fork.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/sched/autogroup.h>
  14. #include <linux/sched/mm.h>
  15. #include <linux/sched/coredump.h>
  16. #include <linux/sched/user.h>
  17. #include <linux/sched/numa_balancing.h>
  18. #include <linux/sched/stat.h>
  19. #include <linux/sched/task.h>
  20. #include <linux/sched/task_stack.h>
  21. #include <linux/sched/cputime.h>
  22. #include <linux/rtmutex.h>
  23. #include <linux/init.h>
  24. #include <linux/unistd.h>
  25. #include <linux/module.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/completion.h>
  28. #include <linux/personality.h>
  29. #include <linux/mempolicy.h>
  30. #include <linux/sem.h>
  31. #include <linux/file.h>
  32. #include <linux/fdtable.h>
  33. #include <linux/iocontext.h>
  34. #include <linux/key.h>
  35. #include <linux/binfmts.h>
  36. #include <linux/mman.h>
  37. #include <linux/mmu_notifier.h>
  38. #include <linux/fs.h>
  39. #include <linux/mm.h>
  40. #include <linux/vmacache.h>
  41. #include <linux/nsproxy.h>
  42. #include <linux/capability.h>
  43. #include <linux/cpu.h>
  44. #include <linux/cgroup.h>
  45. #include <linux/security.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/seccomp.h>
  48. #include <linux/swap.h>
  49. #include <linux/syscalls.h>
  50. #include <linux/jiffies.h>
  51. #include <linux/futex.h>
  52. #include <linux/compat.h>
  53. #include <linux/kthread.h>
  54. #include <linux/task_io_accounting_ops.h>
  55. #include <linux/rcupdate.h>
  56. #include <linux/ptrace.h>
  57. #include <linux/mount.h>
  58. #include <linux/audit.h>
  59. #include <linux/memcontrol.h>
  60. #include <linux/ftrace.h>
  61. #include <linux/proc_fs.h>
  62. #include <linux/profile.h>
  63. #include <linux/rmap.h>
  64. #include <linux/ksm.h>
  65. #include <linux/acct.h>
  66. #include <linux/userfaultfd_k.h>
  67. #include <linux/tsacct_kern.h>
  68. #include <linux/cn_proc.h>
  69. #include <linux/freezer.h>
  70. #include <linux/delayacct.h>
  71. #include <linux/taskstats_kern.h>
  72. #include <linux/random.h>
  73. #include <linux/tty.h>
  74. #include <linux/blkdev.h>
  75. #include <linux/fs_struct.h>
  76. #include <linux/magic.h>
  77. #include <linux/perf_event.h>
  78. #include <linux/posix-timers.h>
  79. #include <linux/user-return-notifier.h>
  80. #include <linux/oom.h>
  81. #include <linux/khugepaged.h>
  82. #include <linux/signalfd.h>
  83. #include <linux/uprobes.h>
  84. #include <linux/aio.h>
  85. #include <linux/compiler.h>
  86. #include <linux/sysctl.h>
  87. #include <linux/kcov.h>
  88. #include <asm/pgtable.h>
  89. #include <asm/pgalloc.h>
  90. #include <linux/uaccess.h>
  91. #include <asm/mmu_context.h>
  92. #include <asm/cacheflush.h>
  93. #include <asm/tlbflush.h>
  94. #include <trace/events/sched.h>
  95. #define CREATE_TRACE_POINTS
  96. #include <trace/events/task.h>
  97. /*
  98. * Minimum number of threads to boot the kernel
  99. */
  100. #define MIN_THREADS 20
  101. /*
  102. * Maximum number of threads
  103. */
  104. #define MAX_THREADS FUTEX_TID_MASK
  105. /*
  106. * Protected counters by write_lock_irq(&tasklist_lock)
  107. */
  108. unsigned long total_forks; /* Handle normal Linux uptimes. */
  109. int nr_threads; /* The idle threads do not count.. */
  110. int max_threads; /* tunable limit on nr_threads */
  111. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  112. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  113. #ifdef CONFIG_PROVE_RCU
  114. int lockdep_tasklist_lock_is_held(void)
  115. {
  116. return lockdep_is_held(&tasklist_lock);
  117. }
  118. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  119. #endif /* #ifdef CONFIG_PROVE_RCU */
  120. int nr_processes(void)
  121. {
  122. int cpu;
  123. int total = 0;
  124. for_each_possible_cpu(cpu)
  125. total += per_cpu(process_counts, cpu);
  126. return total;
  127. }
  128. void __weak arch_release_task_struct(struct task_struct *tsk)
  129. {
  130. }
  131. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  132. static struct kmem_cache *task_struct_cachep;
  133. static inline struct task_struct *alloc_task_struct_node(int node)
  134. {
  135. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  136. }
  137. static inline void free_task_struct(struct task_struct *tsk)
  138. {
  139. kmem_cache_free(task_struct_cachep, tsk);
  140. }
  141. #endif
  142. void __weak arch_release_thread_stack(unsigned long *stack)
  143. {
  144. }
  145. #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
  146. /*
  147. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  148. * kmemcache based allocator.
  149. */
  150. # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
  151. #ifdef CONFIG_VMAP_STACK
  152. /*
  153. * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
  154. * flush. Try to minimize the number of calls by caching stacks.
  155. */
  156. #define NR_CACHED_STACKS 2
  157. static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
  158. #endif
  159. static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
  160. {
  161. #ifdef CONFIG_VMAP_STACK
  162. void *stack;
  163. int i;
  164. local_irq_disable();
  165. for (i = 0; i < NR_CACHED_STACKS; i++) {
  166. struct vm_struct *s = this_cpu_read(cached_stacks[i]);
  167. if (!s)
  168. continue;
  169. this_cpu_write(cached_stacks[i], NULL);
  170. tsk->stack_vm_area = s;
  171. local_irq_enable();
  172. return s->addr;
  173. }
  174. local_irq_enable();
  175. stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
  176. VMALLOC_START, VMALLOC_END,
  177. THREADINFO_GFP | __GFP_HIGHMEM,
  178. PAGE_KERNEL,
  179. 0, node, __builtin_return_address(0));
  180. /*
  181. * We can't call find_vm_area() in interrupt context, and
  182. * free_thread_stack() can be called in interrupt context,
  183. * so cache the vm_struct.
  184. */
  185. if (stack)
  186. tsk->stack_vm_area = find_vm_area(stack);
  187. return stack;
  188. #else
  189. struct page *page = alloc_pages_node(node, THREADINFO_GFP,
  190. THREAD_SIZE_ORDER);
  191. return page ? page_address(page) : NULL;
  192. #endif
  193. }
  194. static inline void free_thread_stack(struct task_struct *tsk)
  195. {
  196. #ifdef CONFIG_VMAP_STACK
  197. if (task_stack_vm_area(tsk)) {
  198. unsigned long flags;
  199. int i;
  200. local_irq_save(flags);
  201. for (i = 0; i < NR_CACHED_STACKS; i++) {
  202. if (this_cpu_read(cached_stacks[i]))
  203. continue;
  204. this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
  205. local_irq_restore(flags);
  206. return;
  207. }
  208. local_irq_restore(flags);
  209. vfree_atomic(tsk->stack);
  210. return;
  211. }
  212. #endif
  213. __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
  214. }
  215. # else
  216. static struct kmem_cache *thread_stack_cache;
  217. static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
  218. int node)
  219. {
  220. return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
  221. }
  222. static void free_thread_stack(struct task_struct *tsk)
  223. {
  224. kmem_cache_free(thread_stack_cache, tsk->stack);
  225. }
  226. void thread_stack_cache_init(void)
  227. {
  228. thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
  229. THREAD_SIZE, 0, NULL);
  230. BUG_ON(thread_stack_cache == NULL);
  231. }
  232. # endif
  233. #endif
  234. /* SLAB cache for signal_struct structures (tsk->signal) */
  235. static struct kmem_cache *signal_cachep;
  236. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  237. struct kmem_cache *sighand_cachep;
  238. /* SLAB cache for files_struct structures (tsk->files) */
  239. struct kmem_cache *files_cachep;
  240. /* SLAB cache for fs_struct structures (tsk->fs) */
  241. struct kmem_cache *fs_cachep;
  242. /* SLAB cache for vm_area_struct structures */
  243. struct kmem_cache *vm_area_cachep;
  244. /* SLAB cache for mm_struct structures (tsk->mm) */
  245. static struct kmem_cache *mm_cachep;
  246. static void account_kernel_stack(struct task_struct *tsk, int account)
  247. {
  248. void *stack = task_stack_page(tsk);
  249. struct vm_struct *vm = task_stack_vm_area(tsk);
  250. BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
  251. if (vm) {
  252. int i;
  253. BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
  254. for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
  255. mod_zone_page_state(page_zone(vm->pages[i]),
  256. NR_KERNEL_STACK_KB,
  257. PAGE_SIZE / 1024 * account);
  258. }
  259. /* All stack pages belong to the same memcg. */
  260. memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
  261. account * (THREAD_SIZE / 1024));
  262. } else {
  263. /*
  264. * All stack pages are in the same zone and belong to the
  265. * same memcg.
  266. */
  267. struct page *first_page = virt_to_page(stack);
  268. mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
  269. THREAD_SIZE / 1024 * account);
  270. memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
  271. account * (THREAD_SIZE / 1024));
  272. }
  273. }
  274. static void release_task_stack(struct task_struct *tsk)
  275. {
  276. if (WARN_ON(tsk->state != TASK_DEAD))
  277. return; /* Better to leak the stack than to free prematurely */
  278. account_kernel_stack(tsk, -1);
  279. arch_release_thread_stack(tsk->stack);
  280. free_thread_stack(tsk);
  281. tsk->stack = NULL;
  282. #ifdef CONFIG_VMAP_STACK
  283. tsk->stack_vm_area = NULL;
  284. #endif
  285. }
  286. #ifdef CONFIG_THREAD_INFO_IN_TASK
  287. void put_task_stack(struct task_struct *tsk)
  288. {
  289. if (atomic_dec_and_test(&tsk->stack_refcount))
  290. release_task_stack(tsk);
  291. }
  292. #endif
  293. void free_task(struct task_struct *tsk)
  294. {
  295. #ifndef CONFIG_THREAD_INFO_IN_TASK
  296. /*
  297. * The task is finally done with both the stack and thread_info,
  298. * so free both.
  299. */
  300. release_task_stack(tsk);
  301. #else
  302. /*
  303. * If the task had a separate stack allocation, it should be gone
  304. * by now.
  305. */
  306. WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
  307. #endif
  308. rt_mutex_debug_task_free(tsk);
  309. ftrace_graph_exit_task(tsk);
  310. put_seccomp_filter(tsk);
  311. arch_release_task_struct(tsk);
  312. if (tsk->flags & PF_KTHREAD)
  313. free_kthread_struct(tsk);
  314. free_task_struct(tsk);
  315. }
  316. EXPORT_SYMBOL(free_task);
  317. static inline void free_signal_struct(struct signal_struct *sig)
  318. {
  319. taskstats_tgid_free(sig);
  320. sched_autogroup_exit(sig);
  321. /*
  322. * __mmdrop is not safe to call from softirq context on x86 due to
  323. * pgd_dtor so postpone it to the async context
  324. */
  325. if (sig->oom_mm)
  326. mmdrop_async(sig->oom_mm);
  327. kmem_cache_free(signal_cachep, sig);
  328. }
  329. static inline void put_signal_struct(struct signal_struct *sig)
  330. {
  331. if (atomic_dec_and_test(&sig->sigcnt))
  332. free_signal_struct(sig);
  333. }
  334. void __put_task_struct(struct task_struct *tsk)
  335. {
  336. WARN_ON(!tsk->exit_state);
  337. WARN_ON(atomic_read(&tsk->usage));
  338. WARN_ON(tsk == current);
  339. cgroup_free(tsk);
  340. task_numa_free(tsk);
  341. security_task_free(tsk);
  342. exit_creds(tsk);
  343. delayacct_tsk_free(tsk);
  344. put_signal_struct(tsk->signal);
  345. if (!profile_handoff_task(tsk))
  346. free_task(tsk);
  347. }
  348. EXPORT_SYMBOL_GPL(__put_task_struct);
  349. void __init __weak arch_task_cache_init(void) { }
  350. /*
  351. * set_max_threads
  352. */
  353. static void set_max_threads(unsigned int max_threads_suggested)
  354. {
  355. u64 threads;
  356. /*
  357. * The number of threads shall be limited such that the thread
  358. * structures may only consume a small part of the available memory.
  359. */
  360. if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
  361. threads = MAX_THREADS;
  362. else
  363. threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
  364. (u64) THREAD_SIZE * 8UL);
  365. if (threads > max_threads_suggested)
  366. threads = max_threads_suggested;
  367. max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
  368. }
  369. #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
  370. /* Initialized by the architecture: */
  371. int arch_task_struct_size __read_mostly;
  372. #endif
  373. void __init fork_init(void)
  374. {
  375. int i;
  376. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  377. #ifndef ARCH_MIN_TASKALIGN
  378. #define ARCH_MIN_TASKALIGN 0
  379. #endif
  380. int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
  381. /* create a slab on which task_structs can be allocated */
  382. task_struct_cachep = kmem_cache_create("task_struct",
  383. arch_task_struct_size, align,
  384. SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
  385. #endif
  386. /* do the arch specific task caches init */
  387. arch_task_cache_init();
  388. set_max_threads(MAX_THREADS);
  389. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  390. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  391. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  392. init_task.signal->rlim[RLIMIT_NPROC];
  393. for (i = 0; i < UCOUNT_COUNTS; i++) {
  394. init_user_ns.ucount_max[i] = max_threads/2;
  395. }
  396. }
  397. int __weak arch_dup_task_struct(struct task_struct *dst,
  398. struct task_struct *src)
  399. {
  400. *dst = *src;
  401. return 0;
  402. }
  403. void set_task_stack_end_magic(struct task_struct *tsk)
  404. {
  405. unsigned long *stackend;
  406. stackend = end_of_stack(tsk);
  407. *stackend = STACK_END_MAGIC; /* for overflow detection */
  408. }
  409. static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
  410. {
  411. struct task_struct *tsk;
  412. unsigned long *stack;
  413. struct vm_struct *stack_vm_area;
  414. int err;
  415. if (node == NUMA_NO_NODE)
  416. node = tsk_fork_get_node(orig);
  417. tsk = alloc_task_struct_node(node);
  418. if (!tsk)
  419. return NULL;
  420. stack = alloc_thread_stack_node(tsk, node);
  421. if (!stack)
  422. goto free_tsk;
  423. stack_vm_area = task_stack_vm_area(tsk);
  424. err = arch_dup_task_struct(tsk, orig);
  425. /*
  426. * arch_dup_task_struct() clobbers the stack-related fields. Make
  427. * sure they're properly initialized before using any stack-related
  428. * functions again.
  429. */
  430. tsk->stack = stack;
  431. #ifdef CONFIG_VMAP_STACK
  432. tsk->stack_vm_area = stack_vm_area;
  433. #endif
  434. #ifdef CONFIG_THREAD_INFO_IN_TASK
  435. atomic_set(&tsk->stack_refcount, 1);
  436. #endif
  437. if (err)
  438. goto free_stack;
  439. #ifdef CONFIG_SECCOMP
  440. /*
  441. * We must handle setting up seccomp filters once we're under
  442. * the sighand lock in case orig has changed between now and
  443. * then. Until then, filter must be NULL to avoid messing up
  444. * the usage counts on the error path calling free_task.
  445. */
  446. tsk->seccomp.filter = NULL;
  447. #endif
  448. setup_thread_stack(tsk, orig);
  449. clear_user_return_notifier(tsk);
  450. clear_tsk_need_resched(tsk);
  451. set_task_stack_end_magic(tsk);
  452. #ifdef CONFIG_CC_STACKPROTECTOR
  453. tsk->stack_canary = get_random_int();
  454. #endif
  455. /*
  456. * One for us, one for whoever does the "release_task()" (usually
  457. * parent)
  458. */
  459. atomic_set(&tsk->usage, 2);
  460. #ifdef CONFIG_BLK_DEV_IO_TRACE
  461. tsk->btrace_seq = 0;
  462. #endif
  463. tsk->splice_pipe = NULL;
  464. tsk->task_frag.page = NULL;
  465. tsk->wake_q.next = NULL;
  466. account_kernel_stack(tsk, 1);
  467. kcov_task_init(tsk);
  468. return tsk;
  469. free_stack:
  470. free_thread_stack(tsk);
  471. free_tsk:
  472. free_task_struct(tsk);
  473. return NULL;
  474. }
  475. #ifdef CONFIG_MMU
  476. static __latent_entropy int dup_mmap(struct mm_struct *mm,
  477. struct mm_struct *oldmm)
  478. {
  479. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  480. struct rb_node **rb_link, *rb_parent;
  481. int retval;
  482. unsigned long charge;
  483. LIST_HEAD(uf);
  484. uprobe_start_dup_mmap();
  485. if (down_write_killable(&oldmm->mmap_sem)) {
  486. retval = -EINTR;
  487. goto fail_uprobe_end;
  488. }
  489. flush_cache_dup_mm(oldmm);
  490. uprobe_dup_mmap(oldmm, mm);
  491. /*
  492. * Not linked in yet - no deadlock potential:
  493. */
  494. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  495. /* No ordering required: file already has been exposed. */
  496. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  497. mm->total_vm = oldmm->total_vm;
  498. mm->data_vm = oldmm->data_vm;
  499. mm->exec_vm = oldmm->exec_vm;
  500. mm->stack_vm = oldmm->stack_vm;
  501. rb_link = &mm->mm_rb.rb_node;
  502. rb_parent = NULL;
  503. pprev = &mm->mmap;
  504. retval = ksm_fork(mm, oldmm);
  505. if (retval)
  506. goto out;
  507. retval = khugepaged_fork(mm, oldmm);
  508. if (retval)
  509. goto out;
  510. prev = NULL;
  511. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  512. struct file *file;
  513. if (mpnt->vm_flags & VM_DONTCOPY) {
  514. vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
  515. continue;
  516. }
  517. charge = 0;
  518. if (mpnt->vm_flags & VM_ACCOUNT) {
  519. unsigned long len = vma_pages(mpnt);
  520. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  521. goto fail_nomem;
  522. charge = len;
  523. }
  524. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  525. if (!tmp)
  526. goto fail_nomem;
  527. *tmp = *mpnt;
  528. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  529. retval = vma_dup_policy(mpnt, tmp);
  530. if (retval)
  531. goto fail_nomem_policy;
  532. tmp->vm_mm = mm;
  533. retval = dup_userfaultfd(tmp, &uf);
  534. if (retval)
  535. goto fail_nomem_anon_vma_fork;
  536. if (anon_vma_fork(tmp, mpnt))
  537. goto fail_nomem_anon_vma_fork;
  538. tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
  539. tmp->vm_next = tmp->vm_prev = NULL;
  540. file = tmp->vm_file;
  541. if (file) {
  542. struct inode *inode = file_inode(file);
  543. struct address_space *mapping = file->f_mapping;
  544. get_file(file);
  545. if (tmp->vm_flags & VM_DENYWRITE)
  546. atomic_dec(&inode->i_writecount);
  547. i_mmap_lock_write(mapping);
  548. if (tmp->vm_flags & VM_SHARED)
  549. atomic_inc(&mapping->i_mmap_writable);
  550. flush_dcache_mmap_lock(mapping);
  551. /* insert tmp into the share list, just after mpnt */
  552. vma_interval_tree_insert_after(tmp, mpnt,
  553. &mapping->i_mmap);
  554. flush_dcache_mmap_unlock(mapping);
  555. i_mmap_unlock_write(mapping);
  556. }
  557. /*
  558. * Clear hugetlb-related page reserves for children. This only
  559. * affects MAP_PRIVATE mappings. Faults generated by the child
  560. * are not guaranteed to succeed, even if read-only
  561. */
  562. if (is_vm_hugetlb_page(tmp))
  563. reset_vma_resv_huge_pages(tmp);
  564. /*
  565. * Link in the new vma and copy the page table entries.
  566. */
  567. *pprev = tmp;
  568. pprev = &tmp->vm_next;
  569. tmp->vm_prev = prev;
  570. prev = tmp;
  571. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  572. rb_link = &tmp->vm_rb.rb_right;
  573. rb_parent = &tmp->vm_rb;
  574. mm->map_count++;
  575. retval = copy_page_range(mm, oldmm, mpnt);
  576. if (tmp->vm_ops && tmp->vm_ops->open)
  577. tmp->vm_ops->open(tmp);
  578. if (retval)
  579. goto out;
  580. }
  581. /* a new mm has just been created */
  582. arch_dup_mmap(oldmm, mm);
  583. retval = 0;
  584. out:
  585. up_write(&mm->mmap_sem);
  586. flush_tlb_mm(oldmm);
  587. up_write(&oldmm->mmap_sem);
  588. dup_userfaultfd_complete(&uf);
  589. fail_uprobe_end:
  590. uprobe_end_dup_mmap();
  591. return retval;
  592. fail_nomem_anon_vma_fork:
  593. mpol_put(vma_policy(tmp));
  594. fail_nomem_policy:
  595. kmem_cache_free(vm_area_cachep, tmp);
  596. fail_nomem:
  597. retval = -ENOMEM;
  598. vm_unacct_memory(charge);
  599. goto out;
  600. }
  601. static inline int mm_alloc_pgd(struct mm_struct *mm)
  602. {
  603. mm->pgd = pgd_alloc(mm);
  604. if (unlikely(!mm->pgd))
  605. return -ENOMEM;
  606. return 0;
  607. }
  608. static inline void mm_free_pgd(struct mm_struct *mm)
  609. {
  610. pgd_free(mm, mm->pgd);
  611. }
  612. #else
  613. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  614. {
  615. down_write(&oldmm->mmap_sem);
  616. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  617. up_write(&oldmm->mmap_sem);
  618. return 0;
  619. }
  620. #define mm_alloc_pgd(mm) (0)
  621. #define mm_free_pgd(mm)
  622. #endif /* CONFIG_MMU */
  623. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  624. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  625. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  626. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  627. static int __init coredump_filter_setup(char *s)
  628. {
  629. default_dump_filter =
  630. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  631. MMF_DUMP_FILTER_MASK;
  632. return 1;
  633. }
  634. __setup("coredump_filter=", coredump_filter_setup);
  635. #include <linux/init_task.h>
  636. static void mm_init_aio(struct mm_struct *mm)
  637. {
  638. #ifdef CONFIG_AIO
  639. spin_lock_init(&mm->ioctx_lock);
  640. mm->ioctx_table = NULL;
  641. #endif
  642. }
  643. static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  644. {
  645. #ifdef CONFIG_MEMCG
  646. mm->owner = p;
  647. #endif
  648. }
  649. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
  650. struct user_namespace *user_ns)
  651. {
  652. mm->mmap = NULL;
  653. mm->mm_rb = RB_ROOT;
  654. mm->vmacache_seqnum = 0;
  655. atomic_set(&mm->mm_users, 1);
  656. atomic_set(&mm->mm_count, 1);
  657. init_rwsem(&mm->mmap_sem);
  658. INIT_LIST_HEAD(&mm->mmlist);
  659. mm->core_state = NULL;
  660. atomic_long_set(&mm->nr_ptes, 0);
  661. mm_nr_pmds_init(mm);
  662. mm->map_count = 0;
  663. mm->locked_vm = 0;
  664. mm->pinned_vm = 0;
  665. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  666. spin_lock_init(&mm->page_table_lock);
  667. mm_init_cpumask(mm);
  668. mm_init_aio(mm);
  669. mm_init_owner(mm, p);
  670. mmu_notifier_mm_init(mm);
  671. clear_tlb_flush_pending(mm);
  672. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  673. mm->pmd_huge_pte = NULL;
  674. #endif
  675. if (current->mm) {
  676. mm->flags = current->mm->flags & MMF_INIT_MASK;
  677. mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
  678. } else {
  679. mm->flags = default_dump_filter;
  680. mm->def_flags = 0;
  681. }
  682. if (mm_alloc_pgd(mm))
  683. goto fail_nopgd;
  684. if (init_new_context(p, mm))
  685. goto fail_nocontext;
  686. mm->user_ns = get_user_ns(user_ns);
  687. return mm;
  688. fail_nocontext:
  689. mm_free_pgd(mm);
  690. fail_nopgd:
  691. free_mm(mm);
  692. return NULL;
  693. }
  694. static void check_mm(struct mm_struct *mm)
  695. {
  696. int i;
  697. for (i = 0; i < NR_MM_COUNTERS; i++) {
  698. long x = atomic_long_read(&mm->rss_stat.count[i]);
  699. if (unlikely(x))
  700. printk(KERN_ALERT "BUG: Bad rss-counter state "
  701. "mm:%p idx:%d val:%ld\n", mm, i, x);
  702. }
  703. if (atomic_long_read(&mm->nr_ptes))
  704. pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
  705. atomic_long_read(&mm->nr_ptes));
  706. if (mm_nr_pmds(mm))
  707. pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
  708. mm_nr_pmds(mm));
  709. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  710. VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
  711. #endif
  712. }
  713. /*
  714. * Allocate and initialize an mm_struct.
  715. */
  716. struct mm_struct *mm_alloc(void)
  717. {
  718. struct mm_struct *mm;
  719. mm = allocate_mm();
  720. if (!mm)
  721. return NULL;
  722. memset(mm, 0, sizeof(*mm));
  723. return mm_init(mm, current, current_user_ns());
  724. }
  725. /*
  726. * Called when the last reference to the mm
  727. * is dropped: either by a lazy thread or by
  728. * mmput. Free the page directory and the mm.
  729. */
  730. void __mmdrop(struct mm_struct *mm)
  731. {
  732. BUG_ON(mm == &init_mm);
  733. mm_free_pgd(mm);
  734. destroy_context(mm);
  735. mmu_notifier_mm_destroy(mm);
  736. check_mm(mm);
  737. put_user_ns(mm->user_ns);
  738. free_mm(mm);
  739. }
  740. EXPORT_SYMBOL_GPL(__mmdrop);
  741. static inline void __mmput(struct mm_struct *mm)
  742. {
  743. VM_BUG_ON(atomic_read(&mm->mm_users));
  744. uprobe_clear_state(mm);
  745. exit_aio(mm);
  746. ksm_exit(mm);
  747. khugepaged_exit(mm); /* must run before exit_mmap */
  748. exit_mmap(mm);
  749. mm_put_huge_zero_page(mm);
  750. set_mm_exe_file(mm, NULL);
  751. if (!list_empty(&mm->mmlist)) {
  752. spin_lock(&mmlist_lock);
  753. list_del(&mm->mmlist);
  754. spin_unlock(&mmlist_lock);
  755. }
  756. if (mm->binfmt)
  757. module_put(mm->binfmt->module);
  758. set_bit(MMF_OOM_SKIP, &mm->flags);
  759. mmdrop(mm);
  760. }
  761. /*
  762. * Decrement the use count and release all resources for an mm.
  763. */
  764. void mmput(struct mm_struct *mm)
  765. {
  766. might_sleep();
  767. if (atomic_dec_and_test(&mm->mm_users))
  768. __mmput(mm);
  769. }
  770. EXPORT_SYMBOL_GPL(mmput);
  771. #ifdef CONFIG_MMU
  772. static void mmput_async_fn(struct work_struct *work)
  773. {
  774. struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
  775. __mmput(mm);
  776. }
  777. void mmput_async(struct mm_struct *mm)
  778. {
  779. if (atomic_dec_and_test(&mm->mm_users)) {
  780. INIT_WORK(&mm->async_put_work, mmput_async_fn);
  781. schedule_work(&mm->async_put_work);
  782. }
  783. }
  784. #endif
  785. /**
  786. * set_mm_exe_file - change a reference to the mm's executable file
  787. *
  788. * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
  789. *
  790. * Main users are mmput() and sys_execve(). Callers prevent concurrent
  791. * invocations: in mmput() nobody alive left, in execve task is single
  792. * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
  793. * mm->exe_file, but does so without using set_mm_exe_file() in order
  794. * to do avoid the need for any locks.
  795. */
  796. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  797. {
  798. struct file *old_exe_file;
  799. /*
  800. * It is safe to dereference the exe_file without RCU as
  801. * this function is only called if nobody else can access
  802. * this mm -- see comment above for justification.
  803. */
  804. old_exe_file = rcu_dereference_raw(mm->exe_file);
  805. if (new_exe_file)
  806. get_file(new_exe_file);
  807. rcu_assign_pointer(mm->exe_file, new_exe_file);
  808. if (old_exe_file)
  809. fput(old_exe_file);
  810. }
  811. /**
  812. * get_mm_exe_file - acquire a reference to the mm's executable file
  813. *
  814. * Returns %NULL if mm has no associated executable file.
  815. * User must release file via fput().
  816. */
  817. struct file *get_mm_exe_file(struct mm_struct *mm)
  818. {
  819. struct file *exe_file;
  820. rcu_read_lock();
  821. exe_file = rcu_dereference(mm->exe_file);
  822. if (exe_file && !get_file_rcu(exe_file))
  823. exe_file = NULL;
  824. rcu_read_unlock();
  825. return exe_file;
  826. }
  827. EXPORT_SYMBOL(get_mm_exe_file);
  828. /**
  829. * get_task_exe_file - acquire a reference to the task's executable file
  830. *
  831. * Returns %NULL if task's mm (if any) has no associated executable file or
  832. * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
  833. * User must release file via fput().
  834. */
  835. struct file *get_task_exe_file(struct task_struct *task)
  836. {
  837. struct file *exe_file = NULL;
  838. struct mm_struct *mm;
  839. task_lock(task);
  840. mm = task->mm;
  841. if (mm) {
  842. if (!(task->flags & PF_KTHREAD))
  843. exe_file = get_mm_exe_file(mm);
  844. }
  845. task_unlock(task);
  846. return exe_file;
  847. }
  848. EXPORT_SYMBOL(get_task_exe_file);
  849. /**
  850. * get_task_mm - acquire a reference to the task's mm
  851. *
  852. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  853. * this kernel workthread has transiently adopted a user mm with use_mm,
  854. * to do its AIO) is not set and if so returns a reference to it, after
  855. * bumping up the use count. User must release the mm via mmput()
  856. * after use. Typically used by /proc and ptrace.
  857. */
  858. struct mm_struct *get_task_mm(struct task_struct *task)
  859. {
  860. struct mm_struct *mm;
  861. task_lock(task);
  862. mm = task->mm;
  863. if (mm) {
  864. if (task->flags & PF_KTHREAD)
  865. mm = NULL;
  866. else
  867. mmget(mm);
  868. }
  869. task_unlock(task);
  870. return mm;
  871. }
  872. EXPORT_SYMBOL_GPL(get_task_mm);
  873. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  874. {
  875. struct mm_struct *mm;
  876. int err;
  877. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  878. if (err)
  879. return ERR_PTR(err);
  880. mm = get_task_mm(task);
  881. if (mm && mm != current->mm &&
  882. !ptrace_may_access(task, mode)) {
  883. mmput(mm);
  884. mm = ERR_PTR(-EACCES);
  885. }
  886. mutex_unlock(&task->signal->cred_guard_mutex);
  887. return mm;
  888. }
  889. static void complete_vfork_done(struct task_struct *tsk)
  890. {
  891. struct completion *vfork;
  892. task_lock(tsk);
  893. vfork = tsk->vfork_done;
  894. if (likely(vfork)) {
  895. tsk->vfork_done = NULL;
  896. complete(vfork);
  897. }
  898. task_unlock(tsk);
  899. }
  900. static int wait_for_vfork_done(struct task_struct *child,
  901. struct completion *vfork)
  902. {
  903. int killed;
  904. freezer_do_not_count();
  905. killed = wait_for_completion_killable(vfork);
  906. freezer_count();
  907. if (killed) {
  908. task_lock(child);
  909. child->vfork_done = NULL;
  910. task_unlock(child);
  911. }
  912. put_task_struct(child);
  913. return killed;
  914. }
  915. /* Please note the differences between mmput and mm_release.
  916. * mmput is called whenever we stop holding onto a mm_struct,
  917. * error success whatever.
  918. *
  919. * mm_release is called after a mm_struct has been removed
  920. * from the current process.
  921. *
  922. * This difference is important for error handling, when we
  923. * only half set up a mm_struct for a new process and need to restore
  924. * the old one. Because we mmput the new mm_struct before
  925. * restoring the old one. . .
  926. * Eric Biederman 10 January 1998
  927. */
  928. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  929. {
  930. /* Get rid of any futexes when releasing the mm */
  931. #ifdef CONFIG_FUTEX
  932. if (unlikely(tsk->robust_list)) {
  933. exit_robust_list(tsk);
  934. tsk->robust_list = NULL;
  935. }
  936. #ifdef CONFIG_COMPAT
  937. if (unlikely(tsk->compat_robust_list)) {
  938. compat_exit_robust_list(tsk);
  939. tsk->compat_robust_list = NULL;
  940. }
  941. #endif
  942. if (unlikely(!list_empty(&tsk->pi_state_list)))
  943. exit_pi_state_list(tsk);
  944. #endif
  945. uprobe_free_utask(tsk);
  946. /* Get rid of any cached register state */
  947. deactivate_mm(tsk, mm);
  948. /*
  949. * Signal userspace if we're not exiting with a core dump
  950. * because we want to leave the value intact for debugging
  951. * purposes.
  952. */
  953. if (tsk->clear_child_tid) {
  954. if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
  955. atomic_read(&mm->mm_users) > 1) {
  956. /*
  957. * We don't check the error code - if userspace has
  958. * not set up a proper pointer then tough luck.
  959. */
  960. put_user(0, tsk->clear_child_tid);
  961. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  962. 1, NULL, NULL, 0);
  963. }
  964. tsk->clear_child_tid = NULL;
  965. }
  966. /*
  967. * All done, finally we can wake up parent and return this mm to him.
  968. * Also kthread_stop() uses this completion for synchronization.
  969. */
  970. if (tsk->vfork_done)
  971. complete_vfork_done(tsk);
  972. }
  973. /*
  974. * Allocate a new mm structure and copy contents from the
  975. * mm structure of the passed in task structure.
  976. */
  977. static struct mm_struct *dup_mm(struct task_struct *tsk)
  978. {
  979. struct mm_struct *mm, *oldmm = current->mm;
  980. int err;
  981. mm = allocate_mm();
  982. if (!mm)
  983. goto fail_nomem;
  984. memcpy(mm, oldmm, sizeof(*mm));
  985. if (!mm_init(mm, tsk, mm->user_ns))
  986. goto fail_nomem;
  987. err = dup_mmap(mm, oldmm);
  988. if (err)
  989. goto free_pt;
  990. mm->hiwater_rss = get_mm_rss(mm);
  991. mm->hiwater_vm = mm->total_vm;
  992. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  993. goto free_pt;
  994. return mm;
  995. free_pt:
  996. /* don't put binfmt in mmput, we haven't got module yet */
  997. mm->binfmt = NULL;
  998. mmput(mm);
  999. fail_nomem:
  1000. return NULL;
  1001. }
  1002. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  1003. {
  1004. struct mm_struct *mm, *oldmm;
  1005. int retval;
  1006. tsk->min_flt = tsk->maj_flt = 0;
  1007. tsk->nvcsw = tsk->nivcsw = 0;
  1008. #ifdef CONFIG_DETECT_HUNG_TASK
  1009. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  1010. #endif
  1011. tsk->mm = NULL;
  1012. tsk->active_mm = NULL;
  1013. /*
  1014. * Are we cloning a kernel thread?
  1015. *
  1016. * We need to steal a active VM for that..
  1017. */
  1018. oldmm = current->mm;
  1019. if (!oldmm)
  1020. return 0;
  1021. /* initialize the new vmacache entries */
  1022. vmacache_flush(tsk);
  1023. if (clone_flags & CLONE_VM) {
  1024. mmget(oldmm);
  1025. mm = oldmm;
  1026. goto good_mm;
  1027. }
  1028. retval = -ENOMEM;
  1029. mm = dup_mm(tsk);
  1030. if (!mm)
  1031. goto fail_nomem;
  1032. good_mm:
  1033. tsk->mm = mm;
  1034. tsk->active_mm = mm;
  1035. return 0;
  1036. fail_nomem:
  1037. return retval;
  1038. }
  1039. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  1040. {
  1041. struct fs_struct *fs = current->fs;
  1042. if (clone_flags & CLONE_FS) {
  1043. /* tsk->fs is already what we want */
  1044. spin_lock(&fs->lock);
  1045. if (fs->in_exec) {
  1046. spin_unlock(&fs->lock);
  1047. return -EAGAIN;
  1048. }
  1049. fs->users++;
  1050. spin_unlock(&fs->lock);
  1051. return 0;
  1052. }
  1053. tsk->fs = copy_fs_struct(fs);
  1054. if (!tsk->fs)
  1055. return -ENOMEM;
  1056. return 0;
  1057. }
  1058. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  1059. {
  1060. struct files_struct *oldf, *newf;
  1061. int error = 0;
  1062. /*
  1063. * A background process may not have any files ...
  1064. */
  1065. oldf = current->files;
  1066. if (!oldf)
  1067. goto out;
  1068. if (clone_flags & CLONE_FILES) {
  1069. atomic_inc(&oldf->count);
  1070. goto out;
  1071. }
  1072. newf = dup_fd(oldf, &error);
  1073. if (!newf)
  1074. goto out;
  1075. tsk->files = newf;
  1076. error = 0;
  1077. out:
  1078. return error;
  1079. }
  1080. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  1081. {
  1082. #ifdef CONFIG_BLOCK
  1083. struct io_context *ioc = current->io_context;
  1084. struct io_context *new_ioc;
  1085. if (!ioc)
  1086. return 0;
  1087. /*
  1088. * Share io context with parent, if CLONE_IO is set
  1089. */
  1090. if (clone_flags & CLONE_IO) {
  1091. ioc_task_link(ioc);
  1092. tsk->io_context = ioc;
  1093. } else if (ioprio_valid(ioc->ioprio)) {
  1094. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  1095. if (unlikely(!new_ioc))
  1096. return -ENOMEM;
  1097. new_ioc->ioprio = ioc->ioprio;
  1098. put_io_context(new_ioc);
  1099. }
  1100. #endif
  1101. return 0;
  1102. }
  1103. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  1104. {
  1105. struct sighand_struct *sig;
  1106. if (clone_flags & CLONE_SIGHAND) {
  1107. atomic_inc(&current->sighand->count);
  1108. return 0;
  1109. }
  1110. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  1111. rcu_assign_pointer(tsk->sighand, sig);
  1112. if (!sig)
  1113. return -ENOMEM;
  1114. atomic_set(&sig->count, 1);
  1115. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  1116. return 0;
  1117. }
  1118. void __cleanup_sighand(struct sighand_struct *sighand)
  1119. {
  1120. if (atomic_dec_and_test(&sighand->count)) {
  1121. signalfd_cleanup(sighand);
  1122. /*
  1123. * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
  1124. * without an RCU grace period, see __lock_task_sighand().
  1125. */
  1126. kmem_cache_free(sighand_cachep, sighand);
  1127. }
  1128. }
  1129. #ifdef CONFIG_POSIX_TIMERS
  1130. /*
  1131. * Initialize POSIX timer handling for a thread group.
  1132. */
  1133. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  1134. {
  1135. unsigned long cpu_limit;
  1136. cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  1137. if (cpu_limit != RLIM_INFINITY) {
  1138. sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
  1139. sig->cputimer.running = true;
  1140. }
  1141. /* The timer lists. */
  1142. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  1143. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  1144. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  1145. }
  1146. #else
  1147. static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
  1148. #endif
  1149. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  1150. {
  1151. struct signal_struct *sig;
  1152. if (clone_flags & CLONE_THREAD)
  1153. return 0;
  1154. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  1155. tsk->signal = sig;
  1156. if (!sig)
  1157. return -ENOMEM;
  1158. sig->nr_threads = 1;
  1159. atomic_set(&sig->live, 1);
  1160. atomic_set(&sig->sigcnt, 1);
  1161. /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
  1162. sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
  1163. tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
  1164. init_waitqueue_head(&sig->wait_chldexit);
  1165. sig->curr_target = tsk;
  1166. init_sigpending(&sig->shared_pending);
  1167. seqlock_init(&sig->stats_lock);
  1168. prev_cputime_init(&sig->prev_cputime);
  1169. #ifdef CONFIG_POSIX_TIMERS
  1170. INIT_LIST_HEAD(&sig->posix_timers);
  1171. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1172. sig->real_timer.function = it_real_fn;
  1173. #endif
  1174. task_lock(current->group_leader);
  1175. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  1176. task_unlock(current->group_leader);
  1177. posix_cpu_timers_init_group(sig);
  1178. tty_audit_fork(sig);
  1179. sched_autogroup_fork(sig);
  1180. sig->oom_score_adj = current->signal->oom_score_adj;
  1181. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  1182. mutex_init(&sig->cred_guard_mutex);
  1183. return 0;
  1184. }
  1185. static void copy_seccomp(struct task_struct *p)
  1186. {
  1187. #ifdef CONFIG_SECCOMP
  1188. /*
  1189. * Must be called with sighand->lock held, which is common to
  1190. * all threads in the group. Holding cred_guard_mutex is not
  1191. * needed because this new task is not yet running and cannot
  1192. * be racing exec.
  1193. */
  1194. assert_spin_locked(&current->sighand->siglock);
  1195. /* Ref-count the new filter user, and assign it. */
  1196. get_seccomp_filter(current);
  1197. p->seccomp = current->seccomp;
  1198. /*
  1199. * Explicitly enable no_new_privs here in case it got set
  1200. * between the task_struct being duplicated and holding the
  1201. * sighand lock. The seccomp state and nnp must be in sync.
  1202. */
  1203. if (task_no_new_privs(current))
  1204. task_set_no_new_privs(p);
  1205. /*
  1206. * If the parent gained a seccomp mode after copying thread
  1207. * flags and between before we held the sighand lock, we have
  1208. * to manually enable the seccomp thread flag here.
  1209. */
  1210. if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
  1211. set_tsk_thread_flag(p, TIF_SECCOMP);
  1212. #endif
  1213. }
  1214. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  1215. {
  1216. current->clear_child_tid = tidptr;
  1217. return task_pid_vnr(current);
  1218. }
  1219. static void rt_mutex_init_task(struct task_struct *p)
  1220. {
  1221. raw_spin_lock_init(&p->pi_lock);
  1222. #ifdef CONFIG_RT_MUTEXES
  1223. p->pi_waiters = RB_ROOT;
  1224. p->pi_waiters_leftmost = NULL;
  1225. p->pi_blocked_on = NULL;
  1226. #endif
  1227. }
  1228. #ifdef CONFIG_POSIX_TIMERS
  1229. /*
  1230. * Initialize POSIX timer handling for a single task.
  1231. */
  1232. static void posix_cpu_timers_init(struct task_struct *tsk)
  1233. {
  1234. tsk->cputime_expires.prof_exp = 0;
  1235. tsk->cputime_expires.virt_exp = 0;
  1236. tsk->cputime_expires.sched_exp = 0;
  1237. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  1238. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  1239. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  1240. }
  1241. #else
  1242. static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
  1243. #endif
  1244. static inline void
  1245. init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
  1246. {
  1247. task->pids[type].pid = pid;
  1248. }
  1249. static inline void rcu_copy_process(struct task_struct *p)
  1250. {
  1251. #ifdef CONFIG_PREEMPT_RCU
  1252. p->rcu_read_lock_nesting = 0;
  1253. p->rcu_read_unlock_special.s = 0;
  1254. p->rcu_blocked_node = NULL;
  1255. INIT_LIST_HEAD(&p->rcu_node_entry);
  1256. #endif /* #ifdef CONFIG_PREEMPT_RCU */
  1257. #ifdef CONFIG_TASKS_RCU
  1258. p->rcu_tasks_holdout = false;
  1259. INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
  1260. p->rcu_tasks_idle_cpu = -1;
  1261. #endif /* #ifdef CONFIG_TASKS_RCU */
  1262. }
  1263. /*
  1264. * This creates a new process as a copy of the old one,
  1265. * but does not actually start it yet.
  1266. *
  1267. * It copies the registers, and all the appropriate
  1268. * parts of the process environment (as per the clone
  1269. * flags). The actual kick-off is left to the caller.
  1270. */
  1271. static __latent_entropy struct task_struct *copy_process(
  1272. unsigned long clone_flags,
  1273. unsigned long stack_start,
  1274. unsigned long stack_size,
  1275. int __user *child_tidptr,
  1276. struct pid *pid,
  1277. int trace,
  1278. unsigned long tls,
  1279. int node)
  1280. {
  1281. int retval;
  1282. struct task_struct *p;
  1283. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  1284. return ERR_PTR(-EINVAL);
  1285. if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
  1286. return ERR_PTR(-EINVAL);
  1287. /*
  1288. * Thread groups must share signals as well, and detached threads
  1289. * can only be started up within the thread group.
  1290. */
  1291. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  1292. return ERR_PTR(-EINVAL);
  1293. /*
  1294. * Shared signal handlers imply shared VM. By way of the above,
  1295. * thread groups also imply shared VM. Blocking this case allows
  1296. * for various simplifications in other code.
  1297. */
  1298. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  1299. return ERR_PTR(-EINVAL);
  1300. /*
  1301. * Siblings of global init remain as zombies on exit since they are
  1302. * not reaped by their parent (swapper). To solve this and to avoid
  1303. * multi-rooted process trees, prevent global and container-inits
  1304. * from creating siblings.
  1305. */
  1306. if ((clone_flags & CLONE_PARENT) &&
  1307. current->signal->flags & SIGNAL_UNKILLABLE)
  1308. return ERR_PTR(-EINVAL);
  1309. /*
  1310. * If the new process will be in a different pid or user namespace
  1311. * do not allow it to share a thread group with the forking task.
  1312. */
  1313. if (clone_flags & CLONE_THREAD) {
  1314. if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
  1315. (task_active_pid_ns(current) !=
  1316. current->nsproxy->pid_ns_for_children))
  1317. return ERR_PTR(-EINVAL);
  1318. }
  1319. retval = security_task_create(clone_flags);
  1320. if (retval)
  1321. goto fork_out;
  1322. retval = -ENOMEM;
  1323. p = dup_task_struct(current, node);
  1324. if (!p)
  1325. goto fork_out;
  1326. ftrace_graph_init_task(p);
  1327. rt_mutex_init_task(p);
  1328. #ifdef CONFIG_PROVE_LOCKING
  1329. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1330. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1331. #endif
  1332. retval = -EAGAIN;
  1333. if (atomic_read(&p->real_cred->user->processes) >=
  1334. task_rlimit(p, RLIMIT_NPROC)) {
  1335. if (p->real_cred->user != INIT_USER &&
  1336. !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
  1337. goto bad_fork_free;
  1338. }
  1339. current->flags &= ~PF_NPROC_EXCEEDED;
  1340. retval = copy_creds(p, clone_flags);
  1341. if (retval < 0)
  1342. goto bad_fork_free;
  1343. /*
  1344. * If multiple threads are within copy_process(), then this check
  1345. * triggers too late. This doesn't hurt, the check is only there
  1346. * to stop root fork bombs.
  1347. */
  1348. retval = -EAGAIN;
  1349. if (nr_threads >= max_threads)
  1350. goto bad_fork_cleanup_count;
  1351. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1352. p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
  1353. p->flags |= PF_FORKNOEXEC;
  1354. INIT_LIST_HEAD(&p->children);
  1355. INIT_LIST_HEAD(&p->sibling);
  1356. rcu_copy_process(p);
  1357. p->vfork_done = NULL;
  1358. spin_lock_init(&p->alloc_lock);
  1359. init_sigpending(&p->pending);
  1360. p->utime = p->stime = p->gtime = 0;
  1361. #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
  1362. p->utimescaled = p->stimescaled = 0;
  1363. #endif
  1364. prev_cputime_init(&p->prev_cputime);
  1365. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  1366. seqcount_init(&p->vtime_seqcount);
  1367. p->vtime_snap = 0;
  1368. p->vtime_snap_whence = VTIME_INACTIVE;
  1369. #endif
  1370. #if defined(SPLIT_RSS_COUNTING)
  1371. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1372. #endif
  1373. p->default_timer_slack_ns = current->timer_slack_ns;
  1374. task_io_accounting_init(&p->ioac);
  1375. acct_clear_integrals(p);
  1376. posix_cpu_timers_init(p);
  1377. p->start_time = ktime_get_ns();
  1378. p->real_start_time = ktime_get_boot_ns();
  1379. p->io_context = NULL;
  1380. p->audit_context = NULL;
  1381. cgroup_fork(p);
  1382. #ifdef CONFIG_NUMA
  1383. p->mempolicy = mpol_dup(p->mempolicy);
  1384. if (IS_ERR(p->mempolicy)) {
  1385. retval = PTR_ERR(p->mempolicy);
  1386. p->mempolicy = NULL;
  1387. goto bad_fork_cleanup_threadgroup_lock;
  1388. }
  1389. #endif
  1390. #ifdef CONFIG_CPUSETS
  1391. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1392. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1393. seqcount_init(&p->mems_allowed_seq);
  1394. #endif
  1395. #ifdef CONFIG_TRACE_IRQFLAGS
  1396. p->irq_events = 0;
  1397. p->hardirqs_enabled = 0;
  1398. p->hardirq_enable_ip = 0;
  1399. p->hardirq_enable_event = 0;
  1400. p->hardirq_disable_ip = _THIS_IP_;
  1401. p->hardirq_disable_event = 0;
  1402. p->softirqs_enabled = 1;
  1403. p->softirq_enable_ip = _THIS_IP_;
  1404. p->softirq_enable_event = 0;
  1405. p->softirq_disable_ip = 0;
  1406. p->softirq_disable_event = 0;
  1407. p->hardirq_context = 0;
  1408. p->softirq_context = 0;
  1409. #endif
  1410. p->pagefault_disabled = 0;
  1411. #ifdef CONFIG_LOCKDEP
  1412. p->lockdep_depth = 0; /* no locks held yet */
  1413. p->curr_chain_key = 0;
  1414. p->lockdep_recursion = 0;
  1415. #endif
  1416. #ifdef CONFIG_DEBUG_MUTEXES
  1417. p->blocked_on = NULL; /* not blocked yet */
  1418. #endif
  1419. #ifdef CONFIG_BCACHE
  1420. p->sequential_io = 0;
  1421. p->sequential_io_avg = 0;
  1422. #endif
  1423. /* Perform scheduler related setup. Assign this task to a CPU. */
  1424. retval = sched_fork(clone_flags, p);
  1425. if (retval)
  1426. goto bad_fork_cleanup_policy;
  1427. retval = perf_event_init_task(p);
  1428. if (retval)
  1429. goto bad_fork_cleanup_policy;
  1430. retval = audit_alloc(p);
  1431. if (retval)
  1432. goto bad_fork_cleanup_perf;
  1433. /* copy all the process information */
  1434. shm_init_task(p);
  1435. retval = copy_semundo(clone_flags, p);
  1436. if (retval)
  1437. goto bad_fork_cleanup_audit;
  1438. retval = copy_files(clone_flags, p);
  1439. if (retval)
  1440. goto bad_fork_cleanup_semundo;
  1441. retval = copy_fs(clone_flags, p);
  1442. if (retval)
  1443. goto bad_fork_cleanup_files;
  1444. retval = copy_sighand(clone_flags, p);
  1445. if (retval)
  1446. goto bad_fork_cleanup_fs;
  1447. retval = copy_signal(clone_flags, p);
  1448. if (retval)
  1449. goto bad_fork_cleanup_sighand;
  1450. retval = copy_mm(clone_flags, p);
  1451. if (retval)
  1452. goto bad_fork_cleanup_signal;
  1453. retval = copy_namespaces(clone_flags, p);
  1454. if (retval)
  1455. goto bad_fork_cleanup_mm;
  1456. retval = copy_io(clone_flags, p);
  1457. if (retval)
  1458. goto bad_fork_cleanup_namespaces;
  1459. retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
  1460. if (retval)
  1461. goto bad_fork_cleanup_io;
  1462. if (pid != &init_struct_pid) {
  1463. pid = alloc_pid(p->nsproxy->pid_ns_for_children);
  1464. if (IS_ERR(pid)) {
  1465. retval = PTR_ERR(pid);
  1466. goto bad_fork_cleanup_thread;
  1467. }
  1468. }
  1469. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1470. /*
  1471. * Clear TID on mm_release()?
  1472. */
  1473. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1474. #ifdef CONFIG_BLOCK
  1475. p->plug = NULL;
  1476. #endif
  1477. #ifdef CONFIG_FUTEX
  1478. p->robust_list = NULL;
  1479. #ifdef CONFIG_COMPAT
  1480. p->compat_robust_list = NULL;
  1481. #endif
  1482. INIT_LIST_HEAD(&p->pi_state_list);
  1483. p->pi_state_cache = NULL;
  1484. #endif
  1485. /*
  1486. * sigaltstack should be cleared when sharing the same VM
  1487. */
  1488. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1489. sas_ss_reset(p);
  1490. /*
  1491. * Syscall tracing and stepping should be turned off in the
  1492. * child regardless of CLONE_PTRACE.
  1493. */
  1494. user_disable_single_step(p);
  1495. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1496. #ifdef TIF_SYSCALL_EMU
  1497. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1498. #endif
  1499. clear_all_latency_tracing(p);
  1500. /* ok, now we should be set up.. */
  1501. p->pid = pid_nr(pid);
  1502. if (clone_flags & CLONE_THREAD) {
  1503. p->exit_signal = -1;
  1504. p->group_leader = current->group_leader;
  1505. p->tgid = current->tgid;
  1506. } else {
  1507. if (clone_flags & CLONE_PARENT)
  1508. p->exit_signal = current->group_leader->exit_signal;
  1509. else
  1510. p->exit_signal = (clone_flags & CSIGNAL);
  1511. p->group_leader = p;
  1512. p->tgid = p->pid;
  1513. }
  1514. p->nr_dirtied = 0;
  1515. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1516. p->dirty_paused_when = 0;
  1517. p->pdeath_signal = 0;
  1518. INIT_LIST_HEAD(&p->thread_group);
  1519. p->task_works = NULL;
  1520. cgroup_threadgroup_change_begin(current);
  1521. /*
  1522. * Ensure that the cgroup subsystem policies allow the new process to be
  1523. * forked. It should be noted the the new process's css_set can be changed
  1524. * between here and cgroup_post_fork() if an organisation operation is in
  1525. * progress.
  1526. */
  1527. retval = cgroup_can_fork(p);
  1528. if (retval)
  1529. goto bad_fork_free_pid;
  1530. /*
  1531. * Make it visible to the rest of the system, but dont wake it up yet.
  1532. * Need tasklist lock for parent etc handling!
  1533. */
  1534. write_lock_irq(&tasklist_lock);
  1535. /* CLONE_PARENT re-uses the old parent */
  1536. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1537. p->real_parent = current->real_parent;
  1538. p->parent_exec_id = current->parent_exec_id;
  1539. } else {
  1540. p->real_parent = current;
  1541. p->parent_exec_id = current->self_exec_id;
  1542. }
  1543. spin_lock(&current->sighand->siglock);
  1544. /*
  1545. * Copy seccomp details explicitly here, in case they were changed
  1546. * before holding sighand lock.
  1547. */
  1548. copy_seccomp(p);
  1549. /*
  1550. * Process group and session signals need to be delivered to just the
  1551. * parent before the fork or both the parent and the child after the
  1552. * fork. Restart if a signal comes in before we add the new process to
  1553. * it's process group.
  1554. * A fatal signal pending means that current will exit, so the new
  1555. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1556. */
  1557. recalc_sigpending();
  1558. if (signal_pending(current)) {
  1559. spin_unlock(&current->sighand->siglock);
  1560. write_unlock_irq(&tasklist_lock);
  1561. retval = -ERESTARTNOINTR;
  1562. goto bad_fork_cancel_cgroup;
  1563. }
  1564. if (likely(p->pid)) {
  1565. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1566. init_task_pid(p, PIDTYPE_PID, pid);
  1567. if (thread_group_leader(p)) {
  1568. init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1569. init_task_pid(p, PIDTYPE_SID, task_session(current));
  1570. if (is_child_reaper(pid)) {
  1571. ns_of_pid(pid)->child_reaper = p;
  1572. p->signal->flags |= SIGNAL_UNKILLABLE;
  1573. }
  1574. p->signal->leader_pid = pid;
  1575. p->signal->tty = tty_kref_get(current->signal->tty);
  1576. /*
  1577. * Inherit has_child_subreaper flag under the same
  1578. * tasklist_lock with adding child to the process tree
  1579. * for propagate_has_child_subreaper optimization.
  1580. */
  1581. p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
  1582. p->real_parent->signal->is_child_subreaper;
  1583. list_add_tail(&p->sibling, &p->real_parent->children);
  1584. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1585. attach_pid(p, PIDTYPE_PGID);
  1586. attach_pid(p, PIDTYPE_SID);
  1587. __this_cpu_inc(process_counts);
  1588. } else {
  1589. current->signal->nr_threads++;
  1590. atomic_inc(&current->signal->live);
  1591. atomic_inc(&current->signal->sigcnt);
  1592. list_add_tail_rcu(&p->thread_group,
  1593. &p->group_leader->thread_group);
  1594. list_add_tail_rcu(&p->thread_node,
  1595. &p->signal->thread_head);
  1596. }
  1597. attach_pid(p, PIDTYPE_PID);
  1598. nr_threads++;
  1599. }
  1600. total_forks++;
  1601. spin_unlock(&current->sighand->siglock);
  1602. syscall_tracepoint_update(p);
  1603. write_unlock_irq(&tasklist_lock);
  1604. proc_fork_connector(p);
  1605. cgroup_post_fork(p);
  1606. cgroup_threadgroup_change_end(current);
  1607. perf_event_fork(p);
  1608. trace_task_newtask(p, clone_flags);
  1609. uprobe_copy_process(p, clone_flags);
  1610. return p;
  1611. bad_fork_cancel_cgroup:
  1612. cgroup_cancel_fork(p);
  1613. bad_fork_free_pid:
  1614. cgroup_threadgroup_change_end(current);
  1615. if (pid != &init_struct_pid)
  1616. free_pid(pid);
  1617. bad_fork_cleanup_thread:
  1618. exit_thread(p);
  1619. bad_fork_cleanup_io:
  1620. if (p->io_context)
  1621. exit_io_context(p);
  1622. bad_fork_cleanup_namespaces:
  1623. exit_task_namespaces(p);
  1624. bad_fork_cleanup_mm:
  1625. if (p->mm)
  1626. mmput(p->mm);
  1627. bad_fork_cleanup_signal:
  1628. if (!(clone_flags & CLONE_THREAD))
  1629. free_signal_struct(p->signal);
  1630. bad_fork_cleanup_sighand:
  1631. __cleanup_sighand(p->sighand);
  1632. bad_fork_cleanup_fs:
  1633. exit_fs(p); /* blocking */
  1634. bad_fork_cleanup_files:
  1635. exit_files(p); /* blocking */
  1636. bad_fork_cleanup_semundo:
  1637. exit_sem(p);
  1638. bad_fork_cleanup_audit:
  1639. audit_free(p);
  1640. bad_fork_cleanup_perf:
  1641. perf_event_free_task(p);
  1642. bad_fork_cleanup_policy:
  1643. #ifdef CONFIG_NUMA
  1644. mpol_put(p->mempolicy);
  1645. bad_fork_cleanup_threadgroup_lock:
  1646. #endif
  1647. delayacct_tsk_free(p);
  1648. bad_fork_cleanup_count:
  1649. atomic_dec(&p->cred->user->processes);
  1650. exit_creds(p);
  1651. bad_fork_free:
  1652. p->state = TASK_DEAD;
  1653. put_task_stack(p);
  1654. free_task(p);
  1655. fork_out:
  1656. return ERR_PTR(retval);
  1657. }
  1658. static inline void init_idle_pids(struct pid_link *links)
  1659. {
  1660. enum pid_type type;
  1661. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1662. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1663. links[type].pid = &init_struct_pid;
  1664. }
  1665. }
  1666. struct task_struct *fork_idle(int cpu)
  1667. {
  1668. struct task_struct *task;
  1669. task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
  1670. cpu_to_node(cpu));
  1671. if (!IS_ERR(task)) {
  1672. init_idle_pids(task->pids);
  1673. init_idle(task, cpu);
  1674. }
  1675. return task;
  1676. }
  1677. /*
  1678. * Ok, this is the main fork-routine.
  1679. *
  1680. * It copies the process, and if successful kick-starts
  1681. * it and waits for it to finish using the VM if required.
  1682. */
  1683. long _do_fork(unsigned long clone_flags,
  1684. unsigned long stack_start,
  1685. unsigned long stack_size,
  1686. int __user *parent_tidptr,
  1687. int __user *child_tidptr,
  1688. unsigned long tls)
  1689. {
  1690. struct task_struct *p;
  1691. int trace = 0;
  1692. long nr;
  1693. /*
  1694. * Determine whether and which event to report to ptracer. When
  1695. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1696. * requested, no event is reported; otherwise, report if the event
  1697. * for the type of forking is enabled.
  1698. */
  1699. if (!(clone_flags & CLONE_UNTRACED)) {
  1700. if (clone_flags & CLONE_VFORK)
  1701. trace = PTRACE_EVENT_VFORK;
  1702. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1703. trace = PTRACE_EVENT_CLONE;
  1704. else
  1705. trace = PTRACE_EVENT_FORK;
  1706. if (likely(!ptrace_event_enabled(current, trace)))
  1707. trace = 0;
  1708. }
  1709. p = copy_process(clone_flags, stack_start, stack_size,
  1710. child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
  1711. add_latent_entropy();
  1712. /*
  1713. * Do this prior waking up the new thread - the thread pointer
  1714. * might get invalid after that point, if the thread exits quickly.
  1715. */
  1716. if (!IS_ERR(p)) {
  1717. struct completion vfork;
  1718. struct pid *pid;
  1719. trace_sched_process_fork(current, p);
  1720. pid = get_task_pid(p, PIDTYPE_PID);
  1721. nr = pid_vnr(pid);
  1722. if (clone_flags & CLONE_PARENT_SETTID)
  1723. put_user(nr, parent_tidptr);
  1724. if (clone_flags & CLONE_VFORK) {
  1725. p->vfork_done = &vfork;
  1726. init_completion(&vfork);
  1727. get_task_struct(p);
  1728. }
  1729. wake_up_new_task(p);
  1730. /* forking complete and child started to run, tell ptracer */
  1731. if (unlikely(trace))
  1732. ptrace_event_pid(trace, pid);
  1733. if (clone_flags & CLONE_VFORK) {
  1734. if (!wait_for_vfork_done(p, &vfork))
  1735. ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
  1736. }
  1737. put_pid(pid);
  1738. } else {
  1739. nr = PTR_ERR(p);
  1740. }
  1741. return nr;
  1742. }
  1743. #ifndef CONFIG_HAVE_COPY_THREAD_TLS
  1744. /* For compatibility with architectures that call do_fork directly rather than
  1745. * using the syscall entry points below. */
  1746. long do_fork(unsigned long clone_flags,
  1747. unsigned long stack_start,
  1748. unsigned long stack_size,
  1749. int __user *parent_tidptr,
  1750. int __user *child_tidptr)
  1751. {
  1752. return _do_fork(clone_flags, stack_start, stack_size,
  1753. parent_tidptr, child_tidptr, 0);
  1754. }
  1755. #endif
  1756. /*
  1757. * Create a kernel thread.
  1758. */
  1759. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  1760. {
  1761. return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
  1762. (unsigned long)arg, NULL, NULL, 0);
  1763. }
  1764. #ifdef __ARCH_WANT_SYS_FORK
  1765. SYSCALL_DEFINE0(fork)
  1766. {
  1767. #ifdef CONFIG_MMU
  1768. return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
  1769. #else
  1770. /* can not support in nommu mode */
  1771. return -EINVAL;
  1772. #endif
  1773. }
  1774. #endif
  1775. #ifdef __ARCH_WANT_SYS_VFORK
  1776. SYSCALL_DEFINE0(vfork)
  1777. {
  1778. return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
  1779. 0, NULL, NULL, 0);
  1780. }
  1781. #endif
  1782. #ifdef __ARCH_WANT_SYS_CLONE
  1783. #ifdef CONFIG_CLONE_BACKWARDS
  1784. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1785. int __user *, parent_tidptr,
  1786. unsigned long, tls,
  1787. int __user *, child_tidptr)
  1788. #elif defined(CONFIG_CLONE_BACKWARDS2)
  1789. SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
  1790. int __user *, parent_tidptr,
  1791. int __user *, child_tidptr,
  1792. unsigned long, tls)
  1793. #elif defined(CONFIG_CLONE_BACKWARDS3)
  1794. SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
  1795. int, stack_size,
  1796. int __user *, parent_tidptr,
  1797. int __user *, child_tidptr,
  1798. unsigned long, tls)
  1799. #else
  1800. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1801. int __user *, parent_tidptr,
  1802. int __user *, child_tidptr,
  1803. unsigned long, tls)
  1804. #endif
  1805. {
  1806. return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
  1807. }
  1808. #endif
  1809. void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
  1810. {
  1811. struct task_struct *leader, *parent, *child;
  1812. int res;
  1813. read_lock(&tasklist_lock);
  1814. leader = top = top->group_leader;
  1815. down:
  1816. for_each_thread(leader, parent) {
  1817. list_for_each_entry(child, &parent->children, sibling) {
  1818. res = visitor(child, data);
  1819. if (res) {
  1820. if (res < 0)
  1821. goto out;
  1822. leader = child;
  1823. goto down;
  1824. }
  1825. up:
  1826. ;
  1827. }
  1828. }
  1829. if (leader != top) {
  1830. child = leader;
  1831. parent = child->real_parent;
  1832. leader = parent->group_leader;
  1833. goto up;
  1834. }
  1835. out:
  1836. read_unlock(&tasklist_lock);
  1837. }
  1838. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1839. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1840. #endif
  1841. static void sighand_ctor(void *data)
  1842. {
  1843. struct sighand_struct *sighand = data;
  1844. spin_lock_init(&sighand->siglock);
  1845. init_waitqueue_head(&sighand->signalfd_wqh);
  1846. }
  1847. void __init proc_caches_init(void)
  1848. {
  1849. sighand_cachep = kmem_cache_create("sighand_cache",
  1850. sizeof(struct sighand_struct), 0,
  1851. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1852. SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
  1853. signal_cachep = kmem_cache_create("signal_cache",
  1854. sizeof(struct signal_struct), 0,
  1855. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1856. NULL);
  1857. files_cachep = kmem_cache_create("files_cache",
  1858. sizeof(struct files_struct), 0,
  1859. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1860. NULL);
  1861. fs_cachep = kmem_cache_create("fs_cache",
  1862. sizeof(struct fs_struct), 0,
  1863. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1864. NULL);
  1865. /*
  1866. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1867. * whole struct cpumask for the OFFSTACK case. We could change
  1868. * this to *only* allocate as much of it as required by the
  1869. * maximum number of CPU's we can ever have. The cpumask_allocation
  1870. * is at the end of the structure, exactly for that reason.
  1871. */
  1872. mm_cachep = kmem_cache_create("mm_struct",
  1873. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1874. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1875. NULL);
  1876. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
  1877. mmap_init();
  1878. nsproxy_cache_init();
  1879. }
  1880. /*
  1881. * Check constraints on flags passed to the unshare system call.
  1882. */
  1883. static int check_unshare_flags(unsigned long unshare_flags)
  1884. {
  1885. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1886. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1887. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
  1888. CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
  1889. return -EINVAL;
  1890. /*
  1891. * Not implemented, but pretend it works if there is nothing
  1892. * to unshare. Note that unsharing the address space or the
  1893. * signal handlers also need to unshare the signal queues (aka
  1894. * CLONE_THREAD).
  1895. */
  1896. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1897. if (!thread_group_empty(current))
  1898. return -EINVAL;
  1899. }
  1900. if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
  1901. if (atomic_read(&current->sighand->count) > 1)
  1902. return -EINVAL;
  1903. }
  1904. if (unshare_flags & CLONE_VM) {
  1905. if (!current_is_single_threaded())
  1906. return -EINVAL;
  1907. }
  1908. return 0;
  1909. }
  1910. /*
  1911. * Unshare the filesystem structure if it is being shared
  1912. */
  1913. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1914. {
  1915. struct fs_struct *fs = current->fs;
  1916. if (!(unshare_flags & CLONE_FS) || !fs)
  1917. return 0;
  1918. /* don't need lock here; in the worst case we'll do useless copy */
  1919. if (fs->users == 1)
  1920. return 0;
  1921. *new_fsp = copy_fs_struct(fs);
  1922. if (!*new_fsp)
  1923. return -ENOMEM;
  1924. return 0;
  1925. }
  1926. /*
  1927. * Unshare file descriptor table if it is being shared
  1928. */
  1929. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1930. {
  1931. struct files_struct *fd = current->files;
  1932. int error = 0;
  1933. if ((unshare_flags & CLONE_FILES) &&
  1934. (fd && atomic_read(&fd->count) > 1)) {
  1935. *new_fdp = dup_fd(fd, &error);
  1936. if (!*new_fdp)
  1937. return error;
  1938. }
  1939. return 0;
  1940. }
  1941. /*
  1942. * unshare allows a process to 'unshare' part of the process
  1943. * context which was originally shared using clone. copy_*
  1944. * functions used by do_fork() cannot be used here directly
  1945. * because they modify an inactive task_struct that is being
  1946. * constructed. Here we are modifying the current, active,
  1947. * task_struct.
  1948. */
  1949. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1950. {
  1951. struct fs_struct *fs, *new_fs = NULL;
  1952. struct files_struct *fd, *new_fd = NULL;
  1953. struct cred *new_cred = NULL;
  1954. struct nsproxy *new_nsproxy = NULL;
  1955. int do_sysvsem = 0;
  1956. int err;
  1957. /*
  1958. * If unsharing a user namespace must also unshare the thread group
  1959. * and unshare the filesystem root and working directories.
  1960. */
  1961. if (unshare_flags & CLONE_NEWUSER)
  1962. unshare_flags |= CLONE_THREAD | CLONE_FS;
  1963. /*
  1964. * If unsharing vm, must also unshare signal handlers.
  1965. */
  1966. if (unshare_flags & CLONE_VM)
  1967. unshare_flags |= CLONE_SIGHAND;
  1968. /*
  1969. * If unsharing a signal handlers, must also unshare the signal queues.
  1970. */
  1971. if (unshare_flags & CLONE_SIGHAND)
  1972. unshare_flags |= CLONE_THREAD;
  1973. /*
  1974. * If unsharing namespace, must also unshare filesystem information.
  1975. */
  1976. if (unshare_flags & CLONE_NEWNS)
  1977. unshare_flags |= CLONE_FS;
  1978. err = check_unshare_flags(unshare_flags);
  1979. if (err)
  1980. goto bad_unshare_out;
  1981. /*
  1982. * CLONE_NEWIPC must also detach from the undolist: after switching
  1983. * to a new ipc namespace, the semaphore arrays from the old
  1984. * namespace are unreachable.
  1985. */
  1986. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1987. do_sysvsem = 1;
  1988. err = unshare_fs(unshare_flags, &new_fs);
  1989. if (err)
  1990. goto bad_unshare_out;
  1991. err = unshare_fd(unshare_flags, &new_fd);
  1992. if (err)
  1993. goto bad_unshare_cleanup_fs;
  1994. err = unshare_userns(unshare_flags, &new_cred);
  1995. if (err)
  1996. goto bad_unshare_cleanup_fd;
  1997. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1998. new_cred, new_fs);
  1999. if (err)
  2000. goto bad_unshare_cleanup_cred;
  2001. if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
  2002. if (do_sysvsem) {
  2003. /*
  2004. * CLONE_SYSVSEM is equivalent to sys_exit().
  2005. */
  2006. exit_sem(current);
  2007. }
  2008. if (unshare_flags & CLONE_NEWIPC) {
  2009. /* Orphan segments in old ns (see sem above). */
  2010. exit_shm(current);
  2011. shm_init_task(current);
  2012. }
  2013. if (new_nsproxy)
  2014. switch_task_namespaces(current, new_nsproxy);
  2015. task_lock(current);
  2016. if (new_fs) {
  2017. fs = current->fs;
  2018. spin_lock(&fs->lock);
  2019. current->fs = new_fs;
  2020. if (--fs->users)
  2021. new_fs = NULL;
  2022. else
  2023. new_fs = fs;
  2024. spin_unlock(&fs->lock);
  2025. }
  2026. if (new_fd) {
  2027. fd = current->files;
  2028. current->files = new_fd;
  2029. new_fd = fd;
  2030. }
  2031. task_unlock(current);
  2032. if (new_cred) {
  2033. /* Install the new user namespace */
  2034. commit_creds(new_cred);
  2035. new_cred = NULL;
  2036. }
  2037. }
  2038. bad_unshare_cleanup_cred:
  2039. if (new_cred)
  2040. put_cred(new_cred);
  2041. bad_unshare_cleanup_fd:
  2042. if (new_fd)
  2043. put_files_struct(new_fd);
  2044. bad_unshare_cleanup_fs:
  2045. if (new_fs)
  2046. free_fs_struct(new_fs);
  2047. bad_unshare_out:
  2048. return err;
  2049. }
  2050. /*
  2051. * Helper to unshare the files of the current task.
  2052. * We don't want to expose copy_files internals to
  2053. * the exec layer of the kernel.
  2054. */
  2055. int unshare_files(struct files_struct **displaced)
  2056. {
  2057. struct task_struct *task = current;
  2058. struct files_struct *copy = NULL;
  2059. int error;
  2060. error = unshare_fd(CLONE_FILES, &copy);
  2061. if (error || !copy) {
  2062. *displaced = NULL;
  2063. return error;
  2064. }
  2065. *displaced = task->files;
  2066. task_lock(task);
  2067. task->files = copy;
  2068. task_unlock(task);
  2069. return 0;
  2070. }
  2071. int sysctl_max_threads(struct ctl_table *table, int write,
  2072. void __user *buffer, size_t *lenp, loff_t *ppos)
  2073. {
  2074. struct ctl_table t;
  2075. int ret;
  2076. int threads = max_threads;
  2077. int min = MIN_THREADS;
  2078. int max = MAX_THREADS;
  2079. t = *table;
  2080. t.data = &threads;
  2081. t.extra1 = &min;
  2082. t.extra2 = &max;
  2083. ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  2084. if (ret || !write)
  2085. return ret;
  2086. set_max_threads(threads);
  2087. return 0;
  2088. }