sdma_v3_0.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  52. MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
  53. MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
  54. MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
  55. MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
  56. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  57. {
  58. SDMA0_REGISTER_OFFSET,
  59. SDMA1_REGISTER_OFFSET
  60. };
  61. static const u32 golden_settings_tonga_a11[] =
  62. {
  63. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  64. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  65. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  66. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  67. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  68. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  69. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  70. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  71. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  72. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  73. };
  74. static const u32 tonga_mgcg_cgcg_init[] =
  75. {
  76. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  77. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  78. };
  79. static const u32 golden_settings_fiji_a10[] =
  80. {
  81. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  82. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  83. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  84. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  85. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  86. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  87. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  88. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  89. };
  90. static const u32 fiji_mgcg_cgcg_init[] =
  91. {
  92. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  93. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  94. };
  95. static const u32 golden_settings_polaris11_a11[] =
  96. {
  97. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  98. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  99. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  100. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  101. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  102. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  103. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  104. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  105. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  106. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  107. };
  108. static const u32 golden_settings_polaris10_a11[] =
  109. {
  110. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  111. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  112. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  113. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  114. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  115. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  116. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  117. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  118. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  119. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  120. };
  121. static const u32 cz_golden_settings_a11[] =
  122. {
  123. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  124. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  125. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  126. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  127. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  128. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  129. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  130. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  131. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  132. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  133. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  134. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  135. };
  136. static const u32 cz_mgcg_cgcg_init[] =
  137. {
  138. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  139. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  140. };
  141. static const u32 stoney_golden_settings_a11[] =
  142. {
  143. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  144. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  145. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  146. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  147. };
  148. static const u32 stoney_mgcg_cgcg_init[] =
  149. {
  150. mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
  151. };
  152. /*
  153. * sDMA - System DMA
  154. * Starting with CIK, the GPU has new asynchronous
  155. * DMA engines. These engines are used for compute
  156. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  157. * and each one supports 1 ring buffer used for gfx
  158. * and 2 queues used for compute.
  159. *
  160. * The programming model is very similar to the CP
  161. * (ring buffer, IBs, etc.), but sDMA has it's own
  162. * packet format that is different from the PM4 format
  163. * used by the CP. sDMA supports copying data, writing
  164. * embedded data, solid fills, and a number of other
  165. * things. It also has support for tiling/detiling of
  166. * buffers.
  167. */
  168. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  169. {
  170. switch (adev->asic_type) {
  171. case CHIP_FIJI:
  172. amdgpu_program_register_sequence(adev,
  173. fiji_mgcg_cgcg_init,
  174. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  175. amdgpu_program_register_sequence(adev,
  176. golden_settings_fiji_a10,
  177. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  178. break;
  179. case CHIP_TONGA:
  180. amdgpu_program_register_sequence(adev,
  181. tonga_mgcg_cgcg_init,
  182. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  183. amdgpu_program_register_sequence(adev,
  184. golden_settings_tonga_a11,
  185. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  186. break;
  187. case CHIP_POLARIS11:
  188. amdgpu_program_register_sequence(adev,
  189. golden_settings_polaris11_a11,
  190. (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
  191. break;
  192. case CHIP_POLARIS10:
  193. amdgpu_program_register_sequence(adev,
  194. golden_settings_polaris10_a11,
  195. (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
  196. break;
  197. case CHIP_CARRIZO:
  198. amdgpu_program_register_sequence(adev,
  199. cz_mgcg_cgcg_init,
  200. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  201. amdgpu_program_register_sequence(adev,
  202. cz_golden_settings_a11,
  203. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  204. break;
  205. case CHIP_STONEY:
  206. amdgpu_program_register_sequence(adev,
  207. stoney_mgcg_cgcg_init,
  208. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  209. amdgpu_program_register_sequence(adev,
  210. stoney_golden_settings_a11,
  211. (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
  212. break;
  213. default:
  214. break;
  215. }
  216. }
  217. static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
  218. {
  219. int i;
  220. for (i = 0; i < adev->sdma.num_instances; i++) {
  221. release_firmware(adev->sdma.instance[i].fw);
  222. adev->sdma.instance[i].fw = NULL;
  223. }
  224. }
  225. /**
  226. * sdma_v3_0_init_microcode - load ucode images from disk
  227. *
  228. * @adev: amdgpu_device pointer
  229. *
  230. * Use the firmware interface to load the ucode images into
  231. * the driver (not loaded into hw).
  232. * Returns 0 on success, error on failure.
  233. */
  234. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  235. {
  236. const char *chip_name;
  237. char fw_name[30];
  238. int err = 0, i;
  239. struct amdgpu_firmware_info *info = NULL;
  240. const struct common_firmware_header *header = NULL;
  241. const struct sdma_firmware_header_v1_0 *hdr;
  242. DRM_DEBUG("\n");
  243. switch (adev->asic_type) {
  244. case CHIP_TONGA:
  245. chip_name = "tonga";
  246. break;
  247. case CHIP_FIJI:
  248. chip_name = "fiji";
  249. break;
  250. case CHIP_POLARIS11:
  251. chip_name = "polaris11";
  252. break;
  253. case CHIP_POLARIS10:
  254. chip_name = "polaris10";
  255. break;
  256. case CHIP_CARRIZO:
  257. chip_name = "carrizo";
  258. break;
  259. case CHIP_STONEY:
  260. chip_name = "stoney";
  261. break;
  262. default: BUG();
  263. }
  264. for (i = 0; i < adev->sdma.num_instances; i++) {
  265. if (i == 0)
  266. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  267. else
  268. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  269. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  270. if (err)
  271. goto out;
  272. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  273. if (err)
  274. goto out;
  275. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  276. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  277. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  278. if (adev->sdma.instance[i].feature_version >= 20)
  279. adev->sdma.instance[i].burst_nop = true;
  280. if (adev->firmware.smu_load) {
  281. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  282. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  283. info->fw = adev->sdma.instance[i].fw;
  284. header = (const struct common_firmware_header *)info->fw->data;
  285. adev->firmware.fw_size +=
  286. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  287. }
  288. }
  289. out:
  290. if (err) {
  291. printk(KERN_ERR
  292. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  293. fw_name);
  294. for (i = 0; i < adev->sdma.num_instances; i++) {
  295. release_firmware(adev->sdma.instance[i].fw);
  296. adev->sdma.instance[i].fw = NULL;
  297. }
  298. }
  299. return err;
  300. }
  301. /**
  302. * sdma_v3_0_ring_get_rptr - get the current read pointer
  303. *
  304. * @ring: amdgpu ring pointer
  305. *
  306. * Get the current rptr from the hardware (VI+).
  307. */
  308. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  309. {
  310. /* XXX check if swapping is necessary on BE */
  311. return ring->adev->wb.wb[ring->rptr_offs] >> 2;
  312. }
  313. /**
  314. * sdma_v3_0_ring_get_wptr - get the current write pointer
  315. *
  316. * @ring: amdgpu ring pointer
  317. *
  318. * Get the current wptr from the hardware (VI+).
  319. */
  320. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  321. {
  322. struct amdgpu_device *adev = ring->adev;
  323. u32 wptr;
  324. if (ring->use_doorbell) {
  325. /* XXX check if swapping is necessary on BE */
  326. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  327. } else {
  328. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  329. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  330. }
  331. return wptr;
  332. }
  333. /**
  334. * sdma_v3_0_ring_set_wptr - commit the write pointer
  335. *
  336. * @ring: amdgpu ring pointer
  337. *
  338. * Write the wptr back to the hardware (VI+).
  339. */
  340. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  341. {
  342. struct amdgpu_device *adev = ring->adev;
  343. if (ring->use_doorbell) {
  344. /* XXX check if swapping is necessary on BE */
  345. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  346. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  347. } else {
  348. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  349. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  350. }
  351. }
  352. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  353. {
  354. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  355. int i;
  356. for (i = 0; i < count; i++)
  357. if (sdma && sdma->burst_nop && (i == 0))
  358. amdgpu_ring_write(ring, ring->nop |
  359. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  360. else
  361. amdgpu_ring_write(ring, ring->nop);
  362. }
  363. /**
  364. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  365. *
  366. * @ring: amdgpu ring pointer
  367. * @ib: IB object to schedule
  368. *
  369. * Schedule an IB in the DMA ring (VI).
  370. */
  371. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  372. struct amdgpu_ib *ib,
  373. unsigned vm_id, bool ctx_switch)
  374. {
  375. u32 vmid = vm_id & 0xf;
  376. /* IB packet must end on a 8 DW boundary */
  377. sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
  378. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  379. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  380. /* base must be 32 byte aligned */
  381. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  382. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  383. amdgpu_ring_write(ring, ib->length_dw);
  384. amdgpu_ring_write(ring, 0);
  385. amdgpu_ring_write(ring, 0);
  386. }
  387. /**
  388. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  389. *
  390. * @ring: amdgpu ring pointer
  391. *
  392. * Emit an hdp flush packet on the requested DMA ring.
  393. */
  394. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  395. {
  396. u32 ref_and_mask = 0;
  397. if (ring == &ring->adev->sdma.instance[0].ring)
  398. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  399. else
  400. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  401. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  402. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  403. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  404. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  405. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  406. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  407. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  408. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  409. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  410. }
  411. static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  412. {
  413. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  414. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  415. amdgpu_ring_write(ring, mmHDP_DEBUG0);
  416. amdgpu_ring_write(ring, 1);
  417. }
  418. /**
  419. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  420. *
  421. * @ring: amdgpu ring pointer
  422. * @fence: amdgpu fence object
  423. *
  424. * Add a DMA fence packet to the ring to write
  425. * the fence seq number and DMA trap packet to generate
  426. * an interrupt if needed (VI).
  427. */
  428. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  429. unsigned flags)
  430. {
  431. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  432. /* write the fence */
  433. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  434. amdgpu_ring_write(ring, lower_32_bits(addr));
  435. amdgpu_ring_write(ring, upper_32_bits(addr));
  436. amdgpu_ring_write(ring, lower_32_bits(seq));
  437. /* optionally write high bits as well */
  438. if (write64bit) {
  439. addr += 4;
  440. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  441. amdgpu_ring_write(ring, lower_32_bits(addr));
  442. amdgpu_ring_write(ring, upper_32_bits(addr));
  443. amdgpu_ring_write(ring, upper_32_bits(seq));
  444. }
  445. /* generate an interrupt */
  446. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  447. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  448. }
  449. /**
  450. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  451. *
  452. * @adev: amdgpu_device pointer
  453. *
  454. * Stop the gfx async dma ring buffers (VI).
  455. */
  456. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  457. {
  458. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  459. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  460. u32 rb_cntl, ib_cntl;
  461. int i;
  462. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  463. (adev->mman.buffer_funcs_ring == sdma1))
  464. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  465. for (i = 0; i < adev->sdma.num_instances; i++) {
  466. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  467. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  468. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  469. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  470. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  471. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  472. }
  473. sdma0->ready = false;
  474. sdma1->ready = false;
  475. }
  476. /**
  477. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  478. *
  479. * @adev: amdgpu_device pointer
  480. *
  481. * Stop the compute async dma queues (VI).
  482. */
  483. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  484. {
  485. /* XXX todo */
  486. }
  487. /**
  488. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  489. *
  490. * @adev: amdgpu_device pointer
  491. * @enable: enable/disable the DMA MEs context switch.
  492. *
  493. * Halt or unhalt the async dma engines context switch (VI).
  494. */
  495. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  496. {
  497. u32 f32_cntl;
  498. int i;
  499. for (i = 0; i < adev->sdma.num_instances; i++) {
  500. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  501. if (enable)
  502. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  503. AUTO_CTXSW_ENABLE, 1);
  504. else
  505. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  506. AUTO_CTXSW_ENABLE, 0);
  507. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  508. }
  509. }
  510. /**
  511. * sdma_v3_0_enable - stop the async dma engines
  512. *
  513. * @adev: amdgpu_device pointer
  514. * @enable: enable/disable the DMA MEs.
  515. *
  516. * Halt or unhalt the async dma engines (VI).
  517. */
  518. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  519. {
  520. u32 f32_cntl;
  521. int i;
  522. if (!enable) {
  523. sdma_v3_0_gfx_stop(adev);
  524. sdma_v3_0_rlc_stop(adev);
  525. }
  526. for (i = 0; i < adev->sdma.num_instances; i++) {
  527. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  528. if (enable)
  529. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  530. else
  531. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  532. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  533. }
  534. }
  535. /**
  536. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  537. *
  538. * @adev: amdgpu_device pointer
  539. *
  540. * Set up the gfx DMA ring buffers and enable them (VI).
  541. * Returns 0 for success, error for failure.
  542. */
  543. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  544. {
  545. struct amdgpu_ring *ring;
  546. u32 rb_cntl, ib_cntl;
  547. u32 rb_bufsz;
  548. u32 wb_offset;
  549. u32 doorbell;
  550. int i, j, r;
  551. for (i = 0; i < adev->sdma.num_instances; i++) {
  552. ring = &adev->sdma.instance[i].ring;
  553. wb_offset = (ring->rptr_offs * 4);
  554. mutex_lock(&adev->srbm_mutex);
  555. for (j = 0; j < 16; j++) {
  556. vi_srbm_select(adev, 0, 0, 0, j);
  557. /* SDMA GFX */
  558. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  559. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  560. }
  561. vi_srbm_select(adev, 0, 0, 0, 0);
  562. mutex_unlock(&adev->srbm_mutex);
  563. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  564. adev->gfx.config.gb_addr_config & 0x70);
  565. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  566. /* Set ring buffer size in dwords */
  567. rb_bufsz = order_base_2(ring->ring_size / 4);
  568. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  569. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  570. #ifdef __BIG_ENDIAN
  571. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  572. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  573. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  574. #endif
  575. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  576. /* Initialize the ring buffer's read and write pointers */
  577. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  578. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  579. WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
  580. WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
  581. /* set the wb address whether it's enabled or not */
  582. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  583. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  584. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  585. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  586. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  587. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  588. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  589. ring->wptr = 0;
  590. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  591. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  592. if (ring->use_doorbell) {
  593. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  594. OFFSET, ring->doorbell_index);
  595. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  596. } else {
  597. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  598. }
  599. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  600. /* enable DMA RB */
  601. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  602. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  603. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  604. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  605. #ifdef __BIG_ENDIAN
  606. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  607. #endif
  608. /* enable DMA IBs */
  609. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  610. ring->ready = true;
  611. }
  612. /* unhalt the MEs */
  613. sdma_v3_0_enable(adev, true);
  614. /* enable sdma ring preemption */
  615. sdma_v3_0_ctx_switch_enable(adev, true);
  616. for (i = 0; i < adev->sdma.num_instances; i++) {
  617. ring = &adev->sdma.instance[i].ring;
  618. r = amdgpu_ring_test_ring(ring);
  619. if (r) {
  620. ring->ready = false;
  621. return r;
  622. }
  623. if (adev->mman.buffer_funcs_ring == ring)
  624. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  625. }
  626. return 0;
  627. }
  628. /**
  629. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  630. *
  631. * @adev: amdgpu_device pointer
  632. *
  633. * Set up the compute DMA queues and enable them (VI).
  634. * Returns 0 for success, error for failure.
  635. */
  636. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  637. {
  638. /* XXX todo */
  639. return 0;
  640. }
  641. /**
  642. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  643. *
  644. * @adev: amdgpu_device pointer
  645. *
  646. * Loads the sDMA0/1 ucode.
  647. * Returns 0 for success, -EINVAL if the ucode is not available.
  648. */
  649. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  650. {
  651. const struct sdma_firmware_header_v1_0 *hdr;
  652. const __le32 *fw_data;
  653. u32 fw_size;
  654. int i, j;
  655. /* halt the MEs */
  656. sdma_v3_0_enable(adev, false);
  657. for (i = 0; i < adev->sdma.num_instances; i++) {
  658. if (!adev->sdma.instance[i].fw)
  659. return -EINVAL;
  660. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  661. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  662. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  663. fw_data = (const __le32 *)
  664. (adev->sdma.instance[i].fw->data +
  665. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  666. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  667. for (j = 0; j < fw_size; j++)
  668. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  669. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  670. }
  671. return 0;
  672. }
  673. /**
  674. * sdma_v3_0_start - setup and start the async dma engines
  675. *
  676. * @adev: amdgpu_device pointer
  677. *
  678. * Set up the DMA engines and enable them (VI).
  679. * Returns 0 for success, error for failure.
  680. */
  681. static int sdma_v3_0_start(struct amdgpu_device *adev)
  682. {
  683. int r, i;
  684. if (!adev->pp_enabled) {
  685. if (!adev->firmware.smu_load) {
  686. r = sdma_v3_0_load_microcode(adev);
  687. if (r)
  688. return r;
  689. } else {
  690. for (i = 0; i < adev->sdma.num_instances; i++) {
  691. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  692. (i == 0) ?
  693. AMDGPU_UCODE_ID_SDMA0 :
  694. AMDGPU_UCODE_ID_SDMA1);
  695. if (r)
  696. return -EINVAL;
  697. }
  698. }
  699. }
  700. /* disble sdma engine before programing it */
  701. sdma_v3_0_ctx_switch_enable(adev, false);
  702. sdma_v3_0_enable(adev, false);
  703. /* start the gfx rings and rlc compute queues */
  704. r = sdma_v3_0_gfx_resume(adev);
  705. if (r)
  706. return r;
  707. r = sdma_v3_0_rlc_resume(adev);
  708. if (r)
  709. return r;
  710. return 0;
  711. }
  712. /**
  713. * sdma_v3_0_ring_test_ring - simple async dma engine test
  714. *
  715. * @ring: amdgpu_ring structure holding ring information
  716. *
  717. * Test the DMA engine by writing using it to write an
  718. * value to memory. (VI).
  719. * Returns 0 for success, error for failure.
  720. */
  721. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  722. {
  723. struct amdgpu_device *adev = ring->adev;
  724. unsigned i;
  725. unsigned index;
  726. int r;
  727. u32 tmp;
  728. u64 gpu_addr;
  729. r = amdgpu_wb_get(adev, &index);
  730. if (r) {
  731. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  732. return r;
  733. }
  734. gpu_addr = adev->wb.gpu_addr + (index * 4);
  735. tmp = 0xCAFEDEAD;
  736. adev->wb.wb[index] = cpu_to_le32(tmp);
  737. r = amdgpu_ring_alloc(ring, 5);
  738. if (r) {
  739. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  740. amdgpu_wb_free(adev, index);
  741. return r;
  742. }
  743. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  744. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  745. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  746. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  747. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  748. amdgpu_ring_write(ring, 0xDEADBEEF);
  749. amdgpu_ring_commit(ring);
  750. for (i = 0; i < adev->usec_timeout; i++) {
  751. tmp = le32_to_cpu(adev->wb.wb[index]);
  752. if (tmp == 0xDEADBEEF)
  753. break;
  754. DRM_UDELAY(1);
  755. }
  756. if (i < adev->usec_timeout) {
  757. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  758. } else {
  759. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  760. ring->idx, tmp);
  761. r = -EINVAL;
  762. }
  763. amdgpu_wb_free(adev, index);
  764. return r;
  765. }
  766. /**
  767. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  768. *
  769. * @ring: amdgpu_ring structure holding ring information
  770. *
  771. * Test a simple IB in the DMA ring (VI).
  772. * Returns 0 on success, error on failure.
  773. */
  774. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  775. {
  776. struct amdgpu_device *adev = ring->adev;
  777. struct amdgpu_ib ib;
  778. struct fence *f = NULL;
  779. unsigned index;
  780. u32 tmp = 0;
  781. u64 gpu_addr;
  782. long r;
  783. r = amdgpu_wb_get(adev, &index);
  784. if (r) {
  785. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  786. return r;
  787. }
  788. gpu_addr = adev->wb.gpu_addr + (index * 4);
  789. tmp = 0xCAFEDEAD;
  790. adev->wb.wb[index] = cpu_to_le32(tmp);
  791. memset(&ib, 0, sizeof(ib));
  792. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  793. if (r) {
  794. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  795. goto err0;
  796. }
  797. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  798. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  799. ib.ptr[1] = lower_32_bits(gpu_addr);
  800. ib.ptr[2] = upper_32_bits(gpu_addr);
  801. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  802. ib.ptr[4] = 0xDEADBEEF;
  803. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  804. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  805. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  806. ib.length_dw = 8;
  807. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
  808. if (r)
  809. goto err1;
  810. r = fence_wait_timeout(f, false, timeout);
  811. if (r == 0) {
  812. DRM_ERROR("amdgpu: IB test timed out\n");
  813. r = -ETIMEDOUT;
  814. goto err1;
  815. } else if (r < 0) {
  816. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  817. goto err1;
  818. }
  819. tmp = le32_to_cpu(adev->wb.wb[index]);
  820. if (tmp == 0xDEADBEEF) {
  821. DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
  822. r = 0;
  823. } else {
  824. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  825. r = -EINVAL;
  826. }
  827. err1:
  828. amdgpu_ib_free(adev, &ib, NULL);
  829. fence_put(f);
  830. err0:
  831. amdgpu_wb_free(adev, index);
  832. return r;
  833. }
  834. /**
  835. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  836. *
  837. * @ib: indirect buffer to fill with commands
  838. * @pe: addr of the page entry
  839. * @src: src addr to copy from
  840. * @count: number of page entries to update
  841. *
  842. * Update PTEs by copying them from the GART using sDMA (CIK).
  843. */
  844. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  845. uint64_t pe, uint64_t src,
  846. unsigned count)
  847. {
  848. unsigned bytes = count * 8;
  849. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  850. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  851. ib->ptr[ib->length_dw++] = bytes;
  852. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  853. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  854. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  855. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  856. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  857. }
  858. /**
  859. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  860. *
  861. * @ib: indirect buffer to fill with commands
  862. * @pe: addr of the page entry
  863. * @value: dst addr to write into pe
  864. * @count: number of page entries to update
  865. * @incr: increase next addr by incr bytes
  866. *
  867. * Update PTEs by writing them manually using sDMA (CIK).
  868. */
  869. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  870. uint64_t value, unsigned count,
  871. uint32_t incr)
  872. {
  873. unsigned ndw = count * 2;
  874. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  875. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  876. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  877. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  878. ib->ptr[ib->length_dw++] = ndw;
  879. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  880. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  881. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  882. value += incr;
  883. }
  884. }
  885. /**
  886. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  887. *
  888. * @ib: indirect buffer to fill with commands
  889. * @pe: addr of the page entry
  890. * @addr: dst addr to write into pe
  891. * @count: number of page entries to update
  892. * @incr: increase next addr by incr bytes
  893. * @flags: access flags
  894. *
  895. * Update the page tables using sDMA (CIK).
  896. */
  897. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
  898. uint64_t addr, unsigned count,
  899. uint32_t incr, uint32_t flags)
  900. {
  901. /* for physically contiguous pages (vram) */
  902. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  903. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  904. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  905. ib->ptr[ib->length_dw++] = flags; /* mask */
  906. ib->ptr[ib->length_dw++] = 0;
  907. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  908. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  909. ib->ptr[ib->length_dw++] = incr; /* increment size */
  910. ib->ptr[ib->length_dw++] = 0;
  911. ib->ptr[ib->length_dw++] = count; /* number of entries */
  912. }
  913. /**
  914. * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
  915. *
  916. * @ib: indirect buffer to fill with padding
  917. *
  918. */
  919. static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  920. {
  921. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  922. u32 pad_count;
  923. int i;
  924. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  925. for (i = 0; i < pad_count; i++)
  926. if (sdma && sdma->burst_nop && (i == 0))
  927. ib->ptr[ib->length_dw++] =
  928. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  929. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  930. else
  931. ib->ptr[ib->length_dw++] =
  932. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  933. }
  934. /**
  935. * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
  936. *
  937. * @ring: amdgpu_ring pointer
  938. *
  939. * Make sure all previous operations are completed (CIK).
  940. */
  941. static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  942. {
  943. uint32_t seq = ring->fence_drv.sync_seq;
  944. uint64_t addr = ring->fence_drv.gpu_addr;
  945. /* wait for idle */
  946. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  947. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  948. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  949. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  950. amdgpu_ring_write(ring, addr & 0xfffffffc);
  951. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  952. amdgpu_ring_write(ring, seq); /* reference */
  953. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  954. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  955. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  956. }
  957. /**
  958. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  959. *
  960. * @ring: amdgpu_ring pointer
  961. * @vm: amdgpu_vm pointer
  962. *
  963. * Update the page table base and flush the VM TLB
  964. * using sDMA (VI).
  965. */
  966. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  967. unsigned vm_id, uint64_t pd_addr)
  968. {
  969. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  970. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  971. if (vm_id < 8) {
  972. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  973. } else {
  974. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  975. }
  976. amdgpu_ring_write(ring, pd_addr >> 12);
  977. /* flush TLB */
  978. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  979. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  980. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  981. amdgpu_ring_write(ring, 1 << vm_id);
  982. /* wait for flush */
  983. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  984. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  985. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  986. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  987. amdgpu_ring_write(ring, 0);
  988. amdgpu_ring_write(ring, 0); /* reference */
  989. amdgpu_ring_write(ring, 0); /* mask */
  990. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  991. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  992. }
  993. static unsigned sdma_v3_0_ring_get_emit_ib_size(struct amdgpu_ring *ring)
  994. {
  995. return
  996. 7 + 6; /* sdma_v3_0_ring_emit_ib */
  997. }
  998. static unsigned sdma_v3_0_ring_get_dma_frame_size(struct amdgpu_ring *ring)
  999. {
  1000. return
  1001. 6 + /* sdma_v3_0_ring_emit_hdp_flush */
  1002. 3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
  1003. 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
  1004. 12 + /* sdma_v3_0_ring_emit_vm_flush */
  1005. 10 + 10 + 10; /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
  1006. }
  1007. static int sdma_v3_0_early_init(void *handle)
  1008. {
  1009. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1010. switch (adev->asic_type) {
  1011. case CHIP_STONEY:
  1012. adev->sdma.num_instances = 1;
  1013. break;
  1014. default:
  1015. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  1016. break;
  1017. }
  1018. sdma_v3_0_set_ring_funcs(adev);
  1019. sdma_v3_0_set_buffer_funcs(adev);
  1020. sdma_v3_0_set_vm_pte_funcs(adev);
  1021. sdma_v3_0_set_irq_funcs(adev);
  1022. return 0;
  1023. }
  1024. static int sdma_v3_0_sw_init(void *handle)
  1025. {
  1026. struct amdgpu_ring *ring;
  1027. int r, i;
  1028. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1029. /* SDMA trap event */
  1030. r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
  1031. if (r)
  1032. return r;
  1033. /* SDMA Privileged inst */
  1034. r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
  1035. if (r)
  1036. return r;
  1037. /* SDMA Privileged inst */
  1038. r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
  1039. if (r)
  1040. return r;
  1041. r = sdma_v3_0_init_microcode(adev);
  1042. if (r) {
  1043. DRM_ERROR("Failed to load sdma firmware!\n");
  1044. return r;
  1045. }
  1046. for (i = 0; i < adev->sdma.num_instances; i++) {
  1047. ring = &adev->sdma.instance[i].ring;
  1048. ring->ring_obj = NULL;
  1049. ring->use_doorbell = true;
  1050. ring->doorbell_index = (i == 0) ?
  1051. AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
  1052. sprintf(ring->name, "sdma%d", i);
  1053. r = amdgpu_ring_init(adev, ring, 1024,
  1054. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  1055. &adev->sdma.trap_irq,
  1056. (i == 0) ?
  1057. AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
  1058. AMDGPU_RING_TYPE_SDMA);
  1059. if (r)
  1060. return r;
  1061. }
  1062. return r;
  1063. }
  1064. static int sdma_v3_0_sw_fini(void *handle)
  1065. {
  1066. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1067. int i;
  1068. for (i = 0; i < adev->sdma.num_instances; i++)
  1069. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1070. sdma_v3_0_free_microcode(adev);
  1071. return 0;
  1072. }
  1073. static int sdma_v3_0_hw_init(void *handle)
  1074. {
  1075. int r;
  1076. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1077. sdma_v3_0_init_golden_registers(adev);
  1078. r = sdma_v3_0_start(adev);
  1079. if (r)
  1080. return r;
  1081. return r;
  1082. }
  1083. static int sdma_v3_0_hw_fini(void *handle)
  1084. {
  1085. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1086. sdma_v3_0_ctx_switch_enable(adev, false);
  1087. sdma_v3_0_enable(adev, false);
  1088. return 0;
  1089. }
  1090. static int sdma_v3_0_suspend(void *handle)
  1091. {
  1092. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1093. return sdma_v3_0_hw_fini(adev);
  1094. }
  1095. static int sdma_v3_0_resume(void *handle)
  1096. {
  1097. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1098. return sdma_v3_0_hw_init(adev);
  1099. }
  1100. static bool sdma_v3_0_is_idle(void *handle)
  1101. {
  1102. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1103. u32 tmp = RREG32(mmSRBM_STATUS2);
  1104. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1105. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1106. return false;
  1107. return true;
  1108. }
  1109. static int sdma_v3_0_wait_for_idle(void *handle)
  1110. {
  1111. unsigned i;
  1112. u32 tmp;
  1113. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1114. for (i = 0; i < adev->usec_timeout; i++) {
  1115. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1116. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1117. if (!tmp)
  1118. return 0;
  1119. udelay(1);
  1120. }
  1121. return -ETIMEDOUT;
  1122. }
  1123. static bool sdma_v3_0_check_soft_reset(void *handle)
  1124. {
  1125. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1126. u32 srbm_soft_reset = 0;
  1127. u32 tmp = RREG32(mmSRBM_STATUS2);
  1128. if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
  1129. (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
  1130. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1131. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1132. }
  1133. if (srbm_soft_reset) {
  1134. adev->sdma.srbm_soft_reset = srbm_soft_reset;
  1135. return true;
  1136. } else {
  1137. adev->sdma.srbm_soft_reset = 0;
  1138. return false;
  1139. }
  1140. }
  1141. static int sdma_v3_0_pre_soft_reset(void *handle)
  1142. {
  1143. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1144. u32 srbm_soft_reset = 0;
  1145. if (!adev->sdma.srbm_soft_reset)
  1146. return 0;
  1147. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1148. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1149. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1150. sdma_v3_0_ctx_switch_enable(adev, false);
  1151. sdma_v3_0_enable(adev, false);
  1152. }
  1153. return 0;
  1154. }
  1155. static int sdma_v3_0_post_soft_reset(void *handle)
  1156. {
  1157. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1158. u32 srbm_soft_reset = 0;
  1159. if (!adev->sdma.srbm_soft_reset)
  1160. return 0;
  1161. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1162. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1163. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1164. sdma_v3_0_gfx_resume(adev);
  1165. sdma_v3_0_rlc_resume(adev);
  1166. }
  1167. return 0;
  1168. }
  1169. static int sdma_v3_0_soft_reset(void *handle)
  1170. {
  1171. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1172. u32 srbm_soft_reset = 0;
  1173. u32 tmp;
  1174. if (!adev->sdma.srbm_soft_reset)
  1175. return 0;
  1176. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1177. if (srbm_soft_reset) {
  1178. tmp = RREG32(mmSRBM_SOFT_RESET);
  1179. tmp |= srbm_soft_reset;
  1180. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1181. WREG32(mmSRBM_SOFT_RESET, tmp);
  1182. tmp = RREG32(mmSRBM_SOFT_RESET);
  1183. udelay(50);
  1184. tmp &= ~srbm_soft_reset;
  1185. WREG32(mmSRBM_SOFT_RESET, tmp);
  1186. tmp = RREG32(mmSRBM_SOFT_RESET);
  1187. /* Wait a little for things to settle down */
  1188. udelay(50);
  1189. }
  1190. return 0;
  1191. }
  1192. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1193. struct amdgpu_irq_src *source,
  1194. unsigned type,
  1195. enum amdgpu_interrupt_state state)
  1196. {
  1197. u32 sdma_cntl;
  1198. switch (type) {
  1199. case AMDGPU_SDMA_IRQ_TRAP0:
  1200. switch (state) {
  1201. case AMDGPU_IRQ_STATE_DISABLE:
  1202. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1203. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1204. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1205. break;
  1206. case AMDGPU_IRQ_STATE_ENABLE:
  1207. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1208. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1209. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1210. break;
  1211. default:
  1212. break;
  1213. }
  1214. break;
  1215. case AMDGPU_SDMA_IRQ_TRAP1:
  1216. switch (state) {
  1217. case AMDGPU_IRQ_STATE_DISABLE:
  1218. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1219. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1220. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1221. break;
  1222. case AMDGPU_IRQ_STATE_ENABLE:
  1223. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1224. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1225. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1226. break;
  1227. default:
  1228. break;
  1229. }
  1230. break;
  1231. default:
  1232. break;
  1233. }
  1234. return 0;
  1235. }
  1236. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1237. struct amdgpu_irq_src *source,
  1238. struct amdgpu_iv_entry *entry)
  1239. {
  1240. u8 instance_id, queue_id;
  1241. instance_id = (entry->ring_id & 0x3) >> 0;
  1242. queue_id = (entry->ring_id & 0xc) >> 2;
  1243. DRM_DEBUG("IH: SDMA trap\n");
  1244. switch (instance_id) {
  1245. case 0:
  1246. switch (queue_id) {
  1247. case 0:
  1248. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1249. break;
  1250. case 1:
  1251. /* XXX compute */
  1252. break;
  1253. case 2:
  1254. /* XXX compute */
  1255. break;
  1256. }
  1257. break;
  1258. case 1:
  1259. switch (queue_id) {
  1260. case 0:
  1261. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1262. break;
  1263. case 1:
  1264. /* XXX compute */
  1265. break;
  1266. case 2:
  1267. /* XXX compute */
  1268. break;
  1269. }
  1270. break;
  1271. }
  1272. return 0;
  1273. }
  1274. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1275. struct amdgpu_irq_src *source,
  1276. struct amdgpu_iv_entry *entry)
  1277. {
  1278. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1279. schedule_work(&adev->reset_work);
  1280. return 0;
  1281. }
  1282. static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
  1283. struct amdgpu_device *adev,
  1284. bool enable)
  1285. {
  1286. uint32_t temp, data;
  1287. int i;
  1288. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1289. for (i = 0; i < adev->sdma.num_instances; i++) {
  1290. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1291. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1292. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1293. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1294. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1295. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1296. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1297. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1298. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1299. if (data != temp)
  1300. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1301. }
  1302. } else {
  1303. for (i = 0; i < adev->sdma.num_instances; i++) {
  1304. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1305. data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1306. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1307. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1308. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1309. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1310. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1311. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1312. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1313. if (data != temp)
  1314. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1315. }
  1316. }
  1317. }
  1318. static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
  1319. struct amdgpu_device *adev,
  1320. bool enable)
  1321. {
  1322. uint32_t temp, data;
  1323. int i;
  1324. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1325. for (i = 0; i < adev->sdma.num_instances; i++) {
  1326. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1327. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1328. if (temp != data)
  1329. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1330. }
  1331. } else {
  1332. for (i = 0; i < adev->sdma.num_instances; i++) {
  1333. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1334. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1335. if (temp != data)
  1336. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1337. }
  1338. }
  1339. }
  1340. static int sdma_v3_0_set_clockgating_state(void *handle,
  1341. enum amd_clockgating_state state)
  1342. {
  1343. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1344. switch (adev->asic_type) {
  1345. case CHIP_FIJI:
  1346. case CHIP_CARRIZO:
  1347. case CHIP_STONEY:
  1348. sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
  1349. state == AMD_CG_STATE_GATE ? true : false);
  1350. sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
  1351. state == AMD_CG_STATE_GATE ? true : false);
  1352. break;
  1353. default:
  1354. break;
  1355. }
  1356. return 0;
  1357. }
  1358. static int sdma_v3_0_set_powergating_state(void *handle,
  1359. enum amd_powergating_state state)
  1360. {
  1361. return 0;
  1362. }
  1363. const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1364. .name = "sdma_v3_0",
  1365. .early_init = sdma_v3_0_early_init,
  1366. .late_init = NULL,
  1367. .sw_init = sdma_v3_0_sw_init,
  1368. .sw_fini = sdma_v3_0_sw_fini,
  1369. .hw_init = sdma_v3_0_hw_init,
  1370. .hw_fini = sdma_v3_0_hw_fini,
  1371. .suspend = sdma_v3_0_suspend,
  1372. .resume = sdma_v3_0_resume,
  1373. .is_idle = sdma_v3_0_is_idle,
  1374. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1375. .check_soft_reset = sdma_v3_0_check_soft_reset,
  1376. .pre_soft_reset = sdma_v3_0_pre_soft_reset,
  1377. .post_soft_reset = sdma_v3_0_post_soft_reset,
  1378. .soft_reset = sdma_v3_0_soft_reset,
  1379. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1380. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1381. };
  1382. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1383. .get_rptr = sdma_v3_0_ring_get_rptr,
  1384. .get_wptr = sdma_v3_0_ring_get_wptr,
  1385. .set_wptr = sdma_v3_0_ring_set_wptr,
  1386. .parse_cs = NULL,
  1387. .emit_ib = sdma_v3_0_ring_emit_ib,
  1388. .emit_fence = sdma_v3_0_ring_emit_fence,
  1389. .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
  1390. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1391. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1392. .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
  1393. .test_ring = sdma_v3_0_ring_test_ring,
  1394. .test_ib = sdma_v3_0_ring_test_ib,
  1395. .insert_nop = sdma_v3_0_ring_insert_nop,
  1396. .pad_ib = sdma_v3_0_ring_pad_ib,
  1397. .get_emit_ib_size = sdma_v3_0_ring_get_emit_ib_size,
  1398. .get_dma_frame_size = sdma_v3_0_ring_get_dma_frame_size,
  1399. };
  1400. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1401. {
  1402. int i;
  1403. for (i = 0; i < adev->sdma.num_instances; i++)
  1404. adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
  1405. }
  1406. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1407. .set = sdma_v3_0_set_trap_irq_state,
  1408. .process = sdma_v3_0_process_trap_irq,
  1409. };
  1410. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1411. .process = sdma_v3_0_process_illegal_inst_irq,
  1412. };
  1413. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1414. {
  1415. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1416. adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1417. adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1418. }
  1419. /**
  1420. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1421. *
  1422. * @ring: amdgpu_ring structure holding ring information
  1423. * @src_offset: src GPU address
  1424. * @dst_offset: dst GPU address
  1425. * @byte_count: number of bytes to xfer
  1426. *
  1427. * Copy GPU buffers using the DMA engine (VI).
  1428. * Used by the amdgpu ttm implementation to move pages if
  1429. * registered as the asic copy callback.
  1430. */
  1431. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1432. uint64_t src_offset,
  1433. uint64_t dst_offset,
  1434. uint32_t byte_count)
  1435. {
  1436. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1437. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1438. ib->ptr[ib->length_dw++] = byte_count;
  1439. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1440. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1441. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1442. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1443. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1444. }
  1445. /**
  1446. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1447. *
  1448. * @ring: amdgpu_ring structure holding ring information
  1449. * @src_data: value to write to buffer
  1450. * @dst_offset: dst GPU address
  1451. * @byte_count: number of bytes to xfer
  1452. *
  1453. * Fill GPU buffers using the DMA engine (VI).
  1454. */
  1455. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1456. uint32_t src_data,
  1457. uint64_t dst_offset,
  1458. uint32_t byte_count)
  1459. {
  1460. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1461. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1462. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1463. ib->ptr[ib->length_dw++] = src_data;
  1464. ib->ptr[ib->length_dw++] = byte_count;
  1465. }
  1466. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1467. .copy_max_bytes = 0x1fffff,
  1468. .copy_num_dw = 7,
  1469. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1470. .fill_max_bytes = 0x1fffff,
  1471. .fill_num_dw = 5,
  1472. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1473. };
  1474. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1475. {
  1476. if (adev->mman.buffer_funcs == NULL) {
  1477. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1478. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1479. }
  1480. }
  1481. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1482. .copy_pte = sdma_v3_0_vm_copy_pte,
  1483. .write_pte = sdma_v3_0_vm_write_pte,
  1484. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1485. };
  1486. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1487. {
  1488. unsigned i;
  1489. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1490. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1491. for (i = 0; i < adev->sdma.num_instances; i++)
  1492. adev->vm_manager.vm_pte_rings[i] =
  1493. &adev->sdma.instance[i].ring;
  1494. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1495. }
  1496. }