node.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * fs/f2fs/node.c
  4. *
  5. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6. * http://www.samsung.com/
  7. */
  8. #include <linux/fs.h>
  9. #include <linux/f2fs_fs.h>
  10. #include <linux/mpage.h>
  11. #include <linux/backing-dev.h>
  12. #include <linux/blkdev.h>
  13. #include <linux/pagevec.h>
  14. #include <linux/swap.h>
  15. #include "f2fs.h"
  16. #include "node.h"
  17. #include "segment.h"
  18. #include "xattr.h"
  19. #include "trace.h"
  20. #include <trace/events/f2fs.h>
  21. #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  22. static struct kmem_cache *nat_entry_slab;
  23. static struct kmem_cache *free_nid_slab;
  24. static struct kmem_cache *nat_entry_set_slab;
  25. static struct kmem_cache *fsync_node_entry_slab;
  26. /*
  27. * Check whether the given nid is within node id range.
  28. */
  29. int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
  30. {
  31. if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
  32. set_sbi_flag(sbi, SBI_NEED_FSCK);
  33. f2fs_msg(sbi->sb, KERN_WARNING,
  34. "%s: out-of-range nid=%x, run fsck to fix.",
  35. __func__, nid);
  36. return -EINVAL;
  37. }
  38. return 0;
  39. }
  40. bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
  41. {
  42. struct f2fs_nm_info *nm_i = NM_I(sbi);
  43. struct sysinfo val;
  44. unsigned long avail_ram;
  45. unsigned long mem_size = 0;
  46. bool res = false;
  47. si_meminfo(&val);
  48. /* only uses low memory */
  49. avail_ram = val.totalram - val.totalhigh;
  50. /*
  51. * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  52. */
  53. if (type == FREE_NIDS) {
  54. mem_size = (nm_i->nid_cnt[FREE_NID] *
  55. sizeof(struct free_nid)) >> PAGE_SHIFT;
  56. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  57. } else if (type == NAT_ENTRIES) {
  58. mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  59. PAGE_SHIFT;
  60. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  61. if (excess_cached_nats(sbi))
  62. res = false;
  63. } else if (type == DIRTY_DENTS) {
  64. if (sbi->sb->s_bdi->wb.dirty_exceeded)
  65. return false;
  66. mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  67. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  68. } else if (type == INO_ENTRIES) {
  69. int i;
  70. for (i = 0; i < MAX_INO_ENTRY; i++)
  71. mem_size += sbi->im[i].ino_num *
  72. sizeof(struct ino_entry);
  73. mem_size >>= PAGE_SHIFT;
  74. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  75. } else if (type == EXTENT_CACHE) {
  76. mem_size = (atomic_read(&sbi->total_ext_tree) *
  77. sizeof(struct extent_tree) +
  78. atomic_read(&sbi->total_ext_node) *
  79. sizeof(struct extent_node)) >> PAGE_SHIFT;
  80. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  81. } else if (type == INMEM_PAGES) {
  82. /* it allows 20% / total_ram for inmemory pages */
  83. mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
  84. res = mem_size < (val.totalram / 5);
  85. } else {
  86. if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  87. return true;
  88. }
  89. return res;
  90. }
  91. static void clear_node_page_dirty(struct page *page)
  92. {
  93. if (PageDirty(page)) {
  94. f2fs_clear_page_cache_dirty_tag(page);
  95. clear_page_dirty_for_io(page);
  96. dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
  97. }
  98. ClearPageUptodate(page);
  99. }
  100. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  101. {
  102. return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
  103. }
  104. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  105. {
  106. struct page *src_page;
  107. struct page *dst_page;
  108. pgoff_t dst_off;
  109. void *src_addr;
  110. void *dst_addr;
  111. struct f2fs_nm_info *nm_i = NM_I(sbi);
  112. dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
  113. /* get current nat block page with lock */
  114. src_page = get_current_nat_page(sbi, nid);
  115. if (IS_ERR(src_page))
  116. return src_page;
  117. dst_page = f2fs_grab_meta_page(sbi, dst_off);
  118. f2fs_bug_on(sbi, PageDirty(src_page));
  119. src_addr = page_address(src_page);
  120. dst_addr = page_address(dst_page);
  121. memcpy(dst_addr, src_addr, PAGE_SIZE);
  122. set_page_dirty(dst_page);
  123. f2fs_put_page(src_page, 1);
  124. set_to_next_nat(nm_i, nid);
  125. return dst_page;
  126. }
  127. static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
  128. {
  129. struct nat_entry *new;
  130. if (no_fail)
  131. new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
  132. else
  133. new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
  134. if (new) {
  135. nat_set_nid(new, nid);
  136. nat_reset_flag(new);
  137. }
  138. return new;
  139. }
  140. static void __free_nat_entry(struct nat_entry *e)
  141. {
  142. kmem_cache_free(nat_entry_slab, e);
  143. }
  144. /* must be locked by nat_tree_lock */
  145. static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
  146. struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
  147. {
  148. if (no_fail)
  149. f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
  150. else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
  151. return NULL;
  152. if (raw_ne)
  153. node_info_from_raw_nat(&ne->ni, raw_ne);
  154. spin_lock(&nm_i->nat_list_lock);
  155. list_add_tail(&ne->list, &nm_i->nat_entries);
  156. spin_unlock(&nm_i->nat_list_lock);
  157. nm_i->nat_cnt++;
  158. return ne;
  159. }
  160. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  161. {
  162. struct nat_entry *ne;
  163. ne = radix_tree_lookup(&nm_i->nat_root, n);
  164. /* for recent accessed nat entry, move it to tail of lru list */
  165. if (ne && !get_nat_flag(ne, IS_DIRTY)) {
  166. spin_lock(&nm_i->nat_list_lock);
  167. if (!list_empty(&ne->list))
  168. list_move_tail(&ne->list, &nm_i->nat_entries);
  169. spin_unlock(&nm_i->nat_list_lock);
  170. }
  171. return ne;
  172. }
  173. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  174. nid_t start, unsigned int nr, struct nat_entry **ep)
  175. {
  176. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  177. }
  178. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  179. {
  180. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  181. nm_i->nat_cnt--;
  182. __free_nat_entry(e);
  183. }
  184. static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
  185. struct nat_entry *ne)
  186. {
  187. nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
  188. struct nat_entry_set *head;
  189. head = radix_tree_lookup(&nm_i->nat_set_root, set);
  190. if (!head) {
  191. head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
  192. INIT_LIST_HEAD(&head->entry_list);
  193. INIT_LIST_HEAD(&head->set_list);
  194. head->set = set;
  195. head->entry_cnt = 0;
  196. f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
  197. }
  198. return head;
  199. }
  200. static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  201. struct nat_entry *ne)
  202. {
  203. struct nat_entry_set *head;
  204. bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
  205. if (!new_ne)
  206. head = __grab_nat_entry_set(nm_i, ne);
  207. /*
  208. * update entry_cnt in below condition:
  209. * 1. update NEW_ADDR to valid block address;
  210. * 2. update old block address to new one;
  211. */
  212. if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
  213. !get_nat_flag(ne, IS_DIRTY)))
  214. head->entry_cnt++;
  215. set_nat_flag(ne, IS_PREALLOC, new_ne);
  216. if (get_nat_flag(ne, IS_DIRTY))
  217. goto refresh_list;
  218. nm_i->dirty_nat_cnt++;
  219. set_nat_flag(ne, IS_DIRTY, true);
  220. refresh_list:
  221. spin_lock(&nm_i->nat_list_lock);
  222. if (new_ne)
  223. list_del_init(&ne->list);
  224. else
  225. list_move_tail(&ne->list, &head->entry_list);
  226. spin_unlock(&nm_i->nat_list_lock);
  227. }
  228. static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  229. struct nat_entry_set *set, struct nat_entry *ne)
  230. {
  231. spin_lock(&nm_i->nat_list_lock);
  232. list_move_tail(&ne->list, &nm_i->nat_entries);
  233. spin_unlock(&nm_i->nat_list_lock);
  234. set_nat_flag(ne, IS_DIRTY, false);
  235. set->entry_cnt--;
  236. nm_i->dirty_nat_cnt--;
  237. }
  238. static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
  239. nid_t start, unsigned int nr, struct nat_entry_set **ep)
  240. {
  241. return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
  242. start, nr);
  243. }
  244. bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
  245. {
  246. return NODE_MAPPING(sbi) == page->mapping &&
  247. IS_DNODE(page) && is_cold_node(page);
  248. }
  249. void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
  250. {
  251. spin_lock_init(&sbi->fsync_node_lock);
  252. INIT_LIST_HEAD(&sbi->fsync_node_list);
  253. sbi->fsync_seg_id = 0;
  254. sbi->fsync_node_num = 0;
  255. }
  256. static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
  257. struct page *page)
  258. {
  259. struct fsync_node_entry *fn;
  260. unsigned long flags;
  261. unsigned int seq_id;
  262. fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
  263. get_page(page);
  264. fn->page = page;
  265. INIT_LIST_HEAD(&fn->list);
  266. spin_lock_irqsave(&sbi->fsync_node_lock, flags);
  267. list_add_tail(&fn->list, &sbi->fsync_node_list);
  268. fn->seq_id = sbi->fsync_seg_id++;
  269. seq_id = fn->seq_id;
  270. sbi->fsync_node_num++;
  271. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  272. return seq_id;
  273. }
  274. void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
  275. {
  276. struct fsync_node_entry *fn;
  277. unsigned long flags;
  278. spin_lock_irqsave(&sbi->fsync_node_lock, flags);
  279. list_for_each_entry(fn, &sbi->fsync_node_list, list) {
  280. if (fn->page == page) {
  281. list_del(&fn->list);
  282. sbi->fsync_node_num--;
  283. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  284. kmem_cache_free(fsync_node_entry_slab, fn);
  285. put_page(page);
  286. return;
  287. }
  288. }
  289. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  290. f2fs_bug_on(sbi, 1);
  291. }
  292. void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
  293. {
  294. unsigned long flags;
  295. spin_lock_irqsave(&sbi->fsync_node_lock, flags);
  296. sbi->fsync_seg_id = 0;
  297. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  298. }
  299. int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
  300. {
  301. struct f2fs_nm_info *nm_i = NM_I(sbi);
  302. struct nat_entry *e;
  303. bool need = false;
  304. down_read(&nm_i->nat_tree_lock);
  305. e = __lookup_nat_cache(nm_i, nid);
  306. if (e) {
  307. if (!get_nat_flag(e, IS_CHECKPOINTED) &&
  308. !get_nat_flag(e, HAS_FSYNCED_INODE))
  309. need = true;
  310. }
  311. up_read(&nm_i->nat_tree_lock);
  312. return need;
  313. }
  314. bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  315. {
  316. struct f2fs_nm_info *nm_i = NM_I(sbi);
  317. struct nat_entry *e;
  318. bool is_cp = true;
  319. down_read(&nm_i->nat_tree_lock);
  320. e = __lookup_nat_cache(nm_i, nid);
  321. if (e && !get_nat_flag(e, IS_CHECKPOINTED))
  322. is_cp = false;
  323. up_read(&nm_i->nat_tree_lock);
  324. return is_cp;
  325. }
  326. bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
  327. {
  328. struct f2fs_nm_info *nm_i = NM_I(sbi);
  329. struct nat_entry *e;
  330. bool need_update = true;
  331. down_read(&nm_i->nat_tree_lock);
  332. e = __lookup_nat_cache(nm_i, ino);
  333. if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
  334. (get_nat_flag(e, IS_CHECKPOINTED) ||
  335. get_nat_flag(e, HAS_FSYNCED_INODE)))
  336. need_update = false;
  337. up_read(&nm_i->nat_tree_lock);
  338. return need_update;
  339. }
  340. /* must be locked by nat_tree_lock */
  341. static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
  342. struct f2fs_nat_entry *ne)
  343. {
  344. struct f2fs_nm_info *nm_i = NM_I(sbi);
  345. struct nat_entry *new, *e;
  346. new = __alloc_nat_entry(nid, false);
  347. if (!new)
  348. return;
  349. down_write(&nm_i->nat_tree_lock);
  350. e = __lookup_nat_cache(nm_i, nid);
  351. if (!e)
  352. e = __init_nat_entry(nm_i, new, ne, false);
  353. else
  354. f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
  355. nat_get_blkaddr(e) !=
  356. le32_to_cpu(ne->block_addr) ||
  357. nat_get_version(e) != ne->version);
  358. up_write(&nm_i->nat_tree_lock);
  359. if (e != new)
  360. __free_nat_entry(new);
  361. }
  362. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  363. block_t new_blkaddr, bool fsync_done)
  364. {
  365. struct f2fs_nm_info *nm_i = NM_I(sbi);
  366. struct nat_entry *e;
  367. struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
  368. down_write(&nm_i->nat_tree_lock);
  369. e = __lookup_nat_cache(nm_i, ni->nid);
  370. if (!e) {
  371. e = __init_nat_entry(nm_i, new, NULL, true);
  372. copy_node_info(&e->ni, ni);
  373. f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
  374. } else if (new_blkaddr == NEW_ADDR) {
  375. /*
  376. * when nid is reallocated,
  377. * previous nat entry can be remained in nat cache.
  378. * So, reinitialize it with new information.
  379. */
  380. copy_node_info(&e->ni, ni);
  381. f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
  382. }
  383. /* let's free early to reduce memory consumption */
  384. if (e != new)
  385. __free_nat_entry(new);
  386. /* sanity check */
  387. f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
  388. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
  389. new_blkaddr == NULL_ADDR);
  390. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
  391. new_blkaddr == NEW_ADDR);
  392. f2fs_bug_on(sbi, is_valid_data_blkaddr(sbi, nat_get_blkaddr(e)) &&
  393. new_blkaddr == NEW_ADDR);
  394. /* increment version no as node is removed */
  395. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  396. unsigned char version = nat_get_version(e);
  397. nat_set_version(e, inc_node_version(version));
  398. }
  399. /* change address */
  400. nat_set_blkaddr(e, new_blkaddr);
  401. if (!is_valid_data_blkaddr(sbi, new_blkaddr))
  402. set_nat_flag(e, IS_CHECKPOINTED, false);
  403. __set_nat_cache_dirty(nm_i, e);
  404. /* update fsync_mark if its inode nat entry is still alive */
  405. if (ni->nid != ni->ino)
  406. e = __lookup_nat_cache(nm_i, ni->ino);
  407. if (e) {
  408. if (fsync_done && ni->nid == ni->ino)
  409. set_nat_flag(e, HAS_FSYNCED_INODE, true);
  410. set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
  411. }
  412. up_write(&nm_i->nat_tree_lock);
  413. }
  414. int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  415. {
  416. struct f2fs_nm_info *nm_i = NM_I(sbi);
  417. int nr = nr_shrink;
  418. if (!down_write_trylock(&nm_i->nat_tree_lock))
  419. return 0;
  420. spin_lock(&nm_i->nat_list_lock);
  421. while (nr_shrink) {
  422. struct nat_entry *ne;
  423. if (list_empty(&nm_i->nat_entries))
  424. break;
  425. ne = list_first_entry(&nm_i->nat_entries,
  426. struct nat_entry, list);
  427. list_del(&ne->list);
  428. spin_unlock(&nm_i->nat_list_lock);
  429. __del_from_nat_cache(nm_i, ne);
  430. nr_shrink--;
  431. spin_lock(&nm_i->nat_list_lock);
  432. }
  433. spin_unlock(&nm_i->nat_list_lock);
  434. up_write(&nm_i->nat_tree_lock);
  435. return nr - nr_shrink;
  436. }
  437. /*
  438. * This function always returns success
  439. */
  440. int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
  441. struct node_info *ni)
  442. {
  443. struct f2fs_nm_info *nm_i = NM_I(sbi);
  444. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  445. struct f2fs_journal *journal = curseg->journal;
  446. nid_t start_nid = START_NID(nid);
  447. struct f2fs_nat_block *nat_blk;
  448. struct page *page = NULL;
  449. struct f2fs_nat_entry ne;
  450. struct nat_entry *e;
  451. pgoff_t index;
  452. int i;
  453. ni->nid = nid;
  454. /* Check nat cache */
  455. down_read(&nm_i->nat_tree_lock);
  456. e = __lookup_nat_cache(nm_i, nid);
  457. if (e) {
  458. ni->ino = nat_get_ino(e);
  459. ni->blk_addr = nat_get_blkaddr(e);
  460. ni->version = nat_get_version(e);
  461. up_read(&nm_i->nat_tree_lock);
  462. return 0;
  463. }
  464. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  465. /* Check current segment summary */
  466. down_read(&curseg->journal_rwsem);
  467. i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
  468. if (i >= 0) {
  469. ne = nat_in_journal(journal, i);
  470. node_info_from_raw_nat(ni, &ne);
  471. }
  472. up_read(&curseg->journal_rwsem);
  473. if (i >= 0) {
  474. up_read(&nm_i->nat_tree_lock);
  475. goto cache;
  476. }
  477. /* Fill node_info from nat page */
  478. index = current_nat_addr(sbi, nid);
  479. up_read(&nm_i->nat_tree_lock);
  480. page = f2fs_get_meta_page(sbi, index);
  481. if (IS_ERR(page))
  482. return PTR_ERR(page);
  483. nat_blk = (struct f2fs_nat_block *)page_address(page);
  484. ne = nat_blk->entries[nid - start_nid];
  485. node_info_from_raw_nat(ni, &ne);
  486. f2fs_put_page(page, 1);
  487. cache:
  488. /* cache nat entry */
  489. cache_nat_entry(sbi, nid, &ne);
  490. return 0;
  491. }
  492. /*
  493. * readahead MAX_RA_NODE number of node pages.
  494. */
  495. static void f2fs_ra_node_pages(struct page *parent, int start, int n)
  496. {
  497. struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
  498. struct blk_plug plug;
  499. int i, end;
  500. nid_t nid;
  501. blk_start_plug(&plug);
  502. /* Then, try readahead for siblings of the desired node */
  503. end = start + n;
  504. end = min(end, NIDS_PER_BLOCK);
  505. for (i = start; i < end; i++) {
  506. nid = get_nid(parent, i, false);
  507. f2fs_ra_node_page(sbi, nid);
  508. }
  509. blk_finish_plug(&plug);
  510. }
  511. pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
  512. {
  513. const long direct_index = ADDRS_PER_INODE(dn->inode);
  514. const long direct_blks = ADDRS_PER_BLOCK;
  515. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  516. unsigned int skipped_unit = ADDRS_PER_BLOCK;
  517. int cur_level = dn->cur_level;
  518. int max_level = dn->max_level;
  519. pgoff_t base = 0;
  520. if (!dn->max_level)
  521. return pgofs + 1;
  522. while (max_level-- > cur_level)
  523. skipped_unit *= NIDS_PER_BLOCK;
  524. switch (dn->max_level) {
  525. case 3:
  526. base += 2 * indirect_blks;
  527. case 2:
  528. base += 2 * direct_blks;
  529. case 1:
  530. base += direct_index;
  531. break;
  532. default:
  533. f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
  534. }
  535. return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
  536. }
  537. /*
  538. * The maximum depth is four.
  539. * Offset[0] will have raw inode offset.
  540. */
  541. static int get_node_path(struct inode *inode, long block,
  542. int offset[4], unsigned int noffset[4])
  543. {
  544. const long direct_index = ADDRS_PER_INODE(inode);
  545. const long direct_blks = ADDRS_PER_BLOCK;
  546. const long dptrs_per_blk = NIDS_PER_BLOCK;
  547. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  548. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  549. int n = 0;
  550. int level = 0;
  551. noffset[0] = 0;
  552. if (block < direct_index) {
  553. offset[n] = block;
  554. goto got;
  555. }
  556. block -= direct_index;
  557. if (block < direct_blks) {
  558. offset[n++] = NODE_DIR1_BLOCK;
  559. noffset[n] = 1;
  560. offset[n] = block;
  561. level = 1;
  562. goto got;
  563. }
  564. block -= direct_blks;
  565. if (block < direct_blks) {
  566. offset[n++] = NODE_DIR2_BLOCK;
  567. noffset[n] = 2;
  568. offset[n] = block;
  569. level = 1;
  570. goto got;
  571. }
  572. block -= direct_blks;
  573. if (block < indirect_blks) {
  574. offset[n++] = NODE_IND1_BLOCK;
  575. noffset[n] = 3;
  576. offset[n++] = block / direct_blks;
  577. noffset[n] = 4 + offset[n - 1];
  578. offset[n] = block % direct_blks;
  579. level = 2;
  580. goto got;
  581. }
  582. block -= indirect_blks;
  583. if (block < indirect_blks) {
  584. offset[n++] = NODE_IND2_BLOCK;
  585. noffset[n] = 4 + dptrs_per_blk;
  586. offset[n++] = block / direct_blks;
  587. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  588. offset[n] = block % direct_blks;
  589. level = 2;
  590. goto got;
  591. }
  592. block -= indirect_blks;
  593. if (block < dindirect_blks) {
  594. offset[n++] = NODE_DIND_BLOCK;
  595. noffset[n] = 5 + (dptrs_per_blk * 2);
  596. offset[n++] = block / indirect_blks;
  597. noffset[n] = 6 + (dptrs_per_blk * 2) +
  598. offset[n - 1] * (dptrs_per_blk + 1);
  599. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  600. noffset[n] = 7 + (dptrs_per_blk * 2) +
  601. offset[n - 2] * (dptrs_per_blk + 1) +
  602. offset[n - 1];
  603. offset[n] = block % direct_blks;
  604. level = 3;
  605. goto got;
  606. } else {
  607. return -E2BIG;
  608. }
  609. got:
  610. return level;
  611. }
  612. /*
  613. * Caller should call f2fs_put_dnode(dn).
  614. * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
  615. * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
  616. * In the case of RDONLY_NODE, we don't need to care about mutex.
  617. */
  618. int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  619. {
  620. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  621. struct page *npage[4];
  622. struct page *parent = NULL;
  623. int offset[4];
  624. unsigned int noffset[4];
  625. nid_t nids[4];
  626. int level, i = 0;
  627. int err = 0;
  628. level = get_node_path(dn->inode, index, offset, noffset);
  629. if (level < 0)
  630. return level;
  631. nids[0] = dn->inode->i_ino;
  632. npage[0] = dn->inode_page;
  633. if (!npage[0]) {
  634. npage[0] = f2fs_get_node_page(sbi, nids[0]);
  635. if (IS_ERR(npage[0]))
  636. return PTR_ERR(npage[0]);
  637. }
  638. /* if inline_data is set, should not report any block indices */
  639. if (f2fs_has_inline_data(dn->inode) && index) {
  640. err = -ENOENT;
  641. f2fs_put_page(npage[0], 1);
  642. goto release_out;
  643. }
  644. parent = npage[0];
  645. if (level != 0)
  646. nids[1] = get_nid(parent, offset[0], true);
  647. dn->inode_page = npage[0];
  648. dn->inode_page_locked = true;
  649. /* get indirect or direct nodes */
  650. for (i = 1; i <= level; i++) {
  651. bool done = false;
  652. if (!nids[i] && mode == ALLOC_NODE) {
  653. /* alloc new node */
  654. if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
  655. err = -ENOSPC;
  656. goto release_pages;
  657. }
  658. dn->nid = nids[i];
  659. npage[i] = f2fs_new_node_page(dn, noffset[i]);
  660. if (IS_ERR(npage[i])) {
  661. f2fs_alloc_nid_failed(sbi, nids[i]);
  662. err = PTR_ERR(npage[i]);
  663. goto release_pages;
  664. }
  665. set_nid(parent, offset[i - 1], nids[i], i == 1);
  666. f2fs_alloc_nid_done(sbi, nids[i]);
  667. done = true;
  668. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  669. npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
  670. if (IS_ERR(npage[i])) {
  671. err = PTR_ERR(npage[i]);
  672. goto release_pages;
  673. }
  674. done = true;
  675. }
  676. if (i == 1) {
  677. dn->inode_page_locked = false;
  678. unlock_page(parent);
  679. } else {
  680. f2fs_put_page(parent, 1);
  681. }
  682. if (!done) {
  683. npage[i] = f2fs_get_node_page(sbi, nids[i]);
  684. if (IS_ERR(npage[i])) {
  685. err = PTR_ERR(npage[i]);
  686. f2fs_put_page(npage[0], 0);
  687. goto release_out;
  688. }
  689. }
  690. if (i < level) {
  691. parent = npage[i];
  692. nids[i + 1] = get_nid(parent, offset[i], false);
  693. }
  694. }
  695. dn->nid = nids[level];
  696. dn->ofs_in_node = offset[level];
  697. dn->node_page = npage[level];
  698. dn->data_blkaddr = datablock_addr(dn->inode,
  699. dn->node_page, dn->ofs_in_node);
  700. return 0;
  701. release_pages:
  702. f2fs_put_page(parent, 1);
  703. if (i > 1)
  704. f2fs_put_page(npage[0], 0);
  705. release_out:
  706. dn->inode_page = NULL;
  707. dn->node_page = NULL;
  708. if (err == -ENOENT) {
  709. dn->cur_level = i;
  710. dn->max_level = level;
  711. dn->ofs_in_node = offset[level];
  712. }
  713. return err;
  714. }
  715. static int truncate_node(struct dnode_of_data *dn)
  716. {
  717. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  718. struct node_info ni;
  719. int err;
  720. err = f2fs_get_node_info(sbi, dn->nid, &ni);
  721. if (err)
  722. return err;
  723. /* Deallocate node address */
  724. f2fs_invalidate_blocks(sbi, ni.blk_addr);
  725. dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
  726. set_node_addr(sbi, &ni, NULL_ADDR, false);
  727. if (dn->nid == dn->inode->i_ino) {
  728. f2fs_remove_orphan_inode(sbi, dn->nid);
  729. dec_valid_inode_count(sbi);
  730. f2fs_inode_synced(dn->inode);
  731. }
  732. clear_node_page_dirty(dn->node_page);
  733. set_sbi_flag(sbi, SBI_IS_DIRTY);
  734. f2fs_put_page(dn->node_page, 1);
  735. invalidate_mapping_pages(NODE_MAPPING(sbi),
  736. dn->node_page->index, dn->node_page->index);
  737. dn->node_page = NULL;
  738. trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
  739. return 0;
  740. }
  741. static int truncate_dnode(struct dnode_of_data *dn)
  742. {
  743. struct page *page;
  744. int err;
  745. if (dn->nid == 0)
  746. return 1;
  747. /* get direct node */
  748. page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  749. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  750. return 1;
  751. else if (IS_ERR(page))
  752. return PTR_ERR(page);
  753. /* Make dnode_of_data for parameter */
  754. dn->node_page = page;
  755. dn->ofs_in_node = 0;
  756. f2fs_truncate_data_blocks(dn);
  757. err = truncate_node(dn);
  758. if (err)
  759. return err;
  760. return 1;
  761. }
  762. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  763. int ofs, int depth)
  764. {
  765. struct dnode_of_data rdn = *dn;
  766. struct page *page;
  767. struct f2fs_node *rn;
  768. nid_t child_nid;
  769. unsigned int child_nofs;
  770. int freed = 0;
  771. int i, ret;
  772. if (dn->nid == 0)
  773. return NIDS_PER_BLOCK + 1;
  774. trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
  775. page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  776. if (IS_ERR(page)) {
  777. trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
  778. return PTR_ERR(page);
  779. }
  780. f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
  781. rn = F2FS_NODE(page);
  782. if (depth < 3) {
  783. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  784. child_nid = le32_to_cpu(rn->in.nid[i]);
  785. if (child_nid == 0)
  786. continue;
  787. rdn.nid = child_nid;
  788. ret = truncate_dnode(&rdn);
  789. if (ret < 0)
  790. goto out_err;
  791. if (set_nid(page, i, 0, false))
  792. dn->node_changed = true;
  793. }
  794. } else {
  795. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  796. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  797. child_nid = le32_to_cpu(rn->in.nid[i]);
  798. if (child_nid == 0) {
  799. child_nofs += NIDS_PER_BLOCK + 1;
  800. continue;
  801. }
  802. rdn.nid = child_nid;
  803. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  804. if (ret == (NIDS_PER_BLOCK + 1)) {
  805. if (set_nid(page, i, 0, false))
  806. dn->node_changed = true;
  807. child_nofs += ret;
  808. } else if (ret < 0 && ret != -ENOENT) {
  809. goto out_err;
  810. }
  811. }
  812. freed = child_nofs;
  813. }
  814. if (!ofs) {
  815. /* remove current indirect node */
  816. dn->node_page = page;
  817. ret = truncate_node(dn);
  818. if (ret)
  819. goto out_err;
  820. freed++;
  821. } else {
  822. f2fs_put_page(page, 1);
  823. }
  824. trace_f2fs_truncate_nodes_exit(dn->inode, freed);
  825. return freed;
  826. out_err:
  827. f2fs_put_page(page, 1);
  828. trace_f2fs_truncate_nodes_exit(dn->inode, ret);
  829. return ret;
  830. }
  831. static int truncate_partial_nodes(struct dnode_of_data *dn,
  832. struct f2fs_inode *ri, int *offset, int depth)
  833. {
  834. struct page *pages[2];
  835. nid_t nid[3];
  836. nid_t child_nid;
  837. int err = 0;
  838. int i;
  839. int idx = depth - 2;
  840. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  841. if (!nid[0])
  842. return 0;
  843. /* get indirect nodes in the path */
  844. for (i = 0; i < idx + 1; i++) {
  845. /* reference count'll be increased */
  846. pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
  847. if (IS_ERR(pages[i])) {
  848. err = PTR_ERR(pages[i]);
  849. idx = i - 1;
  850. goto fail;
  851. }
  852. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  853. }
  854. f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
  855. /* free direct nodes linked to a partial indirect node */
  856. for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
  857. child_nid = get_nid(pages[idx], i, false);
  858. if (!child_nid)
  859. continue;
  860. dn->nid = child_nid;
  861. err = truncate_dnode(dn);
  862. if (err < 0)
  863. goto fail;
  864. if (set_nid(pages[idx], i, 0, false))
  865. dn->node_changed = true;
  866. }
  867. if (offset[idx + 1] == 0) {
  868. dn->node_page = pages[idx];
  869. dn->nid = nid[idx];
  870. err = truncate_node(dn);
  871. if (err)
  872. goto fail;
  873. } else {
  874. f2fs_put_page(pages[idx], 1);
  875. }
  876. offset[idx]++;
  877. offset[idx + 1] = 0;
  878. idx--;
  879. fail:
  880. for (i = idx; i >= 0; i--)
  881. f2fs_put_page(pages[i], 1);
  882. trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
  883. return err;
  884. }
  885. /*
  886. * All the block addresses of data and nodes should be nullified.
  887. */
  888. int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
  889. {
  890. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  891. int err = 0, cont = 1;
  892. int level, offset[4], noffset[4];
  893. unsigned int nofs = 0;
  894. struct f2fs_inode *ri;
  895. struct dnode_of_data dn;
  896. struct page *page;
  897. trace_f2fs_truncate_inode_blocks_enter(inode, from);
  898. level = get_node_path(inode, from, offset, noffset);
  899. if (level < 0)
  900. return level;
  901. page = f2fs_get_node_page(sbi, inode->i_ino);
  902. if (IS_ERR(page)) {
  903. trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
  904. return PTR_ERR(page);
  905. }
  906. set_new_dnode(&dn, inode, page, NULL, 0);
  907. unlock_page(page);
  908. ri = F2FS_INODE(page);
  909. switch (level) {
  910. case 0:
  911. case 1:
  912. nofs = noffset[1];
  913. break;
  914. case 2:
  915. nofs = noffset[1];
  916. if (!offset[level - 1])
  917. goto skip_partial;
  918. err = truncate_partial_nodes(&dn, ri, offset, level);
  919. if (err < 0 && err != -ENOENT)
  920. goto fail;
  921. nofs += 1 + NIDS_PER_BLOCK;
  922. break;
  923. case 3:
  924. nofs = 5 + 2 * NIDS_PER_BLOCK;
  925. if (!offset[level - 1])
  926. goto skip_partial;
  927. err = truncate_partial_nodes(&dn, ri, offset, level);
  928. if (err < 0 && err != -ENOENT)
  929. goto fail;
  930. break;
  931. default:
  932. BUG();
  933. }
  934. skip_partial:
  935. while (cont) {
  936. dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  937. switch (offset[0]) {
  938. case NODE_DIR1_BLOCK:
  939. case NODE_DIR2_BLOCK:
  940. err = truncate_dnode(&dn);
  941. break;
  942. case NODE_IND1_BLOCK:
  943. case NODE_IND2_BLOCK:
  944. err = truncate_nodes(&dn, nofs, offset[1], 2);
  945. break;
  946. case NODE_DIND_BLOCK:
  947. err = truncate_nodes(&dn, nofs, offset[1], 3);
  948. cont = 0;
  949. break;
  950. default:
  951. BUG();
  952. }
  953. if (err < 0 && err != -ENOENT)
  954. goto fail;
  955. if (offset[1] == 0 &&
  956. ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  957. lock_page(page);
  958. BUG_ON(page->mapping != NODE_MAPPING(sbi));
  959. f2fs_wait_on_page_writeback(page, NODE, true);
  960. ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  961. set_page_dirty(page);
  962. unlock_page(page);
  963. }
  964. offset[1] = 0;
  965. offset[0]++;
  966. nofs += err;
  967. }
  968. fail:
  969. f2fs_put_page(page, 0);
  970. trace_f2fs_truncate_inode_blocks_exit(inode, err);
  971. return err > 0 ? 0 : err;
  972. }
  973. /* caller must lock inode page */
  974. int f2fs_truncate_xattr_node(struct inode *inode)
  975. {
  976. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  977. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  978. struct dnode_of_data dn;
  979. struct page *npage;
  980. int err;
  981. if (!nid)
  982. return 0;
  983. npage = f2fs_get_node_page(sbi, nid);
  984. if (IS_ERR(npage))
  985. return PTR_ERR(npage);
  986. set_new_dnode(&dn, inode, NULL, npage, nid);
  987. err = truncate_node(&dn);
  988. if (err) {
  989. f2fs_put_page(npage, 1);
  990. return err;
  991. }
  992. f2fs_i_xnid_write(inode, 0);
  993. return 0;
  994. }
  995. /*
  996. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  997. * f2fs_unlock_op().
  998. */
  999. int f2fs_remove_inode_page(struct inode *inode)
  1000. {
  1001. struct dnode_of_data dn;
  1002. int err;
  1003. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  1004. err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  1005. if (err)
  1006. return err;
  1007. err = f2fs_truncate_xattr_node(inode);
  1008. if (err) {
  1009. f2fs_put_dnode(&dn);
  1010. return err;
  1011. }
  1012. /* remove potential inline_data blocks */
  1013. if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  1014. S_ISLNK(inode->i_mode))
  1015. f2fs_truncate_data_blocks_range(&dn, 1);
  1016. /* 0 is possible, after f2fs_new_inode() has failed */
  1017. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
  1018. f2fs_put_dnode(&dn);
  1019. return -EIO;
  1020. }
  1021. f2fs_bug_on(F2FS_I_SB(inode),
  1022. inode->i_blocks != 0 && inode->i_blocks != 8);
  1023. /* will put inode & node pages */
  1024. err = truncate_node(&dn);
  1025. if (err) {
  1026. f2fs_put_dnode(&dn);
  1027. return err;
  1028. }
  1029. return 0;
  1030. }
  1031. struct page *f2fs_new_inode_page(struct inode *inode)
  1032. {
  1033. struct dnode_of_data dn;
  1034. /* allocate inode page for new inode */
  1035. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  1036. /* caller should f2fs_put_page(page, 1); */
  1037. return f2fs_new_node_page(&dn, 0);
  1038. }
  1039. struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
  1040. {
  1041. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  1042. struct node_info new_ni;
  1043. struct page *page;
  1044. int err;
  1045. if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
  1046. return ERR_PTR(-EPERM);
  1047. page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
  1048. if (!page)
  1049. return ERR_PTR(-ENOMEM);
  1050. if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
  1051. goto fail;
  1052. #ifdef CONFIG_F2FS_CHECK_FS
  1053. err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
  1054. if (err) {
  1055. dec_valid_node_count(sbi, dn->inode, !ofs);
  1056. goto fail;
  1057. }
  1058. f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
  1059. #endif
  1060. new_ni.nid = dn->nid;
  1061. new_ni.ino = dn->inode->i_ino;
  1062. new_ni.blk_addr = NULL_ADDR;
  1063. new_ni.flag = 0;
  1064. new_ni.version = 0;
  1065. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  1066. f2fs_wait_on_page_writeback(page, NODE, true);
  1067. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  1068. set_cold_node(page, S_ISDIR(dn->inode->i_mode));
  1069. if (!PageUptodate(page))
  1070. SetPageUptodate(page);
  1071. if (set_page_dirty(page))
  1072. dn->node_changed = true;
  1073. if (f2fs_has_xattr_block(ofs))
  1074. f2fs_i_xnid_write(dn->inode, dn->nid);
  1075. if (ofs == 0)
  1076. inc_valid_inode_count(sbi);
  1077. return page;
  1078. fail:
  1079. clear_node_page_dirty(page);
  1080. f2fs_put_page(page, 1);
  1081. return ERR_PTR(err);
  1082. }
  1083. /*
  1084. * Caller should do after getting the following values.
  1085. * 0: f2fs_put_page(page, 0)
  1086. * LOCKED_PAGE or error: f2fs_put_page(page, 1)
  1087. */
  1088. static int read_node_page(struct page *page, int op_flags)
  1089. {
  1090. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1091. struct node_info ni;
  1092. struct f2fs_io_info fio = {
  1093. .sbi = sbi,
  1094. .type = NODE,
  1095. .op = REQ_OP_READ,
  1096. .op_flags = op_flags,
  1097. .page = page,
  1098. .encrypted_page = NULL,
  1099. };
  1100. int err;
  1101. if (PageUptodate(page)) {
  1102. #ifdef CONFIG_F2FS_CHECK_FS
  1103. f2fs_bug_on(sbi, !f2fs_inode_chksum_verify(sbi, page));
  1104. #endif
  1105. return LOCKED_PAGE;
  1106. }
  1107. err = f2fs_get_node_info(sbi, page->index, &ni);
  1108. if (err)
  1109. return err;
  1110. if (unlikely(ni.blk_addr == NULL_ADDR) ||
  1111. is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
  1112. ClearPageUptodate(page);
  1113. return -ENOENT;
  1114. }
  1115. fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
  1116. return f2fs_submit_page_bio(&fio);
  1117. }
  1118. /*
  1119. * Readahead a node page
  1120. */
  1121. void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  1122. {
  1123. struct page *apage;
  1124. int err;
  1125. if (!nid)
  1126. return;
  1127. if (f2fs_check_nid_range(sbi, nid))
  1128. return;
  1129. apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
  1130. if (apage)
  1131. return;
  1132. apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
  1133. if (!apage)
  1134. return;
  1135. err = read_node_page(apage, REQ_RAHEAD);
  1136. f2fs_put_page(apage, err ? 1 : 0);
  1137. }
  1138. static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
  1139. struct page *parent, int start)
  1140. {
  1141. struct page *page;
  1142. int err;
  1143. if (!nid)
  1144. return ERR_PTR(-ENOENT);
  1145. if (f2fs_check_nid_range(sbi, nid))
  1146. return ERR_PTR(-EINVAL);
  1147. repeat:
  1148. page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
  1149. if (!page)
  1150. return ERR_PTR(-ENOMEM);
  1151. err = read_node_page(page, 0);
  1152. if (err < 0) {
  1153. f2fs_put_page(page, 1);
  1154. return ERR_PTR(err);
  1155. } else if (err == LOCKED_PAGE) {
  1156. err = 0;
  1157. goto page_hit;
  1158. }
  1159. if (parent)
  1160. f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
  1161. lock_page(page);
  1162. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1163. f2fs_put_page(page, 1);
  1164. goto repeat;
  1165. }
  1166. if (unlikely(!PageUptodate(page))) {
  1167. err = -EIO;
  1168. goto out_err;
  1169. }
  1170. if (!f2fs_inode_chksum_verify(sbi, page)) {
  1171. err = -EBADMSG;
  1172. goto out_err;
  1173. }
  1174. page_hit:
  1175. if(unlikely(nid != nid_of_node(page))) {
  1176. f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
  1177. "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
  1178. nid, nid_of_node(page), ino_of_node(page),
  1179. ofs_of_node(page), cpver_of_node(page),
  1180. next_blkaddr_of_node(page));
  1181. err = -EINVAL;
  1182. out_err:
  1183. ClearPageUptodate(page);
  1184. f2fs_put_page(page, 1);
  1185. return ERR_PTR(err);
  1186. }
  1187. return page;
  1188. }
  1189. struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  1190. {
  1191. return __get_node_page(sbi, nid, NULL, 0);
  1192. }
  1193. struct page *f2fs_get_node_page_ra(struct page *parent, int start)
  1194. {
  1195. struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
  1196. nid_t nid = get_nid(parent, start, false);
  1197. return __get_node_page(sbi, nid, parent, start);
  1198. }
  1199. static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
  1200. {
  1201. struct inode *inode;
  1202. struct page *page;
  1203. int ret;
  1204. /* should flush inline_data before evict_inode */
  1205. inode = ilookup(sbi->sb, ino);
  1206. if (!inode)
  1207. return;
  1208. page = f2fs_pagecache_get_page(inode->i_mapping, 0,
  1209. FGP_LOCK|FGP_NOWAIT, 0);
  1210. if (!page)
  1211. goto iput_out;
  1212. if (!PageUptodate(page))
  1213. goto page_out;
  1214. if (!PageDirty(page))
  1215. goto page_out;
  1216. if (!clear_page_dirty_for_io(page))
  1217. goto page_out;
  1218. ret = f2fs_write_inline_data(inode, page);
  1219. inode_dec_dirty_pages(inode);
  1220. f2fs_remove_dirty_inode(inode);
  1221. if (ret)
  1222. set_page_dirty(page);
  1223. page_out:
  1224. f2fs_put_page(page, 1);
  1225. iput_out:
  1226. iput(inode);
  1227. }
  1228. static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
  1229. {
  1230. pgoff_t index;
  1231. struct pagevec pvec;
  1232. struct page *last_page = NULL;
  1233. int nr_pages;
  1234. pagevec_init(&pvec);
  1235. index = 0;
  1236. while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1237. PAGECACHE_TAG_DIRTY))) {
  1238. int i;
  1239. for (i = 0; i < nr_pages; i++) {
  1240. struct page *page = pvec.pages[i];
  1241. if (unlikely(f2fs_cp_error(sbi))) {
  1242. f2fs_put_page(last_page, 0);
  1243. pagevec_release(&pvec);
  1244. return ERR_PTR(-EIO);
  1245. }
  1246. if (!IS_DNODE(page) || !is_cold_node(page))
  1247. continue;
  1248. if (ino_of_node(page) != ino)
  1249. continue;
  1250. lock_page(page);
  1251. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1252. continue_unlock:
  1253. unlock_page(page);
  1254. continue;
  1255. }
  1256. if (ino_of_node(page) != ino)
  1257. goto continue_unlock;
  1258. if (!PageDirty(page)) {
  1259. /* someone wrote it for us */
  1260. goto continue_unlock;
  1261. }
  1262. if (last_page)
  1263. f2fs_put_page(last_page, 0);
  1264. get_page(page);
  1265. last_page = page;
  1266. unlock_page(page);
  1267. }
  1268. pagevec_release(&pvec);
  1269. cond_resched();
  1270. }
  1271. return last_page;
  1272. }
  1273. static int __write_node_page(struct page *page, bool atomic, bool *submitted,
  1274. struct writeback_control *wbc, bool do_balance,
  1275. enum iostat_type io_type, unsigned int *seq_id)
  1276. {
  1277. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1278. nid_t nid;
  1279. struct node_info ni;
  1280. struct f2fs_io_info fio = {
  1281. .sbi = sbi,
  1282. .ino = ino_of_node(page),
  1283. .type = NODE,
  1284. .op = REQ_OP_WRITE,
  1285. .op_flags = wbc_to_write_flags(wbc),
  1286. .page = page,
  1287. .encrypted_page = NULL,
  1288. .submitted = false,
  1289. .io_type = io_type,
  1290. .io_wbc = wbc,
  1291. };
  1292. unsigned int seq;
  1293. trace_f2fs_writepage(page, NODE);
  1294. if (unlikely(f2fs_cp_error(sbi)))
  1295. goto redirty_out;
  1296. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1297. goto redirty_out;
  1298. if (wbc->sync_mode == WB_SYNC_NONE &&
  1299. IS_DNODE(page) && is_cold_node(page))
  1300. goto redirty_out;
  1301. /* get old block addr of this node page */
  1302. nid = nid_of_node(page);
  1303. f2fs_bug_on(sbi, page->index != nid);
  1304. if (f2fs_get_node_info(sbi, nid, &ni))
  1305. goto redirty_out;
  1306. if (wbc->for_reclaim) {
  1307. if (!down_read_trylock(&sbi->node_write))
  1308. goto redirty_out;
  1309. } else {
  1310. down_read(&sbi->node_write);
  1311. }
  1312. /* This page is already truncated */
  1313. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  1314. ClearPageUptodate(page);
  1315. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1316. up_read(&sbi->node_write);
  1317. unlock_page(page);
  1318. return 0;
  1319. }
  1320. if (__is_valid_data_blkaddr(ni.blk_addr) &&
  1321. !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC)) {
  1322. up_read(&sbi->node_write);
  1323. goto redirty_out;
  1324. }
  1325. if (atomic && !test_opt(sbi, NOBARRIER))
  1326. fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
  1327. set_page_writeback(page);
  1328. ClearPageError(page);
  1329. if (f2fs_in_warm_node_list(sbi, page)) {
  1330. seq = f2fs_add_fsync_node_entry(sbi, page);
  1331. if (seq_id)
  1332. *seq_id = seq;
  1333. }
  1334. fio.old_blkaddr = ni.blk_addr;
  1335. f2fs_do_write_node_page(nid, &fio);
  1336. set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
  1337. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1338. up_read(&sbi->node_write);
  1339. if (wbc->for_reclaim) {
  1340. f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
  1341. submitted = NULL;
  1342. }
  1343. unlock_page(page);
  1344. if (unlikely(f2fs_cp_error(sbi))) {
  1345. f2fs_submit_merged_write(sbi, NODE);
  1346. submitted = NULL;
  1347. }
  1348. if (submitted)
  1349. *submitted = fio.submitted;
  1350. if (do_balance)
  1351. f2fs_balance_fs(sbi, false);
  1352. return 0;
  1353. redirty_out:
  1354. redirty_page_for_writepage(wbc, page);
  1355. return AOP_WRITEPAGE_ACTIVATE;
  1356. }
  1357. int f2fs_move_node_page(struct page *node_page, int gc_type)
  1358. {
  1359. int err = 0;
  1360. if (gc_type == FG_GC) {
  1361. struct writeback_control wbc = {
  1362. .sync_mode = WB_SYNC_ALL,
  1363. .nr_to_write = 1,
  1364. .for_reclaim = 0,
  1365. };
  1366. set_page_dirty(node_page);
  1367. f2fs_wait_on_page_writeback(node_page, NODE, true);
  1368. f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
  1369. if (!clear_page_dirty_for_io(node_page)) {
  1370. err = -EAGAIN;
  1371. goto out_page;
  1372. }
  1373. if (__write_node_page(node_page, false, NULL,
  1374. &wbc, false, FS_GC_NODE_IO, NULL)) {
  1375. err = -EAGAIN;
  1376. unlock_page(node_page);
  1377. }
  1378. goto release_page;
  1379. } else {
  1380. /* set page dirty and write it */
  1381. if (!PageWriteback(node_page))
  1382. set_page_dirty(node_page);
  1383. }
  1384. out_page:
  1385. unlock_page(node_page);
  1386. release_page:
  1387. f2fs_put_page(node_page, 0);
  1388. return err;
  1389. }
  1390. static int f2fs_write_node_page(struct page *page,
  1391. struct writeback_control *wbc)
  1392. {
  1393. return __write_node_page(page, false, NULL, wbc, false,
  1394. FS_NODE_IO, NULL);
  1395. }
  1396. int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
  1397. struct writeback_control *wbc, bool atomic,
  1398. unsigned int *seq_id)
  1399. {
  1400. pgoff_t index;
  1401. struct pagevec pvec;
  1402. int ret = 0;
  1403. struct page *last_page = NULL;
  1404. bool marked = false;
  1405. nid_t ino = inode->i_ino;
  1406. int nr_pages;
  1407. int nwritten = 0;
  1408. if (atomic) {
  1409. last_page = last_fsync_dnode(sbi, ino);
  1410. if (IS_ERR_OR_NULL(last_page))
  1411. return PTR_ERR_OR_ZERO(last_page);
  1412. }
  1413. retry:
  1414. pagevec_init(&pvec);
  1415. index = 0;
  1416. while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1417. PAGECACHE_TAG_DIRTY))) {
  1418. int i;
  1419. for (i = 0; i < nr_pages; i++) {
  1420. struct page *page = pvec.pages[i];
  1421. bool submitted = false;
  1422. if (unlikely(f2fs_cp_error(sbi))) {
  1423. f2fs_put_page(last_page, 0);
  1424. pagevec_release(&pvec);
  1425. ret = -EIO;
  1426. goto out;
  1427. }
  1428. if (!IS_DNODE(page) || !is_cold_node(page))
  1429. continue;
  1430. if (ino_of_node(page) != ino)
  1431. continue;
  1432. lock_page(page);
  1433. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1434. continue_unlock:
  1435. unlock_page(page);
  1436. continue;
  1437. }
  1438. if (ino_of_node(page) != ino)
  1439. goto continue_unlock;
  1440. if (!PageDirty(page) && page != last_page) {
  1441. /* someone wrote it for us */
  1442. goto continue_unlock;
  1443. }
  1444. f2fs_wait_on_page_writeback(page, NODE, true);
  1445. BUG_ON(PageWriteback(page));
  1446. set_fsync_mark(page, 0);
  1447. set_dentry_mark(page, 0);
  1448. if (!atomic || page == last_page) {
  1449. set_fsync_mark(page, 1);
  1450. if (IS_INODE(page)) {
  1451. if (is_inode_flag_set(inode,
  1452. FI_DIRTY_INODE))
  1453. f2fs_update_inode(inode, page);
  1454. set_dentry_mark(page,
  1455. f2fs_need_dentry_mark(sbi, ino));
  1456. }
  1457. /* may be written by other thread */
  1458. if (!PageDirty(page))
  1459. set_page_dirty(page);
  1460. }
  1461. if (!clear_page_dirty_for_io(page))
  1462. goto continue_unlock;
  1463. ret = __write_node_page(page, atomic &&
  1464. page == last_page,
  1465. &submitted, wbc, true,
  1466. FS_NODE_IO, seq_id);
  1467. if (ret) {
  1468. unlock_page(page);
  1469. f2fs_put_page(last_page, 0);
  1470. break;
  1471. } else if (submitted) {
  1472. nwritten++;
  1473. }
  1474. if (page == last_page) {
  1475. f2fs_put_page(page, 0);
  1476. marked = true;
  1477. break;
  1478. }
  1479. }
  1480. pagevec_release(&pvec);
  1481. cond_resched();
  1482. if (ret || marked)
  1483. break;
  1484. }
  1485. if (!ret && atomic && !marked) {
  1486. f2fs_msg(sbi->sb, KERN_DEBUG,
  1487. "Retry to write fsync mark: ino=%u, idx=%lx",
  1488. ino, last_page->index);
  1489. lock_page(last_page);
  1490. f2fs_wait_on_page_writeback(last_page, NODE, true);
  1491. set_page_dirty(last_page);
  1492. unlock_page(last_page);
  1493. goto retry;
  1494. }
  1495. out:
  1496. if (nwritten)
  1497. f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
  1498. return ret ? -EIO: 0;
  1499. }
  1500. int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
  1501. struct writeback_control *wbc,
  1502. bool do_balance, enum iostat_type io_type)
  1503. {
  1504. pgoff_t index;
  1505. struct pagevec pvec;
  1506. int step = 0;
  1507. int nwritten = 0;
  1508. int ret = 0;
  1509. int nr_pages, done = 0;
  1510. pagevec_init(&pvec);
  1511. next_step:
  1512. index = 0;
  1513. while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
  1514. NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
  1515. int i;
  1516. for (i = 0; i < nr_pages; i++) {
  1517. struct page *page = pvec.pages[i];
  1518. bool submitted = false;
  1519. /* give a priority to WB_SYNC threads */
  1520. if (atomic_read(&sbi->wb_sync_req[NODE]) &&
  1521. wbc->sync_mode == WB_SYNC_NONE) {
  1522. done = 1;
  1523. break;
  1524. }
  1525. /*
  1526. * flushing sequence with step:
  1527. * 0. indirect nodes
  1528. * 1. dentry dnodes
  1529. * 2. file dnodes
  1530. */
  1531. if (step == 0 && IS_DNODE(page))
  1532. continue;
  1533. if (step == 1 && (!IS_DNODE(page) ||
  1534. is_cold_node(page)))
  1535. continue;
  1536. if (step == 2 && (!IS_DNODE(page) ||
  1537. !is_cold_node(page)))
  1538. continue;
  1539. lock_node:
  1540. if (wbc->sync_mode == WB_SYNC_ALL)
  1541. lock_page(page);
  1542. else if (!trylock_page(page))
  1543. continue;
  1544. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1545. continue_unlock:
  1546. unlock_page(page);
  1547. continue;
  1548. }
  1549. if (!PageDirty(page)) {
  1550. /* someone wrote it for us */
  1551. goto continue_unlock;
  1552. }
  1553. /* flush inline_data */
  1554. if (is_inline_node(page)) {
  1555. clear_inline_node(page);
  1556. unlock_page(page);
  1557. flush_inline_data(sbi, ino_of_node(page));
  1558. goto lock_node;
  1559. }
  1560. f2fs_wait_on_page_writeback(page, NODE, true);
  1561. BUG_ON(PageWriteback(page));
  1562. if (!clear_page_dirty_for_io(page))
  1563. goto continue_unlock;
  1564. set_fsync_mark(page, 0);
  1565. set_dentry_mark(page, 0);
  1566. ret = __write_node_page(page, false, &submitted,
  1567. wbc, do_balance, io_type, NULL);
  1568. if (ret)
  1569. unlock_page(page);
  1570. else if (submitted)
  1571. nwritten++;
  1572. if (--wbc->nr_to_write == 0)
  1573. break;
  1574. }
  1575. pagevec_release(&pvec);
  1576. cond_resched();
  1577. if (wbc->nr_to_write == 0) {
  1578. step = 2;
  1579. break;
  1580. }
  1581. }
  1582. if (step < 2) {
  1583. if (wbc->sync_mode == WB_SYNC_NONE && step == 1)
  1584. goto out;
  1585. step++;
  1586. goto next_step;
  1587. }
  1588. out:
  1589. if (nwritten)
  1590. f2fs_submit_merged_write(sbi, NODE);
  1591. if (unlikely(f2fs_cp_error(sbi)))
  1592. return -EIO;
  1593. return ret;
  1594. }
  1595. int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
  1596. unsigned int seq_id)
  1597. {
  1598. struct fsync_node_entry *fn;
  1599. struct page *page;
  1600. struct list_head *head = &sbi->fsync_node_list;
  1601. unsigned long flags;
  1602. unsigned int cur_seq_id = 0;
  1603. int ret2, ret = 0;
  1604. while (seq_id && cur_seq_id < seq_id) {
  1605. spin_lock_irqsave(&sbi->fsync_node_lock, flags);
  1606. if (list_empty(head)) {
  1607. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  1608. break;
  1609. }
  1610. fn = list_first_entry(head, struct fsync_node_entry, list);
  1611. if (fn->seq_id > seq_id) {
  1612. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  1613. break;
  1614. }
  1615. cur_seq_id = fn->seq_id;
  1616. page = fn->page;
  1617. get_page(page);
  1618. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  1619. f2fs_wait_on_page_writeback(page, NODE, true);
  1620. if (TestClearPageError(page))
  1621. ret = -EIO;
  1622. put_page(page);
  1623. if (ret)
  1624. break;
  1625. }
  1626. ret2 = filemap_check_errors(NODE_MAPPING(sbi));
  1627. if (!ret)
  1628. ret = ret2;
  1629. return ret;
  1630. }
  1631. static int f2fs_write_node_pages(struct address_space *mapping,
  1632. struct writeback_control *wbc)
  1633. {
  1634. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  1635. struct blk_plug plug;
  1636. long diff;
  1637. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1638. goto skip_write;
  1639. /* balancing f2fs's metadata in background */
  1640. f2fs_balance_fs_bg(sbi);
  1641. /* collect a number of dirty node pages and write together */
  1642. if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
  1643. goto skip_write;
  1644. if (wbc->sync_mode == WB_SYNC_ALL)
  1645. atomic_inc(&sbi->wb_sync_req[NODE]);
  1646. else if (atomic_read(&sbi->wb_sync_req[NODE]))
  1647. goto skip_write;
  1648. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1649. diff = nr_pages_to_write(sbi, NODE, wbc);
  1650. blk_start_plug(&plug);
  1651. f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
  1652. blk_finish_plug(&plug);
  1653. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  1654. if (wbc->sync_mode == WB_SYNC_ALL)
  1655. atomic_dec(&sbi->wb_sync_req[NODE]);
  1656. return 0;
  1657. skip_write:
  1658. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
  1659. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1660. return 0;
  1661. }
  1662. static int f2fs_set_node_page_dirty(struct page *page)
  1663. {
  1664. trace_f2fs_set_page_dirty(page, NODE);
  1665. if (!PageUptodate(page))
  1666. SetPageUptodate(page);
  1667. #ifdef CONFIG_F2FS_CHECK_FS
  1668. if (IS_INODE(page))
  1669. f2fs_inode_chksum_set(F2FS_P_SB(page), page);
  1670. #endif
  1671. if (!PageDirty(page)) {
  1672. __set_page_dirty_nobuffers(page);
  1673. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
  1674. SetPagePrivate(page);
  1675. f2fs_trace_pid(page);
  1676. return 1;
  1677. }
  1678. return 0;
  1679. }
  1680. /*
  1681. * Structure of the f2fs node operations
  1682. */
  1683. const struct address_space_operations f2fs_node_aops = {
  1684. .writepage = f2fs_write_node_page,
  1685. .writepages = f2fs_write_node_pages,
  1686. .set_page_dirty = f2fs_set_node_page_dirty,
  1687. .invalidatepage = f2fs_invalidate_page,
  1688. .releasepage = f2fs_release_page,
  1689. #ifdef CONFIG_MIGRATION
  1690. .migratepage = f2fs_migrate_page,
  1691. #endif
  1692. };
  1693. static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
  1694. nid_t n)
  1695. {
  1696. return radix_tree_lookup(&nm_i->free_nid_root, n);
  1697. }
  1698. static int __insert_free_nid(struct f2fs_sb_info *sbi,
  1699. struct free_nid *i, enum nid_state state)
  1700. {
  1701. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1702. int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
  1703. if (err)
  1704. return err;
  1705. f2fs_bug_on(sbi, state != i->state);
  1706. nm_i->nid_cnt[state]++;
  1707. if (state == FREE_NID)
  1708. list_add_tail(&i->list, &nm_i->free_nid_list);
  1709. return 0;
  1710. }
  1711. static void __remove_free_nid(struct f2fs_sb_info *sbi,
  1712. struct free_nid *i, enum nid_state state)
  1713. {
  1714. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1715. f2fs_bug_on(sbi, state != i->state);
  1716. nm_i->nid_cnt[state]--;
  1717. if (state == FREE_NID)
  1718. list_del(&i->list);
  1719. radix_tree_delete(&nm_i->free_nid_root, i->nid);
  1720. }
  1721. static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
  1722. enum nid_state org_state, enum nid_state dst_state)
  1723. {
  1724. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1725. f2fs_bug_on(sbi, org_state != i->state);
  1726. i->state = dst_state;
  1727. nm_i->nid_cnt[org_state]--;
  1728. nm_i->nid_cnt[dst_state]++;
  1729. switch (dst_state) {
  1730. case PREALLOC_NID:
  1731. list_del(&i->list);
  1732. break;
  1733. case FREE_NID:
  1734. list_add_tail(&i->list, &nm_i->free_nid_list);
  1735. break;
  1736. default:
  1737. BUG_ON(1);
  1738. }
  1739. }
  1740. static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
  1741. bool set, bool build)
  1742. {
  1743. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1744. unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
  1745. unsigned int nid_ofs = nid - START_NID(nid);
  1746. if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
  1747. return;
  1748. if (set) {
  1749. if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
  1750. return;
  1751. __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
  1752. nm_i->free_nid_count[nat_ofs]++;
  1753. } else {
  1754. if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
  1755. return;
  1756. __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
  1757. if (!build)
  1758. nm_i->free_nid_count[nat_ofs]--;
  1759. }
  1760. }
  1761. /* return if the nid is recognized as free */
  1762. static bool add_free_nid(struct f2fs_sb_info *sbi,
  1763. nid_t nid, bool build, bool update)
  1764. {
  1765. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1766. struct free_nid *i, *e;
  1767. struct nat_entry *ne;
  1768. int err = -EINVAL;
  1769. bool ret = false;
  1770. /* 0 nid should not be used */
  1771. if (unlikely(nid == 0))
  1772. return false;
  1773. i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1774. i->nid = nid;
  1775. i->state = FREE_NID;
  1776. radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
  1777. spin_lock(&nm_i->nid_list_lock);
  1778. if (build) {
  1779. /*
  1780. * Thread A Thread B
  1781. * - f2fs_create
  1782. * - f2fs_new_inode
  1783. * - f2fs_alloc_nid
  1784. * - __insert_nid_to_list(PREALLOC_NID)
  1785. * - f2fs_balance_fs_bg
  1786. * - f2fs_build_free_nids
  1787. * - __f2fs_build_free_nids
  1788. * - scan_nat_page
  1789. * - add_free_nid
  1790. * - __lookup_nat_cache
  1791. * - f2fs_add_link
  1792. * - f2fs_init_inode_metadata
  1793. * - f2fs_new_inode_page
  1794. * - f2fs_new_node_page
  1795. * - set_node_addr
  1796. * - f2fs_alloc_nid_done
  1797. * - __remove_nid_from_list(PREALLOC_NID)
  1798. * - __insert_nid_to_list(FREE_NID)
  1799. */
  1800. ne = __lookup_nat_cache(nm_i, nid);
  1801. if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
  1802. nat_get_blkaddr(ne) != NULL_ADDR))
  1803. goto err_out;
  1804. e = __lookup_free_nid_list(nm_i, nid);
  1805. if (e) {
  1806. if (e->state == FREE_NID)
  1807. ret = true;
  1808. goto err_out;
  1809. }
  1810. }
  1811. ret = true;
  1812. err = __insert_free_nid(sbi, i, FREE_NID);
  1813. err_out:
  1814. if (update) {
  1815. update_free_nid_bitmap(sbi, nid, ret, build);
  1816. if (!build)
  1817. nm_i->available_nids++;
  1818. }
  1819. spin_unlock(&nm_i->nid_list_lock);
  1820. radix_tree_preload_end();
  1821. if (err)
  1822. kmem_cache_free(free_nid_slab, i);
  1823. return ret;
  1824. }
  1825. static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
  1826. {
  1827. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1828. struct free_nid *i;
  1829. bool need_free = false;
  1830. spin_lock(&nm_i->nid_list_lock);
  1831. i = __lookup_free_nid_list(nm_i, nid);
  1832. if (i && i->state == FREE_NID) {
  1833. __remove_free_nid(sbi, i, FREE_NID);
  1834. need_free = true;
  1835. }
  1836. spin_unlock(&nm_i->nid_list_lock);
  1837. if (need_free)
  1838. kmem_cache_free(free_nid_slab, i);
  1839. }
  1840. static int scan_nat_page(struct f2fs_sb_info *sbi,
  1841. struct page *nat_page, nid_t start_nid)
  1842. {
  1843. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1844. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1845. block_t blk_addr;
  1846. unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
  1847. int i;
  1848. __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
  1849. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1850. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1851. if (unlikely(start_nid >= nm_i->max_nid))
  1852. break;
  1853. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1854. if (blk_addr == NEW_ADDR)
  1855. return -EINVAL;
  1856. if (blk_addr == NULL_ADDR) {
  1857. add_free_nid(sbi, start_nid, true, true);
  1858. } else {
  1859. spin_lock(&NM_I(sbi)->nid_list_lock);
  1860. update_free_nid_bitmap(sbi, start_nid, false, true);
  1861. spin_unlock(&NM_I(sbi)->nid_list_lock);
  1862. }
  1863. }
  1864. return 0;
  1865. }
  1866. static void scan_curseg_cache(struct f2fs_sb_info *sbi)
  1867. {
  1868. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1869. struct f2fs_journal *journal = curseg->journal;
  1870. int i;
  1871. down_read(&curseg->journal_rwsem);
  1872. for (i = 0; i < nats_in_cursum(journal); i++) {
  1873. block_t addr;
  1874. nid_t nid;
  1875. addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
  1876. nid = le32_to_cpu(nid_in_journal(journal, i));
  1877. if (addr == NULL_ADDR)
  1878. add_free_nid(sbi, nid, true, false);
  1879. else
  1880. remove_free_nid(sbi, nid);
  1881. }
  1882. up_read(&curseg->journal_rwsem);
  1883. }
  1884. static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
  1885. {
  1886. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1887. unsigned int i, idx;
  1888. nid_t nid;
  1889. down_read(&nm_i->nat_tree_lock);
  1890. for (i = 0; i < nm_i->nat_blocks; i++) {
  1891. if (!test_bit_le(i, nm_i->nat_block_bitmap))
  1892. continue;
  1893. if (!nm_i->free_nid_count[i])
  1894. continue;
  1895. for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
  1896. idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
  1897. NAT_ENTRY_PER_BLOCK, idx);
  1898. if (idx >= NAT_ENTRY_PER_BLOCK)
  1899. break;
  1900. nid = i * NAT_ENTRY_PER_BLOCK + idx;
  1901. add_free_nid(sbi, nid, true, false);
  1902. if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
  1903. goto out;
  1904. }
  1905. }
  1906. out:
  1907. scan_curseg_cache(sbi);
  1908. up_read(&nm_i->nat_tree_lock);
  1909. }
  1910. static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
  1911. bool sync, bool mount)
  1912. {
  1913. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1914. int i = 0, ret;
  1915. nid_t nid = nm_i->next_scan_nid;
  1916. if (unlikely(nid >= nm_i->max_nid))
  1917. nid = 0;
  1918. /* Enough entries */
  1919. if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
  1920. return 0;
  1921. if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
  1922. return 0;
  1923. if (!mount) {
  1924. /* try to find free nids in free_nid_bitmap */
  1925. scan_free_nid_bits(sbi);
  1926. if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
  1927. return 0;
  1928. }
  1929. /* readahead nat pages to be scanned */
  1930. f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
  1931. META_NAT, true);
  1932. down_read(&nm_i->nat_tree_lock);
  1933. while (1) {
  1934. if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
  1935. nm_i->nat_block_bitmap)) {
  1936. struct page *page = get_current_nat_page(sbi, nid);
  1937. if (IS_ERR(page)) {
  1938. ret = PTR_ERR(page);
  1939. } else {
  1940. ret = scan_nat_page(sbi, page, nid);
  1941. f2fs_put_page(page, 1);
  1942. }
  1943. if (ret) {
  1944. up_read(&nm_i->nat_tree_lock);
  1945. f2fs_bug_on(sbi, !mount);
  1946. f2fs_msg(sbi->sb, KERN_ERR,
  1947. "NAT is corrupt, run fsck to fix it");
  1948. return ret;
  1949. }
  1950. }
  1951. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1952. if (unlikely(nid >= nm_i->max_nid))
  1953. nid = 0;
  1954. if (++i >= FREE_NID_PAGES)
  1955. break;
  1956. }
  1957. /* go to the next free nat pages to find free nids abundantly */
  1958. nm_i->next_scan_nid = nid;
  1959. /* find free nids from current sum_pages */
  1960. scan_curseg_cache(sbi);
  1961. up_read(&nm_i->nat_tree_lock);
  1962. f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
  1963. nm_i->ra_nid_pages, META_NAT, false);
  1964. return 0;
  1965. }
  1966. int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
  1967. {
  1968. int ret;
  1969. mutex_lock(&NM_I(sbi)->build_lock);
  1970. ret = __f2fs_build_free_nids(sbi, sync, mount);
  1971. mutex_unlock(&NM_I(sbi)->build_lock);
  1972. return ret;
  1973. }
  1974. /*
  1975. * If this function returns success, caller can obtain a new nid
  1976. * from second parameter of this function.
  1977. * The returned nid could be used ino as well as nid when inode is created.
  1978. */
  1979. bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1980. {
  1981. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1982. struct free_nid *i = NULL;
  1983. retry:
  1984. if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
  1985. f2fs_show_injection_info(FAULT_ALLOC_NID);
  1986. return false;
  1987. }
  1988. spin_lock(&nm_i->nid_list_lock);
  1989. if (unlikely(nm_i->available_nids == 0)) {
  1990. spin_unlock(&nm_i->nid_list_lock);
  1991. return false;
  1992. }
  1993. /* We should not use stale free nids created by f2fs_build_free_nids */
  1994. if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
  1995. f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
  1996. i = list_first_entry(&nm_i->free_nid_list,
  1997. struct free_nid, list);
  1998. *nid = i->nid;
  1999. __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
  2000. nm_i->available_nids--;
  2001. update_free_nid_bitmap(sbi, *nid, false, false);
  2002. spin_unlock(&nm_i->nid_list_lock);
  2003. return true;
  2004. }
  2005. spin_unlock(&nm_i->nid_list_lock);
  2006. /* Let's scan nat pages and its caches to get free nids */
  2007. if (!f2fs_build_free_nids(sbi, true, false))
  2008. goto retry;
  2009. return false;
  2010. }
  2011. /*
  2012. * f2fs_alloc_nid() should be called prior to this function.
  2013. */
  2014. void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  2015. {
  2016. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2017. struct free_nid *i;
  2018. spin_lock(&nm_i->nid_list_lock);
  2019. i = __lookup_free_nid_list(nm_i, nid);
  2020. f2fs_bug_on(sbi, !i);
  2021. __remove_free_nid(sbi, i, PREALLOC_NID);
  2022. spin_unlock(&nm_i->nid_list_lock);
  2023. kmem_cache_free(free_nid_slab, i);
  2024. }
  2025. /*
  2026. * f2fs_alloc_nid() should be called prior to this function.
  2027. */
  2028. void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  2029. {
  2030. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2031. struct free_nid *i;
  2032. bool need_free = false;
  2033. if (!nid)
  2034. return;
  2035. spin_lock(&nm_i->nid_list_lock);
  2036. i = __lookup_free_nid_list(nm_i, nid);
  2037. f2fs_bug_on(sbi, !i);
  2038. if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
  2039. __remove_free_nid(sbi, i, PREALLOC_NID);
  2040. need_free = true;
  2041. } else {
  2042. __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
  2043. }
  2044. nm_i->available_nids++;
  2045. update_free_nid_bitmap(sbi, nid, true, false);
  2046. spin_unlock(&nm_i->nid_list_lock);
  2047. if (need_free)
  2048. kmem_cache_free(free_nid_slab, i);
  2049. }
  2050. int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
  2051. {
  2052. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2053. struct free_nid *i, *next;
  2054. int nr = nr_shrink;
  2055. if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
  2056. return 0;
  2057. if (!mutex_trylock(&nm_i->build_lock))
  2058. return 0;
  2059. spin_lock(&nm_i->nid_list_lock);
  2060. list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
  2061. if (nr_shrink <= 0 ||
  2062. nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
  2063. break;
  2064. __remove_free_nid(sbi, i, FREE_NID);
  2065. kmem_cache_free(free_nid_slab, i);
  2066. nr_shrink--;
  2067. }
  2068. spin_unlock(&nm_i->nid_list_lock);
  2069. mutex_unlock(&nm_i->build_lock);
  2070. return nr - nr_shrink;
  2071. }
  2072. void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
  2073. {
  2074. void *src_addr, *dst_addr;
  2075. size_t inline_size;
  2076. struct page *ipage;
  2077. struct f2fs_inode *ri;
  2078. ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
  2079. f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
  2080. ri = F2FS_INODE(page);
  2081. if (ri->i_inline & F2FS_INLINE_XATTR) {
  2082. set_inode_flag(inode, FI_INLINE_XATTR);
  2083. } else {
  2084. clear_inode_flag(inode, FI_INLINE_XATTR);
  2085. goto update_inode;
  2086. }
  2087. dst_addr = inline_xattr_addr(inode, ipage);
  2088. src_addr = inline_xattr_addr(inode, page);
  2089. inline_size = inline_xattr_size(inode);
  2090. f2fs_wait_on_page_writeback(ipage, NODE, true);
  2091. memcpy(dst_addr, src_addr, inline_size);
  2092. update_inode:
  2093. f2fs_update_inode(inode, ipage);
  2094. f2fs_put_page(ipage, 1);
  2095. }
  2096. int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
  2097. {
  2098. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2099. nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
  2100. nid_t new_xnid;
  2101. struct dnode_of_data dn;
  2102. struct node_info ni;
  2103. struct page *xpage;
  2104. int err;
  2105. if (!prev_xnid)
  2106. goto recover_xnid;
  2107. /* 1: invalidate the previous xattr nid */
  2108. err = f2fs_get_node_info(sbi, prev_xnid, &ni);
  2109. if (err)
  2110. return err;
  2111. f2fs_invalidate_blocks(sbi, ni.blk_addr);
  2112. dec_valid_node_count(sbi, inode, false);
  2113. set_node_addr(sbi, &ni, NULL_ADDR, false);
  2114. recover_xnid:
  2115. /* 2: update xattr nid in inode */
  2116. if (!f2fs_alloc_nid(sbi, &new_xnid))
  2117. return -ENOSPC;
  2118. set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
  2119. xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
  2120. if (IS_ERR(xpage)) {
  2121. f2fs_alloc_nid_failed(sbi, new_xnid);
  2122. return PTR_ERR(xpage);
  2123. }
  2124. f2fs_alloc_nid_done(sbi, new_xnid);
  2125. f2fs_update_inode_page(inode);
  2126. /* 3: update and set xattr node page dirty */
  2127. memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
  2128. set_page_dirty(xpage);
  2129. f2fs_put_page(xpage, 1);
  2130. return 0;
  2131. }
  2132. int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  2133. {
  2134. struct f2fs_inode *src, *dst;
  2135. nid_t ino = ino_of_node(page);
  2136. struct node_info old_ni, new_ni;
  2137. struct page *ipage;
  2138. int err;
  2139. err = f2fs_get_node_info(sbi, ino, &old_ni);
  2140. if (err)
  2141. return err;
  2142. if (unlikely(old_ni.blk_addr != NULL_ADDR))
  2143. return -EINVAL;
  2144. retry:
  2145. ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
  2146. if (!ipage) {
  2147. congestion_wait(BLK_RW_ASYNC, HZ/50);
  2148. goto retry;
  2149. }
  2150. /* Should not use this inode from free nid list */
  2151. remove_free_nid(sbi, ino);
  2152. if (!PageUptodate(ipage))
  2153. SetPageUptodate(ipage);
  2154. fill_node_footer(ipage, ino, ino, 0, true);
  2155. set_cold_node(ipage, false);
  2156. src = F2FS_INODE(page);
  2157. dst = F2FS_INODE(ipage);
  2158. memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
  2159. dst->i_size = 0;
  2160. dst->i_blocks = cpu_to_le64(1);
  2161. dst->i_links = cpu_to_le32(1);
  2162. dst->i_xattr_nid = 0;
  2163. dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
  2164. if (dst->i_inline & F2FS_EXTRA_ATTR) {
  2165. dst->i_extra_isize = src->i_extra_isize;
  2166. if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
  2167. F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
  2168. i_inline_xattr_size))
  2169. dst->i_inline_xattr_size = src->i_inline_xattr_size;
  2170. if (f2fs_sb_has_project_quota(sbi->sb) &&
  2171. F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
  2172. i_projid))
  2173. dst->i_projid = src->i_projid;
  2174. if (f2fs_sb_has_inode_crtime(sbi->sb) &&
  2175. F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
  2176. i_crtime_nsec)) {
  2177. dst->i_crtime = src->i_crtime;
  2178. dst->i_crtime_nsec = src->i_crtime_nsec;
  2179. }
  2180. }
  2181. new_ni = old_ni;
  2182. new_ni.ino = ino;
  2183. if (unlikely(inc_valid_node_count(sbi, NULL, true)))
  2184. WARN_ON(1);
  2185. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  2186. inc_valid_inode_count(sbi);
  2187. set_page_dirty(ipage);
  2188. f2fs_put_page(ipage, 1);
  2189. return 0;
  2190. }
  2191. int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
  2192. unsigned int segno, struct f2fs_summary_block *sum)
  2193. {
  2194. struct f2fs_node *rn;
  2195. struct f2fs_summary *sum_entry;
  2196. block_t addr;
  2197. int i, idx, last_offset, nrpages;
  2198. /* scan the node segment */
  2199. last_offset = sbi->blocks_per_seg;
  2200. addr = START_BLOCK(sbi, segno);
  2201. sum_entry = &sum->entries[0];
  2202. for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
  2203. nrpages = min(last_offset - i, BIO_MAX_PAGES);
  2204. /* readahead node pages */
  2205. f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
  2206. for (idx = addr; idx < addr + nrpages; idx++) {
  2207. struct page *page = f2fs_get_tmp_page(sbi, idx);
  2208. if (IS_ERR(page))
  2209. return PTR_ERR(page);
  2210. rn = F2FS_NODE(page);
  2211. sum_entry->nid = rn->footer.nid;
  2212. sum_entry->version = 0;
  2213. sum_entry->ofs_in_node = 0;
  2214. sum_entry++;
  2215. f2fs_put_page(page, 1);
  2216. }
  2217. invalidate_mapping_pages(META_MAPPING(sbi), addr,
  2218. addr + nrpages);
  2219. }
  2220. return 0;
  2221. }
  2222. static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
  2223. {
  2224. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2225. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2226. struct f2fs_journal *journal = curseg->journal;
  2227. int i;
  2228. down_write(&curseg->journal_rwsem);
  2229. for (i = 0; i < nats_in_cursum(journal); i++) {
  2230. struct nat_entry *ne;
  2231. struct f2fs_nat_entry raw_ne;
  2232. nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
  2233. raw_ne = nat_in_journal(journal, i);
  2234. ne = __lookup_nat_cache(nm_i, nid);
  2235. if (!ne) {
  2236. ne = __alloc_nat_entry(nid, true);
  2237. __init_nat_entry(nm_i, ne, &raw_ne, true);
  2238. }
  2239. /*
  2240. * if a free nat in journal has not been used after last
  2241. * checkpoint, we should remove it from available nids,
  2242. * since later we will add it again.
  2243. */
  2244. if (!get_nat_flag(ne, IS_DIRTY) &&
  2245. le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
  2246. spin_lock(&nm_i->nid_list_lock);
  2247. nm_i->available_nids--;
  2248. spin_unlock(&nm_i->nid_list_lock);
  2249. }
  2250. __set_nat_cache_dirty(nm_i, ne);
  2251. }
  2252. update_nats_in_cursum(journal, -i);
  2253. up_write(&curseg->journal_rwsem);
  2254. }
  2255. static void __adjust_nat_entry_set(struct nat_entry_set *nes,
  2256. struct list_head *head, int max)
  2257. {
  2258. struct nat_entry_set *cur;
  2259. if (nes->entry_cnt >= max)
  2260. goto add_out;
  2261. list_for_each_entry(cur, head, set_list) {
  2262. if (cur->entry_cnt >= nes->entry_cnt) {
  2263. list_add(&nes->set_list, cur->set_list.prev);
  2264. return;
  2265. }
  2266. }
  2267. add_out:
  2268. list_add_tail(&nes->set_list, head);
  2269. }
  2270. static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
  2271. struct page *page)
  2272. {
  2273. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2274. unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
  2275. struct f2fs_nat_block *nat_blk = page_address(page);
  2276. int valid = 0;
  2277. int i = 0;
  2278. if (!enabled_nat_bits(sbi, NULL))
  2279. return;
  2280. if (nat_index == 0) {
  2281. valid = 1;
  2282. i = 1;
  2283. }
  2284. for (; i < NAT_ENTRY_PER_BLOCK; i++) {
  2285. if (nat_blk->entries[i].block_addr != NULL_ADDR)
  2286. valid++;
  2287. }
  2288. if (valid == 0) {
  2289. __set_bit_le(nat_index, nm_i->empty_nat_bits);
  2290. __clear_bit_le(nat_index, nm_i->full_nat_bits);
  2291. return;
  2292. }
  2293. __clear_bit_le(nat_index, nm_i->empty_nat_bits);
  2294. if (valid == NAT_ENTRY_PER_BLOCK)
  2295. __set_bit_le(nat_index, nm_i->full_nat_bits);
  2296. else
  2297. __clear_bit_le(nat_index, nm_i->full_nat_bits);
  2298. }
  2299. static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
  2300. struct nat_entry_set *set, struct cp_control *cpc)
  2301. {
  2302. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2303. struct f2fs_journal *journal = curseg->journal;
  2304. nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
  2305. bool to_journal = true;
  2306. struct f2fs_nat_block *nat_blk;
  2307. struct nat_entry *ne, *cur;
  2308. struct page *page = NULL;
  2309. /*
  2310. * there are two steps to flush nat entries:
  2311. * #1, flush nat entries to journal in current hot data summary block.
  2312. * #2, flush nat entries to nat page.
  2313. */
  2314. if (enabled_nat_bits(sbi, cpc) ||
  2315. !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
  2316. to_journal = false;
  2317. if (to_journal) {
  2318. down_write(&curseg->journal_rwsem);
  2319. } else {
  2320. page = get_next_nat_page(sbi, start_nid);
  2321. if (IS_ERR(page))
  2322. return PTR_ERR(page);
  2323. nat_blk = page_address(page);
  2324. f2fs_bug_on(sbi, !nat_blk);
  2325. }
  2326. /* flush dirty nats in nat entry set */
  2327. list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
  2328. struct f2fs_nat_entry *raw_ne;
  2329. nid_t nid = nat_get_nid(ne);
  2330. int offset;
  2331. f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
  2332. if (to_journal) {
  2333. offset = f2fs_lookup_journal_in_cursum(journal,
  2334. NAT_JOURNAL, nid, 1);
  2335. f2fs_bug_on(sbi, offset < 0);
  2336. raw_ne = &nat_in_journal(journal, offset);
  2337. nid_in_journal(journal, offset) = cpu_to_le32(nid);
  2338. } else {
  2339. raw_ne = &nat_blk->entries[nid - start_nid];
  2340. }
  2341. raw_nat_from_node_info(raw_ne, &ne->ni);
  2342. nat_reset_flag(ne);
  2343. __clear_nat_cache_dirty(NM_I(sbi), set, ne);
  2344. if (nat_get_blkaddr(ne) == NULL_ADDR) {
  2345. add_free_nid(sbi, nid, false, true);
  2346. } else {
  2347. spin_lock(&NM_I(sbi)->nid_list_lock);
  2348. update_free_nid_bitmap(sbi, nid, false, false);
  2349. spin_unlock(&NM_I(sbi)->nid_list_lock);
  2350. }
  2351. }
  2352. if (to_journal) {
  2353. up_write(&curseg->journal_rwsem);
  2354. } else {
  2355. __update_nat_bits(sbi, start_nid, page);
  2356. f2fs_put_page(page, 1);
  2357. }
  2358. /* Allow dirty nats by node block allocation in write_begin */
  2359. if (!set->entry_cnt) {
  2360. radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
  2361. kmem_cache_free(nat_entry_set_slab, set);
  2362. }
  2363. return 0;
  2364. }
  2365. /*
  2366. * This function is called during the checkpointing process.
  2367. */
  2368. int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  2369. {
  2370. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2371. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2372. struct f2fs_journal *journal = curseg->journal;
  2373. struct nat_entry_set *setvec[SETVEC_SIZE];
  2374. struct nat_entry_set *set, *tmp;
  2375. unsigned int found;
  2376. nid_t set_idx = 0;
  2377. LIST_HEAD(sets);
  2378. int err = 0;
  2379. /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
  2380. if (enabled_nat_bits(sbi, cpc)) {
  2381. down_write(&nm_i->nat_tree_lock);
  2382. remove_nats_in_journal(sbi);
  2383. up_write(&nm_i->nat_tree_lock);
  2384. }
  2385. if (!nm_i->dirty_nat_cnt)
  2386. return 0;
  2387. down_write(&nm_i->nat_tree_lock);
  2388. /*
  2389. * if there are no enough space in journal to store dirty nat
  2390. * entries, remove all entries from journal and merge them
  2391. * into nat entry set.
  2392. */
  2393. if (enabled_nat_bits(sbi, cpc) ||
  2394. !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
  2395. remove_nats_in_journal(sbi);
  2396. while ((found = __gang_lookup_nat_set(nm_i,
  2397. set_idx, SETVEC_SIZE, setvec))) {
  2398. unsigned idx;
  2399. set_idx = setvec[found - 1]->set + 1;
  2400. for (idx = 0; idx < found; idx++)
  2401. __adjust_nat_entry_set(setvec[idx], &sets,
  2402. MAX_NAT_JENTRIES(journal));
  2403. }
  2404. /* flush dirty nats in nat entry set */
  2405. list_for_each_entry_safe(set, tmp, &sets, set_list) {
  2406. err = __flush_nat_entry_set(sbi, set, cpc);
  2407. if (err)
  2408. break;
  2409. }
  2410. up_write(&nm_i->nat_tree_lock);
  2411. /* Allow dirty nats by node block allocation in write_begin */
  2412. return err;
  2413. }
  2414. static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
  2415. {
  2416. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2417. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2418. unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
  2419. unsigned int i;
  2420. __u64 cp_ver = cur_cp_version(ckpt);
  2421. block_t nat_bits_addr;
  2422. if (!enabled_nat_bits(sbi, NULL))
  2423. return 0;
  2424. nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
  2425. nm_i->nat_bits = f2fs_kzalloc(sbi,
  2426. nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
  2427. if (!nm_i->nat_bits)
  2428. return -ENOMEM;
  2429. nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
  2430. nm_i->nat_bits_blocks;
  2431. for (i = 0; i < nm_i->nat_bits_blocks; i++) {
  2432. struct page *page;
  2433. page = f2fs_get_meta_page(sbi, nat_bits_addr++);
  2434. if (IS_ERR(page))
  2435. return PTR_ERR(page);
  2436. memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
  2437. page_address(page), F2FS_BLKSIZE);
  2438. f2fs_put_page(page, 1);
  2439. }
  2440. cp_ver |= (cur_cp_crc(ckpt) << 32);
  2441. if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
  2442. disable_nat_bits(sbi, true);
  2443. return 0;
  2444. }
  2445. nm_i->full_nat_bits = nm_i->nat_bits + 8;
  2446. nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
  2447. f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
  2448. return 0;
  2449. }
  2450. static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
  2451. {
  2452. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2453. unsigned int i = 0;
  2454. nid_t nid, last_nid;
  2455. if (!enabled_nat_bits(sbi, NULL))
  2456. return;
  2457. for (i = 0; i < nm_i->nat_blocks; i++) {
  2458. i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
  2459. if (i >= nm_i->nat_blocks)
  2460. break;
  2461. __set_bit_le(i, nm_i->nat_block_bitmap);
  2462. nid = i * NAT_ENTRY_PER_BLOCK;
  2463. last_nid = nid + NAT_ENTRY_PER_BLOCK;
  2464. spin_lock(&NM_I(sbi)->nid_list_lock);
  2465. for (; nid < last_nid; nid++)
  2466. update_free_nid_bitmap(sbi, nid, true, true);
  2467. spin_unlock(&NM_I(sbi)->nid_list_lock);
  2468. }
  2469. for (i = 0; i < nm_i->nat_blocks; i++) {
  2470. i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
  2471. if (i >= nm_i->nat_blocks)
  2472. break;
  2473. __set_bit_le(i, nm_i->nat_block_bitmap);
  2474. }
  2475. }
  2476. static int init_node_manager(struct f2fs_sb_info *sbi)
  2477. {
  2478. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  2479. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2480. unsigned char *version_bitmap;
  2481. unsigned int nat_segs;
  2482. int err;
  2483. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  2484. /* segment_count_nat includes pair segment so divide to 2. */
  2485. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  2486. nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  2487. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
  2488. /* not used nids: 0, node, meta, (and root counted as valid node) */
  2489. nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
  2490. sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
  2491. nm_i->nid_cnt[FREE_NID] = 0;
  2492. nm_i->nid_cnt[PREALLOC_NID] = 0;
  2493. nm_i->nat_cnt = 0;
  2494. nm_i->ram_thresh = DEF_RAM_THRESHOLD;
  2495. nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
  2496. nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
  2497. INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
  2498. INIT_LIST_HEAD(&nm_i->free_nid_list);
  2499. INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
  2500. INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
  2501. INIT_LIST_HEAD(&nm_i->nat_entries);
  2502. spin_lock_init(&nm_i->nat_list_lock);
  2503. mutex_init(&nm_i->build_lock);
  2504. spin_lock_init(&nm_i->nid_list_lock);
  2505. init_rwsem(&nm_i->nat_tree_lock);
  2506. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  2507. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  2508. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  2509. if (!version_bitmap)
  2510. return -EFAULT;
  2511. nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
  2512. GFP_KERNEL);
  2513. if (!nm_i->nat_bitmap)
  2514. return -ENOMEM;
  2515. err = __get_nat_bitmaps(sbi);
  2516. if (err)
  2517. return err;
  2518. #ifdef CONFIG_F2FS_CHECK_FS
  2519. nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
  2520. GFP_KERNEL);
  2521. if (!nm_i->nat_bitmap_mir)
  2522. return -ENOMEM;
  2523. #endif
  2524. return 0;
  2525. }
  2526. static int init_free_nid_cache(struct f2fs_sb_info *sbi)
  2527. {
  2528. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2529. int i;
  2530. nm_i->free_nid_bitmap =
  2531. f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
  2532. nm_i->nat_blocks),
  2533. GFP_KERNEL);
  2534. if (!nm_i->free_nid_bitmap)
  2535. return -ENOMEM;
  2536. for (i = 0; i < nm_i->nat_blocks; i++) {
  2537. nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
  2538. f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
  2539. if (!nm_i->free_nid_bitmap[i])
  2540. return -ENOMEM;
  2541. }
  2542. nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
  2543. GFP_KERNEL);
  2544. if (!nm_i->nat_block_bitmap)
  2545. return -ENOMEM;
  2546. nm_i->free_nid_count =
  2547. f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
  2548. nm_i->nat_blocks),
  2549. GFP_KERNEL);
  2550. if (!nm_i->free_nid_count)
  2551. return -ENOMEM;
  2552. return 0;
  2553. }
  2554. int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
  2555. {
  2556. int err;
  2557. sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
  2558. GFP_KERNEL);
  2559. if (!sbi->nm_info)
  2560. return -ENOMEM;
  2561. err = init_node_manager(sbi);
  2562. if (err)
  2563. return err;
  2564. err = init_free_nid_cache(sbi);
  2565. if (err)
  2566. return err;
  2567. /* load free nid status from nat_bits table */
  2568. load_free_nid_bitmap(sbi);
  2569. return f2fs_build_free_nids(sbi, true, true);
  2570. }
  2571. void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
  2572. {
  2573. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2574. struct free_nid *i, *next_i;
  2575. struct nat_entry *natvec[NATVEC_SIZE];
  2576. struct nat_entry_set *setvec[SETVEC_SIZE];
  2577. nid_t nid = 0;
  2578. unsigned int found;
  2579. if (!nm_i)
  2580. return;
  2581. /* destroy free nid list */
  2582. spin_lock(&nm_i->nid_list_lock);
  2583. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  2584. __remove_free_nid(sbi, i, FREE_NID);
  2585. spin_unlock(&nm_i->nid_list_lock);
  2586. kmem_cache_free(free_nid_slab, i);
  2587. spin_lock(&nm_i->nid_list_lock);
  2588. }
  2589. f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
  2590. f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
  2591. f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
  2592. spin_unlock(&nm_i->nid_list_lock);
  2593. /* destroy nat cache */
  2594. down_write(&nm_i->nat_tree_lock);
  2595. while ((found = __gang_lookup_nat_cache(nm_i,
  2596. nid, NATVEC_SIZE, natvec))) {
  2597. unsigned idx;
  2598. nid = nat_get_nid(natvec[found - 1]) + 1;
  2599. for (idx = 0; idx < found; idx++) {
  2600. spin_lock(&nm_i->nat_list_lock);
  2601. list_del(&natvec[idx]->list);
  2602. spin_unlock(&nm_i->nat_list_lock);
  2603. __del_from_nat_cache(nm_i, natvec[idx]);
  2604. }
  2605. }
  2606. f2fs_bug_on(sbi, nm_i->nat_cnt);
  2607. /* destroy nat set cache */
  2608. nid = 0;
  2609. while ((found = __gang_lookup_nat_set(nm_i,
  2610. nid, SETVEC_SIZE, setvec))) {
  2611. unsigned idx;
  2612. nid = setvec[found - 1]->set + 1;
  2613. for (idx = 0; idx < found; idx++) {
  2614. /* entry_cnt is not zero, when cp_error was occurred */
  2615. f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
  2616. radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
  2617. kmem_cache_free(nat_entry_set_slab, setvec[idx]);
  2618. }
  2619. }
  2620. up_write(&nm_i->nat_tree_lock);
  2621. kvfree(nm_i->nat_block_bitmap);
  2622. if (nm_i->free_nid_bitmap) {
  2623. int i;
  2624. for (i = 0; i < nm_i->nat_blocks; i++)
  2625. kvfree(nm_i->free_nid_bitmap[i]);
  2626. kfree(nm_i->free_nid_bitmap);
  2627. }
  2628. kvfree(nm_i->free_nid_count);
  2629. kfree(nm_i->nat_bitmap);
  2630. kfree(nm_i->nat_bits);
  2631. #ifdef CONFIG_F2FS_CHECK_FS
  2632. kfree(nm_i->nat_bitmap_mir);
  2633. #endif
  2634. sbi->nm_info = NULL;
  2635. kfree(nm_i);
  2636. }
  2637. int __init f2fs_create_node_manager_caches(void)
  2638. {
  2639. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  2640. sizeof(struct nat_entry));
  2641. if (!nat_entry_slab)
  2642. goto fail;
  2643. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  2644. sizeof(struct free_nid));
  2645. if (!free_nid_slab)
  2646. goto destroy_nat_entry;
  2647. nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
  2648. sizeof(struct nat_entry_set));
  2649. if (!nat_entry_set_slab)
  2650. goto destroy_free_nid;
  2651. fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
  2652. sizeof(struct fsync_node_entry));
  2653. if (!fsync_node_entry_slab)
  2654. goto destroy_nat_entry_set;
  2655. return 0;
  2656. destroy_nat_entry_set:
  2657. kmem_cache_destroy(nat_entry_set_slab);
  2658. destroy_free_nid:
  2659. kmem_cache_destroy(free_nid_slab);
  2660. destroy_nat_entry:
  2661. kmem_cache_destroy(nat_entry_slab);
  2662. fail:
  2663. return -ENOMEM;
  2664. }
  2665. void f2fs_destroy_node_manager_caches(void)
  2666. {
  2667. kmem_cache_destroy(fsync_node_entry_slab);
  2668. kmem_cache_destroy(nat_entry_set_slab);
  2669. kmem_cache_destroy(free_nid_slab);
  2670. kmem_cache_destroy(nat_entry_slab);
  2671. }