extent-tree.c 238 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/sort.h>
  23. #include <linux/rcupdate.h>
  24. #include <linux/kthread.h>
  25. #include <linux/slab.h>
  26. #include <linux/ratelimit.h>
  27. #include <linux/percpu_counter.h>
  28. #include "hash.h"
  29. #include "ctree.h"
  30. #include "disk-io.h"
  31. #include "print-tree.h"
  32. #include "transaction.h"
  33. #include "volumes.h"
  34. #include "raid56.h"
  35. #include "locking.h"
  36. #include "free-space-cache.h"
  37. #include "math.h"
  38. #include "sysfs.h"
  39. #undef SCRAMBLE_DELAYED_REFS
  40. /*
  41. * control flags for do_chunk_alloc's force field
  42. * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
  43. * if we really need one.
  44. *
  45. * CHUNK_ALLOC_LIMITED means to only try and allocate one
  46. * if we have very few chunks already allocated. This is
  47. * used as part of the clustering code to help make sure
  48. * we have a good pool of storage to cluster in, without
  49. * filling the FS with empty chunks
  50. *
  51. * CHUNK_ALLOC_FORCE means it must try to allocate one
  52. *
  53. */
  54. enum {
  55. CHUNK_ALLOC_NO_FORCE = 0,
  56. CHUNK_ALLOC_LIMITED = 1,
  57. CHUNK_ALLOC_FORCE = 2,
  58. };
  59. /*
  60. * Control how reservations are dealt with.
  61. *
  62. * RESERVE_FREE - freeing a reservation.
  63. * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
  64. * ENOSPC accounting
  65. * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
  66. * bytes_may_use as the ENOSPC accounting is done elsewhere
  67. */
  68. enum {
  69. RESERVE_FREE = 0,
  70. RESERVE_ALLOC = 1,
  71. RESERVE_ALLOC_NO_ACCOUNT = 2,
  72. };
  73. static int update_block_group(struct btrfs_root *root,
  74. u64 bytenr, u64 num_bytes, int alloc);
  75. static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  76. struct btrfs_root *root,
  77. u64 bytenr, u64 num_bytes, u64 parent,
  78. u64 root_objectid, u64 owner_objectid,
  79. u64 owner_offset, int refs_to_drop,
  80. struct btrfs_delayed_extent_op *extra_op);
  81. static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  82. struct extent_buffer *leaf,
  83. struct btrfs_extent_item *ei);
  84. static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  85. struct btrfs_root *root,
  86. u64 parent, u64 root_objectid,
  87. u64 flags, u64 owner, u64 offset,
  88. struct btrfs_key *ins, int ref_mod);
  89. static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  90. struct btrfs_root *root,
  91. u64 parent, u64 root_objectid,
  92. u64 flags, struct btrfs_disk_key *key,
  93. int level, struct btrfs_key *ins);
  94. static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  95. struct btrfs_root *extent_root, u64 flags,
  96. int force);
  97. static int find_next_key(struct btrfs_path *path, int level,
  98. struct btrfs_key *key);
  99. static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  100. int dump_block_groups);
  101. static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
  102. u64 num_bytes, int reserve);
  103. static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
  104. u64 num_bytes);
  105. int btrfs_pin_extent(struct btrfs_root *root,
  106. u64 bytenr, u64 num_bytes, int reserved);
  107. static noinline int
  108. block_group_cache_done(struct btrfs_block_group_cache *cache)
  109. {
  110. smp_mb();
  111. return cache->cached == BTRFS_CACHE_FINISHED ||
  112. cache->cached == BTRFS_CACHE_ERROR;
  113. }
  114. static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
  115. {
  116. return (cache->flags & bits) == bits;
  117. }
  118. static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
  119. {
  120. atomic_inc(&cache->count);
  121. }
  122. void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
  123. {
  124. if (atomic_dec_and_test(&cache->count)) {
  125. WARN_ON(cache->pinned > 0);
  126. WARN_ON(cache->reserved > 0);
  127. kfree(cache->free_space_ctl);
  128. kfree(cache);
  129. }
  130. }
  131. /*
  132. * this adds the block group to the fs_info rb tree for the block group
  133. * cache
  134. */
  135. static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
  136. struct btrfs_block_group_cache *block_group)
  137. {
  138. struct rb_node **p;
  139. struct rb_node *parent = NULL;
  140. struct btrfs_block_group_cache *cache;
  141. spin_lock(&info->block_group_cache_lock);
  142. p = &info->block_group_cache_tree.rb_node;
  143. while (*p) {
  144. parent = *p;
  145. cache = rb_entry(parent, struct btrfs_block_group_cache,
  146. cache_node);
  147. if (block_group->key.objectid < cache->key.objectid) {
  148. p = &(*p)->rb_left;
  149. } else if (block_group->key.objectid > cache->key.objectid) {
  150. p = &(*p)->rb_right;
  151. } else {
  152. spin_unlock(&info->block_group_cache_lock);
  153. return -EEXIST;
  154. }
  155. }
  156. rb_link_node(&block_group->cache_node, parent, p);
  157. rb_insert_color(&block_group->cache_node,
  158. &info->block_group_cache_tree);
  159. if (info->first_logical_byte > block_group->key.objectid)
  160. info->first_logical_byte = block_group->key.objectid;
  161. spin_unlock(&info->block_group_cache_lock);
  162. return 0;
  163. }
  164. /*
  165. * This will return the block group at or after bytenr if contains is 0, else
  166. * it will return the block group that contains the bytenr
  167. */
  168. static struct btrfs_block_group_cache *
  169. block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
  170. int contains)
  171. {
  172. struct btrfs_block_group_cache *cache, *ret = NULL;
  173. struct rb_node *n;
  174. u64 end, start;
  175. spin_lock(&info->block_group_cache_lock);
  176. n = info->block_group_cache_tree.rb_node;
  177. while (n) {
  178. cache = rb_entry(n, struct btrfs_block_group_cache,
  179. cache_node);
  180. end = cache->key.objectid + cache->key.offset - 1;
  181. start = cache->key.objectid;
  182. if (bytenr < start) {
  183. if (!contains && (!ret || start < ret->key.objectid))
  184. ret = cache;
  185. n = n->rb_left;
  186. } else if (bytenr > start) {
  187. if (contains && bytenr <= end) {
  188. ret = cache;
  189. break;
  190. }
  191. n = n->rb_right;
  192. } else {
  193. ret = cache;
  194. break;
  195. }
  196. }
  197. if (ret) {
  198. btrfs_get_block_group(ret);
  199. if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
  200. info->first_logical_byte = ret->key.objectid;
  201. }
  202. spin_unlock(&info->block_group_cache_lock);
  203. return ret;
  204. }
  205. static int add_excluded_extent(struct btrfs_root *root,
  206. u64 start, u64 num_bytes)
  207. {
  208. u64 end = start + num_bytes - 1;
  209. set_extent_bits(&root->fs_info->freed_extents[0],
  210. start, end, EXTENT_UPTODATE, GFP_NOFS);
  211. set_extent_bits(&root->fs_info->freed_extents[1],
  212. start, end, EXTENT_UPTODATE, GFP_NOFS);
  213. return 0;
  214. }
  215. static void free_excluded_extents(struct btrfs_root *root,
  216. struct btrfs_block_group_cache *cache)
  217. {
  218. u64 start, end;
  219. start = cache->key.objectid;
  220. end = start + cache->key.offset - 1;
  221. clear_extent_bits(&root->fs_info->freed_extents[0],
  222. start, end, EXTENT_UPTODATE, GFP_NOFS);
  223. clear_extent_bits(&root->fs_info->freed_extents[1],
  224. start, end, EXTENT_UPTODATE, GFP_NOFS);
  225. }
  226. static int exclude_super_stripes(struct btrfs_root *root,
  227. struct btrfs_block_group_cache *cache)
  228. {
  229. u64 bytenr;
  230. u64 *logical;
  231. int stripe_len;
  232. int i, nr, ret;
  233. if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
  234. stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
  235. cache->bytes_super += stripe_len;
  236. ret = add_excluded_extent(root, cache->key.objectid,
  237. stripe_len);
  238. if (ret)
  239. return ret;
  240. }
  241. for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
  242. bytenr = btrfs_sb_offset(i);
  243. ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
  244. cache->key.objectid, bytenr,
  245. 0, &logical, &nr, &stripe_len);
  246. if (ret)
  247. return ret;
  248. while (nr--) {
  249. u64 start, len;
  250. if (logical[nr] > cache->key.objectid +
  251. cache->key.offset)
  252. continue;
  253. if (logical[nr] + stripe_len <= cache->key.objectid)
  254. continue;
  255. start = logical[nr];
  256. if (start < cache->key.objectid) {
  257. start = cache->key.objectid;
  258. len = (logical[nr] + stripe_len) - start;
  259. } else {
  260. len = min_t(u64, stripe_len,
  261. cache->key.objectid +
  262. cache->key.offset - start);
  263. }
  264. cache->bytes_super += len;
  265. ret = add_excluded_extent(root, start, len);
  266. if (ret) {
  267. kfree(logical);
  268. return ret;
  269. }
  270. }
  271. kfree(logical);
  272. }
  273. return 0;
  274. }
  275. static struct btrfs_caching_control *
  276. get_caching_control(struct btrfs_block_group_cache *cache)
  277. {
  278. struct btrfs_caching_control *ctl;
  279. spin_lock(&cache->lock);
  280. if (cache->cached != BTRFS_CACHE_STARTED) {
  281. spin_unlock(&cache->lock);
  282. return NULL;
  283. }
  284. /* We're loading it the fast way, so we don't have a caching_ctl. */
  285. if (!cache->caching_ctl) {
  286. spin_unlock(&cache->lock);
  287. return NULL;
  288. }
  289. ctl = cache->caching_ctl;
  290. atomic_inc(&ctl->count);
  291. spin_unlock(&cache->lock);
  292. return ctl;
  293. }
  294. static void put_caching_control(struct btrfs_caching_control *ctl)
  295. {
  296. if (atomic_dec_and_test(&ctl->count))
  297. kfree(ctl);
  298. }
  299. /*
  300. * this is only called by cache_block_group, since we could have freed extents
  301. * we need to check the pinned_extents for any extents that can't be used yet
  302. * since their free space will be released as soon as the transaction commits.
  303. */
  304. static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
  305. struct btrfs_fs_info *info, u64 start, u64 end)
  306. {
  307. u64 extent_start, extent_end, size, total_added = 0;
  308. int ret;
  309. while (start < end) {
  310. ret = find_first_extent_bit(info->pinned_extents, start,
  311. &extent_start, &extent_end,
  312. EXTENT_DIRTY | EXTENT_UPTODATE,
  313. NULL);
  314. if (ret)
  315. break;
  316. if (extent_start <= start) {
  317. start = extent_end + 1;
  318. } else if (extent_start > start && extent_start < end) {
  319. size = extent_start - start;
  320. total_added += size;
  321. ret = btrfs_add_free_space(block_group, start,
  322. size);
  323. BUG_ON(ret); /* -ENOMEM or logic error */
  324. start = extent_end + 1;
  325. } else {
  326. break;
  327. }
  328. }
  329. if (start < end) {
  330. size = end - start;
  331. total_added += size;
  332. ret = btrfs_add_free_space(block_group, start, size);
  333. BUG_ON(ret); /* -ENOMEM or logic error */
  334. }
  335. return total_added;
  336. }
  337. static noinline void caching_thread(struct btrfs_work *work)
  338. {
  339. struct btrfs_block_group_cache *block_group;
  340. struct btrfs_fs_info *fs_info;
  341. struct btrfs_caching_control *caching_ctl;
  342. struct btrfs_root *extent_root;
  343. struct btrfs_path *path;
  344. struct extent_buffer *leaf;
  345. struct btrfs_key key;
  346. u64 total_found = 0;
  347. u64 last = 0;
  348. u32 nritems;
  349. int ret = -ENOMEM;
  350. caching_ctl = container_of(work, struct btrfs_caching_control, work);
  351. block_group = caching_ctl->block_group;
  352. fs_info = block_group->fs_info;
  353. extent_root = fs_info->extent_root;
  354. path = btrfs_alloc_path();
  355. if (!path)
  356. goto out;
  357. last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
  358. /*
  359. * We don't want to deadlock with somebody trying to allocate a new
  360. * extent for the extent root while also trying to search the extent
  361. * root to add free space. So we skip locking and search the commit
  362. * root, since its read-only
  363. */
  364. path->skip_locking = 1;
  365. path->search_commit_root = 1;
  366. path->reada = 1;
  367. key.objectid = last;
  368. key.offset = 0;
  369. key.type = BTRFS_EXTENT_ITEM_KEY;
  370. again:
  371. mutex_lock(&caching_ctl->mutex);
  372. /* need to make sure the commit_root doesn't disappear */
  373. down_read(&fs_info->extent_commit_sem);
  374. next:
  375. ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  376. if (ret < 0)
  377. goto err;
  378. leaf = path->nodes[0];
  379. nritems = btrfs_header_nritems(leaf);
  380. while (1) {
  381. if (btrfs_fs_closing(fs_info) > 1) {
  382. last = (u64)-1;
  383. break;
  384. }
  385. if (path->slots[0] < nritems) {
  386. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  387. } else {
  388. ret = find_next_key(path, 0, &key);
  389. if (ret)
  390. break;
  391. if (need_resched() ||
  392. rwsem_is_contended(&fs_info->extent_commit_sem)) {
  393. caching_ctl->progress = last;
  394. btrfs_release_path(path);
  395. up_read(&fs_info->extent_commit_sem);
  396. mutex_unlock(&caching_ctl->mutex);
  397. cond_resched();
  398. goto again;
  399. }
  400. ret = btrfs_next_leaf(extent_root, path);
  401. if (ret < 0)
  402. goto err;
  403. if (ret)
  404. break;
  405. leaf = path->nodes[0];
  406. nritems = btrfs_header_nritems(leaf);
  407. continue;
  408. }
  409. if (key.objectid < last) {
  410. key.objectid = last;
  411. key.offset = 0;
  412. key.type = BTRFS_EXTENT_ITEM_KEY;
  413. caching_ctl->progress = last;
  414. btrfs_release_path(path);
  415. goto next;
  416. }
  417. if (key.objectid < block_group->key.objectid) {
  418. path->slots[0]++;
  419. continue;
  420. }
  421. if (key.objectid >= block_group->key.objectid +
  422. block_group->key.offset)
  423. break;
  424. if (key.type == BTRFS_EXTENT_ITEM_KEY ||
  425. key.type == BTRFS_METADATA_ITEM_KEY) {
  426. total_found += add_new_free_space(block_group,
  427. fs_info, last,
  428. key.objectid);
  429. if (key.type == BTRFS_METADATA_ITEM_KEY)
  430. last = key.objectid +
  431. fs_info->tree_root->leafsize;
  432. else
  433. last = key.objectid + key.offset;
  434. if (total_found > (1024 * 1024 * 2)) {
  435. total_found = 0;
  436. wake_up(&caching_ctl->wait);
  437. }
  438. }
  439. path->slots[0]++;
  440. }
  441. ret = 0;
  442. total_found += add_new_free_space(block_group, fs_info, last,
  443. block_group->key.objectid +
  444. block_group->key.offset);
  445. caching_ctl->progress = (u64)-1;
  446. spin_lock(&block_group->lock);
  447. block_group->caching_ctl = NULL;
  448. block_group->cached = BTRFS_CACHE_FINISHED;
  449. spin_unlock(&block_group->lock);
  450. err:
  451. btrfs_free_path(path);
  452. up_read(&fs_info->extent_commit_sem);
  453. free_excluded_extents(extent_root, block_group);
  454. mutex_unlock(&caching_ctl->mutex);
  455. out:
  456. if (ret) {
  457. spin_lock(&block_group->lock);
  458. block_group->caching_ctl = NULL;
  459. block_group->cached = BTRFS_CACHE_ERROR;
  460. spin_unlock(&block_group->lock);
  461. }
  462. wake_up(&caching_ctl->wait);
  463. put_caching_control(caching_ctl);
  464. btrfs_put_block_group(block_group);
  465. }
  466. static int cache_block_group(struct btrfs_block_group_cache *cache,
  467. int load_cache_only)
  468. {
  469. DEFINE_WAIT(wait);
  470. struct btrfs_fs_info *fs_info = cache->fs_info;
  471. struct btrfs_caching_control *caching_ctl;
  472. int ret = 0;
  473. caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
  474. if (!caching_ctl)
  475. return -ENOMEM;
  476. INIT_LIST_HEAD(&caching_ctl->list);
  477. mutex_init(&caching_ctl->mutex);
  478. init_waitqueue_head(&caching_ctl->wait);
  479. caching_ctl->block_group = cache;
  480. caching_ctl->progress = cache->key.objectid;
  481. atomic_set(&caching_ctl->count, 1);
  482. caching_ctl->work.func = caching_thread;
  483. spin_lock(&cache->lock);
  484. /*
  485. * This should be a rare occasion, but this could happen I think in the
  486. * case where one thread starts to load the space cache info, and then
  487. * some other thread starts a transaction commit which tries to do an
  488. * allocation while the other thread is still loading the space cache
  489. * info. The previous loop should have kept us from choosing this block
  490. * group, but if we've moved to the state where we will wait on caching
  491. * block groups we need to first check if we're doing a fast load here,
  492. * so we can wait for it to finish, otherwise we could end up allocating
  493. * from a block group who's cache gets evicted for one reason or
  494. * another.
  495. */
  496. while (cache->cached == BTRFS_CACHE_FAST) {
  497. struct btrfs_caching_control *ctl;
  498. ctl = cache->caching_ctl;
  499. atomic_inc(&ctl->count);
  500. prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
  501. spin_unlock(&cache->lock);
  502. schedule();
  503. finish_wait(&ctl->wait, &wait);
  504. put_caching_control(ctl);
  505. spin_lock(&cache->lock);
  506. }
  507. if (cache->cached != BTRFS_CACHE_NO) {
  508. spin_unlock(&cache->lock);
  509. kfree(caching_ctl);
  510. return 0;
  511. }
  512. WARN_ON(cache->caching_ctl);
  513. cache->caching_ctl = caching_ctl;
  514. cache->cached = BTRFS_CACHE_FAST;
  515. spin_unlock(&cache->lock);
  516. if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
  517. ret = load_free_space_cache(fs_info, cache);
  518. spin_lock(&cache->lock);
  519. if (ret == 1) {
  520. cache->caching_ctl = NULL;
  521. cache->cached = BTRFS_CACHE_FINISHED;
  522. cache->last_byte_to_unpin = (u64)-1;
  523. } else {
  524. if (load_cache_only) {
  525. cache->caching_ctl = NULL;
  526. cache->cached = BTRFS_CACHE_NO;
  527. } else {
  528. cache->cached = BTRFS_CACHE_STARTED;
  529. }
  530. }
  531. spin_unlock(&cache->lock);
  532. wake_up(&caching_ctl->wait);
  533. if (ret == 1) {
  534. put_caching_control(caching_ctl);
  535. free_excluded_extents(fs_info->extent_root, cache);
  536. return 0;
  537. }
  538. } else {
  539. /*
  540. * We are not going to do the fast caching, set cached to the
  541. * appropriate value and wakeup any waiters.
  542. */
  543. spin_lock(&cache->lock);
  544. if (load_cache_only) {
  545. cache->caching_ctl = NULL;
  546. cache->cached = BTRFS_CACHE_NO;
  547. } else {
  548. cache->cached = BTRFS_CACHE_STARTED;
  549. }
  550. spin_unlock(&cache->lock);
  551. wake_up(&caching_ctl->wait);
  552. }
  553. if (load_cache_only) {
  554. put_caching_control(caching_ctl);
  555. return 0;
  556. }
  557. down_write(&fs_info->extent_commit_sem);
  558. atomic_inc(&caching_ctl->count);
  559. list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
  560. up_write(&fs_info->extent_commit_sem);
  561. btrfs_get_block_group(cache);
  562. btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
  563. return ret;
  564. }
  565. /*
  566. * return the block group that starts at or after bytenr
  567. */
  568. static struct btrfs_block_group_cache *
  569. btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
  570. {
  571. struct btrfs_block_group_cache *cache;
  572. cache = block_group_cache_tree_search(info, bytenr, 0);
  573. return cache;
  574. }
  575. /*
  576. * return the block group that contains the given bytenr
  577. */
  578. struct btrfs_block_group_cache *btrfs_lookup_block_group(
  579. struct btrfs_fs_info *info,
  580. u64 bytenr)
  581. {
  582. struct btrfs_block_group_cache *cache;
  583. cache = block_group_cache_tree_search(info, bytenr, 1);
  584. return cache;
  585. }
  586. static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
  587. u64 flags)
  588. {
  589. struct list_head *head = &info->space_info;
  590. struct btrfs_space_info *found;
  591. flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
  592. rcu_read_lock();
  593. list_for_each_entry_rcu(found, head, list) {
  594. if (found->flags & flags) {
  595. rcu_read_unlock();
  596. return found;
  597. }
  598. }
  599. rcu_read_unlock();
  600. return NULL;
  601. }
  602. /*
  603. * after adding space to the filesystem, we need to clear the full flags
  604. * on all the space infos.
  605. */
  606. void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
  607. {
  608. struct list_head *head = &info->space_info;
  609. struct btrfs_space_info *found;
  610. rcu_read_lock();
  611. list_for_each_entry_rcu(found, head, list)
  612. found->full = 0;
  613. rcu_read_unlock();
  614. }
  615. /* simple helper to search for an existing extent at a given offset */
  616. int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
  617. {
  618. int ret;
  619. struct btrfs_key key;
  620. struct btrfs_path *path;
  621. path = btrfs_alloc_path();
  622. if (!path)
  623. return -ENOMEM;
  624. key.objectid = start;
  625. key.offset = len;
  626. key.type = BTRFS_EXTENT_ITEM_KEY;
  627. ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
  628. 0, 0);
  629. if (ret > 0) {
  630. btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
  631. if (key.objectid == start &&
  632. key.type == BTRFS_METADATA_ITEM_KEY)
  633. ret = 0;
  634. }
  635. btrfs_free_path(path);
  636. return ret;
  637. }
  638. /*
  639. * helper function to lookup reference count and flags of a tree block.
  640. *
  641. * the head node for delayed ref is used to store the sum of all the
  642. * reference count modifications queued up in the rbtree. the head
  643. * node may also store the extent flags to set. This way you can check
  644. * to see what the reference count and extent flags would be if all of
  645. * the delayed refs are not processed.
  646. */
  647. int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
  648. struct btrfs_root *root, u64 bytenr,
  649. u64 offset, int metadata, u64 *refs, u64 *flags)
  650. {
  651. struct btrfs_delayed_ref_head *head;
  652. struct btrfs_delayed_ref_root *delayed_refs;
  653. struct btrfs_path *path;
  654. struct btrfs_extent_item *ei;
  655. struct extent_buffer *leaf;
  656. struct btrfs_key key;
  657. u32 item_size;
  658. u64 num_refs;
  659. u64 extent_flags;
  660. int ret;
  661. /*
  662. * If we don't have skinny metadata, don't bother doing anything
  663. * different
  664. */
  665. if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
  666. offset = root->leafsize;
  667. metadata = 0;
  668. }
  669. path = btrfs_alloc_path();
  670. if (!path)
  671. return -ENOMEM;
  672. if (!trans) {
  673. path->skip_locking = 1;
  674. path->search_commit_root = 1;
  675. }
  676. search_again:
  677. key.objectid = bytenr;
  678. key.offset = offset;
  679. if (metadata)
  680. key.type = BTRFS_METADATA_ITEM_KEY;
  681. else
  682. key.type = BTRFS_EXTENT_ITEM_KEY;
  683. again:
  684. ret = btrfs_search_slot(trans, root->fs_info->extent_root,
  685. &key, path, 0, 0);
  686. if (ret < 0)
  687. goto out_free;
  688. if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
  689. if (path->slots[0]) {
  690. path->slots[0]--;
  691. btrfs_item_key_to_cpu(path->nodes[0], &key,
  692. path->slots[0]);
  693. if (key.objectid == bytenr &&
  694. key.type == BTRFS_EXTENT_ITEM_KEY &&
  695. key.offset == root->leafsize)
  696. ret = 0;
  697. }
  698. if (ret) {
  699. key.objectid = bytenr;
  700. key.type = BTRFS_EXTENT_ITEM_KEY;
  701. key.offset = root->leafsize;
  702. btrfs_release_path(path);
  703. goto again;
  704. }
  705. }
  706. if (ret == 0) {
  707. leaf = path->nodes[0];
  708. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  709. if (item_size >= sizeof(*ei)) {
  710. ei = btrfs_item_ptr(leaf, path->slots[0],
  711. struct btrfs_extent_item);
  712. num_refs = btrfs_extent_refs(leaf, ei);
  713. extent_flags = btrfs_extent_flags(leaf, ei);
  714. } else {
  715. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  716. struct btrfs_extent_item_v0 *ei0;
  717. BUG_ON(item_size != sizeof(*ei0));
  718. ei0 = btrfs_item_ptr(leaf, path->slots[0],
  719. struct btrfs_extent_item_v0);
  720. num_refs = btrfs_extent_refs_v0(leaf, ei0);
  721. /* FIXME: this isn't correct for data */
  722. extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  723. #else
  724. BUG();
  725. #endif
  726. }
  727. BUG_ON(num_refs == 0);
  728. } else {
  729. num_refs = 0;
  730. extent_flags = 0;
  731. ret = 0;
  732. }
  733. if (!trans)
  734. goto out;
  735. delayed_refs = &trans->transaction->delayed_refs;
  736. spin_lock(&delayed_refs->lock);
  737. head = btrfs_find_delayed_ref_head(trans, bytenr);
  738. if (head) {
  739. if (!mutex_trylock(&head->mutex)) {
  740. atomic_inc(&head->node.refs);
  741. spin_unlock(&delayed_refs->lock);
  742. btrfs_release_path(path);
  743. /*
  744. * Mutex was contended, block until it's released and try
  745. * again
  746. */
  747. mutex_lock(&head->mutex);
  748. mutex_unlock(&head->mutex);
  749. btrfs_put_delayed_ref(&head->node);
  750. goto search_again;
  751. }
  752. spin_lock(&head->lock);
  753. if (head->extent_op && head->extent_op->update_flags)
  754. extent_flags |= head->extent_op->flags_to_set;
  755. else
  756. BUG_ON(num_refs == 0);
  757. num_refs += head->node.ref_mod;
  758. spin_unlock(&head->lock);
  759. mutex_unlock(&head->mutex);
  760. }
  761. spin_unlock(&delayed_refs->lock);
  762. out:
  763. WARN_ON(num_refs == 0);
  764. if (refs)
  765. *refs = num_refs;
  766. if (flags)
  767. *flags = extent_flags;
  768. out_free:
  769. btrfs_free_path(path);
  770. return ret;
  771. }
  772. /*
  773. * Back reference rules. Back refs have three main goals:
  774. *
  775. * 1) differentiate between all holders of references to an extent so that
  776. * when a reference is dropped we can make sure it was a valid reference
  777. * before freeing the extent.
  778. *
  779. * 2) Provide enough information to quickly find the holders of an extent
  780. * if we notice a given block is corrupted or bad.
  781. *
  782. * 3) Make it easy to migrate blocks for FS shrinking or storage pool
  783. * maintenance. This is actually the same as #2, but with a slightly
  784. * different use case.
  785. *
  786. * There are two kinds of back refs. The implicit back refs is optimized
  787. * for pointers in non-shared tree blocks. For a given pointer in a block,
  788. * back refs of this kind provide information about the block's owner tree
  789. * and the pointer's key. These information allow us to find the block by
  790. * b-tree searching. The full back refs is for pointers in tree blocks not
  791. * referenced by their owner trees. The location of tree block is recorded
  792. * in the back refs. Actually the full back refs is generic, and can be
  793. * used in all cases the implicit back refs is used. The major shortcoming
  794. * of the full back refs is its overhead. Every time a tree block gets
  795. * COWed, we have to update back refs entry for all pointers in it.
  796. *
  797. * For a newly allocated tree block, we use implicit back refs for
  798. * pointers in it. This means most tree related operations only involve
  799. * implicit back refs. For a tree block created in old transaction, the
  800. * only way to drop a reference to it is COW it. So we can detect the
  801. * event that tree block loses its owner tree's reference and do the
  802. * back refs conversion.
  803. *
  804. * When a tree block is COW'd through a tree, there are four cases:
  805. *
  806. * The reference count of the block is one and the tree is the block's
  807. * owner tree. Nothing to do in this case.
  808. *
  809. * The reference count of the block is one and the tree is not the
  810. * block's owner tree. In this case, full back refs is used for pointers
  811. * in the block. Remove these full back refs, add implicit back refs for
  812. * every pointers in the new block.
  813. *
  814. * The reference count of the block is greater than one and the tree is
  815. * the block's owner tree. In this case, implicit back refs is used for
  816. * pointers in the block. Add full back refs for every pointers in the
  817. * block, increase lower level extents' reference counts. The original
  818. * implicit back refs are entailed to the new block.
  819. *
  820. * The reference count of the block is greater than one and the tree is
  821. * not the block's owner tree. Add implicit back refs for every pointer in
  822. * the new block, increase lower level extents' reference count.
  823. *
  824. * Back Reference Key composing:
  825. *
  826. * The key objectid corresponds to the first byte in the extent,
  827. * The key type is used to differentiate between types of back refs.
  828. * There are different meanings of the key offset for different types
  829. * of back refs.
  830. *
  831. * File extents can be referenced by:
  832. *
  833. * - multiple snapshots, subvolumes, or different generations in one subvol
  834. * - different files inside a single subvolume
  835. * - different offsets inside a file (bookend extents in file.c)
  836. *
  837. * The extent ref structure for the implicit back refs has fields for:
  838. *
  839. * - Objectid of the subvolume root
  840. * - objectid of the file holding the reference
  841. * - original offset in the file
  842. * - how many bookend extents
  843. *
  844. * The key offset for the implicit back refs is hash of the first
  845. * three fields.
  846. *
  847. * The extent ref structure for the full back refs has field for:
  848. *
  849. * - number of pointers in the tree leaf
  850. *
  851. * The key offset for the implicit back refs is the first byte of
  852. * the tree leaf
  853. *
  854. * When a file extent is allocated, The implicit back refs is used.
  855. * the fields are filled in:
  856. *
  857. * (root_key.objectid, inode objectid, offset in file, 1)
  858. *
  859. * When a file extent is removed file truncation, we find the
  860. * corresponding implicit back refs and check the following fields:
  861. *
  862. * (btrfs_header_owner(leaf), inode objectid, offset in file)
  863. *
  864. * Btree extents can be referenced by:
  865. *
  866. * - Different subvolumes
  867. *
  868. * Both the implicit back refs and the full back refs for tree blocks
  869. * only consist of key. The key offset for the implicit back refs is
  870. * objectid of block's owner tree. The key offset for the full back refs
  871. * is the first byte of parent block.
  872. *
  873. * When implicit back refs is used, information about the lowest key and
  874. * level of the tree block are required. These information are stored in
  875. * tree block info structure.
  876. */
  877. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  878. static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
  879. struct btrfs_root *root,
  880. struct btrfs_path *path,
  881. u64 owner, u32 extra_size)
  882. {
  883. struct btrfs_extent_item *item;
  884. struct btrfs_extent_item_v0 *ei0;
  885. struct btrfs_extent_ref_v0 *ref0;
  886. struct btrfs_tree_block_info *bi;
  887. struct extent_buffer *leaf;
  888. struct btrfs_key key;
  889. struct btrfs_key found_key;
  890. u32 new_size = sizeof(*item);
  891. u64 refs;
  892. int ret;
  893. leaf = path->nodes[0];
  894. BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
  895. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  896. ei0 = btrfs_item_ptr(leaf, path->slots[0],
  897. struct btrfs_extent_item_v0);
  898. refs = btrfs_extent_refs_v0(leaf, ei0);
  899. if (owner == (u64)-1) {
  900. while (1) {
  901. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  902. ret = btrfs_next_leaf(root, path);
  903. if (ret < 0)
  904. return ret;
  905. BUG_ON(ret > 0); /* Corruption */
  906. leaf = path->nodes[0];
  907. }
  908. btrfs_item_key_to_cpu(leaf, &found_key,
  909. path->slots[0]);
  910. BUG_ON(key.objectid != found_key.objectid);
  911. if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
  912. path->slots[0]++;
  913. continue;
  914. }
  915. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  916. struct btrfs_extent_ref_v0);
  917. owner = btrfs_ref_objectid_v0(leaf, ref0);
  918. break;
  919. }
  920. }
  921. btrfs_release_path(path);
  922. if (owner < BTRFS_FIRST_FREE_OBJECTID)
  923. new_size += sizeof(*bi);
  924. new_size -= sizeof(*ei0);
  925. ret = btrfs_search_slot(trans, root, &key, path,
  926. new_size + extra_size, 1);
  927. if (ret < 0)
  928. return ret;
  929. BUG_ON(ret); /* Corruption */
  930. btrfs_extend_item(root, path, new_size);
  931. leaf = path->nodes[0];
  932. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  933. btrfs_set_extent_refs(leaf, item, refs);
  934. /* FIXME: get real generation */
  935. btrfs_set_extent_generation(leaf, item, 0);
  936. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  937. btrfs_set_extent_flags(leaf, item,
  938. BTRFS_EXTENT_FLAG_TREE_BLOCK |
  939. BTRFS_BLOCK_FLAG_FULL_BACKREF);
  940. bi = (struct btrfs_tree_block_info *)(item + 1);
  941. /* FIXME: get first key of the block */
  942. memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
  943. btrfs_set_tree_block_level(leaf, bi, (int)owner);
  944. } else {
  945. btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
  946. }
  947. btrfs_mark_buffer_dirty(leaf);
  948. return 0;
  949. }
  950. #endif
  951. static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
  952. {
  953. u32 high_crc = ~(u32)0;
  954. u32 low_crc = ~(u32)0;
  955. __le64 lenum;
  956. lenum = cpu_to_le64(root_objectid);
  957. high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
  958. lenum = cpu_to_le64(owner);
  959. low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
  960. lenum = cpu_to_le64(offset);
  961. low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
  962. return ((u64)high_crc << 31) ^ (u64)low_crc;
  963. }
  964. static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
  965. struct btrfs_extent_data_ref *ref)
  966. {
  967. return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
  968. btrfs_extent_data_ref_objectid(leaf, ref),
  969. btrfs_extent_data_ref_offset(leaf, ref));
  970. }
  971. static int match_extent_data_ref(struct extent_buffer *leaf,
  972. struct btrfs_extent_data_ref *ref,
  973. u64 root_objectid, u64 owner, u64 offset)
  974. {
  975. if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
  976. btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
  977. btrfs_extent_data_ref_offset(leaf, ref) != offset)
  978. return 0;
  979. return 1;
  980. }
  981. static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
  982. struct btrfs_root *root,
  983. struct btrfs_path *path,
  984. u64 bytenr, u64 parent,
  985. u64 root_objectid,
  986. u64 owner, u64 offset)
  987. {
  988. struct btrfs_key key;
  989. struct btrfs_extent_data_ref *ref;
  990. struct extent_buffer *leaf;
  991. u32 nritems;
  992. int ret;
  993. int recow;
  994. int err = -ENOENT;
  995. key.objectid = bytenr;
  996. if (parent) {
  997. key.type = BTRFS_SHARED_DATA_REF_KEY;
  998. key.offset = parent;
  999. } else {
  1000. key.type = BTRFS_EXTENT_DATA_REF_KEY;
  1001. key.offset = hash_extent_data_ref(root_objectid,
  1002. owner, offset);
  1003. }
  1004. again:
  1005. recow = 0;
  1006. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1007. if (ret < 0) {
  1008. err = ret;
  1009. goto fail;
  1010. }
  1011. if (parent) {
  1012. if (!ret)
  1013. return 0;
  1014. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1015. key.type = BTRFS_EXTENT_REF_V0_KEY;
  1016. btrfs_release_path(path);
  1017. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1018. if (ret < 0) {
  1019. err = ret;
  1020. goto fail;
  1021. }
  1022. if (!ret)
  1023. return 0;
  1024. #endif
  1025. goto fail;
  1026. }
  1027. leaf = path->nodes[0];
  1028. nritems = btrfs_header_nritems(leaf);
  1029. while (1) {
  1030. if (path->slots[0] >= nritems) {
  1031. ret = btrfs_next_leaf(root, path);
  1032. if (ret < 0)
  1033. err = ret;
  1034. if (ret)
  1035. goto fail;
  1036. leaf = path->nodes[0];
  1037. nritems = btrfs_header_nritems(leaf);
  1038. recow = 1;
  1039. }
  1040. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1041. if (key.objectid != bytenr ||
  1042. key.type != BTRFS_EXTENT_DATA_REF_KEY)
  1043. goto fail;
  1044. ref = btrfs_item_ptr(leaf, path->slots[0],
  1045. struct btrfs_extent_data_ref);
  1046. if (match_extent_data_ref(leaf, ref, root_objectid,
  1047. owner, offset)) {
  1048. if (recow) {
  1049. btrfs_release_path(path);
  1050. goto again;
  1051. }
  1052. err = 0;
  1053. break;
  1054. }
  1055. path->slots[0]++;
  1056. }
  1057. fail:
  1058. return err;
  1059. }
  1060. static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
  1061. struct btrfs_root *root,
  1062. struct btrfs_path *path,
  1063. u64 bytenr, u64 parent,
  1064. u64 root_objectid, u64 owner,
  1065. u64 offset, int refs_to_add)
  1066. {
  1067. struct btrfs_key key;
  1068. struct extent_buffer *leaf;
  1069. u32 size;
  1070. u32 num_refs;
  1071. int ret;
  1072. key.objectid = bytenr;
  1073. if (parent) {
  1074. key.type = BTRFS_SHARED_DATA_REF_KEY;
  1075. key.offset = parent;
  1076. size = sizeof(struct btrfs_shared_data_ref);
  1077. } else {
  1078. key.type = BTRFS_EXTENT_DATA_REF_KEY;
  1079. key.offset = hash_extent_data_ref(root_objectid,
  1080. owner, offset);
  1081. size = sizeof(struct btrfs_extent_data_ref);
  1082. }
  1083. ret = btrfs_insert_empty_item(trans, root, path, &key, size);
  1084. if (ret && ret != -EEXIST)
  1085. goto fail;
  1086. leaf = path->nodes[0];
  1087. if (parent) {
  1088. struct btrfs_shared_data_ref *ref;
  1089. ref = btrfs_item_ptr(leaf, path->slots[0],
  1090. struct btrfs_shared_data_ref);
  1091. if (ret == 0) {
  1092. btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
  1093. } else {
  1094. num_refs = btrfs_shared_data_ref_count(leaf, ref);
  1095. num_refs += refs_to_add;
  1096. btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
  1097. }
  1098. } else {
  1099. struct btrfs_extent_data_ref *ref;
  1100. while (ret == -EEXIST) {
  1101. ref = btrfs_item_ptr(leaf, path->slots[0],
  1102. struct btrfs_extent_data_ref);
  1103. if (match_extent_data_ref(leaf, ref, root_objectid,
  1104. owner, offset))
  1105. break;
  1106. btrfs_release_path(path);
  1107. key.offset++;
  1108. ret = btrfs_insert_empty_item(trans, root, path, &key,
  1109. size);
  1110. if (ret && ret != -EEXIST)
  1111. goto fail;
  1112. leaf = path->nodes[0];
  1113. }
  1114. ref = btrfs_item_ptr(leaf, path->slots[0],
  1115. struct btrfs_extent_data_ref);
  1116. if (ret == 0) {
  1117. btrfs_set_extent_data_ref_root(leaf, ref,
  1118. root_objectid);
  1119. btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
  1120. btrfs_set_extent_data_ref_offset(leaf, ref, offset);
  1121. btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
  1122. } else {
  1123. num_refs = btrfs_extent_data_ref_count(leaf, ref);
  1124. num_refs += refs_to_add;
  1125. btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
  1126. }
  1127. }
  1128. btrfs_mark_buffer_dirty(leaf);
  1129. ret = 0;
  1130. fail:
  1131. btrfs_release_path(path);
  1132. return ret;
  1133. }
  1134. static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
  1135. struct btrfs_root *root,
  1136. struct btrfs_path *path,
  1137. int refs_to_drop)
  1138. {
  1139. struct btrfs_key key;
  1140. struct btrfs_extent_data_ref *ref1 = NULL;
  1141. struct btrfs_shared_data_ref *ref2 = NULL;
  1142. struct extent_buffer *leaf;
  1143. u32 num_refs = 0;
  1144. int ret = 0;
  1145. leaf = path->nodes[0];
  1146. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1147. if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  1148. ref1 = btrfs_item_ptr(leaf, path->slots[0],
  1149. struct btrfs_extent_data_ref);
  1150. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1151. } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  1152. ref2 = btrfs_item_ptr(leaf, path->slots[0],
  1153. struct btrfs_shared_data_ref);
  1154. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1155. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1156. } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  1157. struct btrfs_extent_ref_v0 *ref0;
  1158. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1159. struct btrfs_extent_ref_v0);
  1160. num_refs = btrfs_ref_count_v0(leaf, ref0);
  1161. #endif
  1162. } else {
  1163. BUG();
  1164. }
  1165. BUG_ON(num_refs < refs_to_drop);
  1166. num_refs -= refs_to_drop;
  1167. if (num_refs == 0) {
  1168. ret = btrfs_del_item(trans, root, path);
  1169. } else {
  1170. if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
  1171. btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
  1172. else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
  1173. btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
  1174. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1175. else {
  1176. struct btrfs_extent_ref_v0 *ref0;
  1177. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1178. struct btrfs_extent_ref_v0);
  1179. btrfs_set_ref_count_v0(leaf, ref0, num_refs);
  1180. }
  1181. #endif
  1182. btrfs_mark_buffer_dirty(leaf);
  1183. }
  1184. return ret;
  1185. }
  1186. static noinline u32 extent_data_ref_count(struct btrfs_root *root,
  1187. struct btrfs_path *path,
  1188. struct btrfs_extent_inline_ref *iref)
  1189. {
  1190. struct btrfs_key key;
  1191. struct extent_buffer *leaf;
  1192. struct btrfs_extent_data_ref *ref1;
  1193. struct btrfs_shared_data_ref *ref2;
  1194. u32 num_refs = 0;
  1195. leaf = path->nodes[0];
  1196. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1197. if (iref) {
  1198. if (btrfs_extent_inline_ref_type(leaf, iref) ==
  1199. BTRFS_EXTENT_DATA_REF_KEY) {
  1200. ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
  1201. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1202. } else {
  1203. ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
  1204. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1205. }
  1206. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  1207. ref1 = btrfs_item_ptr(leaf, path->slots[0],
  1208. struct btrfs_extent_data_ref);
  1209. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1210. } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  1211. ref2 = btrfs_item_ptr(leaf, path->slots[0],
  1212. struct btrfs_shared_data_ref);
  1213. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1214. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1215. } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  1216. struct btrfs_extent_ref_v0 *ref0;
  1217. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1218. struct btrfs_extent_ref_v0);
  1219. num_refs = btrfs_ref_count_v0(leaf, ref0);
  1220. #endif
  1221. } else {
  1222. WARN_ON(1);
  1223. }
  1224. return num_refs;
  1225. }
  1226. static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
  1227. struct btrfs_root *root,
  1228. struct btrfs_path *path,
  1229. u64 bytenr, u64 parent,
  1230. u64 root_objectid)
  1231. {
  1232. struct btrfs_key key;
  1233. int ret;
  1234. key.objectid = bytenr;
  1235. if (parent) {
  1236. key.type = BTRFS_SHARED_BLOCK_REF_KEY;
  1237. key.offset = parent;
  1238. } else {
  1239. key.type = BTRFS_TREE_BLOCK_REF_KEY;
  1240. key.offset = root_objectid;
  1241. }
  1242. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1243. if (ret > 0)
  1244. ret = -ENOENT;
  1245. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1246. if (ret == -ENOENT && parent) {
  1247. btrfs_release_path(path);
  1248. key.type = BTRFS_EXTENT_REF_V0_KEY;
  1249. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1250. if (ret > 0)
  1251. ret = -ENOENT;
  1252. }
  1253. #endif
  1254. return ret;
  1255. }
  1256. static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
  1257. struct btrfs_root *root,
  1258. struct btrfs_path *path,
  1259. u64 bytenr, u64 parent,
  1260. u64 root_objectid)
  1261. {
  1262. struct btrfs_key key;
  1263. int ret;
  1264. key.objectid = bytenr;
  1265. if (parent) {
  1266. key.type = BTRFS_SHARED_BLOCK_REF_KEY;
  1267. key.offset = parent;
  1268. } else {
  1269. key.type = BTRFS_TREE_BLOCK_REF_KEY;
  1270. key.offset = root_objectid;
  1271. }
  1272. ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
  1273. btrfs_release_path(path);
  1274. return ret;
  1275. }
  1276. static inline int extent_ref_type(u64 parent, u64 owner)
  1277. {
  1278. int type;
  1279. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1280. if (parent > 0)
  1281. type = BTRFS_SHARED_BLOCK_REF_KEY;
  1282. else
  1283. type = BTRFS_TREE_BLOCK_REF_KEY;
  1284. } else {
  1285. if (parent > 0)
  1286. type = BTRFS_SHARED_DATA_REF_KEY;
  1287. else
  1288. type = BTRFS_EXTENT_DATA_REF_KEY;
  1289. }
  1290. return type;
  1291. }
  1292. static int find_next_key(struct btrfs_path *path, int level,
  1293. struct btrfs_key *key)
  1294. {
  1295. for (; level < BTRFS_MAX_LEVEL; level++) {
  1296. if (!path->nodes[level])
  1297. break;
  1298. if (path->slots[level] + 1 >=
  1299. btrfs_header_nritems(path->nodes[level]))
  1300. continue;
  1301. if (level == 0)
  1302. btrfs_item_key_to_cpu(path->nodes[level], key,
  1303. path->slots[level] + 1);
  1304. else
  1305. btrfs_node_key_to_cpu(path->nodes[level], key,
  1306. path->slots[level] + 1);
  1307. return 0;
  1308. }
  1309. return 1;
  1310. }
  1311. /*
  1312. * look for inline back ref. if back ref is found, *ref_ret is set
  1313. * to the address of inline back ref, and 0 is returned.
  1314. *
  1315. * if back ref isn't found, *ref_ret is set to the address where it
  1316. * should be inserted, and -ENOENT is returned.
  1317. *
  1318. * if insert is true and there are too many inline back refs, the path
  1319. * points to the extent item, and -EAGAIN is returned.
  1320. *
  1321. * NOTE: inline back refs are ordered in the same way that back ref
  1322. * items in the tree are ordered.
  1323. */
  1324. static noinline_for_stack
  1325. int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
  1326. struct btrfs_root *root,
  1327. struct btrfs_path *path,
  1328. struct btrfs_extent_inline_ref **ref_ret,
  1329. u64 bytenr, u64 num_bytes,
  1330. u64 parent, u64 root_objectid,
  1331. u64 owner, u64 offset, int insert)
  1332. {
  1333. struct btrfs_key key;
  1334. struct extent_buffer *leaf;
  1335. struct btrfs_extent_item *ei;
  1336. struct btrfs_extent_inline_ref *iref;
  1337. u64 flags;
  1338. u64 item_size;
  1339. unsigned long ptr;
  1340. unsigned long end;
  1341. int extra_size;
  1342. int type;
  1343. int want;
  1344. int ret;
  1345. int err = 0;
  1346. bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
  1347. SKINNY_METADATA);
  1348. key.objectid = bytenr;
  1349. key.type = BTRFS_EXTENT_ITEM_KEY;
  1350. key.offset = num_bytes;
  1351. want = extent_ref_type(parent, owner);
  1352. if (insert) {
  1353. extra_size = btrfs_extent_inline_ref_size(want);
  1354. path->keep_locks = 1;
  1355. } else
  1356. extra_size = -1;
  1357. /*
  1358. * Owner is our parent level, so we can just add one to get the level
  1359. * for the block we are interested in.
  1360. */
  1361. if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
  1362. key.type = BTRFS_METADATA_ITEM_KEY;
  1363. key.offset = owner;
  1364. }
  1365. again:
  1366. ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
  1367. if (ret < 0) {
  1368. err = ret;
  1369. goto out;
  1370. }
  1371. /*
  1372. * We may be a newly converted file system which still has the old fat
  1373. * extent entries for metadata, so try and see if we have one of those.
  1374. */
  1375. if (ret > 0 && skinny_metadata) {
  1376. skinny_metadata = false;
  1377. if (path->slots[0]) {
  1378. path->slots[0]--;
  1379. btrfs_item_key_to_cpu(path->nodes[0], &key,
  1380. path->slots[0]);
  1381. if (key.objectid == bytenr &&
  1382. key.type == BTRFS_EXTENT_ITEM_KEY &&
  1383. key.offset == num_bytes)
  1384. ret = 0;
  1385. }
  1386. if (ret) {
  1387. key.type = BTRFS_EXTENT_ITEM_KEY;
  1388. key.offset = num_bytes;
  1389. btrfs_release_path(path);
  1390. goto again;
  1391. }
  1392. }
  1393. if (ret && !insert) {
  1394. err = -ENOENT;
  1395. goto out;
  1396. } else if (WARN_ON(ret)) {
  1397. err = -EIO;
  1398. goto out;
  1399. }
  1400. leaf = path->nodes[0];
  1401. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1402. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1403. if (item_size < sizeof(*ei)) {
  1404. if (!insert) {
  1405. err = -ENOENT;
  1406. goto out;
  1407. }
  1408. ret = convert_extent_item_v0(trans, root, path, owner,
  1409. extra_size);
  1410. if (ret < 0) {
  1411. err = ret;
  1412. goto out;
  1413. }
  1414. leaf = path->nodes[0];
  1415. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1416. }
  1417. #endif
  1418. BUG_ON(item_size < sizeof(*ei));
  1419. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1420. flags = btrfs_extent_flags(leaf, ei);
  1421. ptr = (unsigned long)(ei + 1);
  1422. end = (unsigned long)ei + item_size;
  1423. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
  1424. ptr += sizeof(struct btrfs_tree_block_info);
  1425. BUG_ON(ptr > end);
  1426. }
  1427. err = -ENOENT;
  1428. while (1) {
  1429. if (ptr >= end) {
  1430. WARN_ON(ptr > end);
  1431. break;
  1432. }
  1433. iref = (struct btrfs_extent_inline_ref *)ptr;
  1434. type = btrfs_extent_inline_ref_type(leaf, iref);
  1435. if (want < type)
  1436. break;
  1437. if (want > type) {
  1438. ptr += btrfs_extent_inline_ref_size(type);
  1439. continue;
  1440. }
  1441. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1442. struct btrfs_extent_data_ref *dref;
  1443. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1444. if (match_extent_data_ref(leaf, dref, root_objectid,
  1445. owner, offset)) {
  1446. err = 0;
  1447. break;
  1448. }
  1449. if (hash_extent_data_ref_item(leaf, dref) <
  1450. hash_extent_data_ref(root_objectid, owner, offset))
  1451. break;
  1452. } else {
  1453. u64 ref_offset;
  1454. ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
  1455. if (parent > 0) {
  1456. if (parent == ref_offset) {
  1457. err = 0;
  1458. break;
  1459. }
  1460. if (ref_offset < parent)
  1461. break;
  1462. } else {
  1463. if (root_objectid == ref_offset) {
  1464. err = 0;
  1465. break;
  1466. }
  1467. if (ref_offset < root_objectid)
  1468. break;
  1469. }
  1470. }
  1471. ptr += btrfs_extent_inline_ref_size(type);
  1472. }
  1473. if (err == -ENOENT && insert) {
  1474. if (item_size + extra_size >=
  1475. BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
  1476. err = -EAGAIN;
  1477. goto out;
  1478. }
  1479. /*
  1480. * To add new inline back ref, we have to make sure
  1481. * there is no corresponding back ref item.
  1482. * For simplicity, we just do not add new inline back
  1483. * ref if there is any kind of item for this block
  1484. */
  1485. if (find_next_key(path, 0, &key) == 0 &&
  1486. key.objectid == bytenr &&
  1487. key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
  1488. err = -EAGAIN;
  1489. goto out;
  1490. }
  1491. }
  1492. *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
  1493. out:
  1494. if (insert) {
  1495. path->keep_locks = 0;
  1496. btrfs_unlock_up_safe(path, 1);
  1497. }
  1498. return err;
  1499. }
  1500. /*
  1501. * helper to add new inline back ref
  1502. */
  1503. static noinline_for_stack
  1504. void setup_inline_extent_backref(struct btrfs_root *root,
  1505. struct btrfs_path *path,
  1506. struct btrfs_extent_inline_ref *iref,
  1507. u64 parent, u64 root_objectid,
  1508. u64 owner, u64 offset, int refs_to_add,
  1509. struct btrfs_delayed_extent_op *extent_op)
  1510. {
  1511. struct extent_buffer *leaf;
  1512. struct btrfs_extent_item *ei;
  1513. unsigned long ptr;
  1514. unsigned long end;
  1515. unsigned long item_offset;
  1516. u64 refs;
  1517. int size;
  1518. int type;
  1519. leaf = path->nodes[0];
  1520. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1521. item_offset = (unsigned long)iref - (unsigned long)ei;
  1522. type = extent_ref_type(parent, owner);
  1523. size = btrfs_extent_inline_ref_size(type);
  1524. btrfs_extend_item(root, path, size);
  1525. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1526. refs = btrfs_extent_refs(leaf, ei);
  1527. refs += refs_to_add;
  1528. btrfs_set_extent_refs(leaf, ei, refs);
  1529. if (extent_op)
  1530. __run_delayed_extent_op(extent_op, leaf, ei);
  1531. ptr = (unsigned long)ei + item_offset;
  1532. end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
  1533. if (ptr < end - size)
  1534. memmove_extent_buffer(leaf, ptr + size, ptr,
  1535. end - size - ptr);
  1536. iref = (struct btrfs_extent_inline_ref *)ptr;
  1537. btrfs_set_extent_inline_ref_type(leaf, iref, type);
  1538. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1539. struct btrfs_extent_data_ref *dref;
  1540. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1541. btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
  1542. btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
  1543. btrfs_set_extent_data_ref_offset(leaf, dref, offset);
  1544. btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
  1545. } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
  1546. struct btrfs_shared_data_ref *sref;
  1547. sref = (struct btrfs_shared_data_ref *)(iref + 1);
  1548. btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
  1549. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  1550. } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
  1551. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  1552. } else {
  1553. btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
  1554. }
  1555. btrfs_mark_buffer_dirty(leaf);
  1556. }
  1557. static int lookup_extent_backref(struct btrfs_trans_handle *trans,
  1558. struct btrfs_root *root,
  1559. struct btrfs_path *path,
  1560. struct btrfs_extent_inline_ref **ref_ret,
  1561. u64 bytenr, u64 num_bytes, u64 parent,
  1562. u64 root_objectid, u64 owner, u64 offset)
  1563. {
  1564. int ret;
  1565. ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
  1566. bytenr, num_bytes, parent,
  1567. root_objectid, owner, offset, 0);
  1568. if (ret != -ENOENT)
  1569. return ret;
  1570. btrfs_release_path(path);
  1571. *ref_ret = NULL;
  1572. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1573. ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
  1574. root_objectid);
  1575. } else {
  1576. ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
  1577. root_objectid, owner, offset);
  1578. }
  1579. return ret;
  1580. }
  1581. /*
  1582. * helper to update/remove inline back ref
  1583. */
  1584. static noinline_for_stack
  1585. void update_inline_extent_backref(struct btrfs_root *root,
  1586. struct btrfs_path *path,
  1587. struct btrfs_extent_inline_ref *iref,
  1588. int refs_to_mod,
  1589. struct btrfs_delayed_extent_op *extent_op)
  1590. {
  1591. struct extent_buffer *leaf;
  1592. struct btrfs_extent_item *ei;
  1593. struct btrfs_extent_data_ref *dref = NULL;
  1594. struct btrfs_shared_data_ref *sref = NULL;
  1595. unsigned long ptr;
  1596. unsigned long end;
  1597. u32 item_size;
  1598. int size;
  1599. int type;
  1600. u64 refs;
  1601. leaf = path->nodes[0];
  1602. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1603. refs = btrfs_extent_refs(leaf, ei);
  1604. WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
  1605. refs += refs_to_mod;
  1606. btrfs_set_extent_refs(leaf, ei, refs);
  1607. if (extent_op)
  1608. __run_delayed_extent_op(extent_op, leaf, ei);
  1609. type = btrfs_extent_inline_ref_type(leaf, iref);
  1610. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1611. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1612. refs = btrfs_extent_data_ref_count(leaf, dref);
  1613. } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
  1614. sref = (struct btrfs_shared_data_ref *)(iref + 1);
  1615. refs = btrfs_shared_data_ref_count(leaf, sref);
  1616. } else {
  1617. refs = 1;
  1618. BUG_ON(refs_to_mod != -1);
  1619. }
  1620. BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
  1621. refs += refs_to_mod;
  1622. if (refs > 0) {
  1623. if (type == BTRFS_EXTENT_DATA_REF_KEY)
  1624. btrfs_set_extent_data_ref_count(leaf, dref, refs);
  1625. else
  1626. btrfs_set_shared_data_ref_count(leaf, sref, refs);
  1627. } else {
  1628. size = btrfs_extent_inline_ref_size(type);
  1629. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1630. ptr = (unsigned long)iref;
  1631. end = (unsigned long)ei + item_size;
  1632. if (ptr + size < end)
  1633. memmove_extent_buffer(leaf, ptr, ptr + size,
  1634. end - ptr - size);
  1635. item_size -= size;
  1636. btrfs_truncate_item(root, path, item_size, 1);
  1637. }
  1638. btrfs_mark_buffer_dirty(leaf);
  1639. }
  1640. static noinline_for_stack
  1641. int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
  1642. struct btrfs_root *root,
  1643. struct btrfs_path *path,
  1644. u64 bytenr, u64 num_bytes, u64 parent,
  1645. u64 root_objectid, u64 owner,
  1646. u64 offset, int refs_to_add,
  1647. struct btrfs_delayed_extent_op *extent_op)
  1648. {
  1649. struct btrfs_extent_inline_ref *iref;
  1650. int ret;
  1651. ret = lookup_inline_extent_backref(trans, root, path, &iref,
  1652. bytenr, num_bytes, parent,
  1653. root_objectid, owner, offset, 1);
  1654. if (ret == 0) {
  1655. BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
  1656. update_inline_extent_backref(root, path, iref,
  1657. refs_to_add, extent_op);
  1658. } else if (ret == -ENOENT) {
  1659. setup_inline_extent_backref(root, path, iref, parent,
  1660. root_objectid, owner, offset,
  1661. refs_to_add, extent_op);
  1662. ret = 0;
  1663. }
  1664. return ret;
  1665. }
  1666. static int insert_extent_backref(struct btrfs_trans_handle *trans,
  1667. struct btrfs_root *root,
  1668. struct btrfs_path *path,
  1669. u64 bytenr, u64 parent, u64 root_objectid,
  1670. u64 owner, u64 offset, int refs_to_add)
  1671. {
  1672. int ret;
  1673. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1674. BUG_ON(refs_to_add != 1);
  1675. ret = insert_tree_block_ref(trans, root, path, bytenr,
  1676. parent, root_objectid);
  1677. } else {
  1678. ret = insert_extent_data_ref(trans, root, path, bytenr,
  1679. parent, root_objectid,
  1680. owner, offset, refs_to_add);
  1681. }
  1682. return ret;
  1683. }
  1684. static int remove_extent_backref(struct btrfs_trans_handle *trans,
  1685. struct btrfs_root *root,
  1686. struct btrfs_path *path,
  1687. struct btrfs_extent_inline_ref *iref,
  1688. int refs_to_drop, int is_data)
  1689. {
  1690. int ret = 0;
  1691. BUG_ON(!is_data && refs_to_drop != 1);
  1692. if (iref) {
  1693. update_inline_extent_backref(root, path, iref,
  1694. -refs_to_drop, NULL);
  1695. } else if (is_data) {
  1696. ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
  1697. } else {
  1698. ret = btrfs_del_item(trans, root, path);
  1699. }
  1700. return ret;
  1701. }
  1702. static int btrfs_issue_discard(struct block_device *bdev,
  1703. u64 start, u64 len)
  1704. {
  1705. return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
  1706. }
  1707. static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
  1708. u64 num_bytes, u64 *actual_bytes)
  1709. {
  1710. int ret;
  1711. u64 discarded_bytes = 0;
  1712. struct btrfs_bio *bbio = NULL;
  1713. /* Tell the block device(s) that the sectors can be discarded */
  1714. ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
  1715. bytenr, &num_bytes, &bbio, 0);
  1716. /* Error condition is -ENOMEM */
  1717. if (!ret) {
  1718. struct btrfs_bio_stripe *stripe = bbio->stripes;
  1719. int i;
  1720. for (i = 0; i < bbio->num_stripes; i++, stripe++) {
  1721. if (!stripe->dev->can_discard)
  1722. continue;
  1723. ret = btrfs_issue_discard(stripe->dev->bdev,
  1724. stripe->physical,
  1725. stripe->length);
  1726. if (!ret)
  1727. discarded_bytes += stripe->length;
  1728. else if (ret != -EOPNOTSUPP)
  1729. break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
  1730. /*
  1731. * Just in case we get back EOPNOTSUPP for some reason,
  1732. * just ignore the return value so we don't screw up
  1733. * people calling discard_extent.
  1734. */
  1735. ret = 0;
  1736. }
  1737. kfree(bbio);
  1738. }
  1739. if (actual_bytes)
  1740. *actual_bytes = discarded_bytes;
  1741. if (ret == -EOPNOTSUPP)
  1742. ret = 0;
  1743. return ret;
  1744. }
  1745. /* Can return -ENOMEM */
  1746. int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
  1747. struct btrfs_root *root,
  1748. u64 bytenr, u64 num_bytes, u64 parent,
  1749. u64 root_objectid, u64 owner, u64 offset, int for_cow)
  1750. {
  1751. int ret;
  1752. struct btrfs_fs_info *fs_info = root->fs_info;
  1753. BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
  1754. root_objectid == BTRFS_TREE_LOG_OBJECTID);
  1755. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1756. ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
  1757. num_bytes,
  1758. parent, root_objectid, (int)owner,
  1759. BTRFS_ADD_DELAYED_REF, NULL, for_cow);
  1760. } else {
  1761. ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
  1762. num_bytes,
  1763. parent, root_objectid, owner, offset,
  1764. BTRFS_ADD_DELAYED_REF, NULL, for_cow);
  1765. }
  1766. return ret;
  1767. }
  1768. static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
  1769. struct btrfs_root *root,
  1770. u64 bytenr, u64 num_bytes,
  1771. u64 parent, u64 root_objectid,
  1772. u64 owner, u64 offset, int refs_to_add,
  1773. struct btrfs_delayed_extent_op *extent_op)
  1774. {
  1775. struct btrfs_path *path;
  1776. struct extent_buffer *leaf;
  1777. struct btrfs_extent_item *item;
  1778. u64 refs;
  1779. int ret;
  1780. path = btrfs_alloc_path();
  1781. if (!path)
  1782. return -ENOMEM;
  1783. path->reada = 1;
  1784. path->leave_spinning = 1;
  1785. /* this will setup the path even if it fails to insert the back ref */
  1786. ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
  1787. path, bytenr, num_bytes, parent,
  1788. root_objectid, owner, offset,
  1789. refs_to_add, extent_op);
  1790. if (ret != -EAGAIN)
  1791. goto out;
  1792. leaf = path->nodes[0];
  1793. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1794. refs = btrfs_extent_refs(leaf, item);
  1795. btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
  1796. if (extent_op)
  1797. __run_delayed_extent_op(extent_op, leaf, item);
  1798. btrfs_mark_buffer_dirty(leaf);
  1799. btrfs_release_path(path);
  1800. path->reada = 1;
  1801. path->leave_spinning = 1;
  1802. /* now insert the actual backref */
  1803. ret = insert_extent_backref(trans, root->fs_info->extent_root,
  1804. path, bytenr, parent, root_objectid,
  1805. owner, offset, refs_to_add);
  1806. if (ret)
  1807. btrfs_abort_transaction(trans, root, ret);
  1808. out:
  1809. btrfs_free_path(path);
  1810. return ret;
  1811. }
  1812. static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
  1813. struct btrfs_root *root,
  1814. struct btrfs_delayed_ref_node *node,
  1815. struct btrfs_delayed_extent_op *extent_op,
  1816. int insert_reserved)
  1817. {
  1818. int ret = 0;
  1819. struct btrfs_delayed_data_ref *ref;
  1820. struct btrfs_key ins;
  1821. u64 parent = 0;
  1822. u64 ref_root = 0;
  1823. u64 flags = 0;
  1824. ins.objectid = node->bytenr;
  1825. ins.offset = node->num_bytes;
  1826. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1827. ref = btrfs_delayed_node_to_data_ref(node);
  1828. trace_run_delayed_data_ref(node, ref, node->action);
  1829. if (node->type == BTRFS_SHARED_DATA_REF_KEY)
  1830. parent = ref->parent;
  1831. else
  1832. ref_root = ref->root;
  1833. if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
  1834. if (extent_op)
  1835. flags |= extent_op->flags_to_set;
  1836. ret = alloc_reserved_file_extent(trans, root,
  1837. parent, ref_root, flags,
  1838. ref->objectid, ref->offset,
  1839. &ins, node->ref_mod);
  1840. } else if (node->action == BTRFS_ADD_DELAYED_REF) {
  1841. ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
  1842. node->num_bytes, parent,
  1843. ref_root, ref->objectid,
  1844. ref->offset, node->ref_mod,
  1845. extent_op);
  1846. } else if (node->action == BTRFS_DROP_DELAYED_REF) {
  1847. ret = __btrfs_free_extent(trans, root, node->bytenr,
  1848. node->num_bytes, parent,
  1849. ref_root, ref->objectid,
  1850. ref->offset, node->ref_mod,
  1851. extent_op);
  1852. } else {
  1853. BUG();
  1854. }
  1855. return ret;
  1856. }
  1857. static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  1858. struct extent_buffer *leaf,
  1859. struct btrfs_extent_item *ei)
  1860. {
  1861. u64 flags = btrfs_extent_flags(leaf, ei);
  1862. if (extent_op->update_flags) {
  1863. flags |= extent_op->flags_to_set;
  1864. btrfs_set_extent_flags(leaf, ei, flags);
  1865. }
  1866. if (extent_op->update_key) {
  1867. struct btrfs_tree_block_info *bi;
  1868. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
  1869. bi = (struct btrfs_tree_block_info *)(ei + 1);
  1870. btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
  1871. }
  1872. }
  1873. static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
  1874. struct btrfs_root *root,
  1875. struct btrfs_delayed_ref_node *node,
  1876. struct btrfs_delayed_extent_op *extent_op)
  1877. {
  1878. struct btrfs_key key;
  1879. struct btrfs_path *path;
  1880. struct btrfs_extent_item *ei;
  1881. struct extent_buffer *leaf;
  1882. u32 item_size;
  1883. int ret;
  1884. int err = 0;
  1885. int metadata = !extent_op->is_data;
  1886. if (trans->aborted)
  1887. return 0;
  1888. if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
  1889. metadata = 0;
  1890. path = btrfs_alloc_path();
  1891. if (!path)
  1892. return -ENOMEM;
  1893. key.objectid = node->bytenr;
  1894. if (metadata) {
  1895. key.type = BTRFS_METADATA_ITEM_KEY;
  1896. key.offset = extent_op->level;
  1897. } else {
  1898. key.type = BTRFS_EXTENT_ITEM_KEY;
  1899. key.offset = node->num_bytes;
  1900. }
  1901. again:
  1902. path->reada = 1;
  1903. path->leave_spinning = 1;
  1904. ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
  1905. path, 0, 1);
  1906. if (ret < 0) {
  1907. err = ret;
  1908. goto out;
  1909. }
  1910. if (ret > 0) {
  1911. if (metadata) {
  1912. if (path->slots[0] > 0) {
  1913. path->slots[0]--;
  1914. btrfs_item_key_to_cpu(path->nodes[0], &key,
  1915. path->slots[0]);
  1916. if (key.objectid == node->bytenr &&
  1917. key.type == BTRFS_EXTENT_ITEM_KEY &&
  1918. key.offset == node->num_bytes)
  1919. ret = 0;
  1920. }
  1921. if (ret > 0) {
  1922. btrfs_release_path(path);
  1923. metadata = 0;
  1924. key.objectid = node->bytenr;
  1925. key.offset = node->num_bytes;
  1926. key.type = BTRFS_EXTENT_ITEM_KEY;
  1927. goto again;
  1928. }
  1929. } else {
  1930. err = -EIO;
  1931. goto out;
  1932. }
  1933. }
  1934. leaf = path->nodes[0];
  1935. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1936. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1937. if (item_size < sizeof(*ei)) {
  1938. ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
  1939. path, (u64)-1, 0);
  1940. if (ret < 0) {
  1941. err = ret;
  1942. goto out;
  1943. }
  1944. leaf = path->nodes[0];
  1945. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1946. }
  1947. #endif
  1948. BUG_ON(item_size < sizeof(*ei));
  1949. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1950. __run_delayed_extent_op(extent_op, leaf, ei);
  1951. btrfs_mark_buffer_dirty(leaf);
  1952. out:
  1953. btrfs_free_path(path);
  1954. return err;
  1955. }
  1956. static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
  1957. struct btrfs_root *root,
  1958. struct btrfs_delayed_ref_node *node,
  1959. struct btrfs_delayed_extent_op *extent_op,
  1960. int insert_reserved)
  1961. {
  1962. int ret = 0;
  1963. struct btrfs_delayed_tree_ref *ref;
  1964. struct btrfs_key ins;
  1965. u64 parent = 0;
  1966. u64 ref_root = 0;
  1967. bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
  1968. SKINNY_METADATA);
  1969. ref = btrfs_delayed_node_to_tree_ref(node);
  1970. trace_run_delayed_tree_ref(node, ref, node->action);
  1971. if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
  1972. parent = ref->parent;
  1973. else
  1974. ref_root = ref->root;
  1975. ins.objectid = node->bytenr;
  1976. if (skinny_metadata) {
  1977. ins.offset = ref->level;
  1978. ins.type = BTRFS_METADATA_ITEM_KEY;
  1979. } else {
  1980. ins.offset = node->num_bytes;
  1981. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1982. }
  1983. BUG_ON(node->ref_mod != 1);
  1984. if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
  1985. BUG_ON(!extent_op || !extent_op->update_flags);
  1986. ret = alloc_reserved_tree_block(trans, root,
  1987. parent, ref_root,
  1988. extent_op->flags_to_set,
  1989. &extent_op->key,
  1990. ref->level, &ins);
  1991. } else if (node->action == BTRFS_ADD_DELAYED_REF) {
  1992. ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
  1993. node->num_bytes, parent, ref_root,
  1994. ref->level, 0, 1, extent_op);
  1995. } else if (node->action == BTRFS_DROP_DELAYED_REF) {
  1996. ret = __btrfs_free_extent(trans, root, node->bytenr,
  1997. node->num_bytes, parent, ref_root,
  1998. ref->level, 0, 1, extent_op);
  1999. } else {
  2000. BUG();
  2001. }
  2002. return ret;
  2003. }
  2004. /* helper function to actually process a single delayed ref entry */
  2005. static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
  2006. struct btrfs_root *root,
  2007. struct btrfs_delayed_ref_node *node,
  2008. struct btrfs_delayed_extent_op *extent_op,
  2009. int insert_reserved)
  2010. {
  2011. int ret = 0;
  2012. if (trans->aborted) {
  2013. if (insert_reserved)
  2014. btrfs_pin_extent(root, node->bytenr,
  2015. node->num_bytes, 1);
  2016. return 0;
  2017. }
  2018. if (btrfs_delayed_ref_is_head(node)) {
  2019. struct btrfs_delayed_ref_head *head;
  2020. /*
  2021. * we've hit the end of the chain and we were supposed
  2022. * to insert this extent into the tree. But, it got
  2023. * deleted before we ever needed to insert it, so all
  2024. * we have to do is clean up the accounting
  2025. */
  2026. BUG_ON(extent_op);
  2027. head = btrfs_delayed_node_to_head(node);
  2028. trace_run_delayed_ref_head(node, head, node->action);
  2029. if (insert_reserved) {
  2030. btrfs_pin_extent(root, node->bytenr,
  2031. node->num_bytes, 1);
  2032. if (head->is_data) {
  2033. ret = btrfs_del_csums(trans, root,
  2034. node->bytenr,
  2035. node->num_bytes);
  2036. }
  2037. }
  2038. return ret;
  2039. }
  2040. if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
  2041. node->type == BTRFS_SHARED_BLOCK_REF_KEY)
  2042. ret = run_delayed_tree_ref(trans, root, node, extent_op,
  2043. insert_reserved);
  2044. else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
  2045. node->type == BTRFS_SHARED_DATA_REF_KEY)
  2046. ret = run_delayed_data_ref(trans, root, node, extent_op,
  2047. insert_reserved);
  2048. else
  2049. BUG();
  2050. return ret;
  2051. }
  2052. static noinline struct btrfs_delayed_ref_node *
  2053. select_delayed_ref(struct btrfs_delayed_ref_head *head)
  2054. {
  2055. struct rb_node *node;
  2056. struct btrfs_delayed_ref_node *ref, *last = NULL;;
  2057. /*
  2058. * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
  2059. * this prevents ref count from going down to zero when
  2060. * there still are pending delayed ref.
  2061. */
  2062. node = rb_first(&head->ref_root);
  2063. while (node) {
  2064. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  2065. rb_node);
  2066. if (ref->action == BTRFS_ADD_DELAYED_REF)
  2067. return ref;
  2068. else if (last == NULL)
  2069. last = ref;
  2070. node = rb_next(node);
  2071. }
  2072. return last;
  2073. }
  2074. /*
  2075. * Returns 0 on success or if called with an already aborted transaction.
  2076. * Returns -ENOMEM or -EIO on failure and will abort the transaction.
  2077. */
  2078. static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
  2079. struct btrfs_root *root,
  2080. unsigned long nr)
  2081. {
  2082. struct btrfs_delayed_ref_root *delayed_refs;
  2083. struct btrfs_delayed_ref_node *ref;
  2084. struct btrfs_delayed_ref_head *locked_ref = NULL;
  2085. struct btrfs_delayed_extent_op *extent_op;
  2086. struct btrfs_fs_info *fs_info = root->fs_info;
  2087. ktime_t start = ktime_get();
  2088. int ret;
  2089. unsigned long count = 0;
  2090. unsigned long actual_count = 0;
  2091. int must_insert_reserved = 0;
  2092. delayed_refs = &trans->transaction->delayed_refs;
  2093. while (1) {
  2094. if (!locked_ref) {
  2095. if (count >= nr)
  2096. break;
  2097. spin_lock(&delayed_refs->lock);
  2098. locked_ref = btrfs_select_ref_head(trans);
  2099. if (!locked_ref) {
  2100. spin_unlock(&delayed_refs->lock);
  2101. break;
  2102. }
  2103. /* grab the lock that says we are going to process
  2104. * all the refs for this head */
  2105. ret = btrfs_delayed_ref_lock(trans, locked_ref);
  2106. spin_unlock(&delayed_refs->lock);
  2107. /*
  2108. * we may have dropped the spin lock to get the head
  2109. * mutex lock, and that might have given someone else
  2110. * time to free the head. If that's true, it has been
  2111. * removed from our list and we can move on.
  2112. */
  2113. if (ret == -EAGAIN) {
  2114. locked_ref = NULL;
  2115. count++;
  2116. continue;
  2117. }
  2118. }
  2119. /*
  2120. * We need to try and merge add/drops of the same ref since we
  2121. * can run into issues with relocate dropping the implicit ref
  2122. * and then it being added back again before the drop can
  2123. * finish. If we merged anything we need to re-loop so we can
  2124. * get a good ref.
  2125. */
  2126. spin_lock(&locked_ref->lock);
  2127. btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
  2128. locked_ref);
  2129. /*
  2130. * locked_ref is the head node, so we have to go one
  2131. * node back for any delayed ref updates
  2132. */
  2133. ref = select_delayed_ref(locked_ref);
  2134. if (ref && ref->seq &&
  2135. btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
  2136. spin_unlock(&locked_ref->lock);
  2137. btrfs_delayed_ref_unlock(locked_ref);
  2138. spin_lock(&delayed_refs->lock);
  2139. locked_ref->processing = 0;
  2140. delayed_refs->num_heads_ready++;
  2141. spin_unlock(&delayed_refs->lock);
  2142. locked_ref = NULL;
  2143. cond_resched();
  2144. continue;
  2145. }
  2146. /*
  2147. * record the must insert reserved flag before we
  2148. * drop the spin lock.
  2149. */
  2150. must_insert_reserved = locked_ref->must_insert_reserved;
  2151. locked_ref->must_insert_reserved = 0;
  2152. extent_op = locked_ref->extent_op;
  2153. locked_ref->extent_op = NULL;
  2154. if (!ref) {
  2155. /* All delayed refs have been processed, Go ahead
  2156. * and send the head node to run_one_delayed_ref,
  2157. * so that any accounting fixes can happen
  2158. */
  2159. ref = &locked_ref->node;
  2160. if (extent_op && must_insert_reserved) {
  2161. btrfs_free_delayed_extent_op(extent_op);
  2162. extent_op = NULL;
  2163. }
  2164. if (extent_op) {
  2165. spin_unlock(&locked_ref->lock);
  2166. ret = run_delayed_extent_op(trans, root,
  2167. ref, extent_op);
  2168. btrfs_free_delayed_extent_op(extent_op);
  2169. if (ret) {
  2170. /*
  2171. * Need to reset must_insert_reserved if
  2172. * there was an error so the abort stuff
  2173. * can cleanup the reserved space
  2174. * properly.
  2175. */
  2176. if (must_insert_reserved)
  2177. locked_ref->must_insert_reserved = 1;
  2178. locked_ref->processing = 0;
  2179. btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
  2180. btrfs_delayed_ref_unlock(locked_ref);
  2181. return ret;
  2182. }
  2183. continue;
  2184. }
  2185. /*
  2186. * Need to drop our head ref lock and re-aqcuire the
  2187. * delayed ref lock and then re-check to make sure
  2188. * nobody got added.
  2189. */
  2190. spin_unlock(&locked_ref->lock);
  2191. spin_lock(&delayed_refs->lock);
  2192. spin_lock(&locked_ref->lock);
  2193. if (rb_first(&locked_ref->ref_root)) {
  2194. spin_unlock(&locked_ref->lock);
  2195. spin_unlock(&delayed_refs->lock);
  2196. continue;
  2197. }
  2198. ref->in_tree = 0;
  2199. delayed_refs->num_heads--;
  2200. rb_erase(&locked_ref->href_node,
  2201. &delayed_refs->href_root);
  2202. spin_unlock(&delayed_refs->lock);
  2203. } else {
  2204. actual_count++;
  2205. ref->in_tree = 0;
  2206. rb_erase(&ref->rb_node, &locked_ref->ref_root);
  2207. }
  2208. atomic_dec(&delayed_refs->num_entries);
  2209. if (!btrfs_delayed_ref_is_head(ref)) {
  2210. /*
  2211. * when we play the delayed ref, also correct the
  2212. * ref_mod on head
  2213. */
  2214. switch (ref->action) {
  2215. case BTRFS_ADD_DELAYED_REF:
  2216. case BTRFS_ADD_DELAYED_EXTENT:
  2217. locked_ref->node.ref_mod -= ref->ref_mod;
  2218. break;
  2219. case BTRFS_DROP_DELAYED_REF:
  2220. locked_ref->node.ref_mod += ref->ref_mod;
  2221. break;
  2222. default:
  2223. WARN_ON(1);
  2224. }
  2225. }
  2226. spin_unlock(&locked_ref->lock);
  2227. ret = run_one_delayed_ref(trans, root, ref, extent_op,
  2228. must_insert_reserved);
  2229. btrfs_free_delayed_extent_op(extent_op);
  2230. if (ret) {
  2231. locked_ref->processing = 0;
  2232. btrfs_delayed_ref_unlock(locked_ref);
  2233. btrfs_put_delayed_ref(ref);
  2234. btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
  2235. return ret;
  2236. }
  2237. /*
  2238. * If this node is a head, that means all the refs in this head
  2239. * have been dealt with, and we will pick the next head to deal
  2240. * with, so we must unlock the head and drop it from the cluster
  2241. * list before we release it.
  2242. */
  2243. if (btrfs_delayed_ref_is_head(ref)) {
  2244. btrfs_delayed_ref_unlock(locked_ref);
  2245. locked_ref = NULL;
  2246. }
  2247. btrfs_put_delayed_ref(ref);
  2248. count++;
  2249. cond_resched();
  2250. }
  2251. /*
  2252. * We don't want to include ref heads since we can have empty ref heads
  2253. * and those will drastically skew our runtime down since we just do
  2254. * accounting, no actual extent tree updates.
  2255. */
  2256. if (actual_count > 0) {
  2257. u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
  2258. u64 avg;
  2259. /*
  2260. * We weigh the current average higher than our current runtime
  2261. * to avoid large swings in the average.
  2262. */
  2263. spin_lock(&delayed_refs->lock);
  2264. avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
  2265. avg = div64_u64(avg, 4);
  2266. fs_info->avg_delayed_ref_runtime = avg;
  2267. spin_unlock(&delayed_refs->lock);
  2268. }
  2269. return 0;
  2270. }
  2271. #ifdef SCRAMBLE_DELAYED_REFS
  2272. /*
  2273. * Normally delayed refs get processed in ascending bytenr order. This
  2274. * correlates in most cases to the order added. To expose dependencies on this
  2275. * order, we start to process the tree in the middle instead of the beginning
  2276. */
  2277. static u64 find_middle(struct rb_root *root)
  2278. {
  2279. struct rb_node *n = root->rb_node;
  2280. struct btrfs_delayed_ref_node *entry;
  2281. int alt = 1;
  2282. u64 middle;
  2283. u64 first = 0, last = 0;
  2284. n = rb_first(root);
  2285. if (n) {
  2286. entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
  2287. first = entry->bytenr;
  2288. }
  2289. n = rb_last(root);
  2290. if (n) {
  2291. entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
  2292. last = entry->bytenr;
  2293. }
  2294. n = root->rb_node;
  2295. while (n) {
  2296. entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
  2297. WARN_ON(!entry->in_tree);
  2298. middle = entry->bytenr;
  2299. if (alt)
  2300. n = n->rb_left;
  2301. else
  2302. n = n->rb_right;
  2303. alt = 1 - alt;
  2304. }
  2305. return middle;
  2306. }
  2307. #endif
  2308. int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
  2309. struct btrfs_fs_info *fs_info)
  2310. {
  2311. struct qgroup_update *qgroup_update;
  2312. int ret = 0;
  2313. if (list_empty(&trans->qgroup_ref_list) !=
  2314. !trans->delayed_ref_elem.seq) {
  2315. /* list without seq or seq without list */
  2316. btrfs_err(fs_info,
  2317. "qgroup accounting update error, list is%s empty, seq is %#x.%x",
  2318. list_empty(&trans->qgroup_ref_list) ? "" : " not",
  2319. (u32)(trans->delayed_ref_elem.seq >> 32),
  2320. (u32)trans->delayed_ref_elem.seq);
  2321. BUG();
  2322. }
  2323. if (!trans->delayed_ref_elem.seq)
  2324. return 0;
  2325. while (!list_empty(&trans->qgroup_ref_list)) {
  2326. qgroup_update = list_first_entry(&trans->qgroup_ref_list,
  2327. struct qgroup_update, list);
  2328. list_del(&qgroup_update->list);
  2329. if (!ret)
  2330. ret = btrfs_qgroup_account_ref(
  2331. trans, fs_info, qgroup_update->node,
  2332. qgroup_update->extent_op);
  2333. kfree(qgroup_update);
  2334. }
  2335. btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
  2336. return ret;
  2337. }
  2338. static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
  2339. {
  2340. u64 num_bytes;
  2341. num_bytes = heads * (sizeof(struct btrfs_extent_item) +
  2342. sizeof(struct btrfs_extent_inline_ref));
  2343. if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
  2344. num_bytes += heads * sizeof(struct btrfs_tree_block_info);
  2345. /*
  2346. * We don't ever fill up leaves all the way so multiply by 2 just to be
  2347. * closer to what we're really going to want to ouse.
  2348. */
  2349. return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
  2350. }
  2351. int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
  2352. struct btrfs_root *root)
  2353. {
  2354. struct btrfs_block_rsv *global_rsv;
  2355. u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
  2356. u64 num_bytes;
  2357. int ret = 0;
  2358. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  2359. num_heads = heads_to_leaves(root, num_heads);
  2360. if (num_heads > 1)
  2361. num_bytes += (num_heads - 1) * root->leafsize;
  2362. num_bytes <<= 1;
  2363. global_rsv = &root->fs_info->global_block_rsv;
  2364. /*
  2365. * If we can't allocate any more chunks lets make sure we have _lots_ of
  2366. * wiggle room since running delayed refs can create more delayed refs.
  2367. */
  2368. if (global_rsv->space_info->full)
  2369. num_bytes <<= 1;
  2370. spin_lock(&global_rsv->lock);
  2371. if (global_rsv->reserved <= num_bytes)
  2372. ret = 1;
  2373. spin_unlock(&global_rsv->lock);
  2374. return ret;
  2375. }
  2376. int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
  2377. struct btrfs_root *root)
  2378. {
  2379. struct btrfs_fs_info *fs_info = root->fs_info;
  2380. u64 num_entries =
  2381. atomic_read(&trans->transaction->delayed_refs.num_entries);
  2382. u64 avg_runtime;
  2383. smp_mb();
  2384. avg_runtime = fs_info->avg_delayed_ref_runtime;
  2385. if (num_entries * avg_runtime >= NSEC_PER_SEC)
  2386. return 1;
  2387. return btrfs_check_space_for_delayed_refs(trans, root);
  2388. }
  2389. /*
  2390. * this starts processing the delayed reference count updates and
  2391. * extent insertions we have queued up so far. count can be
  2392. * 0, which means to process everything in the tree at the start
  2393. * of the run (but not newly added entries), or it can be some target
  2394. * number you'd like to process.
  2395. *
  2396. * Returns 0 on success or if called with an aborted transaction
  2397. * Returns <0 on error and aborts the transaction
  2398. */
  2399. int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
  2400. struct btrfs_root *root, unsigned long count)
  2401. {
  2402. struct rb_node *node;
  2403. struct btrfs_delayed_ref_root *delayed_refs;
  2404. struct btrfs_delayed_ref_head *head;
  2405. int ret;
  2406. int run_all = count == (unsigned long)-1;
  2407. int run_most = 0;
  2408. /* We'll clean this up in btrfs_cleanup_transaction */
  2409. if (trans->aborted)
  2410. return 0;
  2411. if (root == root->fs_info->extent_root)
  2412. root = root->fs_info->tree_root;
  2413. btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
  2414. delayed_refs = &trans->transaction->delayed_refs;
  2415. if (count == 0) {
  2416. count = atomic_read(&delayed_refs->num_entries) * 2;
  2417. run_most = 1;
  2418. }
  2419. again:
  2420. #ifdef SCRAMBLE_DELAYED_REFS
  2421. delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
  2422. #endif
  2423. ret = __btrfs_run_delayed_refs(trans, root, count);
  2424. if (ret < 0) {
  2425. btrfs_abort_transaction(trans, root, ret);
  2426. return ret;
  2427. }
  2428. if (run_all) {
  2429. if (!list_empty(&trans->new_bgs))
  2430. btrfs_create_pending_block_groups(trans, root);
  2431. spin_lock(&delayed_refs->lock);
  2432. node = rb_first(&delayed_refs->href_root);
  2433. if (!node) {
  2434. spin_unlock(&delayed_refs->lock);
  2435. goto out;
  2436. }
  2437. count = (unsigned long)-1;
  2438. while (node) {
  2439. head = rb_entry(node, struct btrfs_delayed_ref_head,
  2440. href_node);
  2441. if (btrfs_delayed_ref_is_head(&head->node)) {
  2442. struct btrfs_delayed_ref_node *ref;
  2443. ref = &head->node;
  2444. atomic_inc(&ref->refs);
  2445. spin_unlock(&delayed_refs->lock);
  2446. /*
  2447. * Mutex was contended, block until it's
  2448. * released and try again
  2449. */
  2450. mutex_lock(&head->mutex);
  2451. mutex_unlock(&head->mutex);
  2452. btrfs_put_delayed_ref(ref);
  2453. cond_resched();
  2454. goto again;
  2455. } else {
  2456. WARN_ON(1);
  2457. }
  2458. node = rb_next(node);
  2459. }
  2460. spin_unlock(&delayed_refs->lock);
  2461. cond_resched();
  2462. goto again;
  2463. }
  2464. out:
  2465. assert_qgroups_uptodate(trans);
  2466. return 0;
  2467. }
  2468. int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
  2469. struct btrfs_root *root,
  2470. u64 bytenr, u64 num_bytes, u64 flags,
  2471. int level, int is_data)
  2472. {
  2473. struct btrfs_delayed_extent_op *extent_op;
  2474. int ret;
  2475. extent_op = btrfs_alloc_delayed_extent_op();
  2476. if (!extent_op)
  2477. return -ENOMEM;
  2478. extent_op->flags_to_set = flags;
  2479. extent_op->update_flags = 1;
  2480. extent_op->update_key = 0;
  2481. extent_op->is_data = is_data ? 1 : 0;
  2482. extent_op->level = level;
  2483. ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
  2484. num_bytes, extent_op);
  2485. if (ret)
  2486. btrfs_free_delayed_extent_op(extent_op);
  2487. return ret;
  2488. }
  2489. static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
  2490. struct btrfs_root *root,
  2491. struct btrfs_path *path,
  2492. u64 objectid, u64 offset, u64 bytenr)
  2493. {
  2494. struct btrfs_delayed_ref_head *head;
  2495. struct btrfs_delayed_ref_node *ref;
  2496. struct btrfs_delayed_data_ref *data_ref;
  2497. struct btrfs_delayed_ref_root *delayed_refs;
  2498. struct rb_node *node;
  2499. int ret = 0;
  2500. delayed_refs = &trans->transaction->delayed_refs;
  2501. spin_lock(&delayed_refs->lock);
  2502. head = btrfs_find_delayed_ref_head(trans, bytenr);
  2503. if (!head) {
  2504. spin_unlock(&delayed_refs->lock);
  2505. return 0;
  2506. }
  2507. if (!mutex_trylock(&head->mutex)) {
  2508. atomic_inc(&head->node.refs);
  2509. spin_unlock(&delayed_refs->lock);
  2510. btrfs_release_path(path);
  2511. /*
  2512. * Mutex was contended, block until it's released and let
  2513. * caller try again
  2514. */
  2515. mutex_lock(&head->mutex);
  2516. mutex_unlock(&head->mutex);
  2517. btrfs_put_delayed_ref(&head->node);
  2518. return -EAGAIN;
  2519. }
  2520. spin_unlock(&delayed_refs->lock);
  2521. spin_lock(&head->lock);
  2522. node = rb_first(&head->ref_root);
  2523. while (node) {
  2524. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2525. node = rb_next(node);
  2526. /* If it's a shared ref we know a cross reference exists */
  2527. if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
  2528. ret = 1;
  2529. break;
  2530. }
  2531. data_ref = btrfs_delayed_node_to_data_ref(ref);
  2532. /*
  2533. * If our ref doesn't match the one we're currently looking at
  2534. * then we have a cross reference.
  2535. */
  2536. if (data_ref->root != root->root_key.objectid ||
  2537. data_ref->objectid != objectid ||
  2538. data_ref->offset != offset) {
  2539. ret = 1;
  2540. break;
  2541. }
  2542. }
  2543. spin_unlock(&head->lock);
  2544. mutex_unlock(&head->mutex);
  2545. return ret;
  2546. }
  2547. static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
  2548. struct btrfs_root *root,
  2549. struct btrfs_path *path,
  2550. u64 objectid, u64 offset, u64 bytenr)
  2551. {
  2552. struct btrfs_root *extent_root = root->fs_info->extent_root;
  2553. struct extent_buffer *leaf;
  2554. struct btrfs_extent_data_ref *ref;
  2555. struct btrfs_extent_inline_ref *iref;
  2556. struct btrfs_extent_item *ei;
  2557. struct btrfs_key key;
  2558. u32 item_size;
  2559. int ret;
  2560. key.objectid = bytenr;
  2561. key.offset = (u64)-1;
  2562. key.type = BTRFS_EXTENT_ITEM_KEY;
  2563. ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  2564. if (ret < 0)
  2565. goto out;
  2566. BUG_ON(ret == 0); /* Corruption */
  2567. ret = -ENOENT;
  2568. if (path->slots[0] == 0)
  2569. goto out;
  2570. path->slots[0]--;
  2571. leaf = path->nodes[0];
  2572. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2573. if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
  2574. goto out;
  2575. ret = 1;
  2576. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2577. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2578. if (item_size < sizeof(*ei)) {
  2579. WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  2580. goto out;
  2581. }
  2582. #endif
  2583. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  2584. if (item_size != sizeof(*ei) +
  2585. btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
  2586. goto out;
  2587. if (btrfs_extent_generation(leaf, ei) <=
  2588. btrfs_root_last_snapshot(&root->root_item))
  2589. goto out;
  2590. iref = (struct btrfs_extent_inline_ref *)(ei + 1);
  2591. if (btrfs_extent_inline_ref_type(leaf, iref) !=
  2592. BTRFS_EXTENT_DATA_REF_KEY)
  2593. goto out;
  2594. ref = (struct btrfs_extent_data_ref *)(&iref->offset);
  2595. if (btrfs_extent_refs(leaf, ei) !=
  2596. btrfs_extent_data_ref_count(leaf, ref) ||
  2597. btrfs_extent_data_ref_root(leaf, ref) !=
  2598. root->root_key.objectid ||
  2599. btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
  2600. btrfs_extent_data_ref_offset(leaf, ref) != offset)
  2601. goto out;
  2602. ret = 0;
  2603. out:
  2604. return ret;
  2605. }
  2606. int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
  2607. struct btrfs_root *root,
  2608. u64 objectid, u64 offset, u64 bytenr)
  2609. {
  2610. struct btrfs_path *path;
  2611. int ret;
  2612. int ret2;
  2613. path = btrfs_alloc_path();
  2614. if (!path)
  2615. return -ENOENT;
  2616. do {
  2617. ret = check_committed_ref(trans, root, path, objectid,
  2618. offset, bytenr);
  2619. if (ret && ret != -ENOENT)
  2620. goto out;
  2621. ret2 = check_delayed_ref(trans, root, path, objectid,
  2622. offset, bytenr);
  2623. } while (ret2 == -EAGAIN);
  2624. if (ret2 && ret2 != -ENOENT) {
  2625. ret = ret2;
  2626. goto out;
  2627. }
  2628. if (ret != -ENOENT || ret2 != -ENOENT)
  2629. ret = 0;
  2630. out:
  2631. btrfs_free_path(path);
  2632. if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
  2633. WARN_ON(ret > 0);
  2634. return ret;
  2635. }
  2636. static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
  2637. struct btrfs_root *root,
  2638. struct extent_buffer *buf,
  2639. int full_backref, int inc, int for_cow)
  2640. {
  2641. u64 bytenr;
  2642. u64 num_bytes;
  2643. u64 parent;
  2644. u64 ref_root;
  2645. u32 nritems;
  2646. struct btrfs_key key;
  2647. struct btrfs_file_extent_item *fi;
  2648. int i;
  2649. int level;
  2650. int ret = 0;
  2651. int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
  2652. u64, u64, u64, u64, u64, u64, int);
  2653. ref_root = btrfs_header_owner(buf);
  2654. nritems = btrfs_header_nritems(buf);
  2655. level = btrfs_header_level(buf);
  2656. if (!root->ref_cows && level == 0)
  2657. return 0;
  2658. if (inc)
  2659. process_func = btrfs_inc_extent_ref;
  2660. else
  2661. process_func = btrfs_free_extent;
  2662. if (full_backref)
  2663. parent = buf->start;
  2664. else
  2665. parent = 0;
  2666. for (i = 0; i < nritems; i++) {
  2667. if (level == 0) {
  2668. btrfs_item_key_to_cpu(buf, &key, i);
  2669. if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
  2670. continue;
  2671. fi = btrfs_item_ptr(buf, i,
  2672. struct btrfs_file_extent_item);
  2673. if (btrfs_file_extent_type(buf, fi) ==
  2674. BTRFS_FILE_EXTENT_INLINE)
  2675. continue;
  2676. bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
  2677. if (bytenr == 0)
  2678. continue;
  2679. num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
  2680. key.offset -= btrfs_file_extent_offset(buf, fi);
  2681. ret = process_func(trans, root, bytenr, num_bytes,
  2682. parent, ref_root, key.objectid,
  2683. key.offset, for_cow);
  2684. if (ret)
  2685. goto fail;
  2686. } else {
  2687. bytenr = btrfs_node_blockptr(buf, i);
  2688. num_bytes = btrfs_level_size(root, level - 1);
  2689. ret = process_func(trans, root, bytenr, num_bytes,
  2690. parent, ref_root, level - 1, 0,
  2691. for_cow);
  2692. if (ret)
  2693. goto fail;
  2694. }
  2695. }
  2696. return 0;
  2697. fail:
  2698. return ret;
  2699. }
  2700. int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2701. struct extent_buffer *buf, int full_backref, int for_cow)
  2702. {
  2703. return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
  2704. }
  2705. int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2706. struct extent_buffer *buf, int full_backref, int for_cow)
  2707. {
  2708. return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
  2709. }
  2710. static int write_one_cache_group(struct btrfs_trans_handle *trans,
  2711. struct btrfs_root *root,
  2712. struct btrfs_path *path,
  2713. struct btrfs_block_group_cache *cache)
  2714. {
  2715. int ret;
  2716. struct btrfs_root *extent_root = root->fs_info->extent_root;
  2717. unsigned long bi;
  2718. struct extent_buffer *leaf;
  2719. ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
  2720. if (ret < 0)
  2721. goto fail;
  2722. BUG_ON(ret); /* Corruption */
  2723. leaf = path->nodes[0];
  2724. bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2725. write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
  2726. btrfs_mark_buffer_dirty(leaf);
  2727. btrfs_release_path(path);
  2728. fail:
  2729. if (ret) {
  2730. btrfs_abort_transaction(trans, root, ret);
  2731. return ret;
  2732. }
  2733. return 0;
  2734. }
  2735. static struct btrfs_block_group_cache *
  2736. next_block_group(struct btrfs_root *root,
  2737. struct btrfs_block_group_cache *cache)
  2738. {
  2739. struct rb_node *node;
  2740. spin_lock(&root->fs_info->block_group_cache_lock);
  2741. node = rb_next(&cache->cache_node);
  2742. btrfs_put_block_group(cache);
  2743. if (node) {
  2744. cache = rb_entry(node, struct btrfs_block_group_cache,
  2745. cache_node);
  2746. btrfs_get_block_group(cache);
  2747. } else
  2748. cache = NULL;
  2749. spin_unlock(&root->fs_info->block_group_cache_lock);
  2750. return cache;
  2751. }
  2752. static int cache_save_setup(struct btrfs_block_group_cache *block_group,
  2753. struct btrfs_trans_handle *trans,
  2754. struct btrfs_path *path)
  2755. {
  2756. struct btrfs_root *root = block_group->fs_info->tree_root;
  2757. struct inode *inode = NULL;
  2758. u64 alloc_hint = 0;
  2759. int dcs = BTRFS_DC_ERROR;
  2760. int num_pages = 0;
  2761. int retries = 0;
  2762. int ret = 0;
  2763. /*
  2764. * If this block group is smaller than 100 megs don't bother caching the
  2765. * block group.
  2766. */
  2767. if (block_group->key.offset < (100 * 1024 * 1024)) {
  2768. spin_lock(&block_group->lock);
  2769. block_group->disk_cache_state = BTRFS_DC_WRITTEN;
  2770. spin_unlock(&block_group->lock);
  2771. return 0;
  2772. }
  2773. again:
  2774. inode = lookup_free_space_inode(root, block_group, path);
  2775. if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
  2776. ret = PTR_ERR(inode);
  2777. btrfs_release_path(path);
  2778. goto out;
  2779. }
  2780. if (IS_ERR(inode)) {
  2781. BUG_ON(retries);
  2782. retries++;
  2783. if (block_group->ro)
  2784. goto out_free;
  2785. ret = create_free_space_inode(root, trans, block_group, path);
  2786. if (ret)
  2787. goto out_free;
  2788. goto again;
  2789. }
  2790. /* We've already setup this transaction, go ahead and exit */
  2791. if (block_group->cache_generation == trans->transid &&
  2792. i_size_read(inode)) {
  2793. dcs = BTRFS_DC_SETUP;
  2794. goto out_put;
  2795. }
  2796. /*
  2797. * We want to set the generation to 0, that way if anything goes wrong
  2798. * from here on out we know not to trust this cache when we load up next
  2799. * time.
  2800. */
  2801. BTRFS_I(inode)->generation = 0;
  2802. ret = btrfs_update_inode(trans, root, inode);
  2803. WARN_ON(ret);
  2804. if (i_size_read(inode) > 0) {
  2805. ret = btrfs_check_trunc_cache_free_space(root,
  2806. &root->fs_info->global_block_rsv);
  2807. if (ret)
  2808. goto out_put;
  2809. ret = btrfs_truncate_free_space_cache(root, trans, inode);
  2810. if (ret)
  2811. goto out_put;
  2812. }
  2813. spin_lock(&block_group->lock);
  2814. if (block_group->cached != BTRFS_CACHE_FINISHED ||
  2815. !btrfs_test_opt(root, SPACE_CACHE)) {
  2816. /*
  2817. * don't bother trying to write stuff out _if_
  2818. * a) we're not cached,
  2819. * b) we're with nospace_cache mount option.
  2820. */
  2821. dcs = BTRFS_DC_WRITTEN;
  2822. spin_unlock(&block_group->lock);
  2823. goto out_put;
  2824. }
  2825. spin_unlock(&block_group->lock);
  2826. /*
  2827. * Try to preallocate enough space based on how big the block group is.
  2828. * Keep in mind this has to include any pinned space which could end up
  2829. * taking up quite a bit since it's not folded into the other space
  2830. * cache.
  2831. */
  2832. num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
  2833. if (!num_pages)
  2834. num_pages = 1;
  2835. num_pages *= 16;
  2836. num_pages *= PAGE_CACHE_SIZE;
  2837. ret = btrfs_check_data_free_space(inode, num_pages);
  2838. if (ret)
  2839. goto out_put;
  2840. ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
  2841. num_pages, num_pages,
  2842. &alloc_hint);
  2843. if (!ret)
  2844. dcs = BTRFS_DC_SETUP;
  2845. btrfs_free_reserved_data_space(inode, num_pages);
  2846. out_put:
  2847. iput(inode);
  2848. out_free:
  2849. btrfs_release_path(path);
  2850. out:
  2851. spin_lock(&block_group->lock);
  2852. if (!ret && dcs == BTRFS_DC_SETUP)
  2853. block_group->cache_generation = trans->transid;
  2854. block_group->disk_cache_state = dcs;
  2855. spin_unlock(&block_group->lock);
  2856. return ret;
  2857. }
  2858. int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
  2859. struct btrfs_root *root)
  2860. {
  2861. struct btrfs_block_group_cache *cache;
  2862. int err = 0;
  2863. struct btrfs_path *path;
  2864. u64 last = 0;
  2865. path = btrfs_alloc_path();
  2866. if (!path)
  2867. return -ENOMEM;
  2868. again:
  2869. while (1) {
  2870. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2871. while (cache) {
  2872. if (cache->disk_cache_state == BTRFS_DC_CLEAR)
  2873. break;
  2874. cache = next_block_group(root, cache);
  2875. }
  2876. if (!cache) {
  2877. if (last == 0)
  2878. break;
  2879. last = 0;
  2880. continue;
  2881. }
  2882. err = cache_save_setup(cache, trans, path);
  2883. last = cache->key.objectid + cache->key.offset;
  2884. btrfs_put_block_group(cache);
  2885. }
  2886. while (1) {
  2887. if (last == 0) {
  2888. err = btrfs_run_delayed_refs(trans, root,
  2889. (unsigned long)-1);
  2890. if (err) /* File system offline */
  2891. goto out;
  2892. }
  2893. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2894. while (cache) {
  2895. if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
  2896. btrfs_put_block_group(cache);
  2897. goto again;
  2898. }
  2899. if (cache->dirty)
  2900. break;
  2901. cache = next_block_group(root, cache);
  2902. }
  2903. if (!cache) {
  2904. if (last == 0)
  2905. break;
  2906. last = 0;
  2907. continue;
  2908. }
  2909. if (cache->disk_cache_state == BTRFS_DC_SETUP)
  2910. cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
  2911. cache->dirty = 0;
  2912. last = cache->key.objectid + cache->key.offset;
  2913. err = write_one_cache_group(trans, root, path, cache);
  2914. btrfs_put_block_group(cache);
  2915. if (err) /* File system offline */
  2916. goto out;
  2917. }
  2918. while (1) {
  2919. /*
  2920. * I don't think this is needed since we're just marking our
  2921. * preallocated extent as written, but just in case it can't
  2922. * hurt.
  2923. */
  2924. if (last == 0) {
  2925. err = btrfs_run_delayed_refs(trans, root,
  2926. (unsigned long)-1);
  2927. if (err) /* File system offline */
  2928. goto out;
  2929. }
  2930. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2931. while (cache) {
  2932. /*
  2933. * Really this shouldn't happen, but it could if we
  2934. * couldn't write the entire preallocated extent and
  2935. * splitting the extent resulted in a new block.
  2936. */
  2937. if (cache->dirty) {
  2938. btrfs_put_block_group(cache);
  2939. goto again;
  2940. }
  2941. if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
  2942. break;
  2943. cache = next_block_group(root, cache);
  2944. }
  2945. if (!cache) {
  2946. if (last == 0)
  2947. break;
  2948. last = 0;
  2949. continue;
  2950. }
  2951. err = btrfs_write_out_cache(root, trans, cache, path);
  2952. /*
  2953. * If we didn't have an error then the cache state is still
  2954. * NEED_WRITE, so we can set it to WRITTEN.
  2955. */
  2956. if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
  2957. cache->disk_cache_state = BTRFS_DC_WRITTEN;
  2958. last = cache->key.objectid + cache->key.offset;
  2959. btrfs_put_block_group(cache);
  2960. }
  2961. out:
  2962. btrfs_free_path(path);
  2963. return err;
  2964. }
  2965. int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
  2966. {
  2967. struct btrfs_block_group_cache *block_group;
  2968. int readonly = 0;
  2969. block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
  2970. if (!block_group || block_group->ro)
  2971. readonly = 1;
  2972. if (block_group)
  2973. btrfs_put_block_group(block_group);
  2974. return readonly;
  2975. }
  2976. static const char *alloc_name(u64 flags)
  2977. {
  2978. switch (flags) {
  2979. case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
  2980. return "mixed";
  2981. case BTRFS_BLOCK_GROUP_METADATA:
  2982. return "metadata";
  2983. case BTRFS_BLOCK_GROUP_DATA:
  2984. return "data";
  2985. case BTRFS_BLOCK_GROUP_SYSTEM:
  2986. return "system";
  2987. default:
  2988. WARN_ON(1);
  2989. return "invalid-combination";
  2990. };
  2991. }
  2992. static int update_space_info(struct btrfs_fs_info *info, u64 flags,
  2993. u64 total_bytes, u64 bytes_used,
  2994. struct btrfs_space_info **space_info)
  2995. {
  2996. struct btrfs_space_info *found;
  2997. int i;
  2998. int factor;
  2999. int ret;
  3000. if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
  3001. BTRFS_BLOCK_GROUP_RAID10))
  3002. factor = 2;
  3003. else
  3004. factor = 1;
  3005. found = __find_space_info(info, flags);
  3006. if (found) {
  3007. spin_lock(&found->lock);
  3008. found->total_bytes += total_bytes;
  3009. found->disk_total += total_bytes * factor;
  3010. found->bytes_used += bytes_used;
  3011. found->disk_used += bytes_used * factor;
  3012. found->full = 0;
  3013. spin_unlock(&found->lock);
  3014. *space_info = found;
  3015. return 0;
  3016. }
  3017. found = kzalloc(sizeof(*found), GFP_NOFS);
  3018. if (!found)
  3019. return -ENOMEM;
  3020. ret = percpu_counter_init(&found->total_bytes_pinned, 0);
  3021. if (ret) {
  3022. kfree(found);
  3023. return ret;
  3024. }
  3025. for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
  3026. INIT_LIST_HEAD(&found->block_groups[i]);
  3027. kobject_init(&found->block_group_kobjs[i], &btrfs_raid_ktype);
  3028. }
  3029. init_rwsem(&found->groups_sem);
  3030. spin_lock_init(&found->lock);
  3031. found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
  3032. found->total_bytes = total_bytes;
  3033. found->disk_total = total_bytes * factor;
  3034. found->bytes_used = bytes_used;
  3035. found->disk_used = bytes_used * factor;
  3036. found->bytes_pinned = 0;
  3037. found->bytes_reserved = 0;
  3038. found->bytes_readonly = 0;
  3039. found->bytes_may_use = 0;
  3040. found->full = 0;
  3041. found->force_alloc = CHUNK_ALLOC_NO_FORCE;
  3042. found->chunk_alloc = 0;
  3043. found->flush = 0;
  3044. init_waitqueue_head(&found->wait);
  3045. ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
  3046. info->space_info_kobj, "%s",
  3047. alloc_name(found->flags));
  3048. if (ret) {
  3049. kfree(found);
  3050. return ret;
  3051. }
  3052. *space_info = found;
  3053. list_add_rcu(&found->list, &info->space_info);
  3054. if (flags & BTRFS_BLOCK_GROUP_DATA)
  3055. info->data_sinfo = found;
  3056. return ret;
  3057. }
  3058. static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
  3059. {
  3060. u64 extra_flags = chunk_to_extended(flags) &
  3061. BTRFS_EXTENDED_PROFILE_MASK;
  3062. write_seqlock(&fs_info->profiles_lock);
  3063. if (flags & BTRFS_BLOCK_GROUP_DATA)
  3064. fs_info->avail_data_alloc_bits |= extra_flags;
  3065. if (flags & BTRFS_BLOCK_GROUP_METADATA)
  3066. fs_info->avail_metadata_alloc_bits |= extra_flags;
  3067. if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  3068. fs_info->avail_system_alloc_bits |= extra_flags;
  3069. write_sequnlock(&fs_info->profiles_lock);
  3070. }
  3071. /*
  3072. * returns target flags in extended format or 0 if restripe for this
  3073. * chunk_type is not in progress
  3074. *
  3075. * should be called with either volume_mutex or balance_lock held
  3076. */
  3077. static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
  3078. {
  3079. struct btrfs_balance_control *bctl = fs_info->balance_ctl;
  3080. u64 target = 0;
  3081. if (!bctl)
  3082. return 0;
  3083. if (flags & BTRFS_BLOCK_GROUP_DATA &&
  3084. bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  3085. target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
  3086. } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
  3087. bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  3088. target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
  3089. } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
  3090. bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  3091. target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
  3092. }
  3093. return target;
  3094. }
  3095. /*
  3096. * @flags: available profiles in extended format (see ctree.h)
  3097. *
  3098. * Returns reduced profile in chunk format. If profile changing is in
  3099. * progress (either running or paused) picks the target profile (if it's
  3100. * already available), otherwise falls back to plain reducing.
  3101. */
  3102. static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
  3103. {
  3104. /*
  3105. * we add in the count of missing devices because we want
  3106. * to make sure that any RAID levels on a degraded FS
  3107. * continue to be honored.
  3108. */
  3109. u64 num_devices = root->fs_info->fs_devices->rw_devices +
  3110. root->fs_info->fs_devices->missing_devices;
  3111. u64 target;
  3112. u64 tmp;
  3113. /*
  3114. * see if restripe for this chunk_type is in progress, if so
  3115. * try to reduce to the target profile
  3116. */
  3117. spin_lock(&root->fs_info->balance_lock);
  3118. target = get_restripe_target(root->fs_info, flags);
  3119. if (target) {
  3120. /* pick target profile only if it's already available */
  3121. if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
  3122. spin_unlock(&root->fs_info->balance_lock);
  3123. return extended_to_chunk(target);
  3124. }
  3125. }
  3126. spin_unlock(&root->fs_info->balance_lock);
  3127. /* First, mask out the RAID levels which aren't possible */
  3128. if (num_devices == 1)
  3129. flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
  3130. BTRFS_BLOCK_GROUP_RAID5);
  3131. if (num_devices < 3)
  3132. flags &= ~BTRFS_BLOCK_GROUP_RAID6;
  3133. if (num_devices < 4)
  3134. flags &= ~BTRFS_BLOCK_GROUP_RAID10;
  3135. tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
  3136. BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
  3137. BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
  3138. flags &= ~tmp;
  3139. if (tmp & BTRFS_BLOCK_GROUP_RAID6)
  3140. tmp = BTRFS_BLOCK_GROUP_RAID6;
  3141. else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
  3142. tmp = BTRFS_BLOCK_GROUP_RAID5;
  3143. else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
  3144. tmp = BTRFS_BLOCK_GROUP_RAID10;
  3145. else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
  3146. tmp = BTRFS_BLOCK_GROUP_RAID1;
  3147. else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
  3148. tmp = BTRFS_BLOCK_GROUP_RAID0;
  3149. return extended_to_chunk(flags | tmp);
  3150. }
  3151. static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
  3152. {
  3153. unsigned seq;
  3154. do {
  3155. seq = read_seqbegin(&root->fs_info->profiles_lock);
  3156. if (flags & BTRFS_BLOCK_GROUP_DATA)
  3157. flags |= root->fs_info->avail_data_alloc_bits;
  3158. else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  3159. flags |= root->fs_info->avail_system_alloc_bits;
  3160. else if (flags & BTRFS_BLOCK_GROUP_METADATA)
  3161. flags |= root->fs_info->avail_metadata_alloc_bits;
  3162. } while (read_seqretry(&root->fs_info->profiles_lock, seq));
  3163. return btrfs_reduce_alloc_profile(root, flags);
  3164. }
  3165. u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
  3166. {
  3167. u64 flags;
  3168. u64 ret;
  3169. if (data)
  3170. flags = BTRFS_BLOCK_GROUP_DATA;
  3171. else if (root == root->fs_info->chunk_root)
  3172. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  3173. else
  3174. flags = BTRFS_BLOCK_GROUP_METADATA;
  3175. ret = get_alloc_profile(root, flags);
  3176. return ret;
  3177. }
  3178. /*
  3179. * This will check the space that the inode allocates from to make sure we have
  3180. * enough space for bytes.
  3181. */
  3182. int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
  3183. {
  3184. struct btrfs_space_info *data_sinfo;
  3185. struct btrfs_root *root = BTRFS_I(inode)->root;
  3186. struct btrfs_fs_info *fs_info = root->fs_info;
  3187. u64 used;
  3188. int ret = 0, committed = 0, alloc_chunk = 1;
  3189. /* make sure bytes are sectorsize aligned */
  3190. bytes = ALIGN(bytes, root->sectorsize);
  3191. if (btrfs_is_free_space_inode(inode)) {
  3192. committed = 1;
  3193. ASSERT(current->journal_info);
  3194. }
  3195. data_sinfo = fs_info->data_sinfo;
  3196. if (!data_sinfo)
  3197. goto alloc;
  3198. again:
  3199. /* make sure we have enough space to handle the data first */
  3200. spin_lock(&data_sinfo->lock);
  3201. used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
  3202. data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
  3203. data_sinfo->bytes_may_use;
  3204. if (used + bytes > data_sinfo->total_bytes) {
  3205. struct btrfs_trans_handle *trans;
  3206. /*
  3207. * if we don't have enough free bytes in this space then we need
  3208. * to alloc a new chunk.
  3209. */
  3210. if (!data_sinfo->full && alloc_chunk) {
  3211. u64 alloc_target;
  3212. data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
  3213. spin_unlock(&data_sinfo->lock);
  3214. alloc:
  3215. alloc_target = btrfs_get_alloc_profile(root, 1);
  3216. /*
  3217. * It is ugly that we don't call nolock join
  3218. * transaction for the free space inode case here.
  3219. * But it is safe because we only do the data space
  3220. * reservation for the free space cache in the
  3221. * transaction context, the common join transaction
  3222. * just increase the counter of the current transaction
  3223. * handler, doesn't try to acquire the trans_lock of
  3224. * the fs.
  3225. */
  3226. trans = btrfs_join_transaction(root);
  3227. if (IS_ERR(trans))
  3228. return PTR_ERR(trans);
  3229. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  3230. alloc_target,
  3231. CHUNK_ALLOC_NO_FORCE);
  3232. btrfs_end_transaction(trans, root);
  3233. if (ret < 0) {
  3234. if (ret != -ENOSPC)
  3235. return ret;
  3236. else
  3237. goto commit_trans;
  3238. }
  3239. if (!data_sinfo)
  3240. data_sinfo = fs_info->data_sinfo;
  3241. goto again;
  3242. }
  3243. /*
  3244. * If we don't have enough pinned space to deal with this
  3245. * allocation don't bother committing the transaction.
  3246. */
  3247. if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
  3248. bytes) < 0)
  3249. committed = 1;
  3250. spin_unlock(&data_sinfo->lock);
  3251. /* commit the current transaction and try again */
  3252. commit_trans:
  3253. if (!committed &&
  3254. !atomic_read(&root->fs_info->open_ioctl_trans)) {
  3255. committed = 1;
  3256. trans = btrfs_join_transaction(root);
  3257. if (IS_ERR(trans))
  3258. return PTR_ERR(trans);
  3259. ret = btrfs_commit_transaction(trans, root);
  3260. if (ret)
  3261. return ret;
  3262. goto again;
  3263. }
  3264. trace_btrfs_space_reservation(root->fs_info,
  3265. "space_info:enospc",
  3266. data_sinfo->flags, bytes, 1);
  3267. return -ENOSPC;
  3268. }
  3269. data_sinfo->bytes_may_use += bytes;
  3270. trace_btrfs_space_reservation(root->fs_info, "space_info",
  3271. data_sinfo->flags, bytes, 1);
  3272. spin_unlock(&data_sinfo->lock);
  3273. return 0;
  3274. }
  3275. /*
  3276. * Called if we need to clear a data reservation for this inode.
  3277. */
  3278. void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
  3279. {
  3280. struct btrfs_root *root = BTRFS_I(inode)->root;
  3281. struct btrfs_space_info *data_sinfo;
  3282. /* make sure bytes are sectorsize aligned */
  3283. bytes = ALIGN(bytes, root->sectorsize);
  3284. data_sinfo = root->fs_info->data_sinfo;
  3285. spin_lock(&data_sinfo->lock);
  3286. WARN_ON(data_sinfo->bytes_may_use < bytes);
  3287. data_sinfo->bytes_may_use -= bytes;
  3288. trace_btrfs_space_reservation(root->fs_info, "space_info",
  3289. data_sinfo->flags, bytes, 0);
  3290. spin_unlock(&data_sinfo->lock);
  3291. }
  3292. static void force_metadata_allocation(struct btrfs_fs_info *info)
  3293. {
  3294. struct list_head *head = &info->space_info;
  3295. struct btrfs_space_info *found;
  3296. rcu_read_lock();
  3297. list_for_each_entry_rcu(found, head, list) {
  3298. if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
  3299. found->force_alloc = CHUNK_ALLOC_FORCE;
  3300. }
  3301. rcu_read_unlock();
  3302. }
  3303. static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
  3304. {
  3305. return (global->size << 1);
  3306. }
  3307. static int should_alloc_chunk(struct btrfs_root *root,
  3308. struct btrfs_space_info *sinfo, int force)
  3309. {
  3310. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  3311. u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
  3312. u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
  3313. u64 thresh;
  3314. if (force == CHUNK_ALLOC_FORCE)
  3315. return 1;
  3316. /*
  3317. * We need to take into account the global rsv because for all intents
  3318. * and purposes it's used space. Don't worry about locking the
  3319. * global_rsv, it doesn't change except when the transaction commits.
  3320. */
  3321. if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
  3322. num_allocated += calc_global_rsv_need_space(global_rsv);
  3323. /*
  3324. * in limited mode, we want to have some free space up to
  3325. * about 1% of the FS size.
  3326. */
  3327. if (force == CHUNK_ALLOC_LIMITED) {
  3328. thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
  3329. thresh = max_t(u64, 64 * 1024 * 1024,
  3330. div_factor_fine(thresh, 1));
  3331. if (num_bytes - num_allocated < thresh)
  3332. return 1;
  3333. }
  3334. if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
  3335. return 0;
  3336. return 1;
  3337. }
  3338. static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
  3339. {
  3340. u64 num_dev;
  3341. if (type & (BTRFS_BLOCK_GROUP_RAID10 |
  3342. BTRFS_BLOCK_GROUP_RAID0 |
  3343. BTRFS_BLOCK_GROUP_RAID5 |
  3344. BTRFS_BLOCK_GROUP_RAID6))
  3345. num_dev = root->fs_info->fs_devices->rw_devices;
  3346. else if (type & BTRFS_BLOCK_GROUP_RAID1)
  3347. num_dev = 2;
  3348. else
  3349. num_dev = 1; /* DUP or single */
  3350. /* metadata for updaing devices and chunk tree */
  3351. return btrfs_calc_trans_metadata_size(root, num_dev + 1);
  3352. }
  3353. static void check_system_chunk(struct btrfs_trans_handle *trans,
  3354. struct btrfs_root *root, u64 type)
  3355. {
  3356. struct btrfs_space_info *info;
  3357. u64 left;
  3358. u64 thresh;
  3359. info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
  3360. spin_lock(&info->lock);
  3361. left = info->total_bytes - info->bytes_used - info->bytes_pinned -
  3362. info->bytes_reserved - info->bytes_readonly;
  3363. spin_unlock(&info->lock);
  3364. thresh = get_system_chunk_thresh(root, type);
  3365. if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
  3366. btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
  3367. left, thresh, type);
  3368. dump_space_info(info, 0, 0);
  3369. }
  3370. if (left < thresh) {
  3371. u64 flags;
  3372. flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
  3373. btrfs_alloc_chunk(trans, root, flags);
  3374. }
  3375. }
  3376. static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  3377. struct btrfs_root *extent_root, u64 flags, int force)
  3378. {
  3379. struct btrfs_space_info *space_info;
  3380. struct btrfs_fs_info *fs_info = extent_root->fs_info;
  3381. int wait_for_alloc = 0;
  3382. int ret = 0;
  3383. /* Don't re-enter if we're already allocating a chunk */
  3384. if (trans->allocating_chunk)
  3385. return -ENOSPC;
  3386. space_info = __find_space_info(extent_root->fs_info, flags);
  3387. if (!space_info) {
  3388. ret = update_space_info(extent_root->fs_info, flags,
  3389. 0, 0, &space_info);
  3390. BUG_ON(ret); /* -ENOMEM */
  3391. }
  3392. BUG_ON(!space_info); /* Logic error */
  3393. again:
  3394. spin_lock(&space_info->lock);
  3395. if (force < space_info->force_alloc)
  3396. force = space_info->force_alloc;
  3397. if (space_info->full) {
  3398. if (should_alloc_chunk(extent_root, space_info, force))
  3399. ret = -ENOSPC;
  3400. else
  3401. ret = 0;
  3402. spin_unlock(&space_info->lock);
  3403. return ret;
  3404. }
  3405. if (!should_alloc_chunk(extent_root, space_info, force)) {
  3406. spin_unlock(&space_info->lock);
  3407. return 0;
  3408. } else if (space_info->chunk_alloc) {
  3409. wait_for_alloc = 1;
  3410. } else {
  3411. space_info->chunk_alloc = 1;
  3412. }
  3413. spin_unlock(&space_info->lock);
  3414. mutex_lock(&fs_info->chunk_mutex);
  3415. /*
  3416. * The chunk_mutex is held throughout the entirety of a chunk
  3417. * allocation, so once we've acquired the chunk_mutex we know that the
  3418. * other guy is done and we need to recheck and see if we should
  3419. * allocate.
  3420. */
  3421. if (wait_for_alloc) {
  3422. mutex_unlock(&fs_info->chunk_mutex);
  3423. wait_for_alloc = 0;
  3424. goto again;
  3425. }
  3426. trans->allocating_chunk = true;
  3427. /*
  3428. * If we have mixed data/metadata chunks we want to make sure we keep
  3429. * allocating mixed chunks instead of individual chunks.
  3430. */
  3431. if (btrfs_mixed_space_info(space_info))
  3432. flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
  3433. /*
  3434. * if we're doing a data chunk, go ahead and make sure that
  3435. * we keep a reasonable number of metadata chunks allocated in the
  3436. * FS as well.
  3437. */
  3438. if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
  3439. fs_info->data_chunk_allocations++;
  3440. if (!(fs_info->data_chunk_allocations %
  3441. fs_info->metadata_ratio))
  3442. force_metadata_allocation(fs_info);
  3443. }
  3444. /*
  3445. * Check if we have enough space in SYSTEM chunk because we may need
  3446. * to update devices.
  3447. */
  3448. check_system_chunk(trans, extent_root, flags);
  3449. ret = btrfs_alloc_chunk(trans, extent_root, flags);
  3450. trans->allocating_chunk = false;
  3451. spin_lock(&space_info->lock);
  3452. if (ret < 0 && ret != -ENOSPC)
  3453. goto out;
  3454. if (ret)
  3455. space_info->full = 1;
  3456. else
  3457. ret = 1;
  3458. space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
  3459. out:
  3460. space_info->chunk_alloc = 0;
  3461. spin_unlock(&space_info->lock);
  3462. mutex_unlock(&fs_info->chunk_mutex);
  3463. return ret;
  3464. }
  3465. static int can_overcommit(struct btrfs_root *root,
  3466. struct btrfs_space_info *space_info, u64 bytes,
  3467. enum btrfs_reserve_flush_enum flush)
  3468. {
  3469. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  3470. u64 profile = btrfs_get_alloc_profile(root, 0);
  3471. u64 space_size;
  3472. u64 avail;
  3473. u64 used;
  3474. used = space_info->bytes_used + space_info->bytes_reserved +
  3475. space_info->bytes_pinned + space_info->bytes_readonly;
  3476. /*
  3477. * We only want to allow over committing if we have lots of actual space
  3478. * free, but if we don't have enough space to handle the global reserve
  3479. * space then we could end up having a real enospc problem when trying
  3480. * to allocate a chunk or some other such important allocation.
  3481. */
  3482. spin_lock(&global_rsv->lock);
  3483. space_size = calc_global_rsv_need_space(global_rsv);
  3484. spin_unlock(&global_rsv->lock);
  3485. if (used + space_size >= space_info->total_bytes)
  3486. return 0;
  3487. used += space_info->bytes_may_use;
  3488. spin_lock(&root->fs_info->free_chunk_lock);
  3489. avail = root->fs_info->free_chunk_space;
  3490. spin_unlock(&root->fs_info->free_chunk_lock);
  3491. /*
  3492. * If we have dup, raid1 or raid10 then only half of the free
  3493. * space is actually useable. For raid56, the space info used
  3494. * doesn't include the parity drive, so we don't have to
  3495. * change the math
  3496. */
  3497. if (profile & (BTRFS_BLOCK_GROUP_DUP |
  3498. BTRFS_BLOCK_GROUP_RAID1 |
  3499. BTRFS_BLOCK_GROUP_RAID10))
  3500. avail >>= 1;
  3501. /*
  3502. * If we aren't flushing all things, let us overcommit up to
  3503. * 1/2th of the space. If we can flush, don't let us overcommit
  3504. * too much, let it overcommit up to 1/8 of the space.
  3505. */
  3506. if (flush == BTRFS_RESERVE_FLUSH_ALL)
  3507. avail >>= 3;
  3508. else
  3509. avail >>= 1;
  3510. if (used + bytes < space_info->total_bytes + avail)
  3511. return 1;
  3512. return 0;
  3513. }
  3514. static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
  3515. unsigned long nr_pages)
  3516. {
  3517. struct super_block *sb = root->fs_info->sb;
  3518. if (down_read_trylock(&sb->s_umount)) {
  3519. writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
  3520. up_read(&sb->s_umount);
  3521. } else {
  3522. /*
  3523. * We needn't worry the filesystem going from r/w to r/o though
  3524. * we don't acquire ->s_umount mutex, because the filesystem
  3525. * should guarantee the delalloc inodes list be empty after
  3526. * the filesystem is readonly(all dirty pages are written to
  3527. * the disk).
  3528. */
  3529. btrfs_start_delalloc_roots(root->fs_info, 0);
  3530. if (!current->journal_info)
  3531. btrfs_wait_ordered_roots(root->fs_info, -1);
  3532. }
  3533. }
  3534. static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
  3535. {
  3536. u64 bytes;
  3537. int nr;
  3538. bytes = btrfs_calc_trans_metadata_size(root, 1);
  3539. nr = (int)div64_u64(to_reclaim, bytes);
  3540. if (!nr)
  3541. nr = 1;
  3542. return nr;
  3543. }
  3544. #define EXTENT_SIZE_PER_ITEM (256 * 1024)
  3545. /*
  3546. * shrink metadata reservation for delalloc
  3547. */
  3548. static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
  3549. bool wait_ordered)
  3550. {
  3551. struct btrfs_block_rsv *block_rsv;
  3552. struct btrfs_space_info *space_info;
  3553. struct btrfs_trans_handle *trans;
  3554. u64 delalloc_bytes;
  3555. u64 max_reclaim;
  3556. long time_left;
  3557. unsigned long nr_pages;
  3558. int loops;
  3559. int items;
  3560. enum btrfs_reserve_flush_enum flush;
  3561. /* Calc the number of the pages we need flush for space reservation */
  3562. items = calc_reclaim_items_nr(root, to_reclaim);
  3563. to_reclaim = items * EXTENT_SIZE_PER_ITEM;
  3564. trans = (struct btrfs_trans_handle *)current->journal_info;
  3565. block_rsv = &root->fs_info->delalloc_block_rsv;
  3566. space_info = block_rsv->space_info;
  3567. delalloc_bytes = percpu_counter_sum_positive(
  3568. &root->fs_info->delalloc_bytes);
  3569. if (delalloc_bytes == 0) {
  3570. if (trans)
  3571. return;
  3572. if (wait_ordered)
  3573. btrfs_wait_ordered_roots(root->fs_info, items);
  3574. return;
  3575. }
  3576. loops = 0;
  3577. while (delalloc_bytes && loops < 3) {
  3578. max_reclaim = min(delalloc_bytes, to_reclaim);
  3579. nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
  3580. btrfs_writeback_inodes_sb_nr(root, nr_pages);
  3581. /*
  3582. * We need to wait for the async pages to actually start before
  3583. * we do anything.
  3584. */
  3585. max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
  3586. if (!max_reclaim)
  3587. goto skip_async;
  3588. if (max_reclaim <= nr_pages)
  3589. max_reclaim = 0;
  3590. else
  3591. max_reclaim -= nr_pages;
  3592. wait_event(root->fs_info->async_submit_wait,
  3593. atomic_read(&root->fs_info->async_delalloc_pages) <=
  3594. (int)max_reclaim);
  3595. skip_async:
  3596. if (!trans)
  3597. flush = BTRFS_RESERVE_FLUSH_ALL;
  3598. else
  3599. flush = BTRFS_RESERVE_NO_FLUSH;
  3600. spin_lock(&space_info->lock);
  3601. if (can_overcommit(root, space_info, orig, flush)) {
  3602. spin_unlock(&space_info->lock);
  3603. break;
  3604. }
  3605. spin_unlock(&space_info->lock);
  3606. loops++;
  3607. if (wait_ordered && !trans) {
  3608. btrfs_wait_ordered_roots(root->fs_info, items);
  3609. } else {
  3610. time_left = schedule_timeout_killable(1);
  3611. if (time_left)
  3612. break;
  3613. }
  3614. delalloc_bytes = percpu_counter_sum_positive(
  3615. &root->fs_info->delalloc_bytes);
  3616. }
  3617. }
  3618. /**
  3619. * maybe_commit_transaction - possibly commit the transaction if its ok to
  3620. * @root - the root we're allocating for
  3621. * @bytes - the number of bytes we want to reserve
  3622. * @force - force the commit
  3623. *
  3624. * This will check to make sure that committing the transaction will actually
  3625. * get us somewhere and then commit the transaction if it does. Otherwise it
  3626. * will return -ENOSPC.
  3627. */
  3628. static int may_commit_transaction(struct btrfs_root *root,
  3629. struct btrfs_space_info *space_info,
  3630. u64 bytes, int force)
  3631. {
  3632. struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
  3633. struct btrfs_trans_handle *trans;
  3634. trans = (struct btrfs_trans_handle *)current->journal_info;
  3635. if (trans)
  3636. return -EAGAIN;
  3637. if (force)
  3638. goto commit;
  3639. /* See if there is enough pinned space to make this reservation */
  3640. spin_lock(&space_info->lock);
  3641. if (percpu_counter_compare(&space_info->total_bytes_pinned,
  3642. bytes) >= 0) {
  3643. spin_unlock(&space_info->lock);
  3644. goto commit;
  3645. }
  3646. spin_unlock(&space_info->lock);
  3647. /*
  3648. * See if there is some space in the delayed insertion reservation for
  3649. * this reservation.
  3650. */
  3651. if (space_info != delayed_rsv->space_info)
  3652. return -ENOSPC;
  3653. spin_lock(&space_info->lock);
  3654. spin_lock(&delayed_rsv->lock);
  3655. if (percpu_counter_compare(&space_info->total_bytes_pinned,
  3656. bytes - delayed_rsv->size) >= 0) {
  3657. spin_unlock(&delayed_rsv->lock);
  3658. spin_unlock(&space_info->lock);
  3659. return -ENOSPC;
  3660. }
  3661. spin_unlock(&delayed_rsv->lock);
  3662. spin_unlock(&space_info->lock);
  3663. commit:
  3664. trans = btrfs_join_transaction(root);
  3665. if (IS_ERR(trans))
  3666. return -ENOSPC;
  3667. return btrfs_commit_transaction(trans, root);
  3668. }
  3669. enum flush_state {
  3670. FLUSH_DELAYED_ITEMS_NR = 1,
  3671. FLUSH_DELAYED_ITEMS = 2,
  3672. FLUSH_DELALLOC = 3,
  3673. FLUSH_DELALLOC_WAIT = 4,
  3674. ALLOC_CHUNK = 5,
  3675. COMMIT_TRANS = 6,
  3676. };
  3677. static int flush_space(struct btrfs_root *root,
  3678. struct btrfs_space_info *space_info, u64 num_bytes,
  3679. u64 orig_bytes, int state)
  3680. {
  3681. struct btrfs_trans_handle *trans;
  3682. int nr;
  3683. int ret = 0;
  3684. switch (state) {
  3685. case FLUSH_DELAYED_ITEMS_NR:
  3686. case FLUSH_DELAYED_ITEMS:
  3687. if (state == FLUSH_DELAYED_ITEMS_NR)
  3688. nr = calc_reclaim_items_nr(root, num_bytes) * 2;
  3689. else
  3690. nr = -1;
  3691. trans = btrfs_join_transaction(root);
  3692. if (IS_ERR(trans)) {
  3693. ret = PTR_ERR(trans);
  3694. break;
  3695. }
  3696. ret = btrfs_run_delayed_items_nr(trans, root, nr);
  3697. btrfs_end_transaction(trans, root);
  3698. break;
  3699. case FLUSH_DELALLOC:
  3700. case FLUSH_DELALLOC_WAIT:
  3701. shrink_delalloc(root, num_bytes, orig_bytes,
  3702. state == FLUSH_DELALLOC_WAIT);
  3703. break;
  3704. case ALLOC_CHUNK:
  3705. trans = btrfs_join_transaction(root);
  3706. if (IS_ERR(trans)) {
  3707. ret = PTR_ERR(trans);
  3708. break;
  3709. }
  3710. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  3711. btrfs_get_alloc_profile(root, 0),
  3712. CHUNK_ALLOC_NO_FORCE);
  3713. btrfs_end_transaction(trans, root);
  3714. if (ret == -ENOSPC)
  3715. ret = 0;
  3716. break;
  3717. case COMMIT_TRANS:
  3718. ret = may_commit_transaction(root, space_info, orig_bytes, 0);
  3719. break;
  3720. default:
  3721. ret = -ENOSPC;
  3722. break;
  3723. }
  3724. return ret;
  3725. }
  3726. /**
  3727. * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
  3728. * @root - the root we're allocating for
  3729. * @block_rsv - the block_rsv we're allocating for
  3730. * @orig_bytes - the number of bytes we want
  3731. * @flush - whether or not we can flush to make our reservation
  3732. *
  3733. * This will reserve orgi_bytes number of bytes from the space info associated
  3734. * with the block_rsv. If there is not enough space it will make an attempt to
  3735. * flush out space to make room. It will do this by flushing delalloc if
  3736. * possible or committing the transaction. If flush is 0 then no attempts to
  3737. * regain reservations will be made and this will fail if there is not enough
  3738. * space already.
  3739. */
  3740. static int reserve_metadata_bytes(struct btrfs_root *root,
  3741. struct btrfs_block_rsv *block_rsv,
  3742. u64 orig_bytes,
  3743. enum btrfs_reserve_flush_enum flush)
  3744. {
  3745. struct btrfs_space_info *space_info = block_rsv->space_info;
  3746. u64 used;
  3747. u64 num_bytes = orig_bytes;
  3748. int flush_state = FLUSH_DELAYED_ITEMS_NR;
  3749. int ret = 0;
  3750. bool flushing = false;
  3751. again:
  3752. ret = 0;
  3753. spin_lock(&space_info->lock);
  3754. /*
  3755. * We only want to wait if somebody other than us is flushing and we
  3756. * are actually allowed to flush all things.
  3757. */
  3758. while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
  3759. space_info->flush) {
  3760. spin_unlock(&space_info->lock);
  3761. /*
  3762. * If we have a trans handle we can't wait because the flusher
  3763. * may have to commit the transaction, which would mean we would
  3764. * deadlock since we are waiting for the flusher to finish, but
  3765. * hold the current transaction open.
  3766. */
  3767. if (current->journal_info)
  3768. return -EAGAIN;
  3769. ret = wait_event_killable(space_info->wait, !space_info->flush);
  3770. /* Must have been killed, return */
  3771. if (ret)
  3772. return -EINTR;
  3773. spin_lock(&space_info->lock);
  3774. }
  3775. ret = -ENOSPC;
  3776. used = space_info->bytes_used + space_info->bytes_reserved +
  3777. space_info->bytes_pinned + space_info->bytes_readonly +
  3778. space_info->bytes_may_use;
  3779. /*
  3780. * The idea here is that we've not already over-reserved the block group
  3781. * then we can go ahead and save our reservation first and then start
  3782. * flushing if we need to. Otherwise if we've already overcommitted
  3783. * lets start flushing stuff first and then come back and try to make
  3784. * our reservation.
  3785. */
  3786. if (used <= space_info->total_bytes) {
  3787. if (used + orig_bytes <= space_info->total_bytes) {
  3788. space_info->bytes_may_use += orig_bytes;
  3789. trace_btrfs_space_reservation(root->fs_info,
  3790. "space_info", space_info->flags, orig_bytes, 1);
  3791. ret = 0;
  3792. } else {
  3793. /*
  3794. * Ok set num_bytes to orig_bytes since we aren't
  3795. * overocmmitted, this way we only try and reclaim what
  3796. * we need.
  3797. */
  3798. num_bytes = orig_bytes;
  3799. }
  3800. } else {
  3801. /*
  3802. * Ok we're over committed, set num_bytes to the overcommitted
  3803. * amount plus the amount of bytes that we need for this
  3804. * reservation.
  3805. */
  3806. num_bytes = used - space_info->total_bytes +
  3807. (orig_bytes * 2);
  3808. }
  3809. if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
  3810. space_info->bytes_may_use += orig_bytes;
  3811. trace_btrfs_space_reservation(root->fs_info, "space_info",
  3812. space_info->flags, orig_bytes,
  3813. 1);
  3814. ret = 0;
  3815. }
  3816. /*
  3817. * Couldn't make our reservation, save our place so while we're trying
  3818. * to reclaim space we can actually use it instead of somebody else
  3819. * stealing it from us.
  3820. *
  3821. * We make the other tasks wait for the flush only when we can flush
  3822. * all things.
  3823. */
  3824. if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
  3825. flushing = true;
  3826. space_info->flush = 1;
  3827. }
  3828. spin_unlock(&space_info->lock);
  3829. if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
  3830. goto out;
  3831. ret = flush_space(root, space_info, num_bytes, orig_bytes,
  3832. flush_state);
  3833. flush_state++;
  3834. /*
  3835. * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
  3836. * would happen. So skip delalloc flush.
  3837. */
  3838. if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
  3839. (flush_state == FLUSH_DELALLOC ||
  3840. flush_state == FLUSH_DELALLOC_WAIT))
  3841. flush_state = ALLOC_CHUNK;
  3842. if (!ret)
  3843. goto again;
  3844. else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
  3845. flush_state < COMMIT_TRANS)
  3846. goto again;
  3847. else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
  3848. flush_state <= COMMIT_TRANS)
  3849. goto again;
  3850. out:
  3851. if (ret == -ENOSPC &&
  3852. unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
  3853. struct btrfs_block_rsv *global_rsv =
  3854. &root->fs_info->global_block_rsv;
  3855. if (block_rsv != global_rsv &&
  3856. !block_rsv_use_bytes(global_rsv, orig_bytes))
  3857. ret = 0;
  3858. }
  3859. if (ret == -ENOSPC)
  3860. trace_btrfs_space_reservation(root->fs_info,
  3861. "space_info:enospc",
  3862. space_info->flags, orig_bytes, 1);
  3863. if (flushing) {
  3864. spin_lock(&space_info->lock);
  3865. space_info->flush = 0;
  3866. wake_up_all(&space_info->wait);
  3867. spin_unlock(&space_info->lock);
  3868. }
  3869. return ret;
  3870. }
  3871. static struct btrfs_block_rsv *get_block_rsv(
  3872. const struct btrfs_trans_handle *trans,
  3873. const struct btrfs_root *root)
  3874. {
  3875. struct btrfs_block_rsv *block_rsv = NULL;
  3876. if (root->ref_cows)
  3877. block_rsv = trans->block_rsv;
  3878. if (root == root->fs_info->csum_root && trans->adding_csums)
  3879. block_rsv = trans->block_rsv;
  3880. if (root == root->fs_info->uuid_root)
  3881. block_rsv = trans->block_rsv;
  3882. if (!block_rsv)
  3883. block_rsv = root->block_rsv;
  3884. if (!block_rsv)
  3885. block_rsv = &root->fs_info->empty_block_rsv;
  3886. return block_rsv;
  3887. }
  3888. static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
  3889. u64 num_bytes)
  3890. {
  3891. int ret = -ENOSPC;
  3892. spin_lock(&block_rsv->lock);
  3893. if (block_rsv->reserved >= num_bytes) {
  3894. block_rsv->reserved -= num_bytes;
  3895. if (block_rsv->reserved < block_rsv->size)
  3896. block_rsv->full = 0;
  3897. ret = 0;
  3898. }
  3899. spin_unlock(&block_rsv->lock);
  3900. return ret;
  3901. }
  3902. static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
  3903. u64 num_bytes, int update_size)
  3904. {
  3905. spin_lock(&block_rsv->lock);
  3906. block_rsv->reserved += num_bytes;
  3907. if (update_size)
  3908. block_rsv->size += num_bytes;
  3909. else if (block_rsv->reserved >= block_rsv->size)
  3910. block_rsv->full = 1;
  3911. spin_unlock(&block_rsv->lock);
  3912. }
  3913. int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
  3914. struct btrfs_block_rsv *dest, u64 num_bytes,
  3915. int min_factor)
  3916. {
  3917. struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  3918. u64 min_bytes;
  3919. if (global_rsv->space_info != dest->space_info)
  3920. return -ENOSPC;
  3921. spin_lock(&global_rsv->lock);
  3922. min_bytes = div_factor(global_rsv->size, min_factor);
  3923. if (global_rsv->reserved < min_bytes + num_bytes) {
  3924. spin_unlock(&global_rsv->lock);
  3925. return -ENOSPC;
  3926. }
  3927. global_rsv->reserved -= num_bytes;
  3928. if (global_rsv->reserved < global_rsv->size)
  3929. global_rsv->full = 0;
  3930. spin_unlock(&global_rsv->lock);
  3931. block_rsv_add_bytes(dest, num_bytes, 1);
  3932. return 0;
  3933. }
  3934. static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
  3935. struct btrfs_block_rsv *block_rsv,
  3936. struct btrfs_block_rsv *dest, u64 num_bytes)
  3937. {
  3938. struct btrfs_space_info *space_info = block_rsv->space_info;
  3939. spin_lock(&block_rsv->lock);
  3940. if (num_bytes == (u64)-1)
  3941. num_bytes = block_rsv->size;
  3942. block_rsv->size -= num_bytes;
  3943. if (block_rsv->reserved >= block_rsv->size) {
  3944. num_bytes = block_rsv->reserved - block_rsv->size;
  3945. block_rsv->reserved = block_rsv->size;
  3946. block_rsv->full = 1;
  3947. } else {
  3948. num_bytes = 0;
  3949. }
  3950. spin_unlock(&block_rsv->lock);
  3951. if (num_bytes > 0) {
  3952. if (dest) {
  3953. spin_lock(&dest->lock);
  3954. if (!dest->full) {
  3955. u64 bytes_to_add;
  3956. bytes_to_add = dest->size - dest->reserved;
  3957. bytes_to_add = min(num_bytes, bytes_to_add);
  3958. dest->reserved += bytes_to_add;
  3959. if (dest->reserved >= dest->size)
  3960. dest->full = 1;
  3961. num_bytes -= bytes_to_add;
  3962. }
  3963. spin_unlock(&dest->lock);
  3964. }
  3965. if (num_bytes) {
  3966. spin_lock(&space_info->lock);
  3967. space_info->bytes_may_use -= num_bytes;
  3968. trace_btrfs_space_reservation(fs_info, "space_info",
  3969. space_info->flags, num_bytes, 0);
  3970. spin_unlock(&space_info->lock);
  3971. }
  3972. }
  3973. }
  3974. static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
  3975. struct btrfs_block_rsv *dst, u64 num_bytes)
  3976. {
  3977. int ret;
  3978. ret = block_rsv_use_bytes(src, num_bytes);
  3979. if (ret)
  3980. return ret;
  3981. block_rsv_add_bytes(dst, num_bytes, 1);
  3982. return 0;
  3983. }
  3984. void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
  3985. {
  3986. memset(rsv, 0, sizeof(*rsv));
  3987. spin_lock_init(&rsv->lock);
  3988. rsv->type = type;
  3989. }
  3990. struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
  3991. unsigned short type)
  3992. {
  3993. struct btrfs_block_rsv *block_rsv;
  3994. struct btrfs_fs_info *fs_info = root->fs_info;
  3995. block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
  3996. if (!block_rsv)
  3997. return NULL;
  3998. btrfs_init_block_rsv(block_rsv, type);
  3999. block_rsv->space_info = __find_space_info(fs_info,
  4000. BTRFS_BLOCK_GROUP_METADATA);
  4001. return block_rsv;
  4002. }
  4003. void btrfs_free_block_rsv(struct btrfs_root *root,
  4004. struct btrfs_block_rsv *rsv)
  4005. {
  4006. if (!rsv)
  4007. return;
  4008. btrfs_block_rsv_release(root, rsv, (u64)-1);
  4009. kfree(rsv);
  4010. }
  4011. int btrfs_block_rsv_add(struct btrfs_root *root,
  4012. struct btrfs_block_rsv *block_rsv, u64 num_bytes,
  4013. enum btrfs_reserve_flush_enum flush)
  4014. {
  4015. int ret;
  4016. if (num_bytes == 0)
  4017. return 0;
  4018. ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
  4019. if (!ret) {
  4020. block_rsv_add_bytes(block_rsv, num_bytes, 1);
  4021. return 0;
  4022. }
  4023. return ret;
  4024. }
  4025. int btrfs_block_rsv_check(struct btrfs_root *root,
  4026. struct btrfs_block_rsv *block_rsv, int min_factor)
  4027. {
  4028. u64 num_bytes = 0;
  4029. int ret = -ENOSPC;
  4030. if (!block_rsv)
  4031. return 0;
  4032. spin_lock(&block_rsv->lock);
  4033. num_bytes = div_factor(block_rsv->size, min_factor);
  4034. if (block_rsv->reserved >= num_bytes)
  4035. ret = 0;
  4036. spin_unlock(&block_rsv->lock);
  4037. return ret;
  4038. }
  4039. int btrfs_block_rsv_refill(struct btrfs_root *root,
  4040. struct btrfs_block_rsv *block_rsv, u64 min_reserved,
  4041. enum btrfs_reserve_flush_enum flush)
  4042. {
  4043. u64 num_bytes = 0;
  4044. int ret = -ENOSPC;
  4045. if (!block_rsv)
  4046. return 0;
  4047. spin_lock(&block_rsv->lock);
  4048. num_bytes = min_reserved;
  4049. if (block_rsv->reserved >= num_bytes)
  4050. ret = 0;
  4051. else
  4052. num_bytes -= block_rsv->reserved;
  4053. spin_unlock(&block_rsv->lock);
  4054. if (!ret)
  4055. return 0;
  4056. ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
  4057. if (!ret) {
  4058. block_rsv_add_bytes(block_rsv, num_bytes, 0);
  4059. return 0;
  4060. }
  4061. return ret;
  4062. }
  4063. int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
  4064. struct btrfs_block_rsv *dst_rsv,
  4065. u64 num_bytes)
  4066. {
  4067. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  4068. }
  4069. void btrfs_block_rsv_release(struct btrfs_root *root,
  4070. struct btrfs_block_rsv *block_rsv,
  4071. u64 num_bytes)
  4072. {
  4073. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  4074. if (global_rsv == block_rsv ||
  4075. block_rsv->space_info != global_rsv->space_info)
  4076. global_rsv = NULL;
  4077. block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
  4078. num_bytes);
  4079. }
  4080. /*
  4081. * helper to calculate size of global block reservation.
  4082. * the desired value is sum of space used by extent tree,
  4083. * checksum tree and root tree
  4084. */
  4085. static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
  4086. {
  4087. struct btrfs_space_info *sinfo;
  4088. u64 num_bytes;
  4089. u64 meta_used;
  4090. u64 data_used;
  4091. int csum_size = btrfs_super_csum_size(fs_info->super_copy);
  4092. sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
  4093. spin_lock(&sinfo->lock);
  4094. data_used = sinfo->bytes_used;
  4095. spin_unlock(&sinfo->lock);
  4096. sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  4097. spin_lock(&sinfo->lock);
  4098. if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
  4099. data_used = 0;
  4100. meta_used = sinfo->bytes_used;
  4101. spin_unlock(&sinfo->lock);
  4102. num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
  4103. csum_size * 2;
  4104. num_bytes += div64_u64(data_used + meta_used, 50);
  4105. if (num_bytes * 3 > meta_used)
  4106. num_bytes = div64_u64(meta_used, 3);
  4107. return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
  4108. }
  4109. static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
  4110. {
  4111. struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
  4112. struct btrfs_space_info *sinfo = block_rsv->space_info;
  4113. u64 num_bytes;
  4114. num_bytes = calc_global_metadata_size(fs_info);
  4115. spin_lock(&sinfo->lock);
  4116. spin_lock(&block_rsv->lock);
  4117. block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
  4118. num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
  4119. sinfo->bytes_reserved + sinfo->bytes_readonly +
  4120. sinfo->bytes_may_use;
  4121. if (sinfo->total_bytes > num_bytes) {
  4122. num_bytes = sinfo->total_bytes - num_bytes;
  4123. block_rsv->reserved += num_bytes;
  4124. sinfo->bytes_may_use += num_bytes;
  4125. trace_btrfs_space_reservation(fs_info, "space_info",
  4126. sinfo->flags, num_bytes, 1);
  4127. }
  4128. if (block_rsv->reserved >= block_rsv->size) {
  4129. num_bytes = block_rsv->reserved - block_rsv->size;
  4130. sinfo->bytes_may_use -= num_bytes;
  4131. trace_btrfs_space_reservation(fs_info, "space_info",
  4132. sinfo->flags, num_bytes, 0);
  4133. block_rsv->reserved = block_rsv->size;
  4134. block_rsv->full = 1;
  4135. }
  4136. spin_unlock(&block_rsv->lock);
  4137. spin_unlock(&sinfo->lock);
  4138. }
  4139. static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
  4140. {
  4141. struct btrfs_space_info *space_info;
  4142. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
  4143. fs_info->chunk_block_rsv.space_info = space_info;
  4144. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  4145. fs_info->global_block_rsv.space_info = space_info;
  4146. fs_info->delalloc_block_rsv.space_info = space_info;
  4147. fs_info->trans_block_rsv.space_info = space_info;
  4148. fs_info->empty_block_rsv.space_info = space_info;
  4149. fs_info->delayed_block_rsv.space_info = space_info;
  4150. fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
  4151. fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
  4152. fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
  4153. fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
  4154. if (fs_info->quota_root)
  4155. fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
  4156. fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
  4157. update_global_block_rsv(fs_info);
  4158. }
  4159. static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
  4160. {
  4161. block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
  4162. (u64)-1);
  4163. WARN_ON(fs_info->delalloc_block_rsv.size > 0);
  4164. WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
  4165. WARN_ON(fs_info->trans_block_rsv.size > 0);
  4166. WARN_ON(fs_info->trans_block_rsv.reserved > 0);
  4167. WARN_ON(fs_info->chunk_block_rsv.size > 0);
  4168. WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
  4169. WARN_ON(fs_info->delayed_block_rsv.size > 0);
  4170. WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
  4171. }
  4172. void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
  4173. struct btrfs_root *root)
  4174. {
  4175. if (!trans->block_rsv)
  4176. return;
  4177. if (!trans->bytes_reserved)
  4178. return;
  4179. trace_btrfs_space_reservation(root->fs_info, "transaction",
  4180. trans->transid, trans->bytes_reserved, 0);
  4181. btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
  4182. trans->bytes_reserved = 0;
  4183. }
  4184. /* Can only return 0 or -ENOSPC */
  4185. int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
  4186. struct inode *inode)
  4187. {
  4188. struct btrfs_root *root = BTRFS_I(inode)->root;
  4189. struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
  4190. struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
  4191. /*
  4192. * We need to hold space in order to delete our orphan item once we've
  4193. * added it, so this takes the reservation so we can release it later
  4194. * when we are truly done with the orphan item.
  4195. */
  4196. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  4197. trace_btrfs_space_reservation(root->fs_info, "orphan",
  4198. btrfs_ino(inode), num_bytes, 1);
  4199. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  4200. }
  4201. void btrfs_orphan_release_metadata(struct inode *inode)
  4202. {
  4203. struct btrfs_root *root = BTRFS_I(inode)->root;
  4204. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  4205. trace_btrfs_space_reservation(root->fs_info, "orphan",
  4206. btrfs_ino(inode), num_bytes, 0);
  4207. btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
  4208. }
  4209. /*
  4210. * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
  4211. * root: the root of the parent directory
  4212. * rsv: block reservation
  4213. * items: the number of items that we need do reservation
  4214. * qgroup_reserved: used to return the reserved size in qgroup
  4215. *
  4216. * This function is used to reserve the space for snapshot/subvolume
  4217. * creation and deletion. Those operations are different with the
  4218. * common file/directory operations, they change two fs/file trees
  4219. * and root tree, the number of items that the qgroup reserves is
  4220. * different with the free space reservation. So we can not use
  4221. * the space reseravtion mechanism in start_transaction().
  4222. */
  4223. int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
  4224. struct btrfs_block_rsv *rsv,
  4225. int items,
  4226. u64 *qgroup_reserved,
  4227. bool use_global_rsv)
  4228. {
  4229. u64 num_bytes;
  4230. int ret;
  4231. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  4232. if (root->fs_info->quota_enabled) {
  4233. /* One for parent inode, two for dir entries */
  4234. num_bytes = 3 * root->leafsize;
  4235. ret = btrfs_qgroup_reserve(root, num_bytes);
  4236. if (ret)
  4237. return ret;
  4238. } else {
  4239. num_bytes = 0;
  4240. }
  4241. *qgroup_reserved = num_bytes;
  4242. num_bytes = btrfs_calc_trans_metadata_size(root, items);
  4243. rsv->space_info = __find_space_info(root->fs_info,
  4244. BTRFS_BLOCK_GROUP_METADATA);
  4245. ret = btrfs_block_rsv_add(root, rsv, num_bytes,
  4246. BTRFS_RESERVE_FLUSH_ALL);
  4247. if (ret == -ENOSPC && use_global_rsv)
  4248. ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
  4249. if (ret) {
  4250. if (*qgroup_reserved)
  4251. btrfs_qgroup_free(root, *qgroup_reserved);
  4252. }
  4253. return ret;
  4254. }
  4255. void btrfs_subvolume_release_metadata(struct btrfs_root *root,
  4256. struct btrfs_block_rsv *rsv,
  4257. u64 qgroup_reserved)
  4258. {
  4259. btrfs_block_rsv_release(root, rsv, (u64)-1);
  4260. if (qgroup_reserved)
  4261. btrfs_qgroup_free(root, qgroup_reserved);
  4262. }
  4263. /**
  4264. * drop_outstanding_extent - drop an outstanding extent
  4265. * @inode: the inode we're dropping the extent for
  4266. *
  4267. * This is called when we are freeing up an outstanding extent, either called
  4268. * after an error or after an extent is written. This will return the number of
  4269. * reserved extents that need to be freed. This must be called with
  4270. * BTRFS_I(inode)->lock held.
  4271. */
  4272. static unsigned drop_outstanding_extent(struct inode *inode)
  4273. {
  4274. unsigned drop_inode_space = 0;
  4275. unsigned dropped_extents = 0;
  4276. BUG_ON(!BTRFS_I(inode)->outstanding_extents);
  4277. BTRFS_I(inode)->outstanding_extents--;
  4278. if (BTRFS_I(inode)->outstanding_extents == 0 &&
  4279. test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  4280. &BTRFS_I(inode)->runtime_flags))
  4281. drop_inode_space = 1;
  4282. /*
  4283. * If we have more or the same amount of outsanding extents than we have
  4284. * reserved then we need to leave the reserved extents count alone.
  4285. */
  4286. if (BTRFS_I(inode)->outstanding_extents >=
  4287. BTRFS_I(inode)->reserved_extents)
  4288. return drop_inode_space;
  4289. dropped_extents = BTRFS_I(inode)->reserved_extents -
  4290. BTRFS_I(inode)->outstanding_extents;
  4291. BTRFS_I(inode)->reserved_extents -= dropped_extents;
  4292. return dropped_extents + drop_inode_space;
  4293. }
  4294. /**
  4295. * calc_csum_metadata_size - return the amount of metada space that must be
  4296. * reserved/free'd for the given bytes.
  4297. * @inode: the inode we're manipulating
  4298. * @num_bytes: the number of bytes in question
  4299. * @reserve: 1 if we are reserving space, 0 if we are freeing space
  4300. *
  4301. * This adjusts the number of csum_bytes in the inode and then returns the
  4302. * correct amount of metadata that must either be reserved or freed. We
  4303. * calculate how many checksums we can fit into one leaf and then divide the
  4304. * number of bytes that will need to be checksumed by this value to figure out
  4305. * how many checksums will be required. If we are adding bytes then the number
  4306. * may go up and we will return the number of additional bytes that must be
  4307. * reserved. If it is going down we will return the number of bytes that must
  4308. * be freed.
  4309. *
  4310. * This must be called with BTRFS_I(inode)->lock held.
  4311. */
  4312. static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
  4313. int reserve)
  4314. {
  4315. struct btrfs_root *root = BTRFS_I(inode)->root;
  4316. u64 csum_size;
  4317. int num_csums_per_leaf;
  4318. int num_csums;
  4319. int old_csums;
  4320. if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
  4321. BTRFS_I(inode)->csum_bytes == 0)
  4322. return 0;
  4323. old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
  4324. if (reserve)
  4325. BTRFS_I(inode)->csum_bytes += num_bytes;
  4326. else
  4327. BTRFS_I(inode)->csum_bytes -= num_bytes;
  4328. csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
  4329. num_csums_per_leaf = (int)div64_u64(csum_size,
  4330. sizeof(struct btrfs_csum_item) +
  4331. sizeof(struct btrfs_disk_key));
  4332. num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
  4333. num_csums = num_csums + num_csums_per_leaf - 1;
  4334. num_csums = num_csums / num_csums_per_leaf;
  4335. old_csums = old_csums + num_csums_per_leaf - 1;
  4336. old_csums = old_csums / num_csums_per_leaf;
  4337. /* No change, no need to reserve more */
  4338. if (old_csums == num_csums)
  4339. return 0;
  4340. if (reserve)
  4341. return btrfs_calc_trans_metadata_size(root,
  4342. num_csums - old_csums);
  4343. return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
  4344. }
  4345. int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
  4346. {
  4347. struct btrfs_root *root = BTRFS_I(inode)->root;
  4348. struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
  4349. u64 to_reserve = 0;
  4350. u64 csum_bytes;
  4351. unsigned nr_extents = 0;
  4352. int extra_reserve = 0;
  4353. enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
  4354. int ret = 0;
  4355. bool delalloc_lock = true;
  4356. u64 to_free = 0;
  4357. unsigned dropped;
  4358. /* If we are a free space inode we need to not flush since we will be in
  4359. * the middle of a transaction commit. We also don't need the delalloc
  4360. * mutex since we won't race with anybody. We need this mostly to make
  4361. * lockdep shut its filthy mouth.
  4362. */
  4363. if (btrfs_is_free_space_inode(inode)) {
  4364. flush = BTRFS_RESERVE_NO_FLUSH;
  4365. delalloc_lock = false;
  4366. }
  4367. if (flush != BTRFS_RESERVE_NO_FLUSH &&
  4368. btrfs_transaction_in_commit(root->fs_info))
  4369. schedule_timeout(1);
  4370. if (delalloc_lock)
  4371. mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
  4372. num_bytes = ALIGN(num_bytes, root->sectorsize);
  4373. spin_lock(&BTRFS_I(inode)->lock);
  4374. BTRFS_I(inode)->outstanding_extents++;
  4375. if (BTRFS_I(inode)->outstanding_extents >
  4376. BTRFS_I(inode)->reserved_extents)
  4377. nr_extents = BTRFS_I(inode)->outstanding_extents -
  4378. BTRFS_I(inode)->reserved_extents;
  4379. /*
  4380. * Add an item to reserve for updating the inode when we complete the
  4381. * delalloc io.
  4382. */
  4383. if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  4384. &BTRFS_I(inode)->runtime_flags)) {
  4385. nr_extents++;
  4386. extra_reserve = 1;
  4387. }
  4388. to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
  4389. to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
  4390. csum_bytes = BTRFS_I(inode)->csum_bytes;
  4391. spin_unlock(&BTRFS_I(inode)->lock);
  4392. if (root->fs_info->quota_enabled) {
  4393. ret = btrfs_qgroup_reserve(root, num_bytes +
  4394. nr_extents * root->leafsize);
  4395. if (ret)
  4396. goto out_fail;
  4397. }
  4398. ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
  4399. if (unlikely(ret)) {
  4400. if (root->fs_info->quota_enabled)
  4401. btrfs_qgroup_free(root, num_bytes +
  4402. nr_extents * root->leafsize);
  4403. goto out_fail;
  4404. }
  4405. spin_lock(&BTRFS_I(inode)->lock);
  4406. if (extra_reserve) {
  4407. set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  4408. &BTRFS_I(inode)->runtime_flags);
  4409. nr_extents--;
  4410. }
  4411. BTRFS_I(inode)->reserved_extents += nr_extents;
  4412. spin_unlock(&BTRFS_I(inode)->lock);
  4413. if (delalloc_lock)
  4414. mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
  4415. if (to_reserve)
  4416. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  4417. btrfs_ino(inode), to_reserve, 1);
  4418. block_rsv_add_bytes(block_rsv, to_reserve, 1);
  4419. return 0;
  4420. out_fail:
  4421. spin_lock(&BTRFS_I(inode)->lock);
  4422. dropped = drop_outstanding_extent(inode);
  4423. /*
  4424. * If the inodes csum_bytes is the same as the original
  4425. * csum_bytes then we know we haven't raced with any free()ers
  4426. * so we can just reduce our inodes csum bytes and carry on.
  4427. */
  4428. if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
  4429. calc_csum_metadata_size(inode, num_bytes, 0);
  4430. } else {
  4431. u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
  4432. u64 bytes;
  4433. /*
  4434. * This is tricky, but first we need to figure out how much we
  4435. * free'd from any free-ers that occured during this
  4436. * reservation, so we reset ->csum_bytes to the csum_bytes
  4437. * before we dropped our lock, and then call the free for the
  4438. * number of bytes that were freed while we were trying our
  4439. * reservation.
  4440. */
  4441. bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
  4442. BTRFS_I(inode)->csum_bytes = csum_bytes;
  4443. to_free = calc_csum_metadata_size(inode, bytes, 0);
  4444. /*
  4445. * Now we need to see how much we would have freed had we not
  4446. * been making this reservation and our ->csum_bytes were not
  4447. * artificially inflated.
  4448. */
  4449. BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
  4450. bytes = csum_bytes - orig_csum_bytes;
  4451. bytes = calc_csum_metadata_size(inode, bytes, 0);
  4452. /*
  4453. * Now reset ->csum_bytes to what it should be. If bytes is
  4454. * more than to_free then we would have free'd more space had we
  4455. * not had an artificially high ->csum_bytes, so we need to free
  4456. * the remainder. If bytes is the same or less then we don't
  4457. * need to do anything, the other free-ers did the correct
  4458. * thing.
  4459. */
  4460. BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
  4461. if (bytes > to_free)
  4462. to_free = bytes - to_free;
  4463. else
  4464. to_free = 0;
  4465. }
  4466. spin_unlock(&BTRFS_I(inode)->lock);
  4467. if (dropped)
  4468. to_free += btrfs_calc_trans_metadata_size(root, dropped);
  4469. if (to_free) {
  4470. btrfs_block_rsv_release(root, block_rsv, to_free);
  4471. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  4472. btrfs_ino(inode), to_free, 0);
  4473. }
  4474. if (delalloc_lock)
  4475. mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
  4476. return ret;
  4477. }
  4478. /**
  4479. * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
  4480. * @inode: the inode to release the reservation for
  4481. * @num_bytes: the number of bytes we're releasing
  4482. *
  4483. * This will release the metadata reservation for an inode. This can be called
  4484. * once we complete IO for a given set of bytes to release their metadata
  4485. * reservations.
  4486. */
  4487. void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
  4488. {
  4489. struct btrfs_root *root = BTRFS_I(inode)->root;
  4490. u64 to_free = 0;
  4491. unsigned dropped;
  4492. num_bytes = ALIGN(num_bytes, root->sectorsize);
  4493. spin_lock(&BTRFS_I(inode)->lock);
  4494. dropped = drop_outstanding_extent(inode);
  4495. if (num_bytes)
  4496. to_free = calc_csum_metadata_size(inode, num_bytes, 0);
  4497. spin_unlock(&BTRFS_I(inode)->lock);
  4498. if (dropped > 0)
  4499. to_free += btrfs_calc_trans_metadata_size(root, dropped);
  4500. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  4501. btrfs_ino(inode), to_free, 0);
  4502. if (root->fs_info->quota_enabled) {
  4503. btrfs_qgroup_free(root, num_bytes +
  4504. dropped * root->leafsize);
  4505. }
  4506. btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
  4507. to_free);
  4508. }
  4509. /**
  4510. * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
  4511. * @inode: inode we're writing to
  4512. * @num_bytes: the number of bytes we want to allocate
  4513. *
  4514. * This will do the following things
  4515. *
  4516. * o reserve space in the data space info for num_bytes
  4517. * o reserve space in the metadata space info based on number of outstanding
  4518. * extents and how much csums will be needed
  4519. * o add to the inodes ->delalloc_bytes
  4520. * o add it to the fs_info's delalloc inodes list.
  4521. *
  4522. * This will return 0 for success and -ENOSPC if there is no space left.
  4523. */
  4524. int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
  4525. {
  4526. int ret;
  4527. ret = btrfs_check_data_free_space(inode, num_bytes);
  4528. if (ret)
  4529. return ret;
  4530. ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
  4531. if (ret) {
  4532. btrfs_free_reserved_data_space(inode, num_bytes);
  4533. return ret;
  4534. }
  4535. return 0;
  4536. }
  4537. /**
  4538. * btrfs_delalloc_release_space - release data and metadata space for delalloc
  4539. * @inode: inode we're releasing space for
  4540. * @num_bytes: the number of bytes we want to free up
  4541. *
  4542. * This must be matched with a call to btrfs_delalloc_reserve_space. This is
  4543. * called in the case that we don't need the metadata AND data reservations
  4544. * anymore. So if there is an error or we insert an inline extent.
  4545. *
  4546. * This function will release the metadata space that was not used and will
  4547. * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
  4548. * list if there are no delalloc bytes left.
  4549. */
  4550. void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
  4551. {
  4552. btrfs_delalloc_release_metadata(inode, num_bytes);
  4553. btrfs_free_reserved_data_space(inode, num_bytes);
  4554. }
  4555. static int update_block_group(struct btrfs_root *root,
  4556. u64 bytenr, u64 num_bytes, int alloc)
  4557. {
  4558. struct btrfs_block_group_cache *cache = NULL;
  4559. struct btrfs_fs_info *info = root->fs_info;
  4560. u64 total = num_bytes;
  4561. u64 old_val;
  4562. u64 byte_in_group;
  4563. int factor;
  4564. /* block accounting for super block */
  4565. spin_lock(&info->delalloc_root_lock);
  4566. old_val = btrfs_super_bytes_used(info->super_copy);
  4567. if (alloc)
  4568. old_val += num_bytes;
  4569. else
  4570. old_val -= num_bytes;
  4571. btrfs_set_super_bytes_used(info->super_copy, old_val);
  4572. spin_unlock(&info->delalloc_root_lock);
  4573. while (total) {
  4574. cache = btrfs_lookup_block_group(info, bytenr);
  4575. if (!cache)
  4576. return -ENOENT;
  4577. if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
  4578. BTRFS_BLOCK_GROUP_RAID1 |
  4579. BTRFS_BLOCK_GROUP_RAID10))
  4580. factor = 2;
  4581. else
  4582. factor = 1;
  4583. /*
  4584. * If this block group has free space cache written out, we
  4585. * need to make sure to load it if we are removing space. This
  4586. * is because we need the unpinning stage to actually add the
  4587. * space back to the block group, otherwise we will leak space.
  4588. */
  4589. if (!alloc && cache->cached == BTRFS_CACHE_NO)
  4590. cache_block_group(cache, 1);
  4591. byte_in_group = bytenr - cache->key.objectid;
  4592. WARN_ON(byte_in_group > cache->key.offset);
  4593. spin_lock(&cache->space_info->lock);
  4594. spin_lock(&cache->lock);
  4595. if (btrfs_test_opt(root, SPACE_CACHE) &&
  4596. cache->disk_cache_state < BTRFS_DC_CLEAR)
  4597. cache->disk_cache_state = BTRFS_DC_CLEAR;
  4598. cache->dirty = 1;
  4599. old_val = btrfs_block_group_used(&cache->item);
  4600. num_bytes = min(total, cache->key.offset - byte_in_group);
  4601. if (alloc) {
  4602. old_val += num_bytes;
  4603. btrfs_set_block_group_used(&cache->item, old_val);
  4604. cache->reserved -= num_bytes;
  4605. cache->space_info->bytes_reserved -= num_bytes;
  4606. cache->space_info->bytes_used += num_bytes;
  4607. cache->space_info->disk_used += num_bytes * factor;
  4608. spin_unlock(&cache->lock);
  4609. spin_unlock(&cache->space_info->lock);
  4610. } else {
  4611. old_val -= num_bytes;
  4612. btrfs_set_block_group_used(&cache->item, old_val);
  4613. cache->pinned += num_bytes;
  4614. cache->space_info->bytes_pinned += num_bytes;
  4615. cache->space_info->bytes_used -= num_bytes;
  4616. cache->space_info->disk_used -= num_bytes * factor;
  4617. spin_unlock(&cache->lock);
  4618. spin_unlock(&cache->space_info->lock);
  4619. set_extent_dirty(info->pinned_extents,
  4620. bytenr, bytenr + num_bytes - 1,
  4621. GFP_NOFS | __GFP_NOFAIL);
  4622. }
  4623. btrfs_put_block_group(cache);
  4624. total -= num_bytes;
  4625. bytenr += num_bytes;
  4626. }
  4627. return 0;
  4628. }
  4629. static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
  4630. {
  4631. struct btrfs_block_group_cache *cache;
  4632. u64 bytenr;
  4633. spin_lock(&root->fs_info->block_group_cache_lock);
  4634. bytenr = root->fs_info->first_logical_byte;
  4635. spin_unlock(&root->fs_info->block_group_cache_lock);
  4636. if (bytenr < (u64)-1)
  4637. return bytenr;
  4638. cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
  4639. if (!cache)
  4640. return 0;
  4641. bytenr = cache->key.objectid;
  4642. btrfs_put_block_group(cache);
  4643. return bytenr;
  4644. }
  4645. static int pin_down_extent(struct btrfs_root *root,
  4646. struct btrfs_block_group_cache *cache,
  4647. u64 bytenr, u64 num_bytes, int reserved)
  4648. {
  4649. spin_lock(&cache->space_info->lock);
  4650. spin_lock(&cache->lock);
  4651. cache->pinned += num_bytes;
  4652. cache->space_info->bytes_pinned += num_bytes;
  4653. if (reserved) {
  4654. cache->reserved -= num_bytes;
  4655. cache->space_info->bytes_reserved -= num_bytes;
  4656. }
  4657. spin_unlock(&cache->lock);
  4658. spin_unlock(&cache->space_info->lock);
  4659. set_extent_dirty(root->fs_info->pinned_extents, bytenr,
  4660. bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
  4661. if (reserved)
  4662. trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
  4663. return 0;
  4664. }
  4665. /*
  4666. * this function must be called within transaction
  4667. */
  4668. int btrfs_pin_extent(struct btrfs_root *root,
  4669. u64 bytenr, u64 num_bytes, int reserved)
  4670. {
  4671. struct btrfs_block_group_cache *cache;
  4672. cache = btrfs_lookup_block_group(root->fs_info, bytenr);
  4673. BUG_ON(!cache); /* Logic error */
  4674. pin_down_extent(root, cache, bytenr, num_bytes, reserved);
  4675. btrfs_put_block_group(cache);
  4676. return 0;
  4677. }
  4678. /*
  4679. * this function must be called within transaction
  4680. */
  4681. int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
  4682. u64 bytenr, u64 num_bytes)
  4683. {
  4684. struct btrfs_block_group_cache *cache;
  4685. int ret;
  4686. cache = btrfs_lookup_block_group(root->fs_info, bytenr);
  4687. if (!cache)
  4688. return -EINVAL;
  4689. /*
  4690. * pull in the free space cache (if any) so that our pin
  4691. * removes the free space from the cache. We have load_only set
  4692. * to one because the slow code to read in the free extents does check
  4693. * the pinned extents.
  4694. */
  4695. cache_block_group(cache, 1);
  4696. pin_down_extent(root, cache, bytenr, num_bytes, 0);
  4697. /* remove us from the free space cache (if we're there at all) */
  4698. ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
  4699. btrfs_put_block_group(cache);
  4700. return ret;
  4701. }
  4702. static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
  4703. {
  4704. int ret;
  4705. struct btrfs_block_group_cache *block_group;
  4706. struct btrfs_caching_control *caching_ctl;
  4707. block_group = btrfs_lookup_block_group(root->fs_info, start);
  4708. if (!block_group)
  4709. return -EINVAL;
  4710. cache_block_group(block_group, 0);
  4711. caching_ctl = get_caching_control(block_group);
  4712. if (!caching_ctl) {
  4713. /* Logic error */
  4714. BUG_ON(!block_group_cache_done(block_group));
  4715. ret = btrfs_remove_free_space(block_group, start, num_bytes);
  4716. } else {
  4717. mutex_lock(&caching_ctl->mutex);
  4718. if (start >= caching_ctl->progress) {
  4719. ret = add_excluded_extent(root, start, num_bytes);
  4720. } else if (start + num_bytes <= caching_ctl->progress) {
  4721. ret = btrfs_remove_free_space(block_group,
  4722. start, num_bytes);
  4723. } else {
  4724. num_bytes = caching_ctl->progress - start;
  4725. ret = btrfs_remove_free_space(block_group,
  4726. start, num_bytes);
  4727. if (ret)
  4728. goto out_lock;
  4729. num_bytes = (start + num_bytes) -
  4730. caching_ctl->progress;
  4731. start = caching_ctl->progress;
  4732. ret = add_excluded_extent(root, start, num_bytes);
  4733. }
  4734. out_lock:
  4735. mutex_unlock(&caching_ctl->mutex);
  4736. put_caching_control(caching_ctl);
  4737. }
  4738. btrfs_put_block_group(block_group);
  4739. return ret;
  4740. }
  4741. int btrfs_exclude_logged_extents(struct btrfs_root *log,
  4742. struct extent_buffer *eb)
  4743. {
  4744. struct btrfs_file_extent_item *item;
  4745. struct btrfs_key key;
  4746. int found_type;
  4747. int i;
  4748. if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
  4749. return 0;
  4750. for (i = 0; i < btrfs_header_nritems(eb); i++) {
  4751. btrfs_item_key_to_cpu(eb, &key, i);
  4752. if (key.type != BTRFS_EXTENT_DATA_KEY)
  4753. continue;
  4754. item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
  4755. found_type = btrfs_file_extent_type(eb, item);
  4756. if (found_type == BTRFS_FILE_EXTENT_INLINE)
  4757. continue;
  4758. if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
  4759. continue;
  4760. key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
  4761. key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
  4762. __exclude_logged_extent(log, key.objectid, key.offset);
  4763. }
  4764. return 0;
  4765. }
  4766. /**
  4767. * btrfs_update_reserved_bytes - update the block_group and space info counters
  4768. * @cache: The cache we are manipulating
  4769. * @num_bytes: The number of bytes in question
  4770. * @reserve: One of the reservation enums
  4771. *
  4772. * This is called by the allocator when it reserves space, or by somebody who is
  4773. * freeing space that was never actually used on disk. For example if you
  4774. * reserve some space for a new leaf in transaction A and before transaction A
  4775. * commits you free that leaf, you call this with reserve set to 0 in order to
  4776. * clear the reservation.
  4777. *
  4778. * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
  4779. * ENOSPC accounting. For data we handle the reservation through clearing the
  4780. * delalloc bits in the io_tree. We have to do this since we could end up
  4781. * allocating less disk space for the amount of data we have reserved in the
  4782. * case of compression.
  4783. *
  4784. * If this is a reservation and the block group has become read only we cannot
  4785. * make the reservation and return -EAGAIN, otherwise this function always
  4786. * succeeds.
  4787. */
  4788. static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
  4789. u64 num_bytes, int reserve)
  4790. {
  4791. struct btrfs_space_info *space_info = cache->space_info;
  4792. int ret = 0;
  4793. spin_lock(&space_info->lock);
  4794. spin_lock(&cache->lock);
  4795. if (reserve != RESERVE_FREE) {
  4796. if (cache->ro) {
  4797. ret = -EAGAIN;
  4798. } else {
  4799. cache->reserved += num_bytes;
  4800. space_info->bytes_reserved += num_bytes;
  4801. if (reserve == RESERVE_ALLOC) {
  4802. trace_btrfs_space_reservation(cache->fs_info,
  4803. "space_info", space_info->flags,
  4804. num_bytes, 0);
  4805. space_info->bytes_may_use -= num_bytes;
  4806. }
  4807. }
  4808. } else {
  4809. if (cache->ro)
  4810. space_info->bytes_readonly += num_bytes;
  4811. cache->reserved -= num_bytes;
  4812. space_info->bytes_reserved -= num_bytes;
  4813. }
  4814. spin_unlock(&cache->lock);
  4815. spin_unlock(&space_info->lock);
  4816. return ret;
  4817. }
  4818. void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
  4819. struct btrfs_root *root)
  4820. {
  4821. struct btrfs_fs_info *fs_info = root->fs_info;
  4822. struct btrfs_caching_control *next;
  4823. struct btrfs_caching_control *caching_ctl;
  4824. struct btrfs_block_group_cache *cache;
  4825. struct btrfs_space_info *space_info;
  4826. down_write(&fs_info->extent_commit_sem);
  4827. list_for_each_entry_safe(caching_ctl, next,
  4828. &fs_info->caching_block_groups, list) {
  4829. cache = caching_ctl->block_group;
  4830. if (block_group_cache_done(cache)) {
  4831. cache->last_byte_to_unpin = (u64)-1;
  4832. list_del_init(&caching_ctl->list);
  4833. put_caching_control(caching_ctl);
  4834. } else {
  4835. cache->last_byte_to_unpin = caching_ctl->progress;
  4836. }
  4837. }
  4838. if (fs_info->pinned_extents == &fs_info->freed_extents[0])
  4839. fs_info->pinned_extents = &fs_info->freed_extents[1];
  4840. else
  4841. fs_info->pinned_extents = &fs_info->freed_extents[0];
  4842. up_write(&fs_info->extent_commit_sem);
  4843. list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
  4844. percpu_counter_set(&space_info->total_bytes_pinned, 0);
  4845. update_global_block_rsv(fs_info);
  4846. }
  4847. static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
  4848. {
  4849. struct btrfs_fs_info *fs_info = root->fs_info;
  4850. struct btrfs_block_group_cache *cache = NULL;
  4851. struct btrfs_space_info *space_info;
  4852. struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  4853. u64 len;
  4854. bool readonly;
  4855. while (start <= end) {
  4856. readonly = false;
  4857. if (!cache ||
  4858. start >= cache->key.objectid + cache->key.offset) {
  4859. if (cache)
  4860. btrfs_put_block_group(cache);
  4861. cache = btrfs_lookup_block_group(fs_info, start);
  4862. BUG_ON(!cache); /* Logic error */
  4863. }
  4864. len = cache->key.objectid + cache->key.offset - start;
  4865. len = min(len, end + 1 - start);
  4866. if (start < cache->last_byte_to_unpin) {
  4867. len = min(len, cache->last_byte_to_unpin - start);
  4868. btrfs_add_free_space(cache, start, len);
  4869. }
  4870. start += len;
  4871. space_info = cache->space_info;
  4872. spin_lock(&space_info->lock);
  4873. spin_lock(&cache->lock);
  4874. cache->pinned -= len;
  4875. space_info->bytes_pinned -= len;
  4876. if (cache->ro) {
  4877. space_info->bytes_readonly += len;
  4878. readonly = true;
  4879. }
  4880. spin_unlock(&cache->lock);
  4881. if (!readonly && global_rsv->space_info == space_info) {
  4882. spin_lock(&global_rsv->lock);
  4883. if (!global_rsv->full) {
  4884. len = min(len, global_rsv->size -
  4885. global_rsv->reserved);
  4886. global_rsv->reserved += len;
  4887. space_info->bytes_may_use += len;
  4888. if (global_rsv->reserved >= global_rsv->size)
  4889. global_rsv->full = 1;
  4890. }
  4891. spin_unlock(&global_rsv->lock);
  4892. }
  4893. spin_unlock(&space_info->lock);
  4894. }
  4895. if (cache)
  4896. btrfs_put_block_group(cache);
  4897. return 0;
  4898. }
  4899. int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
  4900. struct btrfs_root *root)
  4901. {
  4902. struct btrfs_fs_info *fs_info = root->fs_info;
  4903. struct extent_io_tree *unpin;
  4904. u64 start;
  4905. u64 end;
  4906. int ret;
  4907. if (trans->aborted)
  4908. return 0;
  4909. if (fs_info->pinned_extents == &fs_info->freed_extents[0])
  4910. unpin = &fs_info->freed_extents[1];
  4911. else
  4912. unpin = &fs_info->freed_extents[0];
  4913. while (1) {
  4914. ret = find_first_extent_bit(unpin, 0, &start, &end,
  4915. EXTENT_DIRTY, NULL);
  4916. if (ret)
  4917. break;
  4918. if (btrfs_test_opt(root, DISCARD))
  4919. ret = btrfs_discard_extent(root, start,
  4920. end + 1 - start, NULL);
  4921. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  4922. unpin_extent_range(root, start, end);
  4923. cond_resched();
  4924. }
  4925. return 0;
  4926. }
  4927. static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
  4928. u64 owner, u64 root_objectid)
  4929. {
  4930. struct btrfs_space_info *space_info;
  4931. u64 flags;
  4932. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  4933. if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
  4934. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  4935. else
  4936. flags = BTRFS_BLOCK_GROUP_METADATA;
  4937. } else {
  4938. flags = BTRFS_BLOCK_GROUP_DATA;
  4939. }
  4940. space_info = __find_space_info(fs_info, flags);
  4941. BUG_ON(!space_info); /* Logic bug */
  4942. percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
  4943. }
  4944. static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  4945. struct btrfs_root *root,
  4946. u64 bytenr, u64 num_bytes, u64 parent,
  4947. u64 root_objectid, u64 owner_objectid,
  4948. u64 owner_offset, int refs_to_drop,
  4949. struct btrfs_delayed_extent_op *extent_op)
  4950. {
  4951. struct btrfs_key key;
  4952. struct btrfs_path *path;
  4953. struct btrfs_fs_info *info = root->fs_info;
  4954. struct btrfs_root *extent_root = info->extent_root;
  4955. struct extent_buffer *leaf;
  4956. struct btrfs_extent_item *ei;
  4957. struct btrfs_extent_inline_ref *iref;
  4958. int ret;
  4959. int is_data;
  4960. int extent_slot = 0;
  4961. int found_extent = 0;
  4962. int num_to_del = 1;
  4963. u32 item_size;
  4964. u64 refs;
  4965. bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
  4966. SKINNY_METADATA);
  4967. path = btrfs_alloc_path();
  4968. if (!path)
  4969. return -ENOMEM;
  4970. path->reada = 1;
  4971. path->leave_spinning = 1;
  4972. is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
  4973. BUG_ON(!is_data && refs_to_drop != 1);
  4974. if (is_data)
  4975. skinny_metadata = 0;
  4976. ret = lookup_extent_backref(trans, extent_root, path, &iref,
  4977. bytenr, num_bytes, parent,
  4978. root_objectid, owner_objectid,
  4979. owner_offset);
  4980. if (ret == 0) {
  4981. extent_slot = path->slots[0];
  4982. while (extent_slot >= 0) {
  4983. btrfs_item_key_to_cpu(path->nodes[0], &key,
  4984. extent_slot);
  4985. if (key.objectid != bytenr)
  4986. break;
  4987. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  4988. key.offset == num_bytes) {
  4989. found_extent = 1;
  4990. break;
  4991. }
  4992. if (key.type == BTRFS_METADATA_ITEM_KEY &&
  4993. key.offset == owner_objectid) {
  4994. found_extent = 1;
  4995. break;
  4996. }
  4997. if (path->slots[0] - extent_slot > 5)
  4998. break;
  4999. extent_slot--;
  5000. }
  5001. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  5002. item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
  5003. if (found_extent && item_size < sizeof(*ei))
  5004. found_extent = 0;
  5005. #endif
  5006. if (!found_extent) {
  5007. BUG_ON(iref);
  5008. ret = remove_extent_backref(trans, extent_root, path,
  5009. NULL, refs_to_drop,
  5010. is_data);
  5011. if (ret) {
  5012. btrfs_abort_transaction(trans, extent_root, ret);
  5013. goto out;
  5014. }
  5015. btrfs_release_path(path);
  5016. path->leave_spinning = 1;
  5017. key.objectid = bytenr;
  5018. key.type = BTRFS_EXTENT_ITEM_KEY;
  5019. key.offset = num_bytes;
  5020. if (!is_data && skinny_metadata) {
  5021. key.type = BTRFS_METADATA_ITEM_KEY;
  5022. key.offset = owner_objectid;
  5023. }
  5024. ret = btrfs_search_slot(trans, extent_root,
  5025. &key, path, -1, 1);
  5026. if (ret > 0 && skinny_metadata && path->slots[0]) {
  5027. /*
  5028. * Couldn't find our skinny metadata item,
  5029. * see if we have ye olde extent item.
  5030. */
  5031. path->slots[0]--;
  5032. btrfs_item_key_to_cpu(path->nodes[0], &key,
  5033. path->slots[0]);
  5034. if (key.objectid == bytenr &&
  5035. key.type == BTRFS_EXTENT_ITEM_KEY &&
  5036. key.offset == num_bytes)
  5037. ret = 0;
  5038. }
  5039. if (ret > 0 && skinny_metadata) {
  5040. skinny_metadata = false;
  5041. key.type = BTRFS_EXTENT_ITEM_KEY;
  5042. key.offset = num_bytes;
  5043. btrfs_release_path(path);
  5044. ret = btrfs_search_slot(trans, extent_root,
  5045. &key, path, -1, 1);
  5046. }
  5047. if (ret) {
  5048. btrfs_err(info, "umm, got %d back from search, was looking for %llu",
  5049. ret, bytenr);
  5050. if (ret > 0)
  5051. btrfs_print_leaf(extent_root,
  5052. path->nodes[0]);
  5053. }
  5054. if (ret < 0) {
  5055. btrfs_abort_transaction(trans, extent_root, ret);
  5056. goto out;
  5057. }
  5058. extent_slot = path->slots[0];
  5059. }
  5060. } else if (WARN_ON(ret == -ENOENT)) {
  5061. btrfs_print_leaf(extent_root, path->nodes[0]);
  5062. btrfs_err(info,
  5063. "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
  5064. bytenr, parent, root_objectid, owner_objectid,
  5065. owner_offset);
  5066. } else {
  5067. btrfs_abort_transaction(trans, extent_root, ret);
  5068. goto out;
  5069. }
  5070. leaf = path->nodes[0];
  5071. item_size = btrfs_item_size_nr(leaf, extent_slot);
  5072. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  5073. if (item_size < sizeof(*ei)) {
  5074. BUG_ON(found_extent || extent_slot != path->slots[0]);
  5075. ret = convert_extent_item_v0(trans, extent_root, path,
  5076. owner_objectid, 0);
  5077. if (ret < 0) {
  5078. btrfs_abort_transaction(trans, extent_root, ret);
  5079. goto out;
  5080. }
  5081. btrfs_release_path(path);
  5082. path->leave_spinning = 1;
  5083. key.objectid = bytenr;
  5084. key.type = BTRFS_EXTENT_ITEM_KEY;
  5085. key.offset = num_bytes;
  5086. ret = btrfs_search_slot(trans, extent_root, &key, path,
  5087. -1, 1);
  5088. if (ret) {
  5089. btrfs_err(info, "umm, got %d back from search, was looking for %llu",
  5090. ret, bytenr);
  5091. btrfs_print_leaf(extent_root, path->nodes[0]);
  5092. }
  5093. if (ret < 0) {
  5094. btrfs_abort_transaction(trans, extent_root, ret);
  5095. goto out;
  5096. }
  5097. extent_slot = path->slots[0];
  5098. leaf = path->nodes[0];
  5099. item_size = btrfs_item_size_nr(leaf, extent_slot);
  5100. }
  5101. #endif
  5102. BUG_ON(item_size < sizeof(*ei));
  5103. ei = btrfs_item_ptr(leaf, extent_slot,
  5104. struct btrfs_extent_item);
  5105. if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
  5106. key.type == BTRFS_EXTENT_ITEM_KEY) {
  5107. struct btrfs_tree_block_info *bi;
  5108. BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
  5109. bi = (struct btrfs_tree_block_info *)(ei + 1);
  5110. WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
  5111. }
  5112. refs = btrfs_extent_refs(leaf, ei);
  5113. if (refs < refs_to_drop) {
  5114. btrfs_err(info, "trying to drop %d refs but we only have %Lu "
  5115. "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
  5116. ret = -EINVAL;
  5117. btrfs_abort_transaction(trans, extent_root, ret);
  5118. goto out;
  5119. }
  5120. refs -= refs_to_drop;
  5121. if (refs > 0) {
  5122. if (extent_op)
  5123. __run_delayed_extent_op(extent_op, leaf, ei);
  5124. /*
  5125. * In the case of inline back ref, reference count will
  5126. * be updated by remove_extent_backref
  5127. */
  5128. if (iref) {
  5129. BUG_ON(!found_extent);
  5130. } else {
  5131. btrfs_set_extent_refs(leaf, ei, refs);
  5132. btrfs_mark_buffer_dirty(leaf);
  5133. }
  5134. if (found_extent) {
  5135. ret = remove_extent_backref(trans, extent_root, path,
  5136. iref, refs_to_drop,
  5137. is_data);
  5138. if (ret) {
  5139. btrfs_abort_transaction(trans, extent_root, ret);
  5140. goto out;
  5141. }
  5142. }
  5143. add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
  5144. root_objectid);
  5145. } else {
  5146. if (found_extent) {
  5147. BUG_ON(is_data && refs_to_drop !=
  5148. extent_data_ref_count(root, path, iref));
  5149. if (iref) {
  5150. BUG_ON(path->slots[0] != extent_slot);
  5151. } else {
  5152. BUG_ON(path->slots[0] != extent_slot + 1);
  5153. path->slots[0] = extent_slot;
  5154. num_to_del = 2;
  5155. }
  5156. }
  5157. ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
  5158. num_to_del);
  5159. if (ret) {
  5160. btrfs_abort_transaction(trans, extent_root, ret);
  5161. goto out;
  5162. }
  5163. btrfs_release_path(path);
  5164. if (is_data) {
  5165. ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
  5166. if (ret) {
  5167. btrfs_abort_transaction(trans, extent_root, ret);
  5168. goto out;
  5169. }
  5170. }
  5171. ret = update_block_group(root, bytenr, num_bytes, 0);
  5172. if (ret) {
  5173. btrfs_abort_transaction(trans, extent_root, ret);
  5174. goto out;
  5175. }
  5176. }
  5177. out:
  5178. btrfs_free_path(path);
  5179. return ret;
  5180. }
  5181. /*
  5182. * when we free an block, it is possible (and likely) that we free the last
  5183. * delayed ref for that extent as well. This searches the delayed ref tree for
  5184. * a given extent, and if there are no other delayed refs to be processed, it
  5185. * removes it from the tree.
  5186. */
  5187. static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
  5188. struct btrfs_root *root, u64 bytenr)
  5189. {
  5190. struct btrfs_delayed_ref_head *head;
  5191. struct btrfs_delayed_ref_root *delayed_refs;
  5192. int ret = 0;
  5193. delayed_refs = &trans->transaction->delayed_refs;
  5194. spin_lock(&delayed_refs->lock);
  5195. head = btrfs_find_delayed_ref_head(trans, bytenr);
  5196. if (!head)
  5197. goto out_delayed_unlock;
  5198. spin_lock(&head->lock);
  5199. if (rb_first(&head->ref_root))
  5200. goto out;
  5201. if (head->extent_op) {
  5202. if (!head->must_insert_reserved)
  5203. goto out;
  5204. btrfs_free_delayed_extent_op(head->extent_op);
  5205. head->extent_op = NULL;
  5206. }
  5207. /*
  5208. * waiting for the lock here would deadlock. If someone else has it
  5209. * locked they are already in the process of dropping it anyway
  5210. */
  5211. if (!mutex_trylock(&head->mutex))
  5212. goto out;
  5213. /*
  5214. * at this point we have a head with no other entries. Go
  5215. * ahead and process it.
  5216. */
  5217. head->node.in_tree = 0;
  5218. rb_erase(&head->href_node, &delayed_refs->href_root);
  5219. atomic_dec(&delayed_refs->num_entries);
  5220. /*
  5221. * we don't take a ref on the node because we're removing it from the
  5222. * tree, so we just steal the ref the tree was holding.
  5223. */
  5224. delayed_refs->num_heads--;
  5225. if (head->processing == 0)
  5226. delayed_refs->num_heads_ready--;
  5227. head->processing = 0;
  5228. spin_unlock(&head->lock);
  5229. spin_unlock(&delayed_refs->lock);
  5230. BUG_ON(head->extent_op);
  5231. if (head->must_insert_reserved)
  5232. ret = 1;
  5233. mutex_unlock(&head->mutex);
  5234. btrfs_put_delayed_ref(&head->node);
  5235. return ret;
  5236. out:
  5237. spin_unlock(&head->lock);
  5238. out_delayed_unlock:
  5239. spin_unlock(&delayed_refs->lock);
  5240. return 0;
  5241. }
  5242. void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
  5243. struct btrfs_root *root,
  5244. struct extent_buffer *buf,
  5245. u64 parent, int last_ref)
  5246. {
  5247. struct btrfs_block_group_cache *cache = NULL;
  5248. int pin = 1;
  5249. int ret;
  5250. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  5251. ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
  5252. buf->start, buf->len,
  5253. parent, root->root_key.objectid,
  5254. btrfs_header_level(buf),
  5255. BTRFS_DROP_DELAYED_REF, NULL, 0);
  5256. BUG_ON(ret); /* -ENOMEM */
  5257. }
  5258. if (!last_ref)
  5259. return;
  5260. cache = btrfs_lookup_block_group(root->fs_info, buf->start);
  5261. if (btrfs_header_generation(buf) == trans->transid) {
  5262. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  5263. ret = check_ref_cleanup(trans, root, buf->start);
  5264. if (!ret)
  5265. goto out;
  5266. }
  5267. if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  5268. pin_down_extent(root, cache, buf->start, buf->len, 1);
  5269. goto out;
  5270. }
  5271. WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
  5272. btrfs_add_free_space(cache, buf->start, buf->len);
  5273. btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
  5274. trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
  5275. pin = 0;
  5276. }
  5277. out:
  5278. if (pin)
  5279. add_pinned_bytes(root->fs_info, buf->len,
  5280. btrfs_header_level(buf),
  5281. root->root_key.objectid);
  5282. /*
  5283. * Deleting the buffer, clear the corrupt flag since it doesn't matter
  5284. * anymore.
  5285. */
  5286. clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
  5287. btrfs_put_block_group(cache);
  5288. }
  5289. /* Can return -ENOMEM */
  5290. int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  5291. u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
  5292. u64 owner, u64 offset, int for_cow)
  5293. {
  5294. int ret;
  5295. struct btrfs_fs_info *fs_info = root->fs_info;
  5296. add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
  5297. /*
  5298. * tree log blocks never actually go into the extent allocation
  5299. * tree, just update pinning info and exit early.
  5300. */
  5301. if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
  5302. WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
  5303. /* unlocks the pinned mutex */
  5304. btrfs_pin_extent(root, bytenr, num_bytes, 1);
  5305. ret = 0;
  5306. } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  5307. ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
  5308. num_bytes,
  5309. parent, root_objectid, (int)owner,
  5310. BTRFS_DROP_DELAYED_REF, NULL, for_cow);
  5311. } else {
  5312. ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
  5313. num_bytes,
  5314. parent, root_objectid, owner,
  5315. offset, BTRFS_DROP_DELAYED_REF,
  5316. NULL, for_cow);
  5317. }
  5318. return ret;
  5319. }
  5320. static u64 stripe_align(struct btrfs_root *root,
  5321. struct btrfs_block_group_cache *cache,
  5322. u64 val, u64 num_bytes)
  5323. {
  5324. u64 ret = ALIGN(val, root->stripesize);
  5325. return ret;
  5326. }
  5327. /*
  5328. * when we wait for progress in the block group caching, its because
  5329. * our allocation attempt failed at least once. So, we must sleep
  5330. * and let some progress happen before we try again.
  5331. *
  5332. * This function will sleep at least once waiting for new free space to
  5333. * show up, and then it will check the block group free space numbers
  5334. * for our min num_bytes. Another option is to have it go ahead
  5335. * and look in the rbtree for a free extent of a given size, but this
  5336. * is a good start.
  5337. *
  5338. * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
  5339. * any of the information in this block group.
  5340. */
  5341. static noinline void
  5342. wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
  5343. u64 num_bytes)
  5344. {
  5345. struct btrfs_caching_control *caching_ctl;
  5346. caching_ctl = get_caching_control(cache);
  5347. if (!caching_ctl)
  5348. return;
  5349. wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
  5350. (cache->free_space_ctl->free_space >= num_bytes));
  5351. put_caching_control(caching_ctl);
  5352. }
  5353. static noinline int
  5354. wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
  5355. {
  5356. struct btrfs_caching_control *caching_ctl;
  5357. int ret = 0;
  5358. caching_ctl = get_caching_control(cache);
  5359. if (!caching_ctl)
  5360. return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
  5361. wait_event(caching_ctl->wait, block_group_cache_done(cache));
  5362. if (cache->cached == BTRFS_CACHE_ERROR)
  5363. ret = -EIO;
  5364. put_caching_control(caching_ctl);
  5365. return ret;
  5366. }
  5367. int __get_raid_index(u64 flags)
  5368. {
  5369. if (flags & BTRFS_BLOCK_GROUP_RAID10)
  5370. return BTRFS_RAID_RAID10;
  5371. else if (flags & BTRFS_BLOCK_GROUP_RAID1)
  5372. return BTRFS_RAID_RAID1;
  5373. else if (flags & BTRFS_BLOCK_GROUP_DUP)
  5374. return BTRFS_RAID_DUP;
  5375. else if (flags & BTRFS_BLOCK_GROUP_RAID0)
  5376. return BTRFS_RAID_RAID0;
  5377. else if (flags & BTRFS_BLOCK_GROUP_RAID5)
  5378. return BTRFS_RAID_RAID5;
  5379. else if (flags & BTRFS_BLOCK_GROUP_RAID6)
  5380. return BTRFS_RAID_RAID6;
  5381. return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
  5382. }
  5383. int get_block_group_index(struct btrfs_block_group_cache *cache)
  5384. {
  5385. return __get_raid_index(cache->flags);
  5386. }
  5387. static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
  5388. [BTRFS_RAID_RAID10] = "raid10",
  5389. [BTRFS_RAID_RAID1] = "raid1",
  5390. [BTRFS_RAID_DUP] = "dup",
  5391. [BTRFS_RAID_RAID0] = "raid0",
  5392. [BTRFS_RAID_SINGLE] = "single",
  5393. [BTRFS_RAID_RAID5] = "raid5",
  5394. [BTRFS_RAID_RAID6] = "raid6",
  5395. };
  5396. static const char *get_raid_name(enum btrfs_raid_types type)
  5397. {
  5398. if (type >= BTRFS_NR_RAID_TYPES)
  5399. return NULL;
  5400. return btrfs_raid_type_names[type];
  5401. }
  5402. enum btrfs_loop_type {
  5403. LOOP_CACHING_NOWAIT = 0,
  5404. LOOP_CACHING_WAIT = 1,
  5405. LOOP_ALLOC_CHUNK = 2,
  5406. LOOP_NO_EMPTY_SIZE = 3,
  5407. };
  5408. /*
  5409. * walks the btree of allocated extents and find a hole of a given size.
  5410. * The key ins is changed to record the hole:
  5411. * ins->objectid == start position
  5412. * ins->flags = BTRFS_EXTENT_ITEM_KEY
  5413. * ins->offset == the size of the hole.
  5414. * Any available blocks before search_start are skipped.
  5415. *
  5416. * If there is no suitable free space, we will record the max size of
  5417. * the free space extent currently.
  5418. */
  5419. static noinline int find_free_extent(struct btrfs_root *orig_root,
  5420. u64 num_bytes, u64 empty_size,
  5421. u64 hint_byte, struct btrfs_key *ins,
  5422. u64 flags)
  5423. {
  5424. int ret = 0;
  5425. struct btrfs_root *root = orig_root->fs_info->extent_root;
  5426. struct btrfs_free_cluster *last_ptr = NULL;
  5427. struct btrfs_block_group_cache *block_group = NULL;
  5428. u64 search_start = 0;
  5429. u64 max_extent_size = 0;
  5430. int empty_cluster = 2 * 1024 * 1024;
  5431. struct btrfs_space_info *space_info;
  5432. int loop = 0;
  5433. int index = __get_raid_index(flags);
  5434. int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
  5435. RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
  5436. bool failed_cluster_refill = false;
  5437. bool failed_alloc = false;
  5438. bool use_cluster = true;
  5439. bool have_caching_bg = false;
  5440. WARN_ON(num_bytes < root->sectorsize);
  5441. btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
  5442. ins->objectid = 0;
  5443. ins->offset = 0;
  5444. trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
  5445. space_info = __find_space_info(root->fs_info, flags);
  5446. if (!space_info) {
  5447. btrfs_err(root->fs_info, "No space info for %llu", flags);
  5448. return -ENOSPC;
  5449. }
  5450. /*
  5451. * If the space info is for both data and metadata it means we have a
  5452. * small filesystem and we can't use the clustering stuff.
  5453. */
  5454. if (btrfs_mixed_space_info(space_info))
  5455. use_cluster = false;
  5456. if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
  5457. last_ptr = &root->fs_info->meta_alloc_cluster;
  5458. if (!btrfs_test_opt(root, SSD))
  5459. empty_cluster = 64 * 1024;
  5460. }
  5461. if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
  5462. btrfs_test_opt(root, SSD)) {
  5463. last_ptr = &root->fs_info->data_alloc_cluster;
  5464. }
  5465. if (last_ptr) {
  5466. spin_lock(&last_ptr->lock);
  5467. if (last_ptr->block_group)
  5468. hint_byte = last_ptr->window_start;
  5469. spin_unlock(&last_ptr->lock);
  5470. }
  5471. search_start = max(search_start, first_logical_byte(root, 0));
  5472. search_start = max(search_start, hint_byte);
  5473. if (!last_ptr)
  5474. empty_cluster = 0;
  5475. if (search_start == hint_byte) {
  5476. block_group = btrfs_lookup_block_group(root->fs_info,
  5477. search_start);
  5478. /*
  5479. * we don't want to use the block group if it doesn't match our
  5480. * allocation bits, or if its not cached.
  5481. *
  5482. * However if we are re-searching with an ideal block group
  5483. * picked out then we don't care that the block group is cached.
  5484. */
  5485. if (block_group && block_group_bits(block_group, flags) &&
  5486. block_group->cached != BTRFS_CACHE_NO) {
  5487. down_read(&space_info->groups_sem);
  5488. if (list_empty(&block_group->list) ||
  5489. block_group->ro) {
  5490. /*
  5491. * someone is removing this block group,
  5492. * we can't jump into the have_block_group
  5493. * target because our list pointers are not
  5494. * valid
  5495. */
  5496. btrfs_put_block_group(block_group);
  5497. up_read(&space_info->groups_sem);
  5498. } else {
  5499. index = get_block_group_index(block_group);
  5500. goto have_block_group;
  5501. }
  5502. } else if (block_group) {
  5503. btrfs_put_block_group(block_group);
  5504. }
  5505. }
  5506. search:
  5507. have_caching_bg = false;
  5508. down_read(&space_info->groups_sem);
  5509. list_for_each_entry(block_group, &space_info->block_groups[index],
  5510. list) {
  5511. u64 offset;
  5512. int cached;
  5513. btrfs_get_block_group(block_group);
  5514. search_start = block_group->key.objectid;
  5515. /*
  5516. * this can happen if we end up cycling through all the
  5517. * raid types, but we want to make sure we only allocate
  5518. * for the proper type.
  5519. */
  5520. if (!block_group_bits(block_group, flags)) {
  5521. u64 extra = BTRFS_BLOCK_GROUP_DUP |
  5522. BTRFS_BLOCK_GROUP_RAID1 |
  5523. BTRFS_BLOCK_GROUP_RAID5 |
  5524. BTRFS_BLOCK_GROUP_RAID6 |
  5525. BTRFS_BLOCK_GROUP_RAID10;
  5526. /*
  5527. * if they asked for extra copies and this block group
  5528. * doesn't provide them, bail. This does allow us to
  5529. * fill raid0 from raid1.
  5530. */
  5531. if ((flags & extra) && !(block_group->flags & extra))
  5532. goto loop;
  5533. }
  5534. have_block_group:
  5535. cached = block_group_cache_done(block_group);
  5536. if (unlikely(!cached)) {
  5537. ret = cache_block_group(block_group, 0);
  5538. BUG_ON(ret < 0);
  5539. ret = 0;
  5540. }
  5541. if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
  5542. goto loop;
  5543. if (unlikely(block_group->ro))
  5544. goto loop;
  5545. /*
  5546. * Ok we want to try and use the cluster allocator, so
  5547. * lets look there
  5548. */
  5549. if (last_ptr) {
  5550. struct btrfs_block_group_cache *used_block_group;
  5551. unsigned long aligned_cluster;
  5552. /*
  5553. * the refill lock keeps out other
  5554. * people trying to start a new cluster
  5555. */
  5556. spin_lock(&last_ptr->refill_lock);
  5557. used_block_group = last_ptr->block_group;
  5558. if (used_block_group != block_group &&
  5559. (!used_block_group ||
  5560. used_block_group->ro ||
  5561. !block_group_bits(used_block_group, flags)))
  5562. goto refill_cluster;
  5563. if (used_block_group != block_group)
  5564. btrfs_get_block_group(used_block_group);
  5565. offset = btrfs_alloc_from_cluster(used_block_group,
  5566. last_ptr,
  5567. num_bytes,
  5568. used_block_group->key.objectid,
  5569. &max_extent_size);
  5570. if (offset) {
  5571. /* we have a block, we're done */
  5572. spin_unlock(&last_ptr->refill_lock);
  5573. trace_btrfs_reserve_extent_cluster(root,
  5574. used_block_group,
  5575. search_start, num_bytes);
  5576. if (used_block_group != block_group) {
  5577. btrfs_put_block_group(block_group);
  5578. block_group = used_block_group;
  5579. }
  5580. goto checks;
  5581. }
  5582. WARN_ON(last_ptr->block_group != used_block_group);
  5583. if (used_block_group != block_group)
  5584. btrfs_put_block_group(used_block_group);
  5585. refill_cluster:
  5586. /* If we are on LOOP_NO_EMPTY_SIZE, we can't
  5587. * set up a new clusters, so lets just skip it
  5588. * and let the allocator find whatever block
  5589. * it can find. If we reach this point, we
  5590. * will have tried the cluster allocator
  5591. * plenty of times and not have found
  5592. * anything, so we are likely way too
  5593. * fragmented for the clustering stuff to find
  5594. * anything.
  5595. *
  5596. * However, if the cluster is taken from the
  5597. * current block group, release the cluster
  5598. * first, so that we stand a better chance of
  5599. * succeeding in the unclustered
  5600. * allocation. */
  5601. if (loop >= LOOP_NO_EMPTY_SIZE &&
  5602. last_ptr->block_group != block_group) {
  5603. spin_unlock(&last_ptr->refill_lock);
  5604. goto unclustered_alloc;
  5605. }
  5606. /*
  5607. * this cluster didn't work out, free it and
  5608. * start over
  5609. */
  5610. btrfs_return_cluster_to_free_space(NULL, last_ptr);
  5611. if (loop >= LOOP_NO_EMPTY_SIZE) {
  5612. spin_unlock(&last_ptr->refill_lock);
  5613. goto unclustered_alloc;
  5614. }
  5615. aligned_cluster = max_t(unsigned long,
  5616. empty_cluster + empty_size,
  5617. block_group->full_stripe_len);
  5618. /* allocate a cluster in this block group */
  5619. ret = btrfs_find_space_cluster(root, block_group,
  5620. last_ptr, search_start,
  5621. num_bytes,
  5622. aligned_cluster);
  5623. if (ret == 0) {
  5624. /*
  5625. * now pull our allocation out of this
  5626. * cluster
  5627. */
  5628. offset = btrfs_alloc_from_cluster(block_group,
  5629. last_ptr,
  5630. num_bytes,
  5631. search_start,
  5632. &max_extent_size);
  5633. if (offset) {
  5634. /* we found one, proceed */
  5635. spin_unlock(&last_ptr->refill_lock);
  5636. trace_btrfs_reserve_extent_cluster(root,
  5637. block_group, search_start,
  5638. num_bytes);
  5639. goto checks;
  5640. }
  5641. } else if (!cached && loop > LOOP_CACHING_NOWAIT
  5642. && !failed_cluster_refill) {
  5643. spin_unlock(&last_ptr->refill_lock);
  5644. failed_cluster_refill = true;
  5645. wait_block_group_cache_progress(block_group,
  5646. num_bytes + empty_cluster + empty_size);
  5647. goto have_block_group;
  5648. }
  5649. /*
  5650. * at this point we either didn't find a cluster
  5651. * or we weren't able to allocate a block from our
  5652. * cluster. Free the cluster we've been trying
  5653. * to use, and go to the next block group
  5654. */
  5655. btrfs_return_cluster_to_free_space(NULL, last_ptr);
  5656. spin_unlock(&last_ptr->refill_lock);
  5657. goto loop;
  5658. }
  5659. unclustered_alloc:
  5660. spin_lock(&block_group->free_space_ctl->tree_lock);
  5661. if (cached &&
  5662. block_group->free_space_ctl->free_space <
  5663. num_bytes + empty_cluster + empty_size) {
  5664. if (block_group->free_space_ctl->free_space >
  5665. max_extent_size)
  5666. max_extent_size =
  5667. block_group->free_space_ctl->free_space;
  5668. spin_unlock(&block_group->free_space_ctl->tree_lock);
  5669. goto loop;
  5670. }
  5671. spin_unlock(&block_group->free_space_ctl->tree_lock);
  5672. offset = btrfs_find_space_for_alloc(block_group, search_start,
  5673. num_bytes, empty_size,
  5674. &max_extent_size);
  5675. /*
  5676. * If we didn't find a chunk, and we haven't failed on this
  5677. * block group before, and this block group is in the middle of
  5678. * caching and we are ok with waiting, then go ahead and wait
  5679. * for progress to be made, and set failed_alloc to true.
  5680. *
  5681. * If failed_alloc is true then we've already waited on this
  5682. * block group once and should move on to the next block group.
  5683. */
  5684. if (!offset && !failed_alloc && !cached &&
  5685. loop > LOOP_CACHING_NOWAIT) {
  5686. wait_block_group_cache_progress(block_group,
  5687. num_bytes + empty_size);
  5688. failed_alloc = true;
  5689. goto have_block_group;
  5690. } else if (!offset) {
  5691. if (!cached)
  5692. have_caching_bg = true;
  5693. goto loop;
  5694. }
  5695. checks:
  5696. search_start = stripe_align(root, block_group,
  5697. offset, num_bytes);
  5698. /* move on to the next group */
  5699. if (search_start + num_bytes >
  5700. block_group->key.objectid + block_group->key.offset) {
  5701. btrfs_add_free_space(block_group, offset, num_bytes);
  5702. goto loop;
  5703. }
  5704. if (offset < search_start)
  5705. btrfs_add_free_space(block_group, offset,
  5706. search_start - offset);
  5707. BUG_ON(offset > search_start);
  5708. ret = btrfs_update_reserved_bytes(block_group, num_bytes,
  5709. alloc_type);
  5710. if (ret == -EAGAIN) {
  5711. btrfs_add_free_space(block_group, offset, num_bytes);
  5712. goto loop;
  5713. }
  5714. /* we are all good, lets return */
  5715. ins->objectid = search_start;
  5716. ins->offset = num_bytes;
  5717. trace_btrfs_reserve_extent(orig_root, block_group,
  5718. search_start, num_bytes);
  5719. btrfs_put_block_group(block_group);
  5720. break;
  5721. loop:
  5722. failed_cluster_refill = false;
  5723. failed_alloc = false;
  5724. BUG_ON(index != get_block_group_index(block_group));
  5725. btrfs_put_block_group(block_group);
  5726. }
  5727. up_read(&space_info->groups_sem);
  5728. if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
  5729. goto search;
  5730. if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
  5731. goto search;
  5732. /*
  5733. * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
  5734. * caching kthreads as we move along
  5735. * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
  5736. * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
  5737. * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
  5738. * again
  5739. */
  5740. if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
  5741. index = 0;
  5742. loop++;
  5743. if (loop == LOOP_ALLOC_CHUNK) {
  5744. struct btrfs_trans_handle *trans;
  5745. trans = btrfs_join_transaction(root);
  5746. if (IS_ERR(trans)) {
  5747. ret = PTR_ERR(trans);
  5748. goto out;
  5749. }
  5750. ret = do_chunk_alloc(trans, root, flags,
  5751. CHUNK_ALLOC_FORCE);
  5752. /*
  5753. * Do not bail out on ENOSPC since we
  5754. * can do more things.
  5755. */
  5756. if (ret < 0 && ret != -ENOSPC)
  5757. btrfs_abort_transaction(trans,
  5758. root, ret);
  5759. else
  5760. ret = 0;
  5761. btrfs_end_transaction(trans, root);
  5762. if (ret)
  5763. goto out;
  5764. }
  5765. if (loop == LOOP_NO_EMPTY_SIZE) {
  5766. empty_size = 0;
  5767. empty_cluster = 0;
  5768. }
  5769. goto search;
  5770. } else if (!ins->objectid) {
  5771. ret = -ENOSPC;
  5772. } else if (ins->objectid) {
  5773. ret = 0;
  5774. }
  5775. out:
  5776. if (ret == -ENOSPC)
  5777. ins->offset = max_extent_size;
  5778. return ret;
  5779. }
  5780. static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  5781. int dump_block_groups)
  5782. {
  5783. struct btrfs_block_group_cache *cache;
  5784. int index = 0;
  5785. spin_lock(&info->lock);
  5786. printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
  5787. info->flags,
  5788. info->total_bytes - info->bytes_used - info->bytes_pinned -
  5789. info->bytes_reserved - info->bytes_readonly,
  5790. (info->full) ? "" : "not ");
  5791. printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
  5792. "reserved=%llu, may_use=%llu, readonly=%llu\n",
  5793. info->total_bytes, info->bytes_used, info->bytes_pinned,
  5794. info->bytes_reserved, info->bytes_may_use,
  5795. info->bytes_readonly);
  5796. spin_unlock(&info->lock);
  5797. if (!dump_block_groups)
  5798. return;
  5799. down_read(&info->groups_sem);
  5800. again:
  5801. list_for_each_entry(cache, &info->block_groups[index], list) {
  5802. spin_lock(&cache->lock);
  5803. printk(KERN_INFO "BTRFS: "
  5804. "block group %llu has %llu bytes, "
  5805. "%llu used %llu pinned %llu reserved %s\n",
  5806. cache->key.objectid, cache->key.offset,
  5807. btrfs_block_group_used(&cache->item), cache->pinned,
  5808. cache->reserved, cache->ro ? "[readonly]" : "");
  5809. btrfs_dump_free_space(cache, bytes);
  5810. spin_unlock(&cache->lock);
  5811. }
  5812. if (++index < BTRFS_NR_RAID_TYPES)
  5813. goto again;
  5814. up_read(&info->groups_sem);
  5815. }
  5816. int btrfs_reserve_extent(struct btrfs_root *root,
  5817. u64 num_bytes, u64 min_alloc_size,
  5818. u64 empty_size, u64 hint_byte,
  5819. struct btrfs_key *ins, int is_data)
  5820. {
  5821. bool final_tried = false;
  5822. u64 flags;
  5823. int ret;
  5824. flags = btrfs_get_alloc_profile(root, is_data);
  5825. again:
  5826. WARN_ON(num_bytes < root->sectorsize);
  5827. ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
  5828. flags);
  5829. if (ret == -ENOSPC) {
  5830. if (!final_tried && ins->offset) {
  5831. num_bytes = min(num_bytes >> 1, ins->offset);
  5832. num_bytes = round_down(num_bytes, root->sectorsize);
  5833. num_bytes = max(num_bytes, min_alloc_size);
  5834. if (num_bytes == min_alloc_size)
  5835. final_tried = true;
  5836. goto again;
  5837. } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
  5838. struct btrfs_space_info *sinfo;
  5839. sinfo = __find_space_info(root->fs_info, flags);
  5840. btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
  5841. flags, num_bytes);
  5842. if (sinfo)
  5843. dump_space_info(sinfo, num_bytes, 1);
  5844. }
  5845. }
  5846. return ret;
  5847. }
  5848. static int __btrfs_free_reserved_extent(struct btrfs_root *root,
  5849. u64 start, u64 len, int pin)
  5850. {
  5851. struct btrfs_block_group_cache *cache;
  5852. int ret = 0;
  5853. cache = btrfs_lookup_block_group(root->fs_info, start);
  5854. if (!cache) {
  5855. btrfs_err(root->fs_info, "Unable to find block group for %llu",
  5856. start);
  5857. return -ENOSPC;
  5858. }
  5859. if (btrfs_test_opt(root, DISCARD))
  5860. ret = btrfs_discard_extent(root, start, len, NULL);
  5861. if (pin)
  5862. pin_down_extent(root, cache, start, len, 1);
  5863. else {
  5864. btrfs_add_free_space(cache, start, len);
  5865. btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
  5866. }
  5867. btrfs_put_block_group(cache);
  5868. trace_btrfs_reserved_extent_free(root, start, len);
  5869. return ret;
  5870. }
  5871. int btrfs_free_reserved_extent(struct btrfs_root *root,
  5872. u64 start, u64 len)
  5873. {
  5874. return __btrfs_free_reserved_extent(root, start, len, 0);
  5875. }
  5876. int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
  5877. u64 start, u64 len)
  5878. {
  5879. return __btrfs_free_reserved_extent(root, start, len, 1);
  5880. }
  5881. static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  5882. struct btrfs_root *root,
  5883. u64 parent, u64 root_objectid,
  5884. u64 flags, u64 owner, u64 offset,
  5885. struct btrfs_key *ins, int ref_mod)
  5886. {
  5887. int ret;
  5888. struct btrfs_fs_info *fs_info = root->fs_info;
  5889. struct btrfs_extent_item *extent_item;
  5890. struct btrfs_extent_inline_ref *iref;
  5891. struct btrfs_path *path;
  5892. struct extent_buffer *leaf;
  5893. int type;
  5894. u32 size;
  5895. if (parent > 0)
  5896. type = BTRFS_SHARED_DATA_REF_KEY;
  5897. else
  5898. type = BTRFS_EXTENT_DATA_REF_KEY;
  5899. size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
  5900. path = btrfs_alloc_path();
  5901. if (!path)
  5902. return -ENOMEM;
  5903. path->leave_spinning = 1;
  5904. ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
  5905. ins, size);
  5906. if (ret) {
  5907. btrfs_free_path(path);
  5908. return ret;
  5909. }
  5910. leaf = path->nodes[0];
  5911. extent_item = btrfs_item_ptr(leaf, path->slots[0],
  5912. struct btrfs_extent_item);
  5913. btrfs_set_extent_refs(leaf, extent_item, ref_mod);
  5914. btrfs_set_extent_generation(leaf, extent_item, trans->transid);
  5915. btrfs_set_extent_flags(leaf, extent_item,
  5916. flags | BTRFS_EXTENT_FLAG_DATA);
  5917. iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
  5918. btrfs_set_extent_inline_ref_type(leaf, iref, type);
  5919. if (parent > 0) {
  5920. struct btrfs_shared_data_ref *ref;
  5921. ref = (struct btrfs_shared_data_ref *)(iref + 1);
  5922. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  5923. btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
  5924. } else {
  5925. struct btrfs_extent_data_ref *ref;
  5926. ref = (struct btrfs_extent_data_ref *)(&iref->offset);
  5927. btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
  5928. btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
  5929. btrfs_set_extent_data_ref_offset(leaf, ref, offset);
  5930. btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
  5931. }
  5932. btrfs_mark_buffer_dirty(path->nodes[0]);
  5933. btrfs_free_path(path);
  5934. ret = update_block_group(root, ins->objectid, ins->offset, 1);
  5935. if (ret) { /* -ENOENT, logic error */
  5936. btrfs_err(fs_info, "update block group failed for %llu %llu",
  5937. ins->objectid, ins->offset);
  5938. BUG();
  5939. }
  5940. trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
  5941. return ret;
  5942. }
  5943. static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  5944. struct btrfs_root *root,
  5945. u64 parent, u64 root_objectid,
  5946. u64 flags, struct btrfs_disk_key *key,
  5947. int level, struct btrfs_key *ins)
  5948. {
  5949. int ret;
  5950. struct btrfs_fs_info *fs_info = root->fs_info;
  5951. struct btrfs_extent_item *extent_item;
  5952. struct btrfs_tree_block_info *block_info;
  5953. struct btrfs_extent_inline_ref *iref;
  5954. struct btrfs_path *path;
  5955. struct extent_buffer *leaf;
  5956. u32 size = sizeof(*extent_item) + sizeof(*iref);
  5957. bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
  5958. SKINNY_METADATA);
  5959. if (!skinny_metadata)
  5960. size += sizeof(*block_info);
  5961. path = btrfs_alloc_path();
  5962. if (!path) {
  5963. btrfs_free_and_pin_reserved_extent(root, ins->objectid,
  5964. root->leafsize);
  5965. return -ENOMEM;
  5966. }
  5967. path->leave_spinning = 1;
  5968. ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
  5969. ins, size);
  5970. if (ret) {
  5971. btrfs_free_and_pin_reserved_extent(root, ins->objectid,
  5972. root->leafsize);
  5973. btrfs_free_path(path);
  5974. return ret;
  5975. }
  5976. leaf = path->nodes[0];
  5977. extent_item = btrfs_item_ptr(leaf, path->slots[0],
  5978. struct btrfs_extent_item);
  5979. btrfs_set_extent_refs(leaf, extent_item, 1);
  5980. btrfs_set_extent_generation(leaf, extent_item, trans->transid);
  5981. btrfs_set_extent_flags(leaf, extent_item,
  5982. flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
  5983. if (skinny_metadata) {
  5984. iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
  5985. } else {
  5986. block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
  5987. btrfs_set_tree_block_key(leaf, block_info, key);
  5988. btrfs_set_tree_block_level(leaf, block_info, level);
  5989. iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
  5990. }
  5991. if (parent > 0) {
  5992. BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  5993. btrfs_set_extent_inline_ref_type(leaf, iref,
  5994. BTRFS_SHARED_BLOCK_REF_KEY);
  5995. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  5996. } else {
  5997. btrfs_set_extent_inline_ref_type(leaf, iref,
  5998. BTRFS_TREE_BLOCK_REF_KEY);
  5999. btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
  6000. }
  6001. btrfs_mark_buffer_dirty(leaf);
  6002. btrfs_free_path(path);
  6003. ret = update_block_group(root, ins->objectid, root->leafsize, 1);
  6004. if (ret) { /* -ENOENT, logic error */
  6005. btrfs_err(fs_info, "update block group failed for %llu %llu",
  6006. ins->objectid, ins->offset);
  6007. BUG();
  6008. }
  6009. trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
  6010. return ret;
  6011. }
  6012. int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  6013. struct btrfs_root *root,
  6014. u64 root_objectid, u64 owner,
  6015. u64 offset, struct btrfs_key *ins)
  6016. {
  6017. int ret;
  6018. BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
  6019. ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
  6020. ins->offset, 0,
  6021. root_objectid, owner, offset,
  6022. BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
  6023. return ret;
  6024. }
  6025. /*
  6026. * this is used by the tree logging recovery code. It records that
  6027. * an extent has been allocated and makes sure to clear the free
  6028. * space cache bits as well
  6029. */
  6030. int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
  6031. struct btrfs_root *root,
  6032. u64 root_objectid, u64 owner, u64 offset,
  6033. struct btrfs_key *ins)
  6034. {
  6035. int ret;
  6036. struct btrfs_block_group_cache *block_group;
  6037. /*
  6038. * Mixed block groups will exclude before processing the log so we only
  6039. * need to do the exlude dance if this fs isn't mixed.
  6040. */
  6041. if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
  6042. ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
  6043. if (ret)
  6044. return ret;
  6045. }
  6046. block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
  6047. if (!block_group)
  6048. return -EINVAL;
  6049. ret = btrfs_update_reserved_bytes(block_group, ins->offset,
  6050. RESERVE_ALLOC_NO_ACCOUNT);
  6051. BUG_ON(ret); /* logic error */
  6052. ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
  6053. 0, owner, offset, ins, 1);
  6054. btrfs_put_block_group(block_group);
  6055. return ret;
  6056. }
  6057. static struct extent_buffer *
  6058. btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  6059. u64 bytenr, u32 blocksize, int level)
  6060. {
  6061. struct extent_buffer *buf;
  6062. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  6063. if (!buf)
  6064. return ERR_PTR(-ENOMEM);
  6065. btrfs_set_header_generation(buf, trans->transid);
  6066. btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
  6067. btrfs_tree_lock(buf);
  6068. clean_tree_block(trans, root, buf);
  6069. clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
  6070. btrfs_set_lock_blocking(buf);
  6071. btrfs_set_buffer_uptodate(buf);
  6072. if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
  6073. /*
  6074. * we allow two log transactions at a time, use different
  6075. * EXENT bit to differentiate dirty pages.
  6076. */
  6077. if (root->log_transid % 2 == 0)
  6078. set_extent_dirty(&root->dirty_log_pages, buf->start,
  6079. buf->start + buf->len - 1, GFP_NOFS);
  6080. else
  6081. set_extent_new(&root->dirty_log_pages, buf->start,
  6082. buf->start + buf->len - 1, GFP_NOFS);
  6083. } else {
  6084. set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
  6085. buf->start + buf->len - 1, GFP_NOFS);
  6086. }
  6087. trans->blocks_used++;
  6088. /* this returns a buffer locked for blocking */
  6089. return buf;
  6090. }
  6091. static struct btrfs_block_rsv *
  6092. use_block_rsv(struct btrfs_trans_handle *trans,
  6093. struct btrfs_root *root, u32 blocksize)
  6094. {
  6095. struct btrfs_block_rsv *block_rsv;
  6096. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  6097. int ret;
  6098. bool global_updated = false;
  6099. block_rsv = get_block_rsv(trans, root);
  6100. if (unlikely(block_rsv->size == 0))
  6101. goto try_reserve;
  6102. again:
  6103. ret = block_rsv_use_bytes(block_rsv, blocksize);
  6104. if (!ret)
  6105. return block_rsv;
  6106. if (block_rsv->failfast)
  6107. return ERR_PTR(ret);
  6108. if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
  6109. global_updated = true;
  6110. update_global_block_rsv(root->fs_info);
  6111. goto again;
  6112. }
  6113. if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
  6114. static DEFINE_RATELIMIT_STATE(_rs,
  6115. DEFAULT_RATELIMIT_INTERVAL * 10,
  6116. /*DEFAULT_RATELIMIT_BURST*/ 1);
  6117. if (__ratelimit(&_rs))
  6118. WARN(1, KERN_DEBUG
  6119. "BTRFS: block rsv returned %d\n", ret);
  6120. }
  6121. try_reserve:
  6122. ret = reserve_metadata_bytes(root, block_rsv, blocksize,
  6123. BTRFS_RESERVE_NO_FLUSH);
  6124. if (!ret)
  6125. return block_rsv;
  6126. /*
  6127. * If we couldn't reserve metadata bytes try and use some from
  6128. * the global reserve if its space type is the same as the global
  6129. * reservation.
  6130. */
  6131. if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
  6132. block_rsv->space_info == global_rsv->space_info) {
  6133. ret = block_rsv_use_bytes(global_rsv, blocksize);
  6134. if (!ret)
  6135. return global_rsv;
  6136. }
  6137. return ERR_PTR(ret);
  6138. }
  6139. static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
  6140. struct btrfs_block_rsv *block_rsv, u32 blocksize)
  6141. {
  6142. block_rsv_add_bytes(block_rsv, blocksize, 0);
  6143. block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
  6144. }
  6145. /*
  6146. * finds a free extent and does all the dirty work required for allocation
  6147. * returns the key for the extent through ins, and a tree buffer for
  6148. * the first block of the extent through buf.
  6149. *
  6150. * returns the tree buffer or NULL.
  6151. */
  6152. struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
  6153. struct btrfs_root *root, u32 blocksize,
  6154. u64 parent, u64 root_objectid,
  6155. struct btrfs_disk_key *key, int level,
  6156. u64 hint, u64 empty_size)
  6157. {
  6158. struct btrfs_key ins;
  6159. struct btrfs_block_rsv *block_rsv;
  6160. struct extent_buffer *buf;
  6161. u64 flags = 0;
  6162. int ret;
  6163. bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
  6164. SKINNY_METADATA);
  6165. block_rsv = use_block_rsv(trans, root, blocksize);
  6166. if (IS_ERR(block_rsv))
  6167. return ERR_CAST(block_rsv);
  6168. ret = btrfs_reserve_extent(root, blocksize, blocksize,
  6169. empty_size, hint, &ins, 0);
  6170. if (ret) {
  6171. unuse_block_rsv(root->fs_info, block_rsv, blocksize);
  6172. return ERR_PTR(ret);
  6173. }
  6174. buf = btrfs_init_new_buffer(trans, root, ins.objectid,
  6175. blocksize, level);
  6176. BUG_ON(IS_ERR(buf)); /* -ENOMEM */
  6177. if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
  6178. if (parent == 0)
  6179. parent = ins.objectid;
  6180. flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  6181. } else
  6182. BUG_ON(parent > 0);
  6183. if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
  6184. struct btrfs_delayed_extent_op *extent_op;
  6185. extent_op = btrfs_alloc_delayed_extent_op();
  6186. BUG_ON(!extent_op); /* -ENOMEM */
  6187. if (key)
  6188. memcpy(&extent_op->key, key, sizeof(extent_op->key));
  6189. else
  6190. memset(&extent_op->key, 0, sizeof(extent_op->key));
  6191. extent_op->flags_to_set = flags;
  6192. if (skinny_metadata)
  6193. extent_op->update_key = 0;
  6194. else
  6195. extent_op->update_key = 1;
  6196. extent_op->update_flags = 1;
  6197. extent_op->is_data = 0;
  6198. extent_op->level = level;
  6199. ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
  6200. ins.objectid,
  6201. ins.offset, parent, root_objectid,
  6202. level, BTRFS_ADD_DELAYED_EXTENT,
  6203. extent_op, 0);
  6204. BUG_ON(ret); /* -ENOMEM */
  6205. }
  6206. return buf;
  6207. }
  6208. struct walk_control {
  6209. u64 refs[BTRFS_MAX_LEVEL];
  6210. u64 flags[BTRFS_MAX_LEVEL];
  6211. struct btrfs_key update_progress;
  6212. int stage;
  6213. int level;
  6214. int shared_level;
  6215. int update_ref;
  6216. int keep_locks;
  6217. int reada_slot;
  6218. int reada_count;
  6219. int for_reloc;
  6220. };
  6221. #define DROP_REFERENCE 1
  6222. #define UPDATE_BACKREF 2
  6223. static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
  6224. struct btrfs_root *root,
  6225. struct walk_control *wc,
  6226. struct btrfs_path *path)
  6227. {
  6228. u64 bytenr;
  6229. u64 generation;
  6230. u64 refs;
  6231. u64 flags;
  6232. u32 nritems;
  6233. u32 blocksize;
  6234. struct btrfs_key key;
  6235. struct extent_buffer *eb;
  6236. int ret;
  6237. int slot;
  6238. int nread = 0;
  6239. if (path->slots[wc->level] < wc->reada_slot) {
  6240. wc->reada_count = wc->reada_count * 2 / 3;
  6241. wc->reada_count = max(wc->reada_count, 2);
  6242. } else {
  6243. wc->reada_count = wc->reada_count * 3 / 2;
  6244. wc->reada_count = min_t(int, wc->reada_count,
  6245. BTRFS_NODEPTRS_PER_BLOCK(root));
  6246. }
  6247. eb = path->nodes[wc->level];
  6248. nritems = btrfs_header_nritems(eb);
  6249. blocksize = btrfs_level_size(root, wc->level - 1);
  6250. for (slot = path->slots[wc->level]; slot < nritems; slot++) {
  6251. if (nread >= wc->reada_count)
  6252. break;
  6253. cond_resched();
  6254. bytenr = btrfs_node_blockptr(eb, slot);
  6255. generation = btrfs_node_ptr_generation(eb, slot);
  6256. if (slot == path->slots[wc->level])
  6257. goto reada;
  6258. if (wc->stage == UPDATE_BACKREF &&
  6259. generation <= root->root_key.offset)
  6260. continue;
  6261. /* We don't lock the tree block, it's OK to be racy here */
  6262. ret = btrfs_lookup_extent_info(trans, root, bytenr,
  6263. wc->level - 1, 1, &refs,
  6264. &flags);
  6265. /* We don't care about errors in readahead. */
  6266. if (ret < 0)
  6267. continue;
  6268. BUG_ON(refs == 0);
  6269. if (wc->stage == DROP_REFERENCE) {
  6270. if (refs == 1)
  6271. goto reada;
  6272. if (wc->level == 1 &&
  6273. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  6274. continue;
  6275. if (!wc->update_ref ||
  6276. generation <= root->root_key.offset)
  6277. continue;
  6278. btrfs_node_key_to_cpu(eb, &key, slot);
  6279. ret = btrfs_comp_cpu_keys(&key,
  6280. &wc->update_progress);
  6281. if (ret < 0)
  6282. continue;
  6283. } else {
  6284. if (wc->level == 1 &&
  6285. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  6286. continue;
  6287. }
  6288. reada:
  6289. ret = readahead_tree_block(root, bytenr, blocksize,
  6290. generation);
  6291. if (ret)
  6292. break;
  6293. nread++;
  6294. }
  6295. wc->reada_slot = slot;
  6296. }
  6297. /*
  6298. * helper to process tree block while walking down the tree.
  6299. *
  6300. * when wc->stage == UPDATE_BACKREF, this function updates
  6301. * back refs for pointers in the block.
  6302. *
  6303. * NOTE: return value 1 means we should stop walking down.
  6304. */
  6305. static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
  6306. struct btrfs_root *root,
  6307. struct btrfs_path *path,
  6308. struct walk_control *wc, int lookup_info)
  6309. {
  6310. int level = wc->level;
  6311. struct extent_buffer *eb = path->nodes[level];
  6312. u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  6313. int ret;
  6314. if (wc->stage == UPDATE_BACKREF &&
  6315. btrfs_header_owner(eb) != root->root_key.objectid)
  6316. return 1;
  6317. /*
  6318. * when reference count of tree block is 1, it won't increase
  6319. * again. once full backref flag is set, we never clear it.
  6320. */
  6321. if (lookup_info &&
  6322. ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
  6323. (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
  6324. BUG_ON(!path->locks[level]);
  6325. ret = btrfs_lookup_extent_info(trans, root,
  6326. eb->start, level, 1,
  6327. &wc->refs[level],
  6328. &wc->flags[level]);
  6329. BUG_ON(ret == -ENOMEM);
  6330. if (ret)
  6331. return ret;
  6332. BUG_ON(wc->refs[level] == 0);
  6333. }
  6334. if (wc->stage == DROP_REFERENCE) {
  6335. if (wc->refs[level] > 1)
  6336. return 1;
  6337. if (path->locks[level] && !wc->keep_locks) {
  6338. btrfs_tree_unlock_rw(eb, path->locks[level]);
  6339. path->locks[level] = 0;
  6340. }
  6341. return 0;
  6342. }
  6343. /* wc->stage == UPDATE_BACKREF */
  6344. if (!(wc->flags[level] & flag)) {
  6345. BUG_ON(!path->locks[level]);
  6346. ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
  6347. BUG_ON(ret); /* -ENOMEM */
  6348. ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
  6349. BUG_ON(ret); /* -ENOMEM */
  6350. ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
  6351. eb->len, flag,
  6352. btrfs_header_level(eb), 0);
  6353. BUG_ON(ret); /* -ENOMEM */
  6354. wc->flags[level] |= flag;
  6355. }
  6356. /*
  6357. * the block is shared by multiple trees, so it's not good to
  6358. * keep the tree lock
  6359. */
  6360. if (path->locks[level] && level > 0) {
  6361. btrfs_tree_unlock_rw(eb, path->locks[level]);
  6362. path->locks[level] = 0;
  6363. }
  6364. return 0;
  6365. }
  6366. /*
  6367. * helper to process tree block pointer.
  6368. *
  6369. * when wc->stage == DROP_REFERENCE, this function checks
  6370. * reference count of the block pointed to. if the block
  6371. * is shared and we need update back refs for the subtree
  6372. * rooted at the block, this function changes wc->stage to
  6373. * UPDATE_BACKREF. if the block is shared and there is no
  6374. * need to update back, this function drops the reference
  6375. * to the block.
  6376. *
  6377. * NOTE: return value 1 means we should stop walking down.
  6378. */
  6379. static noinline int do_walk_down(struct btrfs_trans_handle *trans,
  6380. struct btrfs_root *root,
  6381. struct btrfs_path *path,
  6382. struct walk_control *wc, int *lookup_info)
  6383. {
  6384. u64 bytenr;
  6385. u64 generation;
  6386. u64 parent;
  6387. u32 blocksize;
  6388. struct btrfs_key key;
  6389. struct extent_buffer *next;
  6390. int level = wc->level;
  6391. int reada = 0;
  6392. int ret = 0;
  6393. generation = btrfs_node_ptr_generation(path->nodes[level],
  6394. path->slots[level]);
  6395. /*
  6396. * if the lower level block was created before the snapshot
  6397. * was created, we know there is no need to update back refs
  6398. * for the subtree
  6399. */
  6400. if (wc->stage == UPDATE_BACKREF &&
  6401. generation <= root->root_key.offset) {
  6402. *lookup_info = 1;
  6403. return 1;
  6404. }
  6405. bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
  6406. blocksize = btrfs_level_size(root, level - 1);
  6407. next = btrfs_find_tree_block(root, bytenr, blocksize);
  6408. if (!next) {
  6409. next = btrfs_find_create_tree_block(root, bytenr, blocksize);
  6410. if (!next)
  6411. return -ENOMEM;
  6412. btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
  6413. level - 1);
  6414. reada = 1;
  6415. }
  6416. btrfs_tree_lock(next);
  6417. btrfs_set_lock_blocking(next);
  6418. ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
  6419. &wc->refs[level - 1],
  6420. &wc->flags[level - 1]);
  6421. if (ret < 0) {
  6422. btrfs_tree_unlock(next);
  6423. return ret;
  6424. }
  6425. if (unlikely(wc->refs[level - 1] == 0)) {
  6426. btrfs_err(root->fs_info, "Missing references.");
  6427. BUG();
  6428. }
  6429. *lookup_info = 0;
  6430. if (wc->stage == DROP_REFERENCE) {
  6431. if (wc->refs[level - 1] > 1) {
  6432. if (level == 1 &&
  6433. (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  6434. goto skip;
  6435. if (!wc->update_ref ||
  6436. generation <= root->root_key.offset)
  6437. goto skip;
  6438. btrfs_node_key_to_cpu(path->nodes[level], &key,
  6439. path->slots[level]);
  6440. ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
  6441. if (ret < 0)
  6442. goto skip;
  6443. wc->stage = UPDATE_BACKREF;
  6444. wc->shared_level = level - 1;
  6445. }
  6446. } else {
  6447. if (level == 1 &&
  6448. (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  6449. goto skip;
  6450. }
  6451. if (!btrfs_buffer_uptodate(next, generation, 0)) {
  6452. btrfs_tree_unlock(next);
  6453. free_extent_buffer(next);
  6454. next = NULL;
  6455. *lookup_info = 1;
  6456. }
  6457. if (!next) {
  6458. if (reada && level == 1)
  6459. reada_walk_down(trans, root, wc, path);
  6460. next = read_tree_block(root, bytenr, blocksize, generation);
  6461. if (!next || !extent_buffer_uptodate(next)) {
  6462. free_extent_buffer(next);
  6463. return -EIO;
  6464. }
  6465. btrfs_tree_lock(next);
  6466. btrfs_set_lock_blocking(next);
  6467. }
  6468. level--;
  6469. BUG_ON(level != btrfs_header_level(next));
  6470. path->nodes[level] = next;
  6471. path->slots[level] = 0;
  6472. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6473. wc->level = level;
  6474. if (wc->level == 1)
  6475. wc->reada_slot = 0;
  6476. return 0;
  6477. skip:
  6478. wc->refs[level - 1] = 0;
  6479. wc->flags[level - 1] = 0;
  6480. if (wc->stage == DROP_REFERENCE) {
  6481. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  6482. parent = path->nodes[level]->start;
  6483. } else {
  6484. BUG_ON(root->root_key.objectid !=
  6485. btrfs_header_owner(path->nodes[level]));
  6486. parent = 0;
  6487. }
  6488. ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
  6489. root->root_key.objectid, level - 1, 0, 0);
  6490. BUG_ON(ret); /* -ENOMEM */
  6491. }
  6492. btrfs_tree_unlock(next);
  6493. free_extent_buffer(next);
  6494. *lookup_info = 1;
  6495. return 1;
  6496. }
  6497. /*
  6498. * helper to process tree block while walking up the tree.
  6499. *
  6500. * when wc->stage == DROP_REFERENCE, this function drops
  6501. * reference count on the block.
  6502. *
  6503. * when wc->stage == UPDATE_BACKREF, this function changes
  6504. * wc->stage back to DROP_REFERENCE if we changed wc->stage
  6505. * to UPDATE_BACKREF previously while processing the block.
  6506. *
  6507. * NOTE: return value 1 means we should stop walking up.
  6508. */
  6509. static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
  6510. struct btrfs_root *root,
  6511. struct btrfs_path *path,
  6512. struct walk_control *wc)
  6513. {
  6514. int ret;
  6515. int level = wc->level;
  6516. struct extent_buffer *eb = path->nodes[level];
  6517. u64 parent = 0;
  6518. if (wc->stage == UPDATE_BACKREF) {
  6519. BUG_ON(wc->shared_level < level);
  6520. if (level < wc->shared_level)
  6521. goto out;
  6522. ret = find_next_key(path, level + 1, &wc->update_progress);
  6523. if (ret > 0)
  6524. wc->update_ref = 0;
  6525. wc->stage = DROP_REFERENCE;
  6526. wc->shared_level = -1;
  6527. path->slots[level] = 0;
  6528. /*
  6529. * check reference count again if the block isn't locked.
  6530. * we should start walking down the tree again if reference
  6531. * count is one.
  6532. */
  6533. if (!path->locks[level]) {
  6534. BUG_ON(level == 0);
  6535. btrfs_tree_lock(eb);
  6536. btrfs_set_lock_blocking(eb);
  6537. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6538. ret = btrfs_lookup_extent_info(trans, root,
  6539. eb->start, level, 1,
  6540. &wc->refs[level],
  6541. &wc->flags[level]);
  6542. if (ret < 0) {
  6543. btrfs_tree_unlock_rw(eb, path->locks[level]);
  6544. path->locks[level] = 0;
  6545. return ret;
  6546. }
  6547. BUG_ON(wc->refs[level] == 0);
  6548. if (wc->refs[level] == 1) {
  6549. btrfs_tree_unlock_rw(eb, path->locks[level]);
  6550. path->locks[level] = 0;
  6551. return 1;
  6552. }
  6553. }
  6554. }
  6555. /* wc->stage == DROP_REFERENCE */
  6556. BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
  6557. if (wc->refs[level] == 1) {
  6558. if (level == 0) {
  6559. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  6560. ret = btrfs_dec_ref(trans, root, eb, 1,
  6561. wc->for_reloc);
  6562. else
  6563. ret = btrfs_dec_ref(trans, root, eb, 0,
  6564. wc->for_reloc);
  6565. BUG_ON(ret); /* -ENOMEM */
  6566. }
  6567. /* make block locked assertion in clean_tree_block happy */
  6568. if (!path->locks[level] &&
  6569. btrfs_header_generation(eb) == trans->transid) {
  6570. btrfs_tree_lock(eb);
  6571. btrfs_set_lock_blocking(eb);
  6572. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6573. }
  6574. clean_tree_block(trans, root, eb);
  6575. }
  6576. if (eb == root->node) {
  6577. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  6578. parent = eb->start;
  6579. else
  6580. BUG_ON(root->root_key.objectid !=
  6581. btrfs_header_owner(eb));
  6582. } else {
  6583. if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  6584. parent = path->nodes[level + 1]->start;
  6585. else
  6586. BUG_ON(root->root_key.objectid !=
  6587. btrfs_header_owner(path->nodes[level + 1]));
  6588. }
  6589. btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
  6590. out:
  6591. wc->refs[level] = 0;
  6592. wc->flags[level] = 0;
  6593. return 0;
  6594. }
  6595. static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
  6596. struct btrfs_root *root,
  6597. struct btrfs_path *path,
  6598. struct walk_control *wc)
  6599. {
  6600. int level = wc->level;
  6601. int lookup_info = 1;
  6602. int ret;
  6603. while (level >= 0) {
  6604. ret = walk_down_proc(trans, root, path, wc, lookup_info);
  6605. if (ret > 0)
  6606. break;
  6607. if (level == 0)
  6608. break;
  6609. if (path->slots[level] >=
  6610. btrfs_header_nritems(path->nodes[level]))
  6611. break;
  6612. ret = do_walk_down(trans, root, path, wc, &lookup_info);
  6613. if (ret > 0) {
  6614. path->slots[level]++;
  6615. continue;
  6616. } else if (ret < 0)
  6617. return ret;
  6618. level = wc->level;
  6619. }
  6620. return 0;
  6621. }
  6622. static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
  6623. struct btrfs_root *root,
  6624. struct btrfs_path *path,
  6625. struct walk_control *wc, int max_level)
  6626. {
  6627. int level = wc->level;
  6628. int ret;
  6629. path->slots[level] = btrfs_header_nritems(path->nodes[level]);
  6630. while (level < max_level && path->nodes[level]) {
  6631. wc->level = level;
  6632. if (path->slots[level] + 1 <
  6633. btrfs_header_nritems(path->nodes[level])) {
  6634. path->slots[level]++;
  6635. return 0;
  6636. } else {
  6637. ret = walk_up_proc(trans, root, path, wc);
  6638. if (ret > 0)
  6639. return 0;
  6640. if (path->locks[level]) {
  6641. btrfs_tree_unlock_rw(path->nodes[level],
  6642. path->locks[level]);
  6643. path->locks[level] = 0;
  6644. }
  6645. free_extent_buffer(path->nodes[level]);
  6646. path->nodes[level] = NULL;
  6647. level++;
  6648. }
  6649. }
  6650. return 1;
  6651. }
  6652. /*
  6653. * drop a subvolume tree.
  6654. *
  6655. * this function traverses the tree freeing any blocks that only
  6656. * referenced by the tree.
  6657. *
  6658. * when a shared tree block is found. this function decreases its
  6659. * reference count by one. if update_ref is true, this function
  6660. * also make sure backrefs for the shared block and all lower level
  6661. * blocks are properly updated.
  6662. *
  6663. * If called with for_reloc == 0, may exit early with -EAGAIN
  6664. */
  6665. int btrfs_drop_snapshot(struct btrfs_root *root,
  6666. struct btrfs_block_rsv *block_rsv, int update_ref,
  6667. int for_reloc)
  6668. {
  6669. struct btrfs_path *path;
  6670. struct btrfs_trans_handle *trans;
  6671. struct btrfs_root *tree_root = root->fs_info->tree_root;
  6672. struct btrfs_root_item *root_item = &root->root_item;
  6673. struct walk_control *wc;
  6674. struct btrfs_key key;
  6675. int err = 0;
  6676. int ret;
  6677. int level;
  6678. bool root_dropped = false;
  6679. path = btrfs_alloc_path();
  6680. if (!path) {
  6681. err = -ENOMEM;
  6682. goto out;
  6683. }
  6684. wc = kzalloc(sizeof(*wc), GFP_NOFS);
  6685. if (!wc) {
  6686. btrfs_free_path(path);
  6687. err = -ENOMEM;
  6688. goto out;
  6689. }
  6690. trans = btrfs_start_transaction(tree_root, 0);
  6691. if (IS_ERR(trans)) {
  6692. err = PTR_ERR(trans);
  6693. goto out_free;
  6694. }
  6695. if (block_rsv)
  6696. trans->block_rsv = block_rsv;
  6697. if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
  6698. level = btrfs_header_level(root->node);
  6699. path->nodes[level] = btrfs_lock_root_node(root);
  6700. btrfs_set_lock_blocking(path->nodes[level]);
  6701. path->slots[level] = 0;
  6702. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6703. memset(&wc->update_progress, 0,
  6704. sizeof(wc->update_progress));
  6705. } else {
  6706. btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
  6707. memcpy(&wc->update_progress, &key,
  6708. sizeof(wc->update_progress));
  6709. level = root_item->drop_level;
  6710. BUG_ON(level == 0);
  6711. path->lowest_level = level;
  6712. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  6713. path->lowest_level = 0;
  6714. if (ret < 0) {
  6715. err = ret;
  6716. goto out_end_trans;
  6717. }
  6718. WARN_ON(ret > 0);
  6719. /*
  6720. * unlock our path, this is safe because only this
  6721. * function is allowed to delete this snapshot
  6722. */
  6723. btrfs_unlock_up_safe(path, 0);
  6724. level = btrfs_header_level(root->node);
  6725. while (1) {
  6726. btrfs_tree_lock(path->nodes[level]);
  6727. btrfs_set_lock_blocking(path->nodes[level]);
  6728. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6729. ret = btrfs_lookup_extent_info(trans, root,
  6730. path->nodes[level]->start,
  6731. level, 1, &wc->refs[level],
  6732. &wc->flags[level]);
  6733. if (ret < 0) {
  6734. err = ret;
  6735. goto out_end_trans;
  6736. }
  6737. BUG_ON(wc->refs[level] == 0);
  6738. if (level == root_item->drop_level)
  6739. break;
  6740. btrfs_tree_unlock(path->nodes[level]);
  6741. path->locks[level] = 0;
  6742. WARN_ON(wc->refs[level] != 1);
  6743. level--;
  6744. }
  6745. }
  6746. wc->level = level;
  6747. wc->shared_level = -1;
  6748. wc->stage = DROP_REFERENCE;
  6749. wc->update_ref = update_ref;
  6750. wc->keep_locks = 0;
  6751. wc->for_reloc = for_reloc;
  6752. wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
  6753. while (1) {
  6754. ret = walk_down_tree(trans, root, path, wc);
  6755. if (ret < 0) {
  6756. err = ret;
  6757. break;
  6758. }
  6759. ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
  6760. if (ret < 0) {
  6761. err = ret;
  6762. break;
  6763. }
  6764. if (ret > 0) {
  6765. BUG_ON(wc->stage != DROP_REFERENCE);
  6766. break;
  6767. }
  6768. if (wc->stage == DROP_REFERENCE) {
  6769. level = wc->level;
  6770. btrfs_node_key(path->nodes[level],
  6771. &root_item->drop_progress,
  6772. path->slots[level]);
  6773. root_item->drop_level = level;
  6774. }
  6775. BUG_ON(wc->level == 0);
  6776. if (btrfs_should_end_transaction(trans, tree_root) ||
  6777. (!for_reloc && btrfs_need_cleaner_sleep(root))) {
  6778. ret = btrfs_update_root(trans, tree_root,
  6779. &root->root_key,
  6780. root_item);
  6781. if (ret) {
  6782. btrfs_abort_transaction(trans, tree_root, ret);
  6783. err = ret;
  6784. goto out_end_trans;
  6785. }
  6786. btrfs_end_transaction_throttle(trans, tree_root);
  6787. if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
  6788. pr_debug("BTRFS: drop snapshot early exit\n");
  6789. err = -EAGAIN;
  6790. goto out_free;
  6791. }
  6792. trans = btrfs_start_transaction(tree_root, 0);
  6793. if (IS_ERR(trans)) {
  6794. err = PTR_ERR(trans);
  6795. goto out_free;
  6796. }
  6797. if (block_rsv)
  6798. trans->block_rsv = block_rsv;
  6799. }
  6800. }
  6801. btrfs_release_path(path);
  6802. if (err)
  6803. goto out_end_trans;
  6804. ret = btrfs_del_root(trans, tree_root, &root->root_key);
  6805. if (ret) {
  6806. btrfs_abort_transaction(trans, tree_root, ret);
  6807. goto out_end_trans;
  6808. }
  6809. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  6810. ret = btrfs_find_root(tree_root, &root->root_key, path,
  6811. NULL, NULL);
  6812. if (ret < 0) {
  6813. btrfs_abort_transaction(trans, tree_root, ret);
  6814. err = ret;
  6815. goto out_end_trans;
  6816. } else if (ret > 0) {
  6817. /* if we fail to delete the orphan item this time
  6818. * around, it'll get picked up the next time.
  6819. *
  6820. * The most common failure here is just -ENOENT.
  6821. */
  6822. btrfs_del_orphan_item(trans, tree_root,
  6823. root->root_key.objectid);
  6824. }
  6825. }
  6826. if (root->in_radix) {
  6827. btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
  6828. } else {
  6829. free_extent_buffer(root->node);
  6830. free_extent_buffer(root->commit_root);
  6831. btrfs_put_fs_root(root);
  6832. }
  6833. root_dropped = true;
  6834. out_end_trans:
  6835. btrfs_end_transaction_throttle(trans, tree_root);
  6836. out_free:
  6837. kfree(wc);
  6838. btrfs_free_path(path);
  6839. out:
  6840. /*
  6841. * So if we need to stop dropping the snapshot for whatever reason we
  6842. * need to make sure to add it back to the dead root list so that we
  6843. * keep trying to do the work later. This also cleans up roots if we
  6844. * don't have it in the radix (like when we recover after a power fail
  6845. * or unmount) so we don't leak memory.
  6846. */
  6847. if (!for_reloc && root_dropped == false)
  6848. btrfs_add_dead_root(root);
  6849. if (err && err != -EAGAIN)
  6850. btrfs_std_error(root->fs_info, err);
  6851. return err;
  6852. }
  6853. /*
  6854. * drop subtree rooted at tree block 'node'.
  6855. *
  6856. * NOTE: this function will unlock and release tree block 'node'
  6857. * only used by relocation code
  6858. */
  6859. int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
  6860. struct btrfs_root *root,
  6861. struct extent_buffer *node,
  6862. struct extent_buffer *parent)
  6863. {
  6864. struct btrfs_path *path;
  6865. struct walk_control *wc;
  6866. int level;
  6867. int parent_level;
  6868. int ret = 0;
  6869. int wret;
  6870. BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  6871. path = btrfs_alloc_path();
  6872. if (!path)
  6873. return -ENOMEM;
  6874. wc = kzalloc(sizeof(*wc), GFP_NOFS);
  6875. if (!wc) {
  6876. btrfs_free_path(path);
  6877. return -ENOMEM;
  6878. }
  6879. btrfs_assert_tree_locked(parent);
  6880. parent_level = btrfs_header_level(parent);
  6881. extent_buffer_get(parent);
  6882. path->nodes[parent_level] = parent;
  6883. path->slots[parent_level] = btrfs_header_nritems(parent);
  6884. btrfs_assert_tree_locked(node);
  6885. level = btrfs_header_level(node);
  6886. path->nodes[level] = node;
  6887. path->slots[level] = 0;
  6888. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6889. wc->refs[parent_level] = 1;
  6890. wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  6891. wc->level = level;
  6892. wc->shared_level = -1;
  6893. wc->stage = DROP_REFERENCE;
  6894. wc->update_ref = 0;
  6895. wc->keep_locks = 1;
  6896. wc->for_reloc = 1;
  6897. wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
  6898. while (1) {
  6899. wret = walk_down_tree(trans, root, path, wc);
  6900. if (wret < 0) {
  6901. ret = wret;
  6902. break;
  6903. }
  6904. wret = walk_up_tree(trans, root, path, wc, parent_level);
  6905. if (wret < 0)
  6906. ret = wret;
  6907. if (wret != 0)
  6908. break;
  6909. }
  6910. kfree(wc);
  6911. btrfs_free_path(path);
  6912. return ret;
  6913. }
  6914. static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
  6915. {
  6916. u64 num_devices;
  6917. u64 stripped;
  6918. /*
  6919. * if restripe for this chunk_type is on pick target profile and
  6920. * return, otherwise do the usual balance
  6921. */
  6922. stripped = get_restripe_target(root->fs_info, flags);
  6923. if (stripped)
  6924. return extended_to_chunk(stripped);
  6925. /*
  6926. * we add in the count of missing devices because we want
  6927. * to make sure that any RAID levels on a degraded FS
  6928. * continue to be honored.
  6929. */
  6930. num_devices = root->fs_info->fs_devices->rw_devices +
  6931. root->fs_info->fs_devices->missing_devices;
  6932. stripped = BTRFS_BLOCK_GROUP_RAID0 |
  6933. BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
  6934. BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
  6935. if (num_devices == 1) {
  6936. stripped |= BTRFS_BLOCK_GROUP_DUP;
  6937. stripped = flags & ~stripped;
  6938. /* turn raid0 into single device chunks */
  6939. if (flags & BTRFS_BLOCK_GROUP_RAID0)
  6940. return stripped;
  6941. /* turn mirroring into duplication */
  6942. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  6943. BTRFS_BLOCK_GROUP_RAID10))
  6944. return stripped | BTRFS_BLOCK_GROUP_DUP;
  6945. } else {
  6946. /* they already had raid on here, just return */
  6947. if (flags & stripped)
  6948. return flags;
  6949. stripped |= BTRFS_BLOCK_GROUP_DUP;
  6950. stripped = flags & ~stripped;
  6951. /* switch duplicated blocks with raid1 */
  6952. if (flags & BTRFS_BLOCK_GROUP_DUP)
  6953. return stripped | BTRFS_BLOCK_GROUP_RAID1;
  6954. /* this is drive concat, leave it alone */
  6955. }
  6956. return flags;
  6957. }
  6958. static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
  6959. {
  6960. struct btrfs_space_info *sinfo = cache->space_info;
  6961. u64 num_bytes;
  6962. u64 min_allocable_bytes;
  6963. int ret = -ENOSPC;
  6964. /*
  6965. * We need some metadata space and system metadata space for
  6966. * allocating chunks in some corner cases until we force to set
  6967. * it to be readonly.
  6968. */
  6969. if ((sinfo->flags &
  6970. (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
  6971. !force)
  6972. min_allocable_bytes = 1 * 1024 * 1024;
  6973. else
  6974. min_allocable_bytes = 0;
  6975. spin_lock(&sinfo->lock);
  6976. spin_lock(&cache->lock);
  6977. if (cache->ro) {
  6978. ret = 0;
  6979. goto out;
  6980. }
  6981. num_bytes = cache->key.offset - cache->reserved - cache->pinned -
  6982. cache->bytes_super - btrfs_block_group_used(&cache->item);
  6983. if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
  6984. sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
  6985. min_allocable_bytes <= sinfo->total_bytes) {
  6986. sinfo->bytes_readonly += num_bytes;
  6987. cache->ro = 1;
  6988. ret = 0;
  6989. }
  6990. out:
  6991. spin_unlock(&cache->lock);
  6992. spin_unlock(&sinfo->lock);
  6993. return ret;
  6994. }
  6995. int btrfs_set_block_group_ro(struct btrfs_root *root,
  6996. struct btrfs_block_group_cache *cache)
  6997. {
  6998. struct btrfs_trans_handle *trans;
  6999. u64 alloc_flags;
  7000. int ret;
  7001. BUG_ON(cache->ro);
  7002. trans = btrfs_join_transaction(root);
  7003. if (IS_ERR(trans))
  7004. return PTR_ERR(trans);
  7005. alloc_flags = update_block_group_flags(root, cache->flags);
  7006. if (alloc_flags != cache->flags) {
  7007. ret = do_chunk_alloc(trans, root, alloc_flags,
  7008. CHUNK_ALLOC_FORCE);
  7009. if (ret < 0)
  7010. goto out;
  7011. }
  7012. ret = set_block_group_ro(cache, 0);
  7013. if (!ret)
  7014. goto out;
  7015. alloc_flags = get_alloc_profile(root, cache->space_info->flags);
  7016. ret = do_chunk_alloc(trans, root, alloc_flags,
  7017. CHUNK_ALLOC_FORCE);
  7018. if (ret < 0)
  7019. goto out;
  7020. ret = set_block_group_ro(cache, 0);
  7021. out:
  7022. btrfs_end_transaction(trans, root);
  7023. return ret;
  7024. }
  7025. int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
  7026. struct btrfs_root *root, u64 type)
  7027. {
  7028. u64 alloc_flags = get_alloc_profile(root, type);
  7029. return do_chunk_alloc(trans, root, alloc_flags,
  7030. CHUNK_ALLOC_FORCE);
  7031. }
  7032. /*
  7033. * helper to account the unused space of all the readonly block group in the
  7034. * list. takes mirrors into account.
  7035. */
  7036. static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
  7037. {
  7038. struct btrfs_block_group_cache *block_group;
  7039. u64 free_bytes = 0;
  7040. int factor;
  7041. list_for_each_entry(block_group, groups_list, list) {
  7042. spin_lock(&block_group->lock);
  7043. if (!block_group->ro) {
  7044. spin_unlock(&block_group->lock);
  7045. continue;
  7046. }
  7047. if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
  7048. BTRFS_BLOCK_GROUP_RAID10 |
  7049. BTRFS_BLOCK_GROUP_DUP))
  7050. factor = 2;
  7051. else
  7052. factor = 1;
  7053. free_bytes += (block_group->key.offset -
  7054. btrfs_block_group_used(&block_group->item)) *
  7055. factor;
  7056. spin_unlock(&block_group->lock);
  7057. }
  7058. return free_bytes;
  7059. }
  7060. /*
  7061. * helper to account the unused space of all the readonly block group in the
  7062. * space_info. takes mirrors into account.
  7063. */
  7064. u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
  7065. {
  7066. int i;
  7067. u64 free_bytes = 0;
  7068. spin_lock(&sinfo->lock);
  7069. for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  7070. if (!list_empty(&sinfo->block_groups[i]))
  7071. free_bytes += __btrfs_get_ro_block_group_free_space(
  7072. &sinfo->block_groups[i]);
  7073. spin_unlock(&sinfo->lock);
  7074. return free_bytes;
  7075. }
  7076. void btrfs_set_block_group_rw(struct btrfs_root *root,
  7077. struct btrfs_block_group_cache *cache)
  7078. {
  7079. struct btrfs_space_info *sinfo = cache->space_info;
  7080. u64 num_bytes;
  7081. BUG_ON(!cache->ro);
  7082. spin_lock(&sinfo->lock);
  7083. spin_lock(&cache->lock);
  7084. num_bytes = cache->key.offset - cache->reserved - cache->pinned -
  7085. cache->bytes_super - btrfs_block_group_used(&cache->item);
  7086. sinfo->bytes_readonly -= num_bytes;
  7087. cache->ro = 0;
  7088. spin_unlock(&cache->lock);
  7089. spin_unlock(&sinfo->lock);
  7090. }
  7091. /*
  7092. * checks to see if its even possible to relocate this block group.
  7093. *
  7094. * @return - -1 if it's not a good idea to relocate this block group, 0 if its
  7095. * ok to go ahead and try.
  7096. */
  7097. int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
  7098. {
  7099. struct btrfs_block_group_cache *block_group;
  7100. struct btrfs_space_info *space_info;
  7101. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  7102. struct btrfs_device *device;
  7103. struct btrfs_trans_handle *trans;
  7104. u64 min_free;
  7105. u64 dev_min = 1;
  7106. u64 dev_nr = 0;
  7107. u64 target;
  7108. int index;
  7109. int full = 0;
  7110. int ret = 0;
  7111. block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
  7112. /* odd, couldn't find the block group, leave it alone */
  7113. if (!block_group)
  7114. return -1;
  7115. min_free = btrfs_block_group_used(&block_group->item);
  7116. /* no bytes used, we're good */
  7117. if (!min_free)
  7118. goto out;
  7119. space_info = block_group->space_info;
  7120. spin_lock(&space_info->lock);
  7121. full = space_info->full;
  7122. /*
  7123. * if this is the last block group we have in this space, we can't
  7124. * relocate it unless we're able to allocate a new chunk below.
  7125. *
  7126. * Otherwise, we need to make sure we have room in the space to handle
  7127. * all of the extents from this block group. If we can, we're good
  7128. */
  7129. if ((space_info->total_bytes != block_group->key.offset) &&
  7130. (space_info->bytes_used + space_info->bytes_reserved +
  7131. space_info->bytes_pinned + space_info->bytes_readonly +
  7132. min_free < space_info->total_bytes)) {
  7133. spin_unlock(&space_info->lock);
  7134. goto out;
  7135. }
  7136. spin_unlock(&space_info->lock);
  7137. /*
  7138. * ok we don't have enough space, but maybe we have free space on our
  7139. * devices to allocate new chunks for relocation, so loop through our
  7140. * alloc devices and guess if we have enough space. if this block
  7141. * group is going to be restriped, run checks against the target
  7142. * profile instead of the current one.
  7143. */
  7144. ret = -1;
  7145. /*
  7146. * index:
  7147. * 0: raid10
  7148. * 1: raid1
  7149. * 2: dup
  7150. * 3: raid0
  7151. * 4: single
  7152. */
  7153. target = get_restripe_target(root->fs_info, block_group->flags);
  7154. if (target) {
  7155. index = __get_raid_index(extended_to_chunk(target));
  7156. } else {
  7157. /*
  7158. * this is just a balance, so if we were marked as full
  7159. * we know there is no space for a new chunk
  7160. */
  7161. if (full)
  7162. goto out;
  7163. index = get_block_group_index(block_group);
  7164. }
  7165. if (index == BTRFS_RAID_RAID10) {
  7166. dev_min = 4;
  7167. /* Divide by 2 */
  7168. min_free >>= 1;
  7169. } else if (index == BTRFS_RAID_RAID1) {
  7170. dev_min = 2;
  7171. } else if (index == BTRFS_RAID_DUP) {
  7172. /* Multiply by 2 */
  7173. min_free <<= 1;
  7174. } else if (index == BTRFS_RAID_RAID0) {
  7175. dev_min = fs_devices->rw_devices;
  7176. do_div(min_free, dev_min);
  7177. }
  7178. /* We need to do this so that we can look at pending chunks */
  7179. trans = btrfs_join_transaction(root);
  7180. if (IS_ERR(trans)) {
  7181. ret = PTR_ERR(trans);
  7182. goto out;
  7183. }
  7184. mutex_lock(&root->fs_info->chunk_mutex);
  7185. list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
  7186. u64 dev_offset;
  7187. /*
  7188. * check to make sure we can actually find a chunk with enough
  7189. * space to fit our block group in.
  7190. */
  7191. if (device->total_bytes > device->bytes_used + min_free &&
  7192. !device->is_tgtdev_for_dev_replace) {
  7193. ret = find_free_dev_extent(trans, device, min_free,
  7194. &dev_offset, NULL);
  7195. if (!ret)
  7196. dev_nr++;
  7197. if (dev_nr >= dev_min)
  7198. break;
  7199. ret = -1;
  7200. }
  7201. }
  7202. mutex_unlock(&root->fs_info->chunk_mutex);
  7203. btrfs_end_transaction(trans, root);
  7204. out:
  7205. btrfs_put_block_group(block_group);
  7206. return ret;
  7207. }
  7208. static int find_first_block_group(struct btrfs_root *root,
  7209. struct btrfs_path *path, struct btrfs_key *key)
  7210. {
  7211. int ret = 0;
  7212. struct btrfs_key found_key;
  7213. struct extent_buffer *leaf;
  7214. int slot;
  7215. ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
  7216. if (ret < 0)
  7217. goto out;
  7218. while (1) {
  7219. slot = path->slots[0];
  7220. leaf = path->nodes[0];
  7221. if (slot >= btrfs_header_nritems(leaf)) {
  7222. ret = btrfs_next_leaf(root, path);
  7223. if (ret == 0)
  7224. continue;
  7225. if (ret < 0)
  7226. goto out;
  7227. break;
  7228. }
  7229. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  7230. if (found_key.objectid >= key->objectid &&
  7231. found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
  7232. ret = 0;
  7233. goto out;
  7234. }
  7235. path->slots[0]++;
  7236. }
  7237. out:
  7238. return ret;
  7239. }
  7240. void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
  7241. {
  7242. struct btrfs_block_group_cache *block_group;
  7243. u64 last = 0;
  7244. while (1) {
  7245. struct inode *inode;
  7246. block_group = btrfs_lookup_first_block_group(info, last);
  7247. while (block_group) {
  7248. spin_lock(&block_group->lock);
  7249. if (block_group->iref)
  7250. break;
  7251. spin_unlock(&block_group->lock);
  7252. block_group = next_block_group(info->tree_root,
  7253. block_group);
  7254. }
  7255. if (!block_group) {
  7256. if (last == 0)
  7257. break;
  7258. last = 0;
  7259. continue;
  7260. }
  7261. inode = block_group->inode;
  7262. block_group->iref = 0;
  7263. block_group->inode = NULL;
  7264. spin_unlock(&block_group->lock);
  7265. iput(inode);
  7266. last = block_group->key.objectid + block_group->key.offset;
  7267. btrfs_put_block_group(block_group);
  7268. }
  7269. }
  7270. int btrfs_free_block_groups(struct btrfs_fs_info *info)
  7271. {
  7272. struct btrfs_block_group_cache *block_group;
  7273. struct btrfs_space_info *space_info;
  7274. struct btrfs_caching_control *caching_ctl;
  7275. struct rb_node *n;
  7276. down_write(&info->extent_commit_sem);
  7277. while (!list_empty(&info->caching_block_groups)) {
  7278. caching_ctl = list_entry(info->caching_block_groups.next,
  7279. struct btrfs_caching_control, list);
  7280. list_del(&caching_ctl->list);
  7281. put_caching_control(caching_ctl);
  7282. }
  7283. up_write(&info->extent_commit_sem);
  7284. spin_lock(&info->block_group_cache_lock);
  7285. while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
  7286. block_group = rb_entry(n, struct btrfs_block_group_cache,
  7287. cache_node);
  7288. rb_erase(&block_group->cache_node,
  7289. &info->block_group_cache_tree);
  7290. spin_unlock(&info->block_group_cache_lock);
  7291. down_write(&block_group->space_info->groups_sem);
  7292. list_del(&block_group->list);
  7293. up_write(&block_group->space_info->groups_sem);
  7294. if (block_group->cached == BTRFS_CACHE_STARTED)
  7295. wait_block_group_cache_done(block_group);
  7296. /*
  7297. * We haven't cached this block group, which means we could
  7298. * possibly have excluded extents on this block group.
  7299. */
  7300. if (block_group->cached == BTRFS_CACHE_NO ||
  7301. block_group->cached == BTRFS_CACHE_ERROR)
  7302. free_excluded_extents(info->extent_root, block_group);
  7303. btrfs_remove_free_space_cache(block_group);
  7304. btrfs_put_block_group(block_group);
  7305. spin_lock(&info->block_group_cache_lock);
  7306. }
  7307. spin_unlock(&info->block_group_cache_lock);
  7308. /* now that all the block groups are freed, go through and
  7309. * free all the space_info structs. This is only called during
  7310. * the final stages of unmount, and so we know nobody is
  7311. * using them. We call synchronize_rcu() once before we start,
  7312. * just to be on the safe side.
  7313. */
  7314. synchronize_rcu();
  7315. release_global_block_rsv(info);
  7316. while (!list_empty(&info->space_info)) {
  7317. int i;
  7318. space_info = list_entry(info->space_info.next,
  7319. struct btrfs_space_info,
  7320. list);
  7321. if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
  7322. if (WARN_ON(space_info->bytes_pinned > 0 ||
  7323. space_info->bytes_reserved > 0 ||
  7324. space_info->bytes_may_use > 0)) {
  7325. dump_space_info(space_info, 0, 0);
  7326. }
  7327. }
  7328. list_del(&space_info->list);
  7329. for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
  7330. struct kobject *kobj;
  7331. kobj = &space_info->block_group_kobjs[i];
  7332. if (kobj->parent) {
  7333. kobject_del(kobj);
  7334. kobject_put(kobj);
  7335. }
  7336. }
  7337. kobject_del(&space_info->kobj);
  7338. kobject_put(&space_info->kobj);
  7339. }
  7340. return 0;
  7341. }
  7342. static void __link_block_group(struct btrfs_space_info *space_info,
  7343. struct btrfs_block_group_cache *cache)
  7344. {
  7345. int index = get_block_group_index(cache);
  7346. down_write(&space_info->groups_sem);
  7347. if (list_empty(&space_info->block_groups[index])) {
  7348. struct kobject *kobj = &space_info->block_group_kobjs[index];
  7349. int ret;
  7350. kobject_get(&space_info->kobj); /* put in release */
  7351. ret = kobject_add(kobj, &space_info->kobj, "%s",
  7352. get_raid_name(index));
  7353. if (ret) {
  7354. pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
  7355. kobject_put(&space_info->kobj);
  7356. }
  7357. }
  7358. list_add_tail(&cache->list, &space_info->block_groups[index]);
  7359. up_write(&space_info->groups_sem);
  7360. }
  7361. static struct btrfs_block_group_cache *
  7362. btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
  7363. {
  7364. struct btrfs_block_group_cache *cache;
  7365. cache = kzalloc(sizeof(*cache), GFP_NOFS);
  7366. if (!cache)
  7367. return NULL;
  7368. cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
  7369. GFP_NOFS);
  7370. if (!cache->free_space_ctl) {
  7371. kfree(cache);
  7372. return NULL;
  7373. }
  7374. cache->key.objectid = start;
  7375. cache->key.offset = size;
  7376. cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
  7377. cache->sectorsize = root->sectorsize;
  7378. cache->fs_info = root->fs_info;
  7379. cache->full_stripe_len = btrfs_full_stripe_len(root,
  7380. &root->fs_info->mapping_tree,
  7381. start);
  7382. atomic_set(&cache->count, 1);
  7383. spin_lock_init(&cache->lock);
  7384. INIT_LIST_HEAD(&cache->list);
  7385. INIT_LIST_HEAD(&cache->cluster_list);
  7386. INIT_LIST_HEAD(&cache->new_bg_list);
  7387. btrfs_init_free_space_ctl(cache);
  7388. return cache;
  7389. }
  7390. int btrfs_read_block_groups(struct btrfs_root *root)
  7391. {
  7392. struct btrfs_path *path;
  7393. int ret;
  7394. struct btrfs_block_group_cache *cache;
  7395. struct btrfs_fs_info *info = root->fs_info;
  7396. struct btrfs_space_info *space_info;
  7397. struct btrfs_key key;
  7398. struct btrfs_key found_key;
  7399. struct extent_buffer *leaf;
  7400. int need_clear = 0;
  7401. u64 cache_gen;
  7402. root = info->extent_root;
  7403. key.objectid = 0;
  7404. key.offset = 0;
  7405. btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
  7406. path = btrfs_alloc_path();
  7407. if (!path)
  7408. return -ENOMEM;
  7409. path->reada = 1;
  7410. cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
  7411. if (btrfs_test_opt(root, SPACE_CACHE) &&
  7412. btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
  7413. need_clear = 1;
  7414. if (btrfs_test_opt(root, CLEAR_CACHE))
  7415. need_clear = 1;
  7416. while (1) {
  7417. ret = find_first_block_group(root, path, &key);
  7418. if (ret > 0)
  7419. break;
  7420. if (ret != 0)
  7421. goto error;
  7422. leaf = path->nodes[0];
  7423. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  7424. cache = btrfs_create_block_group_cache(root, found_key.objectid,
  7425. found_key.offset);
  7426. if (!cache) {
  7427. ret = -ENOMEM;
  7428. goto error;
  7429. }
  7430. if (need_clear) {
  7431. /*
  7432. * When we mount with old space cache, we need to
  7433. * set BTRFS_DC_CLEAR and set dirty flag.
  7434. *
  7435. * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
  7436. * truncate the old free space cache inode and
  7437. * setup a new one.
  7438. * b) Setting 'dirty flag' makes sure that we flush
  7439. * the new space cache info onto disk.
  7440. */
  7441. cache->disk_cache_state = BTRFS_DC_CLEAR;
  7442. if (btrfs_test_opt(root, SPACE_CACHE))
  7443. cache->dirty = 1;
  7444. }
  7445. read_extent_buffer(leaf, &cache->item,
  7446. btrfs_item_ptr_offset(leaf, path->slots[0]),
  7447. sizeof(cache->item));
  7448. cache->flags = btrfs_block_group_flags(&cache->item);
  7449. key.objectid = found_key.objectid + found_key.offset;
  7450. btrfs_release_path(path);
  7451. /*
  7452. * We need to exclude the super stripes now so that the space
  7453. * info has super bytes accounted for, otherwise we'll think
  7454. * we have more space than we actually do.
  7455. */
  7456. ret = exclude_super_stripes(root, cache);
  7457. if (ret) {
  7458. /*
  7459. * We may have excluded something, so call this just in
  7460. * case.
  7461. */
  7462. free_excluded_extents(root, cache);
  7463. btrfs_put_block_group(cache);
  7464. goto error;
  7465. }
  7466. /*
  7467. * check for two cases, either we are full, and therefore
  7468. * don't need to bother with the caching work since we won't
  7469. * find any space, or we are empty, and we can just add all
  7470. * the space in and be done with it. This saves us _alot_ of
  7471. * time, particularly in the full case.
  7472. */
  7473. if (found_key.offset == btrfs_block_group_used(&cache->item)) {
  7474. cache->last_byte_to_unpin = (u64)-1;
  7475. cache->cached = BTRFS_CACHE_FINISHED;
  7476. free_excluded_extents(root, cache);
  7477. } else if (btrfs_block_group_used(&cache->item) == 0) {
  7478. cache->last_byte_to_unpin = (u64)-1;
  7479. cache->cached = BTRFS_CACHE_FINISHED;
  7480. add_new_free_space(cache, root->fs_info,
  7481. found_key.objectid,
  7482. found_key.objectid +
  7483. found_key.offset);
  7484. free_excluded_extents(root, cache);
  7485. }
  7486. ret = btrfs_add_block_group_cache(root->fs_info, cache);
  7487. if (ret) {
  7488. btrfs_remove_free_space_cache(cache);
  7489. btrfs_put_block_group(cache);
  7490. goto error;
  7491. }
  7492. ret = update_space_info(info, cache->flags, found_key.offset,
  7493. btrfs_block_group_used(&cache->item),
  7494. &space_info);
  7495. if (ret) {
  7496. btrfs_remove_free_space_cache(cache);
  7497. spin_lock(&info->block_group_cache_lock);
  7498. rb_erase(&cache->cache_node,
  7499. &info->block_group_cache_tree);
  7500. spin_unlock(&info->block_group_cache_lock);
  7501. btrfs_put_block_group(cache);
  7502. goto error;
  7503. }
  7504. cache->space_info = space_info;
  7505. spin_lock(&cache->space_info->lock);
  7506. cache->space_info->bytes_readonly += cache->bytes_super;
  7507. spin_unlock(&cache->space_info->lock);
  7508. __link_block_group(space_info, cache);
  7509. set_avail_alloc_bits(root->fs_info, cache->flags);
  7510. if (btrfs_chunk_readonly(root, cache->key.objectid))
  7511. set_block_group_ro(cache, 1);
  7512. }
  7513. list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
  7514. if (!(get_alloc_profile(root, space_info->flags) &
  7515. (BTRFS_BLOCK_GROUP_RAID10 |
  7516. BTRFS_BLOCK_GROUP_RAID1 |
  7517. BTRFS_BLOCK_GROUP_RAID5 |
  7518. BTRFS_BLOCK_GROUP_RAID6 |
  7519. BTRFS_BLOCK_GROUP_DUP)))
  7520. continue;
  7521. /*
  7522. * avoid allocating from un-mirrored block group if there are
  7523. * mirrored block groups.
  7524. */
  7525. list_for_each_entry(cache,
  7526. &space_info->block_groups[BTRFS_RAID_RAID0],
  7527. list)
  7528. set_block_group_ro(cache, 1);
  7529. list_for_each_entry(cache,
  7530. &space_info->block_groups[BTRFS_RAID_SINGLE],
  7531. list)
  7532. set_block_group_ro(cache, 1);
  7533. }
  7534. init_global_block_rsv(info);
  7535. ret = 0;
  7536. error:
  7537. btrfs_free_path(path);
  7538. return ret;
  7539. }
  7540. void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
  7541. struct btrfs_root *root)
  7542. {
  7543. struct btrfs_block_group_cache *block_group, *tmp;
  7544. struct btrfs_root *extent_root = root->fs_info->extent_root;
  7545. struct btrfs_block_group_item item;
  7546. struct btrfs_key key;
  7547. int ret = 0;
  7548. list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
  7549. new_bg_list) {
  7550. list_del_init(&block_group->new_bg_list);
  7551. if (ret)
  7552. continue;
  7553. spin_lock(&block_group->lock);
  7554. memcpy(&item, &block_group->item, sizeof(item));
  7555. memcpy(&key, &block_group->key, sizeof(key));
  7556. spin_unlock(&block_group->lock);
  7557. ret = btrfs_insert_item(trans, extent_root, &key, &item,
  7558. sizeof(item));
  7559. if (ret)
  7560. btrfs_abort_transaction(trans, extent_root, ret);
  7561. ret = btrfs_finish_chunk_alloc(trans, extent_root,
  7562. key.objectid, key.offset);
  7563. if (ret)
  7564. btrfs_abort_transaction(trans, extent_root, ret);
  7565. }
  7566. }
  7567. int btrfs_make_block_group(struct btrfs_trans_handle *trans,
  7568. struct btrfs_root *root, u64 bytes_used,
  7569. u64 type, u64 chunk_objectid, u64 chunk_offset,
  7570. u64 size)
  7571. {
  7572. int ret;
  7573. struct btrfs_root *extent_root;
  7574. struct btrfs_block_group_cache *cache;
  7575. extent_root = root->fs_info->extent_root;
  7576. root->fs_info->last_trans_log_full_commit = trans->transid;
  7577. cache = btrfs_create_block_group_cache(root, chunk_offset, size);
  7578. if (!cache)
  7579. return -ENOMEM;
  7580. btrfs_set_block_group_used(&cache->item, bytes_used);
  7581. btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
  7582. btrfs_set_block_group_flags(&cache->item, type);
  7583. cache->flags = type;
  7584. cache->last_byte_to_unpin = (u64)-1;
  7585. cache->cached = BTRFS_CACHE_FINISHED;
  7586. ret = exclude_super_stripes(root, cache);
  7587. if (ret) {
  7588. /*
  7589. * We may have excluded something, so call this just in
  7590. * case.
  7591. */
  7592. free_excluded_extents(root, cache);
  7593. btrfs_put_block_group(cache);
  7594. return ret;
  7595. }
  7596. add_new_free_space(cache, root->fs_info, chunk_offset,
  7597. chunk_offset + size);
  7598. free_excluded_extents(root, cache);
  7599. ret = btrfs_add_block_group_cache(root->fs_info, cache);
  7600. if (ret) {
  7601. btrfs_remove_free_space_cache(cache);
  7602. btrfs_put_block_group(cache);
  7603. return ret;
  7604. }
  7605. ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
  7606. &cache->space_info);
  7607. if (ret) {
  7608. btrfs_remove_free_space_cache(cache);
  7609. spin_lock(&root->fs_info->block_group_cache_lock);
  7610. rb_erase(&cache->cache_node,
  7611. &root->fs_info->block_group_cache_tree);
  7612. spin_unlock(&root->fs_info->block_group_cache_lock);
  7613. btrfs_put_block_group(cache);
  7614. return ret;
  7615. }
  7616. update_global_block_rsv(root->fs_info);
  7617. spin_lock(&cache->space_info->lock);
  7618. cache->space_info->bytes_readonly += cache->bytes_super;
  7619. spin_unlock(&cache->space_info->lock);
  7620. __link_block_group(cache->space_info, cache);
  7621. list_add_tail(&cache->new_bg_list, &trans->new_bgs);
  7622. set_avail_alloc_bits(extent_root->fs_info, type);
  7623. return 0;
  7624. }
  7625. static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
  7626. {
  7627. u64 extra_flags = chunk_to_extended(flags) &
  7628. BTRFS_EXTENDED_PROFILE_MASK;
  7629. write_seqlock(&fs_info->profiles_lock);
  7630. if (flags & BTRFS_BLOCK_GROUP_DATA)
  7631. fs_info->avail_data_alloc_bits &= ~extra_flags;
  7632. if (flags & BTRFS_BLOCK_GROUP_METADATA)
  7633. fs_info->avail_metadata_alloc_bits &= ~extra_flags;
  7634. if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  7635. fs_info->avail_system_alloc_bits &= ~extra_flags;
  7636. write_sequnlock(&fs_info->profiles_lock);
  7637. }
  7638. int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
  7639. struct btrfs_root *root, u64 group_start)
  7640. {
  7641. struct btrfs_path *path;
  7642. struct btrfs_block_group_cache *block_group;
  7643. struct btrfs_free_cluster *cluster;
  7644. struct btrfs_root *tree_root = root->fs_info->tree_root;
  7645. struct btrfs_key key;
  7646. struct inode *inode;
  7647. int ret;
  7648. int index;
  7649. int factor;
  7650. root = root->fs_info->extent_root;
  7651. block_group = btrfs_lookup_block_group(root->fs_info, group_start);
  7652. BUG_ON(!block_group);
  7653. BUG_ON(!block_group->ro);
  7654. /*
  7655. * Free the reserved super bytes from this block group before
  7656. * remove it.
  7657. */
  7658. free_excluded_extents(root, block_group);
  7659. memcpy(&key, &block_group->key, sizeof(key));
  7660. index = get_block_group_index(block_group);
  7661. if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
  7662. BTRFS_BLOCK_GROUP_RAID1 |
  7663. BTRFS_BLOCK_GROUP_RAID10))
  7664. factor = 2;
  7665. else
  7666. factor = 1;
  7667. /* make sure this block group isn't part of an allocation cluster */
  7668. cluster = &root->fs_info->data_alloc_cluster;
  7669. spin_lock(&cluster->refill_lock);
  7670. btrfs_return_cluster_to_free_space(block_group, cluster);
  7671. spin_unlock(&cluster->refill_lock);
  7672. /*
  7673. * make sure this block group isn't part of a metadata
  7674. * allocation cluster
  7675. */
  7676. cluster = &root->fs_info->meta_alloc_cluster;
  7677. spin_lock(&cluster->refill_lock);
  7678. btrfs_return_cluster_to_free_space(block_group, cluster);
  7679. spin_unlock(&cluster->refill_lock);
  7680. path = btrfs_alloc_path();
  7681. if (!path) {
  7682. ret = -ENOMEM;
  7683. goto out;
  7684. }
  7685. inode = lookup_free_space_inode(tree_root, block_group, path);
  7686. if (!IS_ERR(inode)) {
  7687. ret = btrfs_orphan_add(trans, inode);
  7688. if (ret) {
  7689. btrfs_add_delayed_iput(inode);
  7690. goto out;
  7691. }
  7692. clear_nlink(inode);
  7693. /* One for the block groups ref */
  7694. spin_lock(&block_group->lock);
  7695. if (block_group->iref) {
  7696. block_group->iref = 0;
  7697. block_group->inode = NULL;
  7698. spin_unlock(&block_group->lock);
  7699. iput(inode);
  7700. } else {
  7701. spin_unlock(&block_group->lock);
  7702. }
  7703. /* One for our lookup ref */
  7704. btrfs_add_delayed_iput(inode);
  7705. }
  7706. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  7707. key.offset = block_group->key.objectid;
  7708. key.type = 0;
  7709. ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
  7710. if (ret < 0)
  7711. goto out;
  7712. if (ret > 0)
  7713. btrfs_release_path(path);
  7714. if (ret == 0) {
  7715. ret = btrfs_del_item(trans, tree_root, path);
  7716. if (ret)
  7717. goto out;
  7718. btrfs_release_path(path);
  7719. }
  7720. spin_lock(&root->fs_info->block_group_cache_lock);
  7721. rb_erase(&block_group->cache_node,
  7722. &root->fs_info->block_group_cache_tree);
  7723. if (root->fs_info->first_logical_byte == block_group->key.objectid)
  7724. root->fs_info->first_logical_byte = (u64)-1;
  7725. spin_unlock(&root->fs_info->block_group_cache_lock);
  7726. down_write(&block_group->space_info->groups_sem);
  7727. /*
  7728. * we must use list_del_init so people can check to see if they
  7729. * are still on the list after taking the semaphore
  7730. */
  7731. list_del_init(&block_group->list);
  7732. if (list_empty(&block_group->space_info->block_groups[index])) {
  7733. kobject_del(&block_group->space_info->block_group_kobjs[index]);
  7734. kobject_put(&block_group->space_info->block_group_kobjs[index]);
  7735. clear_avail_alloc_bits(root->fs_info, block_group->flags);
  7736. }
  7737. up_write(&block_group->space_info->groups_sem);
  7738. if (block_group->cached == BTRFS_CACHE_STARTED)
  7739. wait_block_group_cache_done(block_group);
  7740. btrfs_remove_free_space_cache(block_group);
  7741. spin_lock(&block_group->space_info->lock);
  7742. block_group->space_info->total_bytes -= block_group->key.offset;
  7743. block_group->space_info->bytes_readonly -= block_group->key.offset;
  7744. block_group->space_info->disk_total -= block_group->key.offset * factor;
  7745. spin_unlock(&block_group->space_info->lock);
  7746. memcpy(&key, &block_group->key, sizeof(key));
  7747. btrfs_clear_space_info_full(root->fs_info);
  7748. btrfs_put_block_group(block_group);
  7749. btrfs_put_block_group(block_group);
  7750. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  7751. if (ret > 0)
  7752. ret = -EIO;
  7753. if (ret < 0)
  7754. goto out;
  7755. ret = btrfs_del_item(trans, root, path);
  7756. out:
  7757. btrfs_free_path(path);
  7758. return ret;
  7759. }
  7760. int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
  7761. {
  7762. struct btrfs_space_info *space_info;
  7763. struct btrfs_super_block *disk_super;
  7764. u64 features;
  7765. u64 flags;
  7766. int mixed = 0;
  7767. int ret;
  7768. disk_super = fs_info->super_copy;
  7769. if (!btrfs_super_root(disk_super))
  7770. return 1;
  7771. features = btrfs_super_incompat_flags(disk_super);
  7772. if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
  7773. mixed = 1;
  7774. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  7775. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7776. if (ret)
  7777. goto out;
  7778. if (mixed) {
  7779. flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
  7780. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7781. } else {
  7782. flags = BTRFS_BLOCK_GROUP_METADATA;
  7783. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7784. if (ret)
  7785. goto out;
  7786. flags = BTRFS_BLOCK_GROUP_DATA;
  7787. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7788. }
  7789. out:
  7790. return ret;
  7791. }
  7792. int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
  7793. {
  7794. return unpin_extent_range(root, start, end);
  7795. }
  7796. int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
  7797. u64 num_bytes, u64 *actual_bytes)
  7798. {
  7799. return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
  7800. }
  7801. int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
  7802. {
  7803. struct btrfs_fs_info *fs_info = root->fs_info;
  7804. struct btrfs_block_group_cache *cache = NULL;
  7805. u64 group_trimmed;
  7806. u64 start;
  7807. u64 end;
  7808. u64 trimmed = 0;
  7809. u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
  7810. int ret = 0;
  7811. /*
  7812. * try to trim all FS space, our block group may start from non-zero.
  7813. */
  7814. if (range->len == total_bytes)
  7815. cache = btrfs_lookup_first_block_group(fs_info, range->start);
  7816. else
  7817. cache = btrfs_lookup_block_group(fs_info, range->start);
  7818. while (cache) {
  7819. if (cache->key.objectid >= (range->start + range->len)) {
  7820. btrfs_put_block_group(cache);
  7821. break;
  7822. }
  7823. start = max(range->start, cache->key.objectid);
  7824. end = min(range->start + range->len,
  7825. cache->key.objectid + cache->key.offset);
  7826. if (end - start >= range->minlen) {
  7827. if (!block_group_cache_done(cache)) {
  7828. ret = cache_block_group(cache, 0);
  7829. if (ret) {
  7830. btrfs_put_block_group(cache);
  7831. break;
  7832. }
  7833. ret = wait_block_group_cache_done(cache);
  7834. if (ret) {
  7835. btrfs_put_block_group(cache);
  7836. break;
  7837. }
  7838. }
  7839. ret = btrfs_trim_block_group(cache,
  7840. &group_trimmed,
  7841. start,
  7842. end,
  7843. range->minlen);
  7844. trimmed += group_trimmed;
  7845. if (ret) {
  7846. btrfs_put_block_group(cache);
  7847. break;
  7848. }
  7849. }
  7850. cache = next_block_group(fs_info->tree_root, cache);
  7851. }
  7852. range->len = trimmed;
  7853. return ret;
  7854. }