src;
  1254. unsigned long svpfn;
  1255. unsigned long start_vaddr;
  1256. unsigned long end_vaddr;
  1257. int ret = 0, copied = 0;
  1258. if (!mm || !mmget_not_zero(mm))
  1259. goto out;
  1260. ret = -EINVAL;
  1261. /* file position must be aligned */
  1262. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  1263. goto out_mm;
  1264. ret = 0;
  1265. if (!count)
  1266. goto out_mm;
  1267. /* do not disclose physical addresses: attack vector */
  1268. pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
  1269. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  1270. pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
  1271. ret = -ENOMEM;
  1272. if (!pm.buffer)
  1273. goto out_mm;
  1274. pagemap_walk.pmd_entry = pagemap_pmd_range;
  1275. pagemap_walk.pte_hole = pagemap_pte_hole;
  1276. #ifdef CONFIG_HUGETLB_PAGE
  1277. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  1278. #endif
  1279. pagemap_walk.mm = mm;
  1280. pagemap_walk.private = &pm;
  1281. src = *ppos;
  1282. svpfn = src / PM_ENTRY_BYTES;
  1283. start_vaddr = svpfn << PAGE_SHIFT;
  1284. end_vaddr = mm->task_size;
  1285. /* watch out for wraparound */
  1286. if (svpfn > mm->task_size >> PAGE_SHIFT)
  1287. start_vaddr = end_vaddr;
  1288. /*
  1289. * The odds are that this will stop walking way
  1290. * before end_vaddr, because the length of the
  1291. * user buffer is tracked in "pm", and the walk
  1292. * will stop when we hit the end of the buffer.
  1293. */
  1294. ret = 0;
  1295. while (count && (start_vaddr < end_vaddr)) {
  1296. int len;
  1297. unsigned long end;
  1298. pm.pos = 0;
  1299. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1300. /* overflow ? */
  1301. if (end < start_vaddr || end > end_vaddr)
  1302. end = end_vaddr;
  1303. down_read(&mm->mmap_sem);
  1304. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  1305. up_read(&mm->mmap_sem);
  1306. start_vaddr = end;
  1307. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1308. if (copy_to_user(buf, pm.buffer, len)) {
  1309. ret = -EFAULT;
  1310. goto out_free;
  1311. }
  1312. copied += len;
  1313. buf += len;
  1314. count -= len;
  1315. }
  1316. *ppos += copied;
  1317. if (!ret || ret == PM_END_OF_BUFFER)
  1318. ret = copied;
  1319. out_free:
  1320. kfree(pm.buffer);
  1321. out_mm:
  1322. mmput(mm);
  1323. out:
  1324. return ret;
  1325. }
  1326. static int pagemap_open(struct inode *inode, struct file *file)
  1327. {
  1328. struct mm_struct *mm;
  1329. mm = proc_mem_open(inode, PTRACE_MODE_READ);
  1330. if (IS_ERR(mm))
  1331. return PTR_ERR(mm);
  1332. file->private_data = mm;
  1333. return 0;
  1334. }
  1335. static int pagemap_release(struct inode *inode, struct file *file)
  1336. {
  1337. struct mm_struct *mm = file->private_data;
  1338. if (mm)
  1339. mmdrop(mm);
  1340. return 0;
  1341. }
  1342. const struct file_operations proc_pagemap_operations = {
  1343. .llseek = mem_lseek, /* borrow this */
  1344. .read = pagemap_read,
  1345. .open = pagemap_open,
  1346. .release = pagemap_release,
  1347. };
  1348. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1349. #ifdef CONFIG_NUMA
  1350. struct numa_maps {
  1351. unsigned long pages;
  1352. unsigned long anon;
  1353. unsigned long active;
  1354. unsigned long writeback;
  1355. unsigned long mapcount_max;
  1356. unsigned long dirty;
  1357. unsigned long swapcache;
  1358. unsigned long node[MAX_NUMNODES];
  1359. };
  1360. struct numa_maps_private {
  1361. struct proc_maps_private proc_maps;
  1362. struct numa_maps md;
  1363. };
  1364. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1365. unsigned long nr_pages)
  1366. {
  1367. int count = page_mapcount(page);
  1368. md->pages += nr_pages;
  1369. if (pte_dirty || PageDirty(page))
  1370. md->dirty += nr_pages;
  1371. if (PageSwapCache(page))
  1372. md->swapcache += nr_pages;
  1373. if (PageActive(page) || PageUnevictable(page))
  1374. md->active += nr_pages;
  1375. if (PageWriteback(page))
  1376. md->writeback += nr_pages;
  1377. if (PageAnon(page))
  1378. md->anon += nr_pages;
  1379. if (count > md->mapcount_max)
  1380. md->mapcount_max = count;
  1381. md->node[page_to_nid(page)] += nr_pages;
  1382. }
  1383. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1384. unsigned long addr)
  1385. {
  1386. struct page *page;
  1387. int nid;
  1388. if (!pte_present(pte))
  1389. return NULL;
  1390. page = vm_normal_page(vma, addr, pte);
  1391. if (!page)
  1392. return NULL;
  1393. if (PageReserved(page))
  1394. return NULL;
  1395. nid = page_to_nid(page);
  1396. if (!node_isset(nid, node_states[N_MEMORY]))
  1397. return NULL;
  1398. return page;
  1399. }
  1400. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1401. static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
  1402. struct vm_area_struct *vma,
  1403. unsigned long addr)
  1404. {
  1405. struct page *page;
  1406. int nid;
  1407. if (!pmd_present(pmd))
  1408. return NULL;
  1409. page = vm_normal_page_pmd(vma, addr, pmd);
  1410. if (!page)
  1411. return NULL;
  1412. if (PageReserved(page))
  1413. return NULL;
  1414. nid = page_to_nid(page);
  1415. if (!node_isset(nid, node_states[N_MEMORY]))
  1416. return NULL;
  1417. return page;
  1418. }
  1419. #endif
  1420. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1421. unsigned long end, struct mm_walk *walk)
  1422. {
  1423. struct numa_maps *md = walk->private;
  1424. struct vm_area_struct *vma = walk->vma;
  1425. spinlock_t *ptl;
  1426. pte_t *orig_pte;
  1427. pte_t *pte;
  1428. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1429. ptl = pmd_trans_huge_lock(pmd, vma);
  1430. if (ptl) {
  1431. struct page *page;
  1432. page = can_gather_numa_stats_pmd(*pmd, vma, addr);
  1433. if (page)
  1434. gather_stats(page, md, pmd_dirty(*pmd),
  1435. HPAGE_PMD_SIZE/PAGE_SIZE);
  1436. spin_unlock(ptl);
  1437. return 0;
  1438. }
  1439. if (pmd_trans_unstable(pmd))
  1440. return 0;
  1441. #endif
  1442. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1443. do {
  1444. struct page *page = can_gather_numa_stats(*pte, vma, addr);
  1445. if (!page)
  1446. continue;
  1447. gather_stats(page, md, pte_dirty(*pte), 1);
  1448. } while (pte++, addr += PAGE_SIZE, addr != end);
  1449. pte_unmap_unlock(orig_pte, ptl);
  1450. cond_resched();
  1451. return 0;
  1452. }
  1453. #ifdef CONFIG_HUGETLB_PAGE
  1454. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1455. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1456. {
  1457. pte_t huge_pte = huge_ptep_get(pte);
  1458. struct numa_maps *md;
  1459. struct page *page;
  1460. if (!pte_present(huge_pte))
  1461. return 0;
  1462. page = pte_page(huge_pte);
  1463. if (!page)
  1464. return 0;
  1465. md = walk->private;
  1466. gather_stats(page, md, pte_dirty(huge_pte), 1);
  1467. return 0;
  1468. }
  1469. #else
  1470. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1471. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1472. {
  1473. return 0;
  1474. }
  1475. #endif
  1476. /*
  1477. * Display pages allocated per node and memory policy via /proc.
  1478. */
  1479. static int show_numa_map(struct seq_file *m, void *v)
  1480. {
  1481. struct numa_maps_private *numa_priv = m->private;
  1482. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1483. struct vm_area_struct *vma = v;
  1484. struct numa_maps *md = &numa_priv->md;
  1485. struct file *file = vma->vm_file;
  1486. struct mm_struct *mm = vma->vm_mm;
  1487. struct mm_walk walk = {
  1488. .hugetlb_entry = gather_hugetlb_stats,
  1489. .pmd_entry = gather_pte_stats,
  1490. .private = md,
  1491. .mm = mm,
  1492. };
  1493. struct mempolicy *pol;
  1494. char buffer[64];
  1495. int nid;
  1496. if (!mm)
  1497. return 0;
  1498. /* Ensure we start with an empty set of numa_maps statistics. */
  1499. memset(md, 0, sizeof(*md));
  1500. pol = __get_vma_policy(vma, vma->vm_start);
  1501. if (pol) {
  1502. mpol_to_str(buffer, sizeof(buffer), pol);
  1503. mpol_cond_put(pol);
  1504. } else {
  1505. mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
  1506. }
  1507. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1508. if (file) {
  1509. seq_puts(m, " file=");
  1510. seq_file_path(m, file, "\n\t= ");
  1511. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1512. seq_puts(m, " heap");
  1513. } else if (is_stack(vma)) {
  1514. seq_puts(m, " stack");
  1515. }
  1516. if (is_vm_hugetlb_page(vma))
  1517. seq_puts(m, " huge");
  1518. /* mmap_sem is held by m_start */
  1519. walk_page_vma(vma, &walk);
  1520. if (!md->pages)
  1521. goto out;
  1522. if (md->anon)
  1523. seq_printf(m, " anon=%lu", md->anon);
  1524. if (md->dirty)
  1525. seq_printf(m, " dirty=%lu", md->dirty);
  1526. if (md->pages != md->anon && md->pages != md->dirty)
  1527. seq_printf(m, " mapped=%lu", md->pages);
  1528. if (md->mapcount_max > 1)
  1529. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1530. if (md->swapcache)
  1531. seq_printf(m, " swapcache=%lu", md->swapcache);
  1532. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1533. seq_printf(m, " active=%lu", md->active);
  1534. if (md->writeback)
  1535. seq_printf(m, " writeback=%lu", md->writeback);
  1536. for_each_node_state(nid, N_MEMORY)
  1537. if (md->node[nid])
  1538. seq_printf(m, " N%d=%lu", nid, md->node[nid]);
  1539. seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
  1540. out:
  1541. seq_putc(m, '\n');
  1542. m_cache_vma(m, vma);
  1543. return 0;
  1544. }
  1545. static const struct seq_operations proc_pid_numa_maps_op = {
  1546. .start = m_start,
  1547. .next = m_next,
  1548. .stop = m_stop,
  1549. .show = show_numa_map,
  1550. };
  1551. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1552. {
  1553. return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
  1554. sizeof(struct numa_maps_private));
  1555. }
  1556. const struct file_operations proc_pid_numa_maps_operations = {
  1557. .open = pid_numa_maps_open,
  1558. .read = seq_read,
  1559. .llseek = seq_lseek,
  1560. .release = proc_map_release,
  1561. };
  1562. #endif /* CONFIG_NUMA */