i915_debugfs.c 139 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/debugfs.h>
  29. #include <linux/sort.h>
  30. #include "intel_drv.h"
  31. static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
  32. {
  33. return to_i915(node->minor->dev);
  34. }
  35. static __always_inline void seq_print_param(struct seq_file *m,
  36. const char *name,
  37. const char *type,
  38. const void *x)
  39. {
  40. if (!__builtin_strcmp(type, "bool"))
  41. seq_printf(m, "i915.%s=%s\n", name, yesno(*(const bool *)x));
  42. else if (!__builtin_strcmp(type, "int"))
  43. seq_printf(m, "i915.%s=%d\n", name, *(const int *)x);
  44. else if (!__builtin_strcmp(type, "unsigned int"))
  45. seq_printf(m, "i915.%s=%u\n", name, *(const unsigned int *)x);
  46. else if (!__builtin_strcmp(type, "char *"))
  47. seq_printf(m, "i915.%s=%s\n", name, *(const char **)x);
  48. else
  49. BUILD_BUG();
  50. }
  51. static int i915_capabilities(struct seq_file *m, void *data)
  52. {
  53. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  54. const struct intel_device_info *info = INTEL_INFO(dev_priv);
  55. seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
  56. seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
  57. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
  58. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  59. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
  60. #undef PRINT_FLAG
  61. kernel_param_lock(THIS_MODULE);
  62. #define PRINT_PARAM(T, x) seq_print_param(m, #x, #T, &i915.x);
  63. I915_PARAMS_FOR_EACH(PRINT_PARAM);
  64. #undef PRINT_PARAM
  65. kernel_param_unlock(THIS_MODULE);
  66. return 0;
  67. }
  68. static char get_active_flag(struct drm_i915_gem_object *obj)
  69. {
  70. return i915_gem_object_is_active(obj) ? '*' : ' ';
  71. }
  72. static char get_pin_flag(struct drm_i915_gem_object *obj)
  73. {
  74. return obj->pin_display ? 'p' : ' ';
  75. }
  76. static char get_tiling_flag(struct drm_i915_gem_object *obj)
  77. {
  78. switch (i915_gem_object_get_tiling(obj)) {
  79. default:
  80. case I915_TILING_NONE: return ' ';
  81. case I915_TILING_X: return 'X';
  82. case I915_TILING_Y: return 'Y';
  83. }
  84. }
  85. static char get_global_flag(struct drm_i915_gem_object *obj)
  86. {
  87. return !list_empty(&obj->userfault_link) ? 'g' : ' ';
  88. }
  89. static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
  90. {
  91. return obj->mm.mapping ? 'M' : ' ';
  92. }
  93. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  94. {
  95. u64 size = 0;
  96. struct i915_vma *vma;
  97. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  98. if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
  99. size += vma->node.size;
  100. }
  101. return size;
  102. }
  103. static void
  104. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  105. {
  106. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  107. struct intel_engine_cs *engine;
  108. struct i915_vma *vma;
  109. unsigned int frontbuffer_bits;
  110. int pin_count = 0;
  111. lockdep_assert_held(&obj->base.dev->struct_mutex);
  112. seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
  113. &obj->base,
  114. get_active_flag(obj),
  115. get_pin_flag(obj),
  116. get_tiling_flag(obj),
  117. get_global_flag(obj),
  118. get_pin_mapped_flag(obj),
  119. obj->base.size / 1024,
  120. obj->base.read_domains,
  121. obj->base.write_domain,
  122. i915_cache_level_str(dev_priv, obj->cache_level),
  123. obj->mm.dirty ? " dirty" : "",
  124. obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
  125. if (obj->base.name)
  126. seq_printf(m, " (name: %d)", obj->base.name);
  127. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  128. if (i915_vma_is_pinned(vma))
  129. pin_count++;
  130. }
  131. seq_printf(m, " (pinned x %d)", pin_count);
  132. if (obj->pin_display)
  133. seq_printf(m, " (display)");
  134. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  135. if (!drm_mm_node_allocated(&vma->node))
  136. continue;
  137. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
  138. i915_vma_is_ggtt(vma) ? "g" : "pp",
  139. vma->node.start, vma->node.size);
  140. if (i915_vma_is_ggtt(vma)) {
  141. switch (vma->ggtt_view.type) {
  142. case I915_GGTT_VIEW_NORMAL:
  143. seq_puts(m, ", normal");
  144. break;
  145. case I915_GGTT_VIEW_PARTIAL:
  146. seq_printf(m, ", partial [%08llx+%x]",
  147. vma->ggtt_view.partial.offset << PAGE_SHIFT,
  148. vma->ggtt_view.partial.size << PAGE_SHIFT);
  149. break;
  150. case I915_GGTT_VIEW_ROTATED:
  151. seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
  152. vma->ggtt_view.rotated.plane[0].width,
  153. vma->ggtt_view.rotated.plane[0].height,
  154. vma->ggtt_view.rotated.plane[0].stride,
  155. vma->ggtt_view.rotated.plane[0].offset,
  156. vma->ggtt_view.rotated.plane[1].width,
  157. vma->ggtt_view.rotated.plane[1].height,
  158. vma->ggtt_view.rotated.plane[1].stride,
  159. vma->ggtt_view.rotated.plane[1].offset);
  160. break;
  161. default:
  162. MISSING_CASE(vma->ggtt_view.type);
  163. break;
  164. }
  165. }
  166. if (vma->fence)
  167. seq_printf(m, " , fence: %d%s",
  168. vma->fence->id,
  169. i915_gem_active_isset(&vma->last_fence) ? "*" : "");
  170. seq_puts(m, ")");
  171. }
  172. if (obj->stolen)
  173. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  174. engine = i915_gem_object_last_write_engine(obj);
  175. if (engine)
  176. seq_printf(m, " (%s)", engine->name);
  177. frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
  178. if (frontbuffer_bits)
  179. seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
  180. }
  181. static int obj_rank_by_stolen(const void *A, const void *B)
  182. {
  183. const struct drm_i915_gem_object *a =
  184. *(const struct drm_i915_gem_object **)A;
  185. const struct drm_i915_gem_object *b =
  186. *(const struct drm_i915_gem_object **)B;
  187. if (a->stolen->start < b->stolen->start)
  188. return -1;
  189. if (a->stolen->start > b->stolen->start)
  190. return 1;
  191. return 0;
  192. }
  193. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  194. {
  195. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  196. struct drm_device *dev = &dev_priv->drm;
  197. struct drm_i915_gem_object **objects;
  198. struct drm_i915_gem_object *obj;
  199. u64 total_obj_size, total_gtt_size;
  200. unsigned long total, count, n;
  201. int ret;
  202. total = READ_ONCE(dev_priv->mm.object_count);
  203. objects = kvmalloc_array(total, sizeof(*objects), GFP_KERNEL);
  204. if (!objects)
  205. return -ENOMEM;
  206. ret = mutex_lock_interruptible(&dev->struct_mutex);
  207. if (ret)
  208. goto out;
  209. total_obj_size = total_gtt_size = count = 0;
  210. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
  211. if (count == total)
  212. break;
  213. if (obj->stolen == NULL)
  214. continue;
  215. objects[count++] = obj;
  216. total_obj_size += obj->base.size;
  217. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  218. }
  219. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
  220. if (count == total)
  221. break;
  222. if (obj->stolen == NULL)
  223. continue;
  224. objects[count++] = obj;
  225. total_obj_size += obj->base.size;
  226. }
  227. sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
  228. seq_puts(m, "Stolen:\n");
  229. for (n = 0; n < count; n++) {
  230. seq_puts(m, " ");
  231. describe_obj(m, objects[n]);
  232. seq_putc(m, '\n');
  233. }
  234. seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
  235. count, total_obj_size, total_gtt_size);
  236. mutex_unlock(&dev->struct_mutex);
  237. out:
  238. kvfree(objects);
  239. return ret;
  240. }
  241. struct file_stats {
  242. struct drm_i915_file_private *file_priv;
  243. unsigned long count;
  244. u64 total, unbound;
  245. u64 global, shared;
  246. u64 active, inactive;
  247. };
  248. static int per_file_stats(int id, void *ptr, void *data)
  249. {
  250. struct drm_i915_gem_object *obj = ptr;
  251. struct file_stats *stats = data;
  252. struct i915_vma *vma;
  253. lockdep_assert_held(&obj->base.dev->struct_mutex);
  254. stats->count++;
  255. stats->total += obj->base.size;
  256. if (!obj->bind_count)
  257. stats->unbound += obj->base.size;
  258. if (obj->base.name || obj->base.dma_buf)
  259. stats->shared += obj->base.size;
  260. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  261. if (!drm_mm_node_allocated(&vma->node))
  262. continue;
  263. if (i915_vma_is_ggtt(vma)) {
  264. stats->global += vma->node.size;
  265. } else {
  266. struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
  267. if (ppgtt->base.file != stats->file_priv)
  268. continue;
  269. }
  270. if (i915_vma_is_active(vma))
  271. stats->active += vma->node.size;
  272. else
  273. stats->inactive += vma->node.size;
  274. }
  275. return 0;
  276. }
  277. #define print_file_stats(m, name, stats) do { \
  278. if (stats.count) \
  279. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  280. name, \
  281. stats.count, \
  282. stats.total, \
  283. stats.active, \
  284. stats.inactive, \
  285. stats.global, \
  286. stats.shared, \
  287. stats.unbound); \
  288. } while (0)
  289. static void print_batch_pool_stats(struct seq_file *m,
  290. struct drm_i915_private *dev_priv)
  291. {
  292. struct drm_i915_gem_object *obj;
  293. struct file_stats stats;
  294. struct intel_engine_cs *engine;
  295. enum intel_engine_id id;
  296. int j;
  297. memset(&stats, 0, sizeof(stats));
  298. for_each_engine(engine, dev_priv, id) {
  299. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  300. list_for_each_entry(obj,
  301. &engine->batch_pool.cache_list[j],
  302. batch_pool_link)
  303. per_file_stats(0, obj, &stats);
  304. }
  305. }
  306. print_file_stats(m, "[k]batch pool", stats);
  307. }
  308. static int per_file_ctx_stats(int id, void *ptr, void *data)
  309. {
  310. struct i915_gem_context *ctx = ptr;
  311. int n;
  312. for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
  313. if (ctx->engine[n].state)
  314. per_file_stats(0, ctx->engine[n].state->obj, data);
  315. if (ctx->engine[n].ring)
  316. per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
  317. }
  318. return 0;
  319. }
  320. static void print_context_stats(struct seq_file *m,
  321. struct drm_i915_private *dev_priv)
  322. {
  323. struct drm_device *dev = &dev_priv->drm;
  324. struct file_stats stats;
  325. struct drm_file *file;
  326. memset(&stats, 0, sizeof(stats));
  327. mutex_lock(&dev->struct_mutex);
  328. if (dev_priv->kernel_context)
  329. per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
  330. list_for_each_entry(file, &dev->filelist, lhead) {
  331. struct drm_i915_file_private *fpriv = file->driver_priv;
  332. idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
  333. }
  334. mutex_unlock(&dev->struct_mutex);
  335. print_file_stats(m, "[k]contexts", stats);
  336. }
  337. static int i915_gem_object_info(struct seq_file *m, void *data)
  338. {
  339. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  340. struct drm_device *dev = &dev_priv->drm;
  341. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  342. u32 count, mapped_count, purgeable_count, dpy_count;
  343. u64 size, mapped_size, purgeable_size, dpy_size;
  344. struct drm_i915_gem_object *obj;
  345. struct drm_file *file;
  346. int ret;
  347. ret = mutex_lock_interruptible(&dev->struct_mutex);
  348. if (ret)
  349. return ret;
  350. seq_printf(m, "%u objects, %llu bytes\n",
  351. dev_priv->mm.object_count,
  352. dev_priv->mm.object_memory);
  353. size = count = 0;
  354. mapped_size = mapped_count = 0;
  355. purgeable_size = purgeable_count = 0;
  356. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
  357. size += obj->base.size;
  358. ++count;
  359. if (obj->mm.madv == I915_MADV_DONTNEED) {
  360. purgeable_size += obj->base.size;
  361. ++purgeable_count;
  362. }
  363. if (obj->mm.mapping) {
  364. mapped_count++;
  365. mapped_size += obj->base.size;
  366. }
  367. }
  368. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  369. size = count = dpy_size = dpy_count = 0;
  370. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
  371. size += obj->base.size;
  372. ++count;
  373. if (obj->pin_display) {
  374. dpy_size += obj->base.size;
  375. ++dpy_count;
  376. }
  377. if (obj->mm.madv == I915_MADV_DONTNEED) {
  378. purgeable_size += obj->base.size;
  379. ++purgeable_count;
  380. }
  381. if (obj->mm.mapping) {
  382. mapped_count++;
  383. mapped_size += obj->base.size;
  384. }
  385. }
  386. seq_printf(m, "%u bound objects, %llu bytes\n",
  387. count, size);
  388. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  389. purgeable_count, purgeable_size);
  390. seq_printf(m, "%u mapped objects, %llu bytes\n",
  391. mapped_count, mapped_size);
  392. seq_printf(m, "%u display objects (pinned), %llu bytes\n",
  393. dpy_count, dpy_size);
  394. seq_printf(m, "%llu [%llu] gtt total\n",
  395. ggtt->base.total, ggtt->mappable_end);
  396. seq_putc(m, '\n');
  397. print_batch_pool_stats(m, dev_priv);
  398. mutex_unlock(&dev->struct_mutex);
  399. mutex_lock(&dev->filelist_mutex);
  400. print_context_stats(m, dev_priv);
  401. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  402. struct file_stats stats;
  403. struct drm_i915_file_private *file_priv = file->driver_priv;
  404. struct drm_i915_gem_request *request;
  405. struct task_struct *task;
  406. mutex_lock(&dev->struct_mutex);
  407. memset(&stats, 0, sizeof(stats));
  408. stats.file_priv = file->driver_priv;
  409. spin_lock(&file->table_lock);
  410. idr_for_each(&file->object_idr, per_file_stats, &stats);
  411. spin_unlock(&file->table_lock);
  412. /*
  413. * Although we have a valid reference on file->pid, that does
  414. * not guarantee that the task_struct who called get_pid() is
  415. * still alive (e.g. get_pid(current) => fork() => exit()).
  416. * Therefore, we need to protect this ->comm access using RCU.
  417. */
  418. request = list_first_entry_or_null(&file_priv->mm.request_list,
  419. struct drm_i915_gem_request,
  420. client_link);
  421. rcu_read_lock();
  422. task = pid_task(request && request->ctx->pid ?
  423. request->ctx->pid : file->pid,
  424. PIDTYPE_PID);
  425. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  426. rcu_read_unlock();
  427. mutex_unlock(&dev->struct_mutex);
  428. }
  429. mutex_unlock(&dev->filelist_mutex);
  430. return 0;
  431. }
  432. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  433. {
  434. struct drm_info_node *node = m->private;
  435. struct drm_i915_private *dev_priv = node_to_i915(node);
  436. struct drm_device *dev = &dev_priv->drm;
  437. bool show_pin_display_only = !!node->info_ent->data;
  438. struct drm_i915_gem_object *obj;
  439. u64 total_obj_size, total_gtt_size;
  440. int count, ret;
  441. ret = mutex_lock_interruptible(&dev->struct_mutex);
  442. if (ret)
  443. return ret;
  444. total_obj_size = total_gtt_size = count = 0;
  445. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
  446. if (show_pin_display_only && !obj->pin_display)
  447. continue;
  448. seq_puts(m, " ");
  449. describe_obj(m, obj);
  450. seq_putc(m, '\n');
  451. total_obj_size += obj->base.size;
  452. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  453. count++;
  454. }
  455. mutex_unlock(&dev->struct_mutex);
  456. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  457. count, total_obj_size, total_gtt_size);
  458. return 0;
  459. }
  460. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  461. {
  462. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  463. struct drm_device *dev = &dev_priv->drm;
  464. struct drm_i915_gem_object *obj;
  465. struct intel_engine_cs *engine;
  466. enum intel_engine_id id;
  467. int total = 0;
  468. int ret, j;
  469. ret = mutex_lock_interruptible(&dev->struct_mutex);
  470. if (ret)
  471. return ret;
  472. for_each_engine(engine, dev_priv, id) {
  473. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  474. int count;
  475. count = 0;
  476. list_for_each_entry(obj,
  477. &engine->batch_pool.cache_list[j],
  478. batch_pool_link)
  479. count++;
  480. seq_printf(m, "%s cache[%d]: %d objects\n",
  481. engine->name, j, count);
  482. list_for_each_entry(obj,
  483. &engine->batch_pool.cache_list[j],
  484. batch_pool_link) {
  485. seq_puts(m, " ");
  486. describe_obj(m, obj);
  487. seq_putc(m, '\n');
  488. }
  489. total += count;
  490. }
  491. }
  492. seq_printf(m, "total: %d\n", total);
  493. mutex_unlock(&dev->struct_mutex);
  494. return 0;
  495. }
  496. static void print_request(struct seq_file *m,
  497. struct drm_i915_gem_request *rq,
  498. const char *prefix)
  499. {
  500. seq_printf(m, "%s%x [%x:%x] prio=%d @ %dms: %s\n", prefix,
  501. rq->global_seqno, rq->ctx->hw_id, rq->fence.seqno,
  502. rq->priotree.priority,
  503. jiffies_to_msecs(jiffies - rq->emitted_jiffies),
  504. rq->timeline->common->name);
  505. }
  506. static int i915_gem_request_info(struct seq_file *m, void *data)
  507. {
  508. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  509. struct drm_device *dev = &dev_priv->drm;
  510. struct drm_i915_gem_request *req;
  511. struct intel_engine_cs *engine;
  512. enum intel_engine_id id;
  513. int ret, any;
  514. ret = mutex_lock_interruptible(&dev->struct_mutex);
  515. if (ret)
  516. return ret;
  517. any = 0;
  518. for_each_engine(engine, dev_priv, id) {
  519. int count;
  520. count = 0;
  521. list_for_each_entry(req, &engine->timeline->requests, link)
  522. count++;
  523. if (count == 0)
  524. continue;
  525. seq_printf(m, "%s requests: %d\n", engine->name, count);
  526. list_for_each_entry(req, &engine->timeline->requests, link)
  527. print_request(m, req, " ");
  528. any++;
  529. }
  530. mutex_unlock(&dev->struct_mutex);
  531. if (any == 0)
  532. seq_puts(m, "No requests\n");
  533. return 0;
  534. }
  535. static void i915_ring_seqno_info(struct seq_file *m,
  536. struct intel_engine_cs *engine)
  537. {
  538. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  539. struct rb_node *rb;
  540. seq_printf(m, "Current sequence (%s): %x\n",
  541. engine->name, intel_engine_get_seqno(engine));
  542. spin_lock_irq(&b->rb_lock);
  543. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  544. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  545. seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
  546. engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
  547. }
  548. spin_unlock_irq(&b->rb_lock);
  549. }
  550. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  551. {
  552. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  553. struct intel_engine_cs *engine;
  554. enum intel_engine_id id;
  555. for_each_engine(engine, dev_priv, id)
  556. i915_ring_seqno_info(m, engine);
  557. return 0;
  558. }
  559. static int i915_interrupt_info(struct seq_file *m, void *data)
  560. {
  561. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  562. struct intel_engine_cs *engine;
  563. enum intel_engine_id id;
  564. int i, pipe;
  565. intel_runtime_pm_get(dev_priv);
  566. if (IS_CHERRYVIEW(dev_priv)) {
  567. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  568. I915_READ(GEN8_MASTER_IRQ));
  569. seq_printf(m, "Display IER:\t%08x\n",
  570. I915_READ(VLV_IER));
  571. seq_printf(m, "Display IIR:\t%08x\n",
  572. I915_READ(VLV_IIR));
  573. seq_printf(m, "Display IIR_RW:\t%08x\n",
  574. I915_READ(VLV_IIR_RW));
  575. seq_printf(m, "Display IMR:\t%08x\n",
  576. I915_READ(VLV_IMR));
  577. for_each_pipe(dev_priv, pipe) {
  578. enum intel_display_power_domain power_domain;
  579. power_domain = POWER_DOMAIN_PIPE(pipe);
  580. if (!intel_display_power_get_if_enabled(dev_priv,
  581. power_domain)) {
  582. seq_printf(m, "Pipe %c power disabled\n",
  583. pipe_name(pipe));
  584. continue;
  585. }
  586. seq_printf(m, "Pipe %c stat:\t%08x\n",
  587. pipe_name(pipe),
  588. I915_READ(PIPESTAT(pipe)));
  589. intel_display_power_put(dev_priv, power_domain);
  590. }
  591. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  592. seq_printf(m, "Port hotplug:\t%08x\n",
  593. I915_READ(PORT_HOTPLUG_EN));
  594. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  595. I915_READ(VLV_DPFLIPSTAT));
  596. seq_printf(m, "DPINVGTT:\t%08x\n",
  597. I915_READ(DPINVGTT));
  598. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  599. for (i = 0; i < 4; i++) {
  600. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  601. i, I915_READ(GEN8_GT_IMR(i)));
  602. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  603. i, I915_READ(GEN8_GT_IIR(i)));
  604. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  605. i, I915_READ(GEN8_GT_IER(i)));
  606. }
  607. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  608. I915_READ(GEN8_PCU_IMR));
  609. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  610. I915_READ(GEN8_PCU_IIR));
  611. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  612. I915_READ(GEN8_PCU_IER));
  613. } else if (INTEL_GEN(dev_priv) >= 8) {
  614. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  615. I915_READ(GEN8_MASTER_IRQ));
  616. for (i = 0; i < 4; i++) {
  617. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  618. i, I915_READ(GEN8_GT_IMR(i)));
  619. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  620. i, I915_READ(GEN8_GT_IIR(i)));
  621. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  622. i, I915_READ(GEN8_GT_IER(i)));
  623. }
  624. for_each_pipe(dev_priv, pipe) {
  625. enum intel_display_power_domain power_domain;
  626. power_domain = POWER_DOMAIN_PIPE(pipe);
  627. if (!intel_display_power_get_if_enabled(dev_priv,
  628. power_domain)) {
  629. seq_printf(m, "Pipe %c power disabled\n",
  630. pipe_name(pipe));
  631. continue;
  632. }
  633. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  634. pipe_name(pipe),
  635. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  636. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  637. pipe_name(pipe),
  638. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  639. seq_printf(m, "Pipe %c IER:\t%08x\n",
  640. pipe_name(pipe),
  641. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  642. intel_display_power_put(dev_priv, power_domain);
  643. }
  644. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  645. I915_READ(GEN8_DE_PORT_IMR));
  646. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  647. I915_READ(GEN8_DE_PORT_IIR));
  648. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  649. I915_READ(GEN8_DE_PORT_IER));
  650. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  651. I915_READ(GEN8_DE_MISC_IMR));
  652. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  653. I915_READ(GEN8_DE_MISC_IIR));
  654. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  655. I915_READ(GEN8_DE_MISC_IER));
  656. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  657. I915_READ(GEN8_PCU_IMR));
  658. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  659. I915_READ(GEN8_PCU_IIR));
  660. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  661. I915_READ(GEN8_PCU_IER));
  662. } else if (IS_VALLEYVIEW(dev_priv)) {
  663. seq_printf(m, "Display IER:\t%08x\n",
  664. I915_READ(VLV_IER));
  665. seq_printf(m, "Display IIR:\t%08x\n",
  666. I915_READ(VLV_IIR));
  667. seq_printf(m, "Display IIR_RW:\t%08x\n",
  668. I915_READ(VLV_IIR_RW));
  669. seq_printf(m, "Display IMR:\t%08x\n",
  670. I915_READ(VLV_IMR));
  671. for_each_pipe(dev_priv, pipe) {
  672. enum intel_display_power_domain power_domain;
  673. power_domain = POWER_DOMAIN_PIPE(pipe);
  674. if (!intel_display_power_get_if_enabled(dev_priv,
  675. power_domain)) {
  676. seq_printf(m, "Pipe %c power disabled\n",
  677. pipe_name(pipe));
  678. continue;
  679. }
  680. seq_printf(m, "Pipe %c stat:\t%08x\n",
  681. pipe_name(pipe),
  682. I915_READ(PIPESTAT(pipe)));
  683. intel_display_power_put(dev_priv, power_domain);
  684. }
  685. seq_printf(m, "Master IER:\t%08x\n",
  686. I915_READ(VLV_MASTER_IER));
  687. seq_printf(m, "Render IER:\t%08x\n",
  688. I915_READ(GTIER));
  689. seq_printf(m, "Render IIR:\t%08x\n",
  690. I915_READ(GTIIR));
  691. seq_printf(m, "Render IMR:\t%08x\n",
  692. I915_READ(GTIMR));
  693. seq_printf(m, "PM IER:\t\t%08x\n",
  694. I915_READ(GEN6_PMIER));
  695. seq_printf(m, "PM IIR:\t\t%08x\n",
  696. I915_READ(GEN6_PMIIR));
  697. seq_printf(m, "PM IMR:\t\t%08x\n",
  698. I915_READ(GEN6_PMIMR));
  699. seq_printf(m, "Port hotplug:\t%08x\n",
  700. I915_READ(PORT_HOTPLUG_EN));
  701. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  702. I915_READ(VLV_DPFLIPSTAT));
  703. seq_printf(m, "DPINVGTT:\t%08x\n",
  704. I915_READ(DPINVGTT));
  705. } else if (!HAS_PCH_SPLIT(dev_priv)) {
  706. seq_printf(m, "Interrupt enable: %08x\n",
  707. I915_READ(IER));
  708. seq_printf(m, "Interrupt identity: %08x\n",
  709. I915_READ(IIR));
  710. seq_printf(m, "Interrupt mask: %08x\n",
  711. I915_READ(IMR));
  712. for_each_pipe(dev_priv, pipe)
  713. seq_printf(m, "Pipe %c stat: %08x\n",
  714. pipe_name(pipe),
  715. I915_READ(PIPESTAT(pipe)));
  716. } else {
  717. seq_printf(m, "North Display Interrupt enable: %08x\n",
  718. I915_READ(DEIER));
  719. seq_printf(m, "North Display Interrupt identity: %08x\n",
  720. I915_READ(DEIIR));
  721. seq_printf(m, "North Display Interrupt mask: %08x\n",
  722. I915_READ(DEIMR));
  723. seq_printf(m, "South Display Interrupt enable: %08x\n",
  724. I915_READ(SDEIER));
  725. seq_printf(m, "South Display Interrupt identity: %08x\n",
  726. I915_READ(SDEIIR));
  727. seq_printf(m, "South Display Interrupt mask: %08x\n",
  728. I915_READ(SDEIMR));
  729. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  730. I915_READ(GTIER));
  731. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  732. I915_READ(GTIIR));
  733. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  734. I915_READ(GTIMR));
  735. }
  736. for_each_engine(engine, dev_priv, id) {
  737. if (INTEL_GEN(dev_priv) >= 6) {
  738. seq_printf(m,
  739. "Graphics Interrupt mask (%s): %08x\n",
  740. engine->name, I915_READ_IMR(engine));
  741. }
  742. i915_ring_seqno_info(m, engine);
  743. }
  744. intel_runtime_pm_put(dev_priv);
  745. return 0;
  746. }
  747. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  748. {
  749. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  750. struct drm_device *dev = &dev_priv->drm;
  751. int i, ret;
  752. ret = mutex_lock_interruptible(&dev->struct_mutex);
  753. if (ret)
  754. return ret;
  755. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  756. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  757. struct i915_vma *vma = dev_priv->fence_regs[i].vma;
  758. seq_printf(m, "Fence %d, pin count = %d, object = ",
  759. i, dev_priv->fence_regs[i].pin_count);
  760. if (!vma)
  761. seq_puts(m, "unused");
  762. else
  763. describe_obj(m, vma->obj);
  764. seq_putc(m, '\n');
  765. }
  766. mutex_unlock(&dev->struct_mutex);
  767. return 0;
  768. }
  769. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  770. static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
  771. size_t count, loff_t *pos)
  772. {
  773. struct i915_gpu_state *error = file->private_data;
  774. struct drm_i915_error_state_buf str;
  775. ssize_t ret;
  776. loff_t tmp;
  777. if (!error)
  778. return 0;
  779. ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
  780. if (ret)
  781. return ret;
  782. ret = i915_error_state_to_str(&str, error);
  783. if (ret)
  784. goto out;
  785. tmp = 0;
  786. ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
  787. if (ret < 0)
  788. goto out;
  789. *pos = str.start + ret;
  790. out:
  791. i915_error_state_buf_release(&str);
  792. return ret;
  793. }
  794. static int gpu_state_release(struct inode *inode, struct file *file)
  795. {
  796. i915_gpu_state_put(file->private_data);
  797. return 0;
  798. }
  799. static int i915_gpu_info_open(struct inode *inode, struct file *file)
  800. {
  801. struct drm_i915_private *i915 = inode->i_private;
  802. struct i915_gpu_state *gpu;
  803. intel_runtime_pm_get(i915);
  804. gpu = i915_capture_gpu_state(i915);
  805. intel_runtime_pm_put(i915);
  806. if (!gpu)
  807. return -ENOMEM;
  808. file->private_data = gpu;
  809. return 0;
  810. }
  811. static const struct file_operations i915_gpu_info_fops = {
  812. .owner = THIS_MODULE,
  813. .open = i915_gpu_info_open,
  814. .read = gpu_state_read,
  815. .llseek = default_llseek,
  816. .release = gpu_state_release,
  817. };
  818. static ssize_t
  819. i915_error_state_write(struct file *filp,
  820. const char __user *ubuf,
  821. size_t cnt,
  822. loff_t *ppos)
  823. {
  824. struct i915_gpu_state *error = filp->private_data;
  825. if (!error)
  826. return 0;
  827. DRM_DEBUG_DRIVER("Resetting error state\n");
  828. i915_reset_error_state(error->i915);
  829. return cnt;
  830. }
  831. static int i915_error_state_open(struct inode *inode, struct file *file)
  832. {
  833. file->private_data = i915_first_error_state(inode->i_private);
  834. return 0;
  835. }
  836. static const struct file_operations i915_error_state_fops = {
  837. .owner = THIS_MODULE,
  838. .open = i915_error_state_open,
  839. .read = gpu_state_read,
  840. .write = i915_error_state_write,
  841. .llseek = default_llseek,
  842. .release = gpu_state_release,
  843. };
  844. #endif
  845. static int
  846. i915_next_seqno_set(void *data, u64 val)
  847. {
  848. struct drm_i915_private *dev_priv = data;
  849. struct drm_device *dev = &dev_priv->drm;
  850. int ret;
  851. ret = mutex_lock_interruptible(&dev->struct_mutex);
  852. if (ret)
  853. return ret;
  854. ret = i915_gem_set_global_seqno(dev, val);
  855. mutex_unlock(&dev->struct_mutex);
  856. return ret;
  857. }
  858. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  859. NULL, i915_next_seqno_set,
  860. "0x%llx\n");
  861. static int i915_frequency_info(struct seq_file *m, void *unused)
  862. {
  863. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  864. int ret = 0;
  865. intel_runtime_pm_get(dev_priv);
  866. if (IS_GEN5(dev_priv)) {
  867. u16 rgvswctl = I915_READ16(MEMSWCTL);
  868. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  869. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  870. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  871. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  872. MEMSTAT_VID_SHIFT);
  873. seq_printf(m, "Current P-state: %d\n",
  874. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  875. } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  876. u32 freq_sts;
  877. mutex_lock(&dev_priv->rps.hw_lock);
  878. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  879. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  880. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  881. seq_printf(m, "actual GPU freq: %d MHz\n",
  882. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  883. seq_printf(m, "current GPU freq: %d MHz\n",
  884. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  885. seq_printf(m, "max GPU freq: %d MHz\n",
  886. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  887. seq_printf(m, "min GPU freq: %d MHz\n",
  888. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  889. seq_printf(m, "idle GPU freq: %d MHz\n",
  890. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  891. seq_printf(m,
  892. "efficient (RPe) frequency: %d MHz\n",
  893. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  894. mutex_unlock(&dev_priv->rps.hw_lock);
  895. } else if (INTEL_GEN(dev_priv) >= 6) {
  896. u32 rp_state_limits;
  897. u32 gt_perf_status;
  898. u32 rp_state_cap;
  899. u32 rpmodectl, rpinclimit, rpdeclimit;
  900. u32 rpstat, cagf, reqf;
  901. u32 rpupei, rpcurup, rpprevup;
  902. u32 rpdownei, rpcurdown, rpprevdown;
  903. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  904. int max_freq;
  905. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  906. if (IS_GEN9_LP(dev_priv)) {
  907. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  908. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  909. } else {
  910. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  911. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  912. }
  913. /* RPSTAT1 is in the GT power well */
  914. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  915. reqf = I915_READ(GEN6_RPNSWREQ);
  916. if (INTEL_GEN(dev_priv) >= 9)
  917. reqf >>= 23;
  918. else {
  919. reqf &= ~GEN6_TURBO_DISABLE;
  920. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  921. reqf >>= 24;
  922. else
  923. reqf >>= 25;
  924. }
  925. reqf = intel_gpu_freq(dev_priv, reqf);
  926. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  927. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  928. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  929. rpstat = I915_READ(GEN6_RPSTAT1);
  930. rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
  931. rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
  932. rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
  933. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
  934. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
  935. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
  936. if (INTEL_GEN(dev_priv) >= 9)
  937. cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  938. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  939. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  940. else
  941. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  942. cagf = intel_gpu_freq(dev_priv, cagf);
  943. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  944. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  945. pm_ier = I915_READ(GEN6_PMIER);
  946. pm_imr = I915_READ(GEN6_PMIMR);
  947. pm_isr = I915_READ(GEN6_PMISR);
  948. pm_iir = I915_READ(GEN6_PMIIR);
  949. pm_mask = I915_READ(GEN6_PMINTRMSK);
  950. } else {
  951. pm_ier = I915_READ(GEN8_GT_IER(2));
  952. pm_imr = I915_READ(GEN8_GT_IMR(2));
  953. pm_isr = I915_READ(GEN8_GT_ISR(2));
  954. pm_iir = I915_READ(GEN8_GT_IIR(2));
  955. pm_mask = I915_READ(GEN6_PMINTRMSK);
  956. }
  957. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  958. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  959. seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
  960. dev_priv->rps.pm_intrmsk_mbz);
  961. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  962. seq_printf(m, "Render p-state ratio: %d\n",
  963. (gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
  964. seq_printf(m, "Render p-state VID: %d\n",
  965. gt_perf_status & 0xff);
  966. seq_printf(m, "Render p-state limit: %d\n",
  967. rp_state_limits & 0xff);
  968. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  969. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  970. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  971. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  972. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  973. seq_printf(m, "CAGF: %dMHz\n", cagf);
  974. seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
  975. rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
  976. seq_printf(m, "RP CUR UP: %d (%dus)\n",
  977. rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
  978. seq_printf(m, "RP PREV UP: %d (%dus)\n",
  979. rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
  980. seq_printf(m, "Up threshold: %d%%\n",
  981. dev_priv->rps.up_threshold);
  982. seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
  983. rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
  984. seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
  985. rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
  986. seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
  987. rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
  988. seq_printf(m, "Down threshold: %d%%\n",
  989. dev_priv->rps.down_threshold);
  990. max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
  991. rp_state_cap >> 16) & 0xff;
  992. max_freq *= (IS_GEN9_BC(dev_priv) ||
  993. IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
  994. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  995. intel_gpu_freq(dev_priv, max_freq));
  996. max_freq = (rp_state_cap & 0xff00) >> 8;
  997. max_freq *= (IS_GEN9_BC(dev_priv) ||
  998. IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
  999. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1000. intel_gpu_freq(dev_priv, max_freq));
  1001. max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
  1002. rp_state_cap >> 0) & 0xff;
  1003. max_freq *= (IS_GEN9_BC(dev_priv) ||
  1004. IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
  1005. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1006. intel_gpu_freq(dev_priv, max_freq));
  1007. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1008. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1009. seq_printf(m, "Current freq: %d MHz\n",
  1010. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1011. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1012. seq_printf(m, "Idle freq: %d MHz\n",
  1013. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1014. seq_printf(m, "Min freq: %d MHz\n",
  1015. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1016. seq_printf(m, "Boost freq: %d MHz\n",
  1017. intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
  1018. seq_printf(m, "Max freq: %d MHz\n",
  1019. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1020. seq_printf(m,
  1021. "efficient (RPe) frequency: %d MHz\n",
  1022. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1023. } else {
  1024. seq_puts(m, "no P-state info available\n");
  1025. }
  1026. seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
  1027. seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
  1028. seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
  1029. intel_runtime_pm_put(dev_priv);
  1030. return ret;
  1031. }
  1032. static void i915_instdone_info(struct drm_i915_private *dev_priv,
  1033. struct seq_file *m,
  1034. struct intel_instdone *instdone)
  1035. {
  1036. int slice;
  1037. int subslice;
  1038. seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
  1039. instdone->instdone);
  1040. if (INTEL_GEN(dev_priv) <= 3)
  1041. return;
  1042. seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
  1043. instdone->slice_common);
  1044. if (INTEL_GEN(dev_priv) <= 6)
  1045. return;
  1046. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1047. seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
  1048. slice, subslice, instdone->sampler[slice][subslice]);
  1049. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1050. seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
  1051. slice, subslice, instdone->row[slice][subslice]);
  1052. }
  1053. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1054. {
  1055. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1056. struct intel_engine_cs *engine;
  1057. u64 acthd[I915_NUM_ENGINES];
  1058. u32 seqno[I915_NUM_ENGINES];
  1059. struct intel_instdone instdone;
  1060. enum intel_engine_id id;
  1061. if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
  1062. seq_puts(m, "Wedged\n");
  1063. if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
  1064. seq_puts(m, "Reset in progress: struct_mutex backoff\n");
  1065. if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
  1066. seq_puts(m, "Reset in progress: reset handoff to waiter\n");
  1067. if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
  1068. seq_puts(m, "Waiter holding struct mutex\n");
  1069. if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
  1070. seq_puts(m, "struct_mutex blocked for reset\n");
  1071. if (!i915.enable_hangcheck) {
  1072. seq_puts(m, "Hangcheck disabled\n");
  1073. return 0;
  1074. }
  1075. intel_runtime_pm_get(dev_priv);
  1076. for_each_engine(engine, dev_priv, id) {
  1077. acthd[id] = intel_engine_get_active_head(engine);
  1078. seqno[id] = intel_engine_get_seqno(engine);
  1079. }
  1080. intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
  1081. intel_runtime_pm_put(dev_priv);
  1082. if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
  1083. seq_printf(m, "Hangcheck active, timer fires in %dms\n",
  1084. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1085. jiffies));
  1086. else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
  1087. seq_puts(m, "Hangcheck active, work pending\n");
  1088. else
  1089. seq_puts(m, "Hangcheck inactive\n");
  1090. seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
  1091. for_each_engine(engine, dev_priv, id) {
  1092. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  1093. struct rb_node *rb;
  1094. seq_printf(m, "%s:\n", engine->name);
  1095. seq_printf(m, "\tseqno = %x [current %x, last %x], inflight %d\n",
  1096. engine->hangcheck.seqno, seqno[id],
  1097. intel_engine_last_submit(engine),
  1098. engine->timeline->inflight_seqnos);
  1099. seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
  1100. yesno(intel_engine_has_waiter(engine)),
  1101. yesno(test_bit(engine->id,
  1102. &dev_priv->gpu_error.missed_irq_rings)),
  1103. yesno(engine->hangcheck.stalled));
  1104. spin_lock_irq(&b->rb_lock);
  1105. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  1106. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  1107. seq_printf(m, "\t%s [%d] waiting for %x\n",
  1108. w->tsk->comm, w->tsk->pid, w->seqno);
  1109. }
  1110. spin_unlock_irq(&b->rb_lock);
  1111. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1112. (long long)engine->hangcheck.acthd,
  1113. (long long)acthd[id]);
  1114. seq_printf(m, "\taction = %s(%d) %d ms ago\n",
  1115. hangcheck_action_to_str(engine->hangcheck.action),
  1116. engine->hangcheck.action,
  1117. jiffies_to_msecs(jiffies -
  1118. engine->hangcheck.action_timestamp));
  1119. if (engine->id == RCS) {
  1120. seq_puts(m, "\tinstdone read =\n");
  1121. i915_instdone_info(dev_priv, m, &instdone);
  1122. seq_puts(m, "\tinstdone accu =\n");
  1123. i915_instdone_info(dev_priv, m,
  1124. &engine->hangcheck.instdone);
  1125. }
  1126. }
  1127. return 0;
  1128. }
  1129. static int i915_reset_info(struct seq_file *m, void *unused)
  1130. {
  1131. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1132. struct i915_gpu_error *error = &dev_priv->gpu_error;
  1133. struct intel_engine_cs *engine;
  1134. enum intel_engine_id id;
  1135. seq_printf(m, "full gpu reset = %u\n", i915_reset_count(error));
  1136. for_each_engine(engine, dev_priv, id) {
  1137. seq_printf(m, "%s = %u\n", engine->name,
  1138. i915_reset_engine_count(error, engine));
  1139. }
  1140. return 0;
  1141. }
  1142. static int ironlake_drpc_info(struct seq_file *m)
  1143. {
  1144. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1145. u32 rgvmodectl, rstdbyctl;
  1146. u16 crstandvid;
  1147. rgvmodectl = I915_READ(MEMMODECTL);
  1148. rstdbyctl = I915_READ(RSTDBYCTL);
  1149. crstandvid = I915_READ16(CRSTANDVID);
  1150. seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
  1151. seq_printf(m, "Boost freq: %d\n",
  1152. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1153. MEMMODE_BOOST_FREQ_SHIFT);
  1154. seq_printf(m, "HW control enabled: %s\n",
  1155. yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
  1156. seq_printf(m, "SW control enabled: %s\n",
  1157. yesno(rgvmodectl & MEMMODE_SWMODE_EN));
  1158. seq_printf(m, "Gated voltage change: %s\n",
  1159. yesno(rgvmodectl & MEMMODE_RCLK_GATE));
  1160. seq_printf(m, "Starting frequency: P%d\n",
  1161. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1162. seq_printf(m, "Max P-state: P%d\n",
  1163. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1164. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1165. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1166. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1167. seq_printf(m, "Render standby enabled: %s\n",
  1168. yesno(!(rstdbyctl & RCX_SW_EXIT)));
  1169. seq_puts(m, "Current RS state: ");
  1170. switch (rstdbyctl & RSX_STATUS_MASK) {
  1171. case RSX_STATUS_ON:
  1172. seq_puts(m, "on\n");
  1173. break;
  1174. case RSX_STATUS_RC1:
  1175. seq_puts(m, "RC1\n");
  1176. break;
  1177. case RSX_STATUS_RC1E:
  1178. seq_puts(m, "RC1E\n");
  1179. break;
  1180. case RSX_STATUS_RS1:
  1181. seq_puts(m, "RS1\n");
  1182. break;
  1183. case RSX_STATUS_RS2:
  1184. seq_puts(m, "RS2 (RC6)\n");
  1185. break;
  1186. case RSX_STATUS_RS3:
  1187. seq_puts(m, "RC3 (RC6+)\n");
  1188. break;
  1189. default:
  1190. seq_puts(m, "unknown\n");
  1191. break;
  1192. }
  1193. return 0;
  1194. }
  1195. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1196. {
  1197. struct drm_i915_private *i915 = node_to_i915(m->private);
  1198. struct intel_uncore_forcewake_domain *fw_domain;
  1199. unsigned int tmp;
  1200. for_each_fw_domain(fw_domain, i915, tmp)
  1201. seq_printf(m, "%s.wake_count = %u\n",
  1202. intel_uncore_forcewake_domain_to_str(fw_domain->id),
  1203. READ_ONCE(fw_domain->wake_count));
  1204. return 0;
  1205. }
  1206. static void print_rc6_res(struct seq_file *m,
  1207. const char *title,
  1208. const i915_reg_t reg)
  1209. {
  1210. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1211. seq_printf(m, "%s %u (%llu us)\n",
  1212. title, I915_READ(reg),
  1213. intel_rc6_residency_us(dev_priv, reg));
  1214. }
  1215. static int vlv_drpc_info(struct seq_file *m)
  1216. {
  1217. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1218. u32 rpmodectl1, rcctl1, pw_status;
  1219. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1220. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1221. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1222. seq_printf(m, "Video Turbo Mode: %s\n",
  1223. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1224. seq_printf(m, "Turbo enabled: %s\n",
  1225. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1226. seq_printf(m, "HW control enabled: %s\n",
  1227. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1228. seq_printf(m, "SW control enabled: %s\n",
  1229. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1230. GEN6_RP_MEDIA_SW_MODE));
  1231. seq_printf(m, "RC6 Enabled: %s\n",
  1232. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1233. GEN6_RC_CTL_EI_MODE(1))));
  1234. seq_printf(m, "Render Power Well: %s\n",
  1235. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1236. seq_printf(m, "Media Power Well: %s\n",
  1237. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1238. print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
  1239. print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
  1240. return i915_forcewake_domains(m, NULL);
  1241. }
  1242. static int gen6_drpc_info(struct seq_file *m)
  1243. {
  1244. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1245. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1246. u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
  1247. unsigned forcewake_count;
  1248. int count = 0;
  1249. forcewake_count = READ_ONCE(dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count);
  1250. if (forcewake_count) {
  1251. seq_puts(m, "RC information inaccurate because somebody "
  1252. "holds a forcewake reference \n");
  1253. } else {
  1254. /* NB: we cannot use forcewake, else we read the wrong values */
  1255. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1256. udelay(10);
  1257. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1258. }
  1259. gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
  1260. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1261. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1262. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1263. if (INTEL_GEN(dev_priv) >= 9) {
  1264. gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
  1265. gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
  1266. }
  1267. mutex_lock(&dev_priv->rps.hw_lock);
  1268. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1269. mutex_unlock(&dev_priv->rps.hw_lock);
  1270. seq_printf(m, "Video Turbo Mode: %s\n",
  1271. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1272. seq_printf(m, "HW control enabled: %s\n",
  1273. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1274. seq_printf(m, "SW control enabled: %s\n",
  1275. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1276. GEN6_RP_MEDIA_SW_MODE));
  1277. seq_printf(m, "RC1e Enabled: %s\n",
  1278. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1279. seq_printf(m, "RC6 Enabled: %s\n",
  1280. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1281. if (INTEL_GEN(dev_priv) >= 9) {
  1282. seq_printf(m, "Render Well Gating Enabled: %s\n",
  1283. yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
  1284. seq_printf(m, "Media Well Gating Enabled: %s\n",
  1285. yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
  1286. }
  1287. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1288. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1289. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1290. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1291. seq_puts(m, "Current RC state: ");
  1292. switch (gt_core_status & GEN6_RCn_MASK) {
  1293. case GEN6_RC0:
  1294. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1295. seq_puts(m, "Core Power Down\n");
  1296. else
  1297. seq_puts(m, "on\n");
  1298. break;
  1299. case GEN6_RC3:
  1300. seq_puts(m, "RC3\n");
  1301. break;
  1302. case GEN6_RC6:
  1303. seq_puts(m, "RC6\n");
  1304. break;
  1305. case GEN6_RC7:
  1306. seq_puts(m, "RC7\n");
  1307. break;
  1308. default:
  1309. seq_puts(m, "Unknown\n");
  1310. break;
  1311. }
  1312. seq_printf(m, "Core Power Down: %s\n",
  1313. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1314. if (INTEL_GEN(dev_priv) >= 9) {
  1315. seq_printf(m, "Render Power Well: %s\n",
  1316. (gen9_powergate_status &
  1317. GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
  1318. seq_printf(m, "Media Power Well: %s\n",
  1319. (gen9_powergate_status &
  1320. GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1321. }
  1322. /* Not exactly sure what this is */
  1323. print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
  1324. GEN6_GT_GFX_RC6_LOCKED);
  1325. print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
  1326. print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
  1327. print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
  1328. seq_printf(m, "RC6 voltage: %dmV\n",
  1329. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1330. seq_printf(m, "RC6+ voltage: %dmV\n",
  1331. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1332. seq_printf(m, "RC6++ voltage: %dmV\n",
  1333. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1334. return i915_forcewake_domains(m, NULL);
  1335. }
  1336. static int i915_drpc_info(struct seq_file *m, void *unused)
  1337. {
  1338. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1339. int err;
  1340. intel_runtime_pm_get(dev_priv);
  1341. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1342. err = vlv_drpc_info(m);
  1343. else if (INTEL_GEN(dev_priv) >= 6)
  1344. err = gen6_drpc_info(m);
  1345. else
  1346. err = ironlake_drpc_info(m);
  1347. intel_runtime_pm_put(dev_priv);
  1348. return err;
  1349. }
  1350. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1351. {
  1352. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1353. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1354. dev_priv->fb_tracking.busy_bits);
  1355. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1356. dev_priv->fb_tracking.flip_bits);
  1357. return 0;
  1358. }
  1359. static int i915_fbc_status(struct seq_file *m, void *unused)
  1360. {
  1361. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1362. if (!HAS_FBC(dev_priv)) {
  1363. seq_puts(m, "FBC unsupported on this chipset\n");
  1364. return 0;
  1365. }
  1366. intel_runtime_pm_get(dev_priv);
  1367. mutex_lock(&dev_priv->fbc.lock);
  1368. if (intel_fbc_is_active(dev_priv))
  1369. seq_puts(m, "FBC enabled\n");
  1370. else
  1371. seq_printf(m, "FBC disabled: %s\n",
  1372. dev_priv->fbc.no_fbc_reason);
  1373. if (intel_fbc_is_active(dev_priv)) {
  1374. u32 mask;
  1375. if (INTEL_GEN(dev_priv) >= 8)
  1376. mask = I915_READ(IVB_FBC_STATUS2) & BDW_FBC_COMP_SEG_MASK;
  1377. else if (INTEL_GEN(dev_priv) >= 7)
  1378. mask = I915_READ(IVB_FBC_STATUS2) & IVB_FBC_COMP_SEG_MASK;
  1379. else if (INTEL_GEN(dev_priv) >= 5)
  1380. mask = I915_READ(ILK_DPFC_STATUS) & ILK_DPFC_COMP_SEG_MASK;
  1381. else if (IS_G4X(dev_priv))
  1382. mask = I915_READ(DPFC_STATUS) & DPFC_COMP_SEG_MASK;
  1383. else
  1384. mask = I915_READ(FBC_STATUS) & (FBC_STAT_COMPRESSING |
  1385. FBC_STAT_COMPRESSED);
  1386. seq_printf(m, "Compressing: %s\n", yesno(mask));
  1387. }
  1388. mutex_unlock(&dev_priv->fbc.lock);
  1389. intel_runtime_pm_put(dev_priv);
  1390. return 0;
  1391. }
  1392. static int i915_fbc_false_color_get(void *data, u64 *val)
  1393. {
  1394. struct drm_i915_private *dev_priv = data;
  1395. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1396. return -ENODEV;
  1397. *val = dev_priv->fbc.false_color;
  1398. return 0;
  1399. }
  1400. static int i915_fbc_false_color_set(void *data, u64 val)
  1401. {
  1402. struct drm_i915_private *dev_priv = data;
  1403. u32 reg;
  1404. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1405. return -ENODEV;
  1406. mutex_lock(&dev_priv->fbc.lock);
  1407. reg = I915_READ(ILK_DPFC_CONTROL);
  1408. dev_priv->fbc.false_color = val;
  1409. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1410. (reg | FBC_CTL_FALSE_COLOR) :
  1411. (reg & ~FBC_CTL_FALSE_COLOR));
  1412. mutex_unlock(&dev_priv->fbc.lock);
  1413. return 0;
  1414. }
  1415. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_false_color_fops,
  1416. i915_fbc_false_color_get, i915_fbc_false_color_set,
  1417. "%llu\n");
  1418. static int i915_ips_status(struct seq_file *m, void *unused)
  1419. {
  1420. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1421. if (!HAS_IPS(dev_priv)) {
  1422. seq_puts(m, "not supported\n");
  1423. return 0;
  1424. }
  1425. intel_runtime_pm_get(dev_priv);
  1426. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1427. yesno(i915.enable_ips));
  1428. if (INTEL_GEN(dev_priv) >= 8) {
  1429. seq_puts(m, "Currently: unknown\n");
  1430. } else {
  1431. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1432. seq_puts(m, "Currently: enabled\n");
  1433. else
  1434. seq_puts(m, "Currently: disabled\n");
  1435. }
  1436. intel_runtime_pm_put(dev_priv);
  1437. return 0;
  1438. }
  1439. static int i915_sr_status(struct seq_file *m, void *unused)
  1440. {
  1441. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1442. bool sr_enabled = false;
  1443. intel_runtime_pm_get(dev_priv);
  1444. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  1445. if (INTEL_GEN(dev_priv) >= 9)
  1446. /* no global SR status; inspect per-plane WM */;
  1447. else if (HAS_PCH_SPLIT(dev_priv))
  1448. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1449. else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
  1450. IS_I945G(dev_priv) || IS_I945GM(dev_priv))
  1451. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1452. else if (IS_I915GM(dev_priv))
  1453. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1454. else if (IS_PINEVIEW(dev_priv))
  1455. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1456. else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1457. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1458. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  1459. intel_runtime_pm_put(dev_priv);
  1460. seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
  1461. return 0;
  1462. }
  1463. static int i915_emon_status(struct seq_file *m, void *unused)
  1464. {
  1465. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1466. struct drm_device *dev = &dev_priv->drm;
  1467. unsigned long temp, chipset, gfx;
  1468. int ret;
  1469. if (!IS_GEN5(dev_priv))
  1470. return -ENODEV;
  1471. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1472. if (ret)
  1473. return ret;
  1474. temp = i915_mch_val(dev_priv);
  1475. chipset = i915_chipset_val(dev_priv);
  1476. gfx = i915_gfx_val(dev_priv);
  1477. mutex_unlock(&dev->struct_mutex);
  1478. seq_printf(m, "GMCH temp: %ld\n", temp);
  1479. seq_printf(m, "Chipset power: %ld\n", chipset);
  1480. seq_printf(m, "GFX power: %ld\n", gfx);
  1481. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1482. return 0;
  1483. }
  1484. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1485. {
  1486. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1487. int ret = 0;
  1488. int gpu_freq, ia_freq;
  1489. unsigned int max_gpu_freq, min_gpu_freq;
  1490. if (!HAS_LLC(dev_priv)) {
  1491. seq_puts(m, "unsupported on this chipset\n");
  1492. return 0;
  1493. }
  1494. intel_runtime_pm_get(dev_priv);
  1495. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1496. if (ret)
  1497. goto out;
  1498. if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
  1499. /* Convert GT frequency to 50 HZ units */
  1500. min_gpu_freq =
  1501. dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
  1502. max_gpu_freq =
  1503. dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
  1504. } else {
  1505. min_gpu_freq = dev_priv->rps.min_freq_softlimit;
  1506. max_gpu_freq = dev_priv->rps.max_freq_softlimit;
  1507. }
  1508. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1509. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1510. ia_freq = gpu_freq;
  1511. sandybridge_pcode_read(dev_priv,
  1512. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1513. &ia_freq);
  1514. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1515. intel_gpu_freq(dev_priv, (gpu_freq *
  1516. (IS_GEN9_BC(dev_priv) ||
  1517. IS_CANNONLAKE(dev_priv) ?
  1518. GEN9_FREQ_SCALER : 1))),
  1519. ((ia_freq >> 0) & 0xff) * 100,
  1520. ((ia_freq >> 8) & 0xff) * 100);
  1521. }
  1522. mutex_unlock(&dev_priv->rps.hw_lock);
  1523. out:
  1524. intel_runtime_pm_put(dev_priv);
  1525. return ret;
  1526. }
  1527. static int i915_opregion(struct seq_file *m, void *unused)
  1528. {
  1529. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1530. struct drm_device *dev = &dev_priv->drm;
  1531. struct intel_opregion *opregion = &dev_priv->opregion;
  1532. int ret;
  1533. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1534. if (ret)
  1535. goto out;
  1536. if (opregion->header)
  1537. seq_write(m, opregion->header, OPREGION_SIZE);
  1538. mutex_unlock(&dev->struct_mutex);
  1539. out:
  1540. return 0;
  1541. }
  1542. static int i915_vbt(struct seq_file *m, void *unused)
  1543. {
  1544. struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
  1545. if (opregion->vbt)
  1546. seq_write(m, opregion->vbt, opregion->vbt_size);
  1547. return 0;
  1548. }
  1549. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1550. {
  1551. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1552. struct drm_device *dev = &dev_priv->drm;
  1553. struct intel_framebuffer *fbdev_fb = NULL;
  1554. struct drm_framebuffer *drm_fb;
  1555. int ret;
  1556. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1557. if (ret)
  1558. return ret;
  1559. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1560. if (dev_priv->fbdev && dev_priv->fbdev->helper.fb) {
  1561. fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
  1562. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1563. fbdev_fb->base.width,
  1564. fbdev_fb->base.height,
  1565. fbdev_fb->base.format->depth,
  1566. fbdev_fb->base.format->cpp[0] * 8,
  1567. fbdev_fb->base.modifier,
  1568. drm_framebuffer_read_refcount(&fbdev_fb->base));
  1569. describe_obj(m, fbdev_fb->obj);
  1570. seq_putc(m, '\n');
  1571. }
  1572. #endif
  1573. mutex_lock(&dev->mode_config.fb_lock);
  1574. drm_for_each_fb(drm_fb, dev) {
  1575. struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
  1576. if (fb == fbdev_fb)
  1577. continue;
  1578. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1579. fb->base.width,
  1580. fb->base.height,
  1581. fb->base.format->depth,
  1582. fb->base.format->cpp[0] * 8,
  1583. fb->base.modifier,
  1584. drm_framebuffer_read_refcount(&fb->base));
  1585. describe_obj(m, fb->obj);
  1586. seq_putc(m, '\n');
  1587. }
  1588. mutex_unlock(&dev->mode_config.fb_lock);
  1589. mutex_unlock(&dev->struct_mutex);
  1590. return 0;
  1591. }
  1592. static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
  1593. {
  1594. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u)",
  1595. ring->space, ring->head, ring->tail);
  1596. }
  1597. static int i915_context_status(struct seq_file *m, void *unused)
  1598. {
  1599. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1600. struct drm_device *dev = &dev_priv->drm;
  1601. struct intel_engine_cs *engine;
  1602. struct i915_gem_context *ctx;
  1603. enum intel_engine_id id;
  1604. int ret;
  1605. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1606. if (ret)
  1607. return ret;
  1608. list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
  1609. seq_printf(m, "HW context %u ", ctx->hw_id);
  1610. if (ctx->pid) {
  1611. struct task_struct *task;
  1612. task = get_pid_task(ctx->pid, PIDTYPE_PID);
  1613. if (task) {
  1614. seq_printf(m, "(%s [%d]) ",
  1615. task->comm, task->pid);
  1616. put_task_struct(task);
  1617. }
  1618. } else if (IS_ERR(ctx->file_priv)) {
  1619. seq_puts(m, "(deleted) ");
  1620. } else {
  1621. seq_puts(m, "(kernel) ");
  1622. }
  1623. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  1624. seq_putc(m, '\n');
  1625. for_each_engine(engine, dev_priv, id) {
  1626. struct intel_context *ce = &ctx->engine[engine->id];
  1627. seq_printf(m, "%s: ", engine->name);
  1628. seq_putc(m, ce->initialised ? 'I' : 'i');
  1629. if (ce->state)
  1630. describe_obj(m, ce->state->obj);
  1631. if (ce->ring)
  1632. describe_ctx_ring(m, ce->ring);
  1633. seq_putc(m, '\n');
  1634. }
  1635. seq_printf(m,
  1636. "\tvma hashtable size=%u (actual %lu), count=%u\n",
  1637. ctx->vma_lut.ht_size,
  1638. BIT(ctx->vma_lut.ht_bits),
  1639. ctx->vma_lut.ht_count);
  1640. seq_putc(m, '\n');
  1641. }
  1642. mutex_unlock(&dev->struct_mutex);
  1643. return 0;
  1644. }
  1645. static void i915_dump_lrc_obj(struct seq_file *m,
  1646. struct i915_gem_context *ctx,
  1647. struct intel_engine_cs *engine)
  1648. {
  1649. struct i915_vma *vma = ctx->engine[engine->id].state;
  1650. struct page *page;
  1651. int j;
  1652. seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
  1653. if (!vma) {
  1654. seq_puts(m, "\tFake context\n");
  1655. return;
  1656. }
  1657. if (vma->flags & I915_VMA_GLOBAL_BIND)
  1658. seq_printf(m, "\tBound in GGTT at 0x%08x\n",
  1659. i915_ggtt_offset(vma));
  1660. if (i915_gem_object_pin_pages(vma->obj)) {
  1661. seq_puts(m, "\tFailed to get pages for context object\n\n");
  1662. return;
  1663. }
  1664. page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
  1665. if (page) {
  1666. u32 *reg_state = kmap_atomic(page);
  1667. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1668. seq_printf(m,
  1669. "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1670. j * 4,
  1671. reg_state[j], reg_state[j + 1],
  1672. reg_state[j + 2], reg_state[j + 3]);
  1673. }
  1674. kunmap_atomic(reg_state);
  1675. }
  1676. i915_gem_object_unpin_pages(vma->obj);
  1677. seq_putc(m, '\n');
  1678. }
  1679. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1680. {
  1681. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1682. struct drm_device *dev = &dev_priv->drm;
  1683. struct intel_engine_cs *engine;
  1684. struct i915_gem_context *ctx;
  1685. enum intel_engine_id id;
  1686. int ret;
  1687. if (!i915.enable_execlists) {
  1688. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1689. return 0;
  1690. }
  1691. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1692. if (ret)
  1693. return ret;
  1694. list_for_each_entry(ctx, &dev_priv->contexts.list, link)
  1695. for_each_engine(engine, dev_priv, id)
  1696. i915_dump_lrc_obj(m, ctx, engine);
  1697. mutex_unlock(&dev->struct_mutex);
  1698. return 0;
  1699. }
  1700. static const char *swizzle_string(unsigned swizzle)
  1701. {
  1702. switch (swizzle) {
  1703. case I915_BIT_6_SWIZZLE_NONE:
  1704. return "none";
  1705. case I915_BIT_6_SWIZZLE_9:
  1706. return "bit9";
  1707. case I915_BIT_6_SWIZZLE_9_10:
  1708. return "bit9/bit10";
  1709. case I915_BIT_6_SWIZZLE_9_11:
  1710. return "bit9/bit11";
  1711. case I915_BIT_6_SWIZZLE_9_10_11:
  1712. return "bit9/bit10/bit11";
  1713. case I915_BIT_6_SWIZZLE_9_17:
  1714. return "bit9/bit17";
  1715. case I915_BIT_6_SWIZZLE_9_10_17:
  1716. return "bit9/bit10/bit17";
  1717. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1718. return "unknown";
  1719. }
  1720. return "bug";
  1721. }
  1722. static int i915_swizzle_info(struct seq_file *m, void *data)
  1723. {
  1724. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1725. intel_runtime_pm_get(dev_priv);
  1726. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1727. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1728. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1729. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1730. if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
  1731. seq_printf(m, "DDC = 0x%08x\n",
  1732. I915_READ(DCC));
  1733. seq_printf(m, "DDC2 = 0x%08x\n",
  1734. I915_READ(DCC2));
  1735. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1736. I915_READ16(C0DRB3));
  1737. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1738. I915_READ16(C1DRB3));
  1739. } else if (INTEL_GEN(dev_priv) >= 6) {
  1740. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1741. I915_READ(MAD_DIMM_C0));
  1742. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1743. I915_READ(MAD_DIMM_C1));
  1744. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1745. I915_READ(MAD_DIMM_C2));
  1746. seq_printf(m, "TILECTL = 0x%08x\n",
  1747. I915_READ(TILECTL));
  1748. if (INTEL_GEN(dev_priv) >= 8)
  1749. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1750. I915_READ(GAMTARBMODE));
  1751. else
  1752. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1753. I915_READ(ARB_MODE));
  1754. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1755. I915_READ(DISP_ARB_CTL));
  1756. }
  1757. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1758. seq_puts(m, "L-shaped memory detected\n");
  1759. intel_runtime_pm_put(dev_priv);
  1760. return 0;
  1761. }
  1762. static int per_file_ctx(int id, void *ptr, void *data)
  1763. {
  1764. struct i915_gem_context *ctx = ptr;
  1765. struct seq_file *m = data;
  1766. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1767. if (!ppgtt) {
  1768. seq_printf(m, " no ppgtt for context %d\n",
  1769. ctx->user_handle);
  1770. return 0;
  1771. }
  1772. if (i915_gem_context_is_default(ctx))
  1773. seq_puts(m, " default context:\n");
  1774. else
  1775. seq_printf(m, " context %d:\n", ctx->user_handle);
  1776. ppgtt->debug_dump(ppgtt, m);
  1777. return 0;
  1778. }
  1779. static void gen8_ppgtt_info(struct seq_file *m,
  1780. struct drm_i915_private *dev_priv)
  1781. {
  1782. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1783. struct intel_engine_cs *engine;
  1784. enum intel_engine_id id;
  1785. int i;
  1786. if (!ppgtt)
  1787. return;
  1788. for_each_engine(engine, dev_priv, id) {
  1789. seq_printf(m, "%s\n", engine->name);
  1790. for (i = 0; i < 4; i++) {
  1791. u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
  1792. pdp <<= 32;
  1793. pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
  1794. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1795. }
  1796. }
  1797. }
  1798. static void gen6_ppgtt_info(struct seq_file *m,
  1799. struct drm_i915_private *dev_priv)
  1800. {
  1801. struct intel_engine_cs *engine;
  1802. enum intel_engine_id id;
  1803. if (IS_GEN6(dev_priv))
  1804. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1805. for_each_engine(engine, dev_priv, id) {
  1806. seq_printf(m, "%s\n", engine->name);
  1807. if (IS_GEN7(dev_priv))
  1808. seq_printf(m, "GFX_MODE: 0x%08x\n",
  1809. I915_READ(RING_MODE_GEN7(engine)));
  1810. seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
  1811. I915_READ(RING_PP_DIR_BASE(engine)));
  1812. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
  1813. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  1814. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
  1815. I915_READ(RING_PP_DIR_DCLV(engine)));
  1816. }
  1817. if (dev_priv->mm.aliasing_ppgtt) {
  1818. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1819. seq_puts(m, "aliasing PPGTT:\n");
  1820. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  1821. ppgtt->debug_dump(ppgtt, m);
  1822. }
  1823. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1824. }
  1825. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1826. {
  1827. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1828. struct drm_device *dev = &dev_priv->drm;
  1829. struct drm_file *file;
  1830. int ret;
  1831. mutex_lock(&dev->filelist_mutex);
  1832. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1833. if (ret)
  1834. goto out_unlock;
  1835. intel_runtime_pm_get(dev_priv);
  1836. if (INTEL_GEN(dev_priv) >= 8)
  1837. gen8_ppgtt_info(m, dev_priv);
  1838. else if (INTEL_GEN(dev_priv) >= 6)
  1839. gen6_ppgtt_info(m, dev_priv);
  1840. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1841. struct drm_i915_file_private *file_priv = file->driver_priv;
  1842. struct task_struct *task;
  1843. task = get_pid_task(file->pid, PIDTYPE_PID);
  1844. if (!task) {
  1845. ret = -ESRCH;
  1846. goto out_rpm;
  1847. }
  1848. seq_printf(m, "\nproc: %s\n", task->comm);
  1849. put_task_struct(task);
  1850. idr_for_each(&file_priv->context_idr, per_file_ctx,
  1851. (void *)(unsigned long)m);
  1852. }
  1853. out_rpm:
  1854. intel_runtime_pm_put(dev_priv);
  1855. mutex_unlock(&dev->struct_mutex);
  1856. out_unlock:
  1857. mutex_unlock(&dev->filelist_mutex);
  1858. return ret;
  1859. }
  1860. static int count_irq_waiters(struct drm_i915_private *i915)
  1861. {
  1862. struct intel_engine_cs *engine;
  1863. enum intel_engine_id id;
  1864. int count = 0;
  1865. for_each_engine(engine, i915, id)
  1866. count += intel_engine_has_waiter(engine);
  1867. return count;
  1868. }
  1869. static const char *rps_power_to_str(unsigned int power)
  1870. {
  1871. static const char * const strings[] = {
  1872. [LOW_POWER] = "low power",
  1873. [BETWEEN] = "mixed",
  1874. [HIGH_POWER] = "high power",
  1875. };
  1876. if (power >= ARRAY_SIZE(strings) || !strings[power])
  1877. return "unknown";
  1878. return strings[power];
  1879. }
  1880. static int i915_rps_boost_info(struct seq_file *m, void *data)
  1881. {
  1882. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1883. struct drm_device *dev = &dev_priv->drm;
  1884. struct drm_file *file;
  1885. seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
  1886. seq_printf(m, "GPU busy? %s [%d requests]\n",
  1887. yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
  1888. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  1889. seq_printf(m, "Boosts outstanding? %d\n",
  1890. atomic_read(&dev_priv->rps.num_waiters));
  1891. seq_printf(m, "Frequency requested %d\n",
  1892. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1893. seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  1894. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  1895. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
  1896. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
  1897. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1898. seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
  1899. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
  1900. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  1901. intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
  1902. mutex_lock(&dev->filelist_mutex);
  1903. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1904. struct drm_i915_file_private *file_priv = file->driver_priv;
  1905. struct task_struct *task;
  1906. rcu_read_lock();
  1907. task = pid_task(file->pid, PIDTYPE_PID);
  1908. seq_printf(m, "%s [%d]: %d boosts\n",
  1909. task ? task->comm : "<unknown>",
  1910. task ? task->pid : -1,
  1911. atomic_read(&file_priv->rps.boosts));
  1912. rcu_read_unlock();
  1913. }
  1914. seq_printf(m, "Kernel (anonymous) boosts: %d\n",
  1915. atomic_read(&dev_priv->rps.boosts));
  1916. mutex_unlock(&dev->filelist_mutex);
  1917. if (INTEL_GEN(dev_priv) >= 6 &&
  1918. dev_priv->rps.enabled &&
  1919. dev_priv->gt.active_requests) {
  1920. u32 rpup, rpupei;
  1921. u32 rpdown, rpdownei;
  1922. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1923. rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
  1924. rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
  1925. rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
  1926. rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
  1927. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1928. seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
  1929. rps_power_to_str(dev_priv->rps.power));
  1930. seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
  1931. rpup && rpupei ? 100 * rpup / rpupei : 0,
  1932. dev_priv->rps.up_threshold);
  1933. seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
  1934. rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
  1935. dev_priv->rps.down_threshold);
  1936. } else {
  1937. seq_puts(m, "\nRPS Autotuning inactive\n");
  1938. }
  1939. return 0;
  1940. }
  1941. static int i915_llc(struct seq_file *m, void *data)
  1942. {
  1943. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1944. const bool edram = INTEL_GEN(dev_priv) > 8;
  1945. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
  1946. seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
  1947. intel_uncore_edram_size(dev_priv)/1024/1024);
  1948. return 0;
  1949. }
  1950. static int i915_huc_load_status_info(struct seq_file *m, void *data)
  1951. {
  1952. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1953. struct intel_uc_fw *huc_fw = &dev_priv->huc.fw;
  1954. if (!HAS_HUC_UCODE(dev_priv))
  1955. return 0;
  1956. seq_puts(m, "HuC firmware status:\n");
  1957. seq_printf(m, "\tpath: %s\n", huc_fw->path);
  1958. seq_printf(m, "\tfetch: %s\n",
  1959. intel_uc_fw_status_repr(huc_fw->fetch_status));
  1960. seq_printf(m, "\tload: %s\n",
  1961. intel_uc_fw_status_repr(huc_fw->load_status));
  1962. seq_printf(m, "\tversion wanted: %d.%d\n",
  1963. huc_fw->major_ver_wanted, huc_fw->minor_ver_wanted);
  1964. seq_printf(m, "\tversion found: %d.%d\n",
  1965. huc_fw->major_ver_found, huc_fw->minor_ver_found);
  1966. seq_printf(m, "\theader: offset is %d; size = %d\n",
  1967. huc_fw->header_offset, huc_fw->header_size);
  1968. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  1969. huc_fw->ucode_offset, huc_fw->ucode_size);
  1970. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  1971. huc_fw->rsa_offset, huc_fw->rsa_size);
  1972. intel_runtime_pm_get(dev_priv);
  1973. seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
  1974. intel_runtime_pm_put(dev_priv);
  1975. return 0;
  1976. }
  1977. static int i915_guc_load_status_info(struct seq_file *m, void *data)
  1978. {
  1979. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1980. struct intel_uc_fw *guc_fw = &dev_priv->guc.fw;
  1981. u32 tmp, i;
  1982. if (!HAS_GUC_UCODE(dev_priv))
  1983. return 0;
  1984. seq_printf(m, "GuC firmware status:\n");
  1985. seq_printf(m, "\tpath: %s\n",
  1986. guc_fw->path);
  1987. seq_printf(m, "\tfetch: %s\n",
  1988. intel_uc_fw_status_repr(guc_fw->fetch_status));
  1989. seq_printf(m, "\tload: %s\n",
  1990. intel_uc_fw_status_repr(guc_fw->load_status));
  1991. seq_printf(m, "\tversion wanted: %d.%d\n",
  1992. guc_fw->major_ver_wanted, guc_fw->minor_ver_wanted);
  1993. seq_printf(m, "\tversion found: %d.%d\n",
  1994. guc_fw->major_ver_found, guc_fw->minor_ver_found);
  1995. seq_printf(m, "\theader: offset is %d; size = %d\n",
  1996. guc_fw->header_offset, guc_fw->header_size);
  1997. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  1998. guc_fw->ucode_offset, guc_fw->ucode_size);
  1999. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  2000. guc_fw->rsa_offset, guc_fw->rsa_size);
  2001. intel_runtime_pm_get(dev_priv);
  2002. tmp = I915_READ(GUC_STATUS);
  2003. seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
  2004. seq_printf(m, "\tBootrom status = 0x%x\n",
  2005. (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
  2006. seq_printf(m, "\tuKernel status = 0x%x\n",
  2007. (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
  2008. seq_printf(m, "\tMIA Core status = 0x%x\n",
  2009. (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
  2010. seq_puts(m, "\nScratch registers:\n");
  2011. for (i = 0; i < 16; i++)
  2012. seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
  2013. intel_runtime_pm_put(dev_priv);
  2014. return 0;
  2015. }
  2016. static void i915_guc_log_info(struct seq_file *m,
  2017. struct drm_i915_private *dev_priv)
  2018. {
  2019. struct intel_guc *guc = &dev_priv->guc;
  2020. seq_puts(m, "\nGuC logging stats:\n");
  2021. seq_printf(m, "\tISR: flush count %10u, overflow count %10u\n",
  2022. guc->log.flush_count[GUC_ISR_LOG_BUFFER],
  2023. guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
  2024. seq_printf(m, "\tDPC: flush count %10u, overflow count %10u\n",
  2025. guc->log.flush_count[GUC_DPC_LOG_BUFFER],
  2026. guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
  2027. seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
  2028. guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
  2029. guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
  2030. seq_printf(m, "\tTotal flush interrupt count: %u\n",
  2031. guc->log.flush_interrupt_count);
  2032. seq_printf(m, "\tCapture miss count: %u\n",
  2033. guc->log.capture_miss_count);
  2034. }
  2035. static void i915_guc_client_info(struct seq_file *m,
  2036. struct drm_i915_private *dev_priv,
  2037. struct i915_guc_client *client)
  2038. {
  2039. struct intel_engine_cs *engine;
  2040. enum intel_engine_id id;
  2041. uint64_t tot = 0;
  2042. seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
  2043. client->priority, client->stage_id, client->proc_desc_offset);
  2044. seq_printf(m, "\tDoorbell id %d, offset: 0x%lx, cookie 0x%x\n",
  2045. client->doorbell_id, client->doorbell_offset, client->doorbell_cookie);
  2046. seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
  2047. client->wq_size, client->wq_offset, client->wq_tail);
  2048. seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
  2049. for_each_engine(engine, dev_priv, id) {
  2050. u64 submissions = client->submissions[id];
  2051. tot += submissions;
  2052. seq_printf(m, "\tSubmissions: %llu %s\n",
  2053. submissions, engine->name);
  2054. }
  2055. seq_printf(m, "\tTotal: %llu\n", tot);
  2056. }
  2057. static bool check_guc_submission(struct seq_file *m)
  2058. {
  2059. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2060. const struct intel_guc *guc = &dev_priv->guc;
  2061. if (!guc->execbuf_client) {
  2062. seq_printf(m, "GuC submission %s\n",
  2063. HAS_GUC_SCHED(dev_priv) ?
  2064. "disabled" :
  2065. "not supported");
  2066. return false;
  2067. }
  2068. return true;
  2069. }
  2070. static int i915_guc_info(struct seq_file *m, void *data)
  2071. {
  2072. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2073. const struct intel_guc *guc = &dev_priv->guc;
  2074. if (!check_guc_submission(m))
  2075. return 0;
  2076. seq_printf(m, "Doorbell map:\n");
  2077. seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
  2078. seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
  2079. seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
  2080. i915_guc_client_info(m, dev_priv, guc->execbuf_client);
  2081. i915_guc_log_info(m, dev_priv);
  2082. /* Add more as required ... */
  2083. return 0;
  2084. }
  2085. static int i915_guc_stage_pool(struct seq_file *m, void *data)
  2086. {
  2087. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2088. const struct intel_guc *guc = &dev_priv->guc;
  2089. struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr;
  2090. struct i915_guc_client *client = guc->execbuf_client;
  2091. unsigned int tmp;
  2092. int index;
  2093. if (!check_guc_submission(m))
  2094. return 0;
  2095. for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) {
  2096. struct intel_engine_cs *engine;
  2097. if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE))
  2098. continue;
  2099. seq_printf(m, "GuC stage descriptor %u:\n", index);
  2100. seq_printf(m, "\tIndex: %u\n", desc->stage_id);
  2101. seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute);
  2102. seq_printf(m, "\tPriority: %d\n", desc->priority);
  2103. seq_printf(m, "\tDoorbell id: %d\n", desc->db_id);
  2104. seq_printf(m, "\tEngines used: 0x%x\n",
  2105. desc->engines_used);
  2106. seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n",
  2107. desc->db_trigger_phy,
  2108. desc->db_trigger_cpu,
  2109. desc->db_trigger_uk);
  2110. seq_printf(m, "\tProcess descriptor: 0x%x\n",
  2111. desc->process_desc);
  2112. seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n",
  2113. desc->wq_addr, desc->wq_size);
  2114. seq_putc(m, '\n');
  2115. for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
  2116. u32 guc_engine_id = engine->guc_id;
  2117. struct guc_execlist_context *lrc =
  2118. &desc->lrc[guc_engine_id];
  2119. seq_printf(m, "\t%s LRC:\n", engine->name);
  2120. seq_printf(m, "\t\tContext desc: 0x%x\n",
  2121. lrc->context_desc);
  2122. seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id);
  2123. seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca);
  2124. seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin);
  2125. seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end);
  2126. seq_putc(m, '\n');
  2127. }
  2128. }
  2129. return 0;
  2130. }
  2131. static int i915_guc_log_dump(struct seq_file *m, void *data)
  2132. {
  2133. struct drm_info_node *node = m->private;
  2134. struct drm_i915_private *dev_priv = node_to_i915(node);
  2135. bool dump_load_err = !!node->info_ent->data;
  2136. struct drm_i915_gem_object *obj = NULL;
  2137. u32 *log;
  2138. int i = 0;
  2139. if (dump_load_err)
  2140. obj = dev_priv->guc.load_err_log;
  2141. else if (dev_priv->guc.log.vma)
  2142. obj = dev_priv->guc.log.vma->obj;
  2143. if (!obj)
  2144. return 0;
  2145. log = i915_gem_object_pin_map(obj, I915_MAP_WC);
  2146. if (IS_ERR(log)) {
  2147. DRM_DEBUG("Failed to pin object\n");
  2148. seq_puts(m, "(log data unaccessible)\n");
  2149. return PTR_ERR(log);
  2150. }
  2151. for (i = 0; i < obj->base.size / sizeof(u32); i += 4)
  2152. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
  2153. *(log + i), *(log + i + 1),
  2154. *(log + i + 2), *(log + i + 3));
  2155. seq_putc(m, '\n');
  2156. i915_gem_object_unpin_map(obj);
  2157. return 0;
  2158. }
  2159. static int i915_guc_log_control_get(void *data, u64 *val)
  2160. {
  2161. struct drm_i915_private *dev_priv = data;
  2162. if (!dev_priv->guc.log.vma)
  2163. return -EINVAL;
  2164. *val = i915.guc_log_level;
  2165. return 0;
  2166. }
  2167. static int i915_guc_log_control_set(void *data, u64 val)
  2168. {
  2169. struct drm_i915_private *dev_priv = data;
  2170. int ret;
  2171. if (!dev_priv->guc.log.vma)
  2172. return -EINVAL;
  2173. ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
  2174. if (ret)
  2175. return ret;
  2176. intel_runtime_pm_get(dev_priv);
  2177. ret = i915_guc_log_control(dev_priv, val);
  2178. intel_runtime_pm_put(dev_priv);
  2179. mutex_unlock(&dev_priv->drm.struct_mutex);
  2180. return ret;
  2181. }
  2182. DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
  2183. i915_guc_log_control_get, i915_guc_log_control_set,
  2184. "%lld\n");
  2185. static const char *psr2_live_status(u32 val)
  2186. {
  2187. static const char * const live_status[] = {
  2188. "IDLE",
  2189. "CAPTURE",
  2190. "CAPTURE_FS",
  2191. "SLEEP",
  2192. "BUFON_FW",
  2193. "ML_UP",
  2194. "SU_STANDBY",
  2195. "FAST_SLEEP",
  2196. "DEEP_SLEEP",
  2197. "BUF_ON",
  2198. "TG_ON"
  2199. };
  2200. val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
  2201. if (val < ARRAY_SIZE(live_status))
  2202. return live_status[val];
  2203. return "unknown";
  2204. }
  2205. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2206. {
  2207. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2208. u32 psrperf = 0;
  2209. u32 stat[3];
  2210. enum pipe pipe;
  2211. bool enabled = false;
  2212. if (!HAS_PSR(dev_priv)) {
  2213. seq_puts(m, "PSR not supported\n");
  2214. return 0;
  2215. }
  2216. intel_runtime_pm_get(dev_priv);
  2217. mutex_lock(&dev_priv->psr.lock);
  2218. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  2219. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  2220. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2221. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  2222. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2223. dev_priv->psr.busy_frontbuffer_bits);
  2224. seq_printf(m, "Re-enable work scheduled: %s\n",
  2225. yesno(work_busy(&dev_priv->psr.work.work)));
  2226. if (HAS_DDI(dev_priv)) {
  2227. if (dev_priv->psr.psr2_support)
  2228. enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
  2229. else
  2230. enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  2231. } else {
  2232. for_each_pipe(dev_priv, pipe) {
  2233. enum transcoder cpu_transcoder =
  2234. intel_pipe_to_cpu_transcoder(dev_priv, pipe);
  2235. enum intel_display_power_domain power_domain;
  2236. power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
  2237. if (!intel_display_power_get_if_enabled(dev_priv,
  2238. power_domain))
  2239. continue;
  2240. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  2241. VLV_EDP_PSR_CURR_STATE_MASK;
  2242. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2243. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2244. enabled = true;
  2245. intel_display_power_put(dev_priv, power_domain);
  2246. }
  2247. }
  2248. seq_printf(m, "Main link in standby mode: %s\n",
  2249. yesno(dev_priv->psr.link_standby));
  2250. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  2251. if (!HAS_DDI(dev_priv))
  2252. for_each_pipe(dev_priv, pipe) {
  2253. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2254. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2255. seq_printf(m, " pipe %c", pipe_name(pipe));
  2256. }
  2257. seq_puts(m, "\n");
  2258. /*
  2259. * VLV/CHV PSR has no kind of performance counter
  2260. * SKL+ Perf counter is reset to 0 everytime DC state is entered
  2261. */
  2262. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2263. psrperf = I915_READ(EDP_PSR_PERF_CNT) &
  2264. EDP_PSR_PERF_CNT_MASK;
  2265. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2266. }
  2267. if (dev_priv->psr.psr2_support) {
  2268. u32 psr2 = I915_READ(EDP_PSR2_STATUS_CTL);
  2269. seq_printf(m, "EDP_PSR2_STATUS_CTL: %x [%s]\n",
  2270. psr2, psr2_live_status(psr2));
  2271. }
  2272. mutex_unlock(&dev_priv->psr.lock);
  2273. intel_runtime_pm_put(dev_priv);
  2274. return 0;
  2275. }
  2276. static int i915_sink_crc(struct seq_file *m, void *data)
  2277. {
  2278. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2279. struct drm_device *dev = &dev_priv->drm;
  2280. struct intel_connector *connector;
  2281. struct drm_connector_list_iter conn_iter;
  2282. struct intel_dp *intel_dp = NULL;
  2283. int ret;
  2284. u8 crc[6];
  2285. drm_modeset_lock_all(dev);
  2286. drm_connector_list_iter_begin(dev, &conn_iter);
  2287. for_each_intel_connector_iter(connector, &conn_iter) {
  2288. struct drm_crtc *crtc;
  2289. if (!connector->base.state->best_encoder)
  2290. continue;
  2291. crtc = connector->base.state->crtc;
  2292. if (!crtc->state->active)
  2293. continue;
  2294. if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
  2295. continue;
  2296. intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
  2297. ret = intel_dp_sink_crc(intel_dp, crc);
  2298. if (ret)
  2299. goto out;
  2300. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2301. crc[0], crc[1], crc[2],
  2302. crc[3], crc[4], crc[5]);
  2303. goto out;
  2304. }
  2305. ret = -ENODEV;
  2306. out:
  2307. drm_connector_list_iter_end(&conn_iter);
  2308. drm_modeset_unlock_all(dev);
  2309. return ret;
  2310. }
  2311. static int i915_energy_uJ(struct seq_file *m, void *data)
  2312. {
  2313. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2314. unsigned long long power;
  2315. u32 units;
  2316. if (INTEL_GEN(dev_priv) < 6)
  2317. return -ENODEV;
  2318. intel_runtime_pm_get(dev_priv);
  2319. if (rdmsrl_safe(MSR_RAPL_POWER_UNIT, &power)) {
  2320. intel_runtime_pm_put(dev_priv);
  2321. return -ENODEV;
  2322. }
  2323. units = (power & 0x1f00) >> 8;
  2324. power = I915_READ(MCH_SECP_NRG_STTS);
  2325. power = (1000000 * power) >> units; /* convert to uJ */
  2326. intel_runtime_pm_put(dev_priv);
  2327. seq_printf(m, "%llu", power);
  2328. return 0;
  2329. }
  2330. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2331. {
  2332. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2333. struct pci_dev *pdev = dev_priv->drm.pdev;
  2334. if (!HAS_RUNTIME_PM(dev_priv))
  2335. seq_puts(m, "Runtime power management not supported\n");
  2336. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
  2337. seq_printf(m, "IRQs disabled: %s\n",
  2338. yesno(!intel_irqs_enabled(dev_priv)));
  2339. #ifdef CONFIG_PM
  2340. seq_printf(m, "Usage count: %d\n",
  2341. atomic_read(&dev_priv->drm.dev->power.usage_count));
  2342. #else
  2343. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2344. #endif
  2345. seq_printf(m, "PCI device power state: %s [%d]\n",
  2346. pci_power_name(pdev->current_state),
  2347. pdev->current_state);
  2348. return 0;
  2349. }
  2350. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2351. {
  2352. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2353. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2354. int i;
  2355. mutex_lock(&power_domains->lock);
  2356. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2357. for (i = 0; i < power_domains->power_well_count; i++) {
  2358. struct i915_power_well *power_well;
  2359. enum intel_display_power_domain power_domain;
  2360. power_well = &power_domains->power_wells[i];
  2361. seq_printf(m, "%-25s %d\n", power_well->name,
  2362. power_well->count);
  2363. for_each_power_domain(power_domain, power_well->domains)
  2364. seq_printf(m, " %-23s %d\n",
  2365. intel_display_power_domain_str(power_domain),
  2366. power_domains->domain_use_count[power_domain]);
  2367. }
  2368. mutex_unlock(&power_domains->lock);
  2369. return 0;
  2370. }
  2371. static int i915_dmc_info(struct seq_file *m, void *unused)
  2372. {
  2373. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2374. struct intel_csr *csr;
  2375. if (!HAS_CSR(dev_priv)) {
  2376. seq_puts(m, "not supported\n");
  2377. return 0;
  2378. }
  2379. csr = &dev_priv->csr;
  2380. intel_runtime_pm_get(dev_priv);
  2381. seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
  2382. seq_printf(m, "path: %s\n", csr->fw_path);
  2383. if (!csr->dmc_payload)
  2384. goto out;
  2385. seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
  2386. CSR_VERSION_MINOR(csr->version));
  2387. if (IS_KABYLAKE(dev_priv) ||
  2388. (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6))) {
  2389. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2390. I915_READ(SKL_CSR_DC3_DC5_COUNT));
  2391. seq_printf(m, "DC5 -> DC6 count: %d\n",
  2392. I915_READ(SKL_CSR_DC5_DC6_COUNT));
  2393. } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
  2394. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2395. I915_READ(BXT_CSR_DC3_DC5_COUNT));
  2396. }
  2397. out:
  2398. seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
  2399. seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
  2400. seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
  2401. intel_runtime_pm_put(dev_priv);
  2402. return 0;
  2403. }
  2404. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2405. struct drm_display_mode *mode)
  2406. {
  2407. int i;
  2408. for (i = 0; i < tabs; i++)
  2409. seq_putc(m, '\t');
  2410. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2411. mode->base.id, mode->name,
  2412. mode->vrefresh, mode->clock,
  2413. mode->hdisplay, mode->hsync_start,
  2414. mode->hsync_end, mode->htotal,
  2415. mode->vdisplay, mode->vsync_start,
  2416. mode->vsync_end, mode->vtotal,
  2417. mode->type, mode->flags);
  2418. }
  2419. static void intel_encoder_info(struct seq_file *m,
  2420. struct intel_crtc *intel_crtc,
  2421. struct intel_encoder *intel_encoder)
  2422. {
  2423. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2424. struct drm_device *dev = &dev_priv->drm;
  2425. struct drm_crtc *crtc = &intel_crtc->base;
  2426. struct intel_connector *intel_connector;
  2427. struct drm_encoder *encoder;
  2428. encoder = &intel_encoder->base;
  2429. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2430. encoder->base.id, encoder->name);
  2431. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2432. struct drm_connector *connector = &intel_connector->base;
  2433. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2434. connector->base.id,
  2435. connector->name,
  2436. drm_get_connector_status_name(connector->status));
  2437. if (connector->status == connector_status_connected) {
  2438. struct drm_display_mode *mode = &crtc->mode;
  2439. seq_printf(m, ", mode:\n");
  2440. intel_seq_print_mode(m, 2, mode);
  2441. } else {
  2442. seq_putc(m, '\n');
  2443. }
  2444. }
  2445. }
  2446. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2447. {
  2448. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2449. struct drm_device *dev = &dev_priv->drm;
  2450. struct drm_crtc *crtc = &intel_crtc->base;
  2451. struct intel_encoder *intel_encoder;
  2452. struct drm_plane_state *plane_state = crtc->primary->state;
  2453. struct drm_framebuffer *fb = plane_state->fb;
  2454. if (fb)
  2455. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2456. fb->base.id, plane_state->src_x >> 16,
  2457. plane_state->src_y >> 16, fb->width, fb->height);
  2458. else
  2459. seq_puts(m, "\tprimary plane disabled\n");
  2460. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2461. intel_encoder_info(m, intel_crtc, intel_encoder);
  2462. }
  2463. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2464. {
  2465. struct drm_display_mode *mode = panel->fixed_mode;
  2466. seq_printf(m, "\tfixed mode:\n");
  2467. intel_seq_print_mode(m, 2, mode);
  2468. }
  2469. static void intel_dp_info(struct seq_file *m,
  2470. struct intel_connector *intel_connector)
  2471. {
  2472. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2473. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2474. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2475. seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
  2476. if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
  2477. intel_panel_info(m, &intel_connector->panel);
  2478. drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
  2479. &intel_dp->aux);
  2480. }
  2481. static void intel_dp_mst_info(struct seq_file *m,
  2482. struct intel_connector *intel_connector)
  2483. {
  2484. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2485. struct intel_dp_mst_encoder *intel_mst =
  2486. enc_to_mst(&intel_encoder->base);
  2487. struct intel_digital_port *intel_dig_port = intel_mst->primary;
  2488. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2489. bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
  2490. intel_connector->port);
  2491. seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
  2492. }
  2493. static void intel_hdmi_info(struct seq_file *m,
  2494. struct intel_connector *intel_connector)
  2495. {
  2496. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2497. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2498. seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
  2499. }
  2500. static void intel_lvds_info(struct seq_file *m,
  2501. struct intel_connector *intel_connector)
  2502. {
  2503. intel_panel_info(m, &intel_connector->panel);
  2504. }
  2505. static void intel_connector_info(struct seq_file *m,
  2506. struct drm_connector *connector)
  2507. {
  2508. struct intel_connector *intel_connector = to_intel_connector(connector);
  2509. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2510. struct drm_display_mode *mode;
  2511. seq_printf(m, "connector %d: type %s, status: %s\n",
  2512. connector->base.id, connector->name,
  2513. drm_get_connector_status_name(connector->status));
  2514. if (connector->status == connector_status_connected) {
  2515. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2516. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2517. connector->display_info.width_mm,
  2518. connector->display_info.height_mm);
  2519. seq_printf(m, "\tsubpixel order: %s\n",
  2520. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2521. seq_printf(m, "\tCEA rev: %d\n",
  2522. connector->display_info.cea_rev);
  2523. }
  2524. if (!intel_encoder)
  2525. return;
  2526. switch (connector->connector_type) {
  2527. case DRM_MODE_CONNECTOR_DisplayPort:
  2528. case DRM_MODE_CONNECTOR_eDP:
  2529. if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2530. intel_dp_mst_info(m, intel_connector);
  2531. else
  2532. intel_dp_info(m, intel_connector);
  2533. break;
  2534. case DRM_MODE_CONNECTOR_LVDS:
  2535. if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2536. intel_lvds_info(m, intel_connector);
  2537. break;
  2538. case DRM_MODE_CONNECTOR_HDMIA:
  2539. if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
  2540. intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
  2541. intel_hdmi_info(m, intel_connector);
  2542. break;
  2543. default:
  2544. break;
  2545. }
  2546. seq_printf(m, "\tmodes:\n");
  2547. list_for_each_entry(mode, &connector->modes, head)
  2548. intel_seq_print_mode(m, 2, mode);
  2549. }
  2550. static const char *plane_type(enum drm_plane_type type)
  2551. {
  2552. switch (type) {
  2553. case DRM_PLANE_TYPE_OVERLAY:
  2554. return "OVL";
  2555. case DRM_PLANE_TYPE_PRIMARY:
  2556. return "PRI";
  2557. case DRM_PLANE_TYPE_CURSOR:
  2558. return "CUR";
  2559. /*
  2560. * Deliberately omitting default: to generate compiler warnings
  2561. * when a new drm_plane_type gets added.
  2562. */
  2563. }
  2564. return "unknown";
  2565. }
  2566. static const char *plane_rotation(unsigned int rotation)
  2567. {
  2568. static char buf[48];
  2569. /*
  2570. * According to doc only one DRM_MODE_ROTATE_ is allowed but this
  2571. * will print them all to visualize if the values are misused
  2572. */
  2573. snprintf(buf, sizeof(buf),
  2574. "%s%s%s%s%s%s(0x%08x)",
  2575. (rotation & DRM_MODE_ROTATE_0) ? "0 " : "",
  2576. (rotation & DRM_MODE_ROTATE_90) ? "90 " : "",
  2577. (rotation & DRM_MODE_ROTATE_180) ? "180 " : "",
  2578. (rotation & DRM_MODE_ROTATE_270) ? "270 " : "",
  2579. (rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "",
  2580. (rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "",
  2581. rotation);
  2582. return buf;
  2583. }
  2584. static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2585. {
  2586. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2587. struct drm_device *dev = &dev_priv->drm;
  2588. struct intel_plane *intel_plane;
  2589. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2590. struct drm_plane_state *state;
  2591. struct drm_plane *plane = &intel_plane->base;
  2592. struct drm_format_name_buf format_name;
  2593. if (!plane->state) {
  2594. seq_puts(m, "plane->state is NULL!\n");
  2595. continue;
  2596. }
  2597. state = plane->state;
  2598. if (state->fb) {
  2599. drm_get_format_name(state->fb->format->format,
  2600. &format_name);
  2601. } else {
  2602. sprintf(format_name.str, "N/A");
  2603. }
  2604. seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
  2605. plane->base.id,
  2606. plane_type(intel_plane->base.type),
  2607. state->crtc_x, state->crtc_y,
  2608. state->crtc_w, state->crtc_h,
  2609. (state->src_x >> 16),
  2610. ((state->src_x & 0xffff) * 15625) >> 10,
  2611. (state->src_y >> 16),
  2612. ((state->src_y & 0xffff) * 15625) >> 10,
  2613. (state->src_w >> 16),
  2614. ((state->src_w & 0xffff) * 15625) >> 10,
  2615. (state->src_h >> 16),
  2616. ((state->src_h & 0xffff) * 15625) >> 10,
  2617. format_name.str,
  2618. plane_rotation(state->rotation));
  2619. }
  2620. }
  2621. static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2622. {
  2623. struct intel_crtc_state *pipe_config;
  2624. int num_scalers = intel_crtc->num_scalers;
  2625. int i;
  2626. pipe_config = to_intel_crtc_state(intel_crtc->base.state);
  2627. /* Not all platformas have a scaler */
  2628. if (num_scalers) {
  2629. seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
  2630. num_scalers,
  2631. pipe_config->scaler_state.scaler_users,
  2632. pipe_config->scaler_state.scaler_id);
  2633. for (i = 0; i < num_scalers; i++) {
  2634. struct intel_scaler *sc =
  2635. &pipe_config->scaler_state.scalers[i];
  2636. seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
  2637. i, yesno(sc->in_use), sc->mode);
  2638. }
  2639. seq_puts(m, "\n");
  2640. } else {
  2641. seq_puts(m, "\tNo scalers available on this platform\n");
  2642. }
  2643. }
  2644. static int i915_display_info(struct seq_file *m, void *unused)
  2645. {
  2646. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2647. struct drm_device *dev = &dev_priv->drm;
  2648. struct intel_crtc *crtc;
  2649. struct drm_connector *connector;
  2650. struct drm_connector_list_iter conn_iter;
  2651. intel_runtime_pm_get(dev_priv);
  2652. seq_printf(m, "CRTC info\n");
  2653. seq_printf(m, "---------\n");
  2654. for_each_intel_crtc(dev, crtc) {
  2655. struct intel_crtc_state *pipe_config;
  2656. drm_modeset_lock(&crtc->base.mutex, NULL);
  2657. pipe_config = to_intel_crtc_state(crtc->base.state);
  2658. seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
  2659. crtc->base.base.id, pipe_name(crtc->pipe),
  2660. yesno(pipe_config->base.active),
  2661. pipe_config->pipe_src_w, pipe_config->pipe_src_h,
  2662. yesno(pipe_config->dither), pipe_config->pipe_bpp);
  2663. if (pipe_config->base.active) {
  2664. struct intel_plane *cursor =
  2665. to_intel_plane(crtc->base.cursor);
  2666. intel_crtc_info(m, crtc);
  2667. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n",
  2668. yesno(cursor->base.state->visible),
  2669. cursor->base.state->crtc_x,
  2670. cursor->base.state->crtc_y,
  2671. cursor->base.state->crtc_w,
  2672. cursor->base.state->crtc_h,
  2673. cursor->cursor.base);
  2674. intel_scaler_info(m, crtc);
  2675. intel_plane_info(m, crtc);
  2676. }
  2677. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2678. yesno(!crtc->cpu_fifo_underrun_disabled),
  2679. yesno(!crtc->pch_fifo_underrun_disabled));
  2680. drm_modeset_unlock(&crtc->base.mutex);
  2681. }
  2682. seq_printf(m, "\n");
  2683. seq_printf(m, "Connector info\n");
  2684. seq_printf(m, "--------------\n");
  2685. mutex_lock(&dev->mode_config.mutex);
  2686. drm_connector_list_iter_begin(dev, &conn_iter);
  2687. drm_for_each_connector_iter(connector, &conn_iter)
  2688. intel_connector_info(m, connector);
  2689. drm_connector_list_iter_end(&conn_iter);
  2690. mutex_unlock(&dev->mode_config.mutex);
  2691. intel_runtime_pm_put(dev_priv);
  2692. return 0;
  2693. }
  2694. static int i915_engine_info(struct seq_file *m, void *unused)
  2695. {
  2696. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2697. struct i915_gpu_error *error = &dev_priv->gpu_error;
  2698. struct intel_engine_cs *engine;
  2699. enum intel_engine_id id;
  2700. intel_runtime_pm_get(dev_priv);
  2701. seq_printf(m, "GT awake? %s\n",
  2702. yesno(dev_priv->gt.awake));
  2703. seq_printf(m, "Global active requests: %d\n",
  2704. dev_priv->gt.active_requests);
  2705. for_each_engine(engine, dev_priv, id) {
  2706. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  2707. struct drm_i915_gem_request *rq;
  2708. struct rb_node *rb;
  2709. u64 addr;
  2710. seq_printf(m, "%s\n", engine->name);
  2711. seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms], inflight %d\n",
  2712. intel_engine_get_seqno(engine),
  2713. intel_engine_last_submit(engine),
  2714. engine->hangcheck.seqno,
  2715. jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp),
  2716. engine->timeline->inflight_seqnos);
  2717. seq_printf(m, "\tReset count: %d\n",
  2718. i915_reset_engine_count(error, engine));
  2719. rcu_read_lock();
  2720. seq_printf(m, "\tRequests:\n");
  2721. rq = list_first_entry(&engine->timeline->requests,
  2722. struct drm_i915_gem_request, link);
  2723. if (&rq->link != &engine->timeline->requests)
  2724. print_request(m, rq, "\t\tfirst ");
  2725. rq = list_last_entry(&engine->timeline->requests,
  2726. struct drm_i915_gem_request, link);
  2727. if (&rq->link != &engine->timeline->requests)
  2728. print_request(m, rq, "\t\tlast ");
  2729. rq = i915_gem_find_active_request(engine);
  2730. if (rq) {
  2731. print_request(m, rq, "\t\tactive ");
  2732. seq_printf(m,
  2733. "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
  2734. rq->head, rq->postfix, rq->tail,
  2735. rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
  2736. rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
  2737. }
  2738. seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
  2739. I915_READ(RING_START(engine->mmio_base)),
  2740. rq ? i915_ggtt_offset(rq->ring->vma) : 0);
  2741. seq_printf(m, "\tRING_HEAD: 0x%08x [0x%08x]\n",
  2742. I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
  2743. rq ? rq->ring->head : 0);
  2744. seq_printf(m, "\tRING_TAIL: 0x%08x [0x%08x]\n",
  2745. I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
  2746. rq ? rq->ring->tail : 0);
  2747. seq_printf(m, "\tRING_CTL: 0x%08x [%s]\n",
  2748. I915_READ(RING_CTL(engine->mmio_base)),
  2749. I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
  2750. rcu_read_unlock();
  2751. addr = intel_engine_get_active_head(engine);
  2752. seq_printf(m, "\tACTHD: 0x%08x_%08x\n",
  2753. upper_32_bits(addr), lower_32_bits(addr));
  2754. addr = intel_engine_get_last_batch_head(engine);
  2755. seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
  2756. upper_32_bits(addr), lower_32_bits(addr));
  2757. if (i915.enable_execlists) {
  2758. u32 ptr, read, write;
  2759. unsigned int idx;
  2760. seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
  2761. I915_READ(RING_EXECLIST_STATUS_LO(engine)),
  2762. I915_READ(RING_EXECLIST_STATUS_HI(engine)));
  2763. ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
  2764. read = GEN8_CSB_READ_PTR(ptr);
  2765. write = GEN8_CSB_WRITE_PTR(ptr);
  2766. seq_printf(m, "\tExeclist CSB read %d, write %d, interrupt posted? %s\n",
  2767. read, write,
  2768. yesno(test_bit(ENGINE_IRQ_EXECLIST,
  2769. &engine->irq_posted)));
  2770. if (read >= GEN8_CSB_ENTRIES)
  2771. read = 0;
  2772. if (write >= GEN8_CSB_ENTRIES)
  2773. write = 0;
  2774. if (read > write)
  2775. write += GEN8_CSB_ENTRIES;
  2776. while (read < write) {
  2777. idx = ++read % GEN8_CSB_ENTRIES;
  2778. seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
  2779. idx,
  2780. I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
  2781. I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
  2782. }
  2783. rcu_read_lock();
  2784. for (idx = 0; idx < ARRAY_SIZE(engine->execlist_port); idx++) {
  2785. unsigned int count;
  2786. rq = port_unpack(&engine->execlist_port[idx],
  2787. &count);
  2788. if (rq) {
  2789. seq_printf(m, "\t\tELSP[%d] count=%d, ",
  2790. idx, count);
  2791. print_request(m, rq, "rq: ");
  2792. } else {
  2793. seq_printf(m, "\t\tELSP[%d] idle\n",
  2794. idx);
  2795. }
  2796. }
  2797. rcu_read_unlock();
  2798. spin_lock_irq(&engine->timeline->lock);
  2799. for (rb = engine->execlist_first; rb; rb = rb_next(rb)){
  2800. struct i915_priolist *p =
  2801. rb_entry(rb, typeof(*p), node);
  2802. list_for_each_entry(rq, &p->requests,
  2803. priotree.link)
  2804. print_request(m, rq, "\t\tQ ");
  2805. }
  2806. spin_unlock_irq(&engine->timeline->lock);
  2807. } else if (INTEL_GEN(dev_priv) > 6) {
  2808. seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
  2809. I915_READ(RING_PP_DIR_BASE(engine)));
  2810. seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
  2811. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  2812. seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
  2813. I915_READ(RING_PP_DIR_DCLV(engine)));
  2814. }
  2815. spin_lock_irq(&b->rb_lock);
  2816. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  2817. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  2818. seq_printf(m, "\t%s [%d] waiting for %x\n",
  2819. w->tsk->comm, w->tsk->pid, w->seqno);
  2820. }
  2821. spin_unlock_irq(&b->rb_lock);
  2822. seq_puts(m, "\n");
  2823. }
  2824. intel_runtime_pm_put(dev_priv);
  2825. return 0;
  2826. }
  2827. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2828. {
  2829. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2830. struct drm_device *dev = &dev_priv->drm;
  2831. struct intel_engine_cs *engine;
  2832. int num_rings = INTEL_INFO(dev_priv)->num_rings;
  2833. enum intel_engine_id id;
  2834. int j, ret;
  2835. if (!i915.semaphores) {
  2836. seq_puts(m, "Semaphores are disabled\n");
  2837. return 0;
  2838. }
  2839. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2840. if (ret)
  2841. return ret;
  2842. intel_runtime_pm_get(dev_priv);
  2843. if (IS_BROADWELL(dev_priv)) {
  2844. struct page *page;
  2845. uint64_t *seqno;
  2846. page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
  2847. seqno = (uint64_t *)kmap_atomic(page);
  2848. for_each_engine(engine, dev_priv, id) {
  2849. uint64_t offset;
  2850. seq_printf(m, "%s\n", engine->name);
  2851. seq_puts(m, " Last signal:");
  2852. for (j = 0; j < num_rings; j++) {
  2853. offset = id * I915_NUM_ENGINES + j;
  2854. seq_printf(m, "0x%08llx (0x%02llx) ",
  2855. seqno[offset], offset * 8);
  2856. }
  2857. seq_putc(m, '\n');
  2858. seq_puts(m, " Last wait: ");
  2859. for (j = 0; j < num_rings; j++) {
  2860. offset = id + (j * I915_NUM_ENGINES);
  2861. seq_printf(m, "0x%08llx (0x%02llx) ",
  2862. seqno[offset], offset * 8);
  2863. }
  2864. seq_putc(m, '\n');
  2865. }
  2866. kunmap_atomic(seqno);
  2867. } else {
  2868. seq_puts(m, " Last signal:");
  2869. for_each_engine(engine, dev_priv, id)
  2870. for (j = 0; j < num_rings; j++)
  2871. seq_printf(m, "0x%08x\n",
  2872. I915_READ(engine->semaphore.mbox.signal[j]));
  2873. seq_putc(m, '\n');
  2874. }
  2875. intel_runtime_pm_put(dev_priv);
  2876. mutex_unlock(&dev->struct_mutex);
  2877. return 0;
  2878. }
  2879. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2880. {
  2881. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2882. struct drm_device *dev = &dev_priv->drm;
  2883. int i;
  2884. drm_modeset_lock_all(dev);
  2885. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2886. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2887. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2888. seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
  2889. pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
  2890. seq_printf(m, " tracked hardware state:\n");
  2891. seq_printf(m, " dpll: 0x%08x\n", pll->state.hw_state.dpll);
  2892. seq_printf(m, " dpll_md: 0x%08x\n",
  2893. pll->state.hw_state.dpll_md);
  2894. seq_printf(m, " fp0: 0x%08x\n", pll->state.hw_state.fp0);
  2895. seq_printf(m, " fp1: 0x%08x\n", pll->state.hw_state.fp1);
  2896. seq_printf(m, " wrpll: 0x%08x\n", pll->state.hw_state.wrpll);
  2897. }
  2898. drm_modeset_unlock_all(dev);
  2899. return 0;
  2900. }
  2901. static int i915_wa_registers(struct seq_file *m, void *unused)
  2902. {
  2903. int i;
  2904. int ret;
  2905. struct intel_engine_cs *engine;
  2906. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2907. struct drm_device *dev = &dev_priv->drm;
  2908. struct i915_workarounds *workarounds = &dev_priv->workarounds;
  2909. enum intel_engine_id id;
  2910. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2911. if (ret)
  2912. return ret;
  2913. intel_runtime_pm_get(dev_priv);
  2914. seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
  2915. for_each_engine(engine, dev_priv, id)
  2916. seq_printf(m, "HW whitelist count for %s: %d\n",
  2917. engine->name, workarounds->hw_whitelist_count[id]);
  2918. for (i = 0; i < workarounds->count; ++i) {
  2919. i915_reg_t addr;
  2920. u32 mask, value, read;
  2921. bool ok;
  2922. addr = workarounds->reg[i].addr;
  2923. mask = workarounds->reg[i].mask;
  2924. value = workarounds->reg[i].value;
  2925. read = I915_READ(addr);
  2926. ok = (value & mask) == (read & mask);
  2927. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2928. i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
  2929. }
  2930. intel_runtime_pm_put(dev_priv);
  2931. mutex_unlock(&dev->struct_mutex);
  2932. return 0;
  2933. }
  2934. static int i915_ddb_info(struct seq_file *m, void *unused)
  2935. {
  2936. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2937. struct drm_device *dev = &dev_priv->drm;
  2938. struct skl_ddb_allocation *ddb;
  2939. struct skl_ddb_entry *entry;
  2940. enum pipe pipe;
  2941. int plane;
  2942. if (INTEL_GEN(dev_priv) < 9)
  2943. return 0;
  2944. drm_modeset_lock_all(dev);
  2945. ddb = &dev_priv->wm.skl_hw.ddb;
  2946. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2947. for_each_pipe(dev_priv, pipe) {
  2948. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2949. for_each_universal_plane(dev_priv, pipe, plane) {
  2950. entry = &ddb->plane[pipe][plane];
  2951. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2952. entry->start, entry->end,
  2953. skl_ddb_entry_size(entry));
  2954. }
  2955. entry = &ddb->plane[pipe][PLANE_CURSOR];
  2956. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2957. entry->end, skl_ddb_entry_size(entry));
  2958. }
  2959. drm_modeset_unlock_all(dev);
  2960. return 0;
  2961. }
  2962. static void drrs_status_per_crtc(struct seq_file *m,
  2963. struct drm_device *dev,
  2964. struct intel_crtc *intel_crtc)
  2965. {
  2966. struct drm_i915_private *dev_priv = to_i915(dev);
  2967. struct i915_drrs *drrs = &dev_priv->drrs;
  2968. int vrefresh = 0;
  2969. struct drm_connector *connector;
  2970. struct drm_connector_list_iter conn_iter;
  2971. drm_connector_list_iter_begin(dev, &conn_iter);
  2972. drm_for_each_connector_iter(connector, &conn_iter) {
  2973. if (connector->state->crtc != &intel_crtc->base)
  2974. continue;
  2975. seq_printf(m, "%s:\n", connector->name);
  2976. }
  2977. drm_connector_list_iter_end(&conn_iter);
  2978. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2979. seq_puts(m, "\tVBT: DRRS_type: Static");
  2980. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2981. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2982. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2983. seq_puts(m, "\tVBT: DRRS_type: None");
  2984. else
  2985. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2986. seq_puts(m, "\n\n");
  2987. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2988. struct intel_panel *panel;
  2989. mutex_lock(&drrs->mutex);
  2990. /* DRRS Supported */
  2991. seq_puts(m, "\tDRRS Supported: Yes\n");
  2992. /* disable_drrs() will make drrs->dp NULL */
  2993. if (!drrs->dp) {
  2994. seq_puts(m, "Idleness DRRS: Disabled");
  2995. mutex_unlock(&drrs->mutex);
  2996. return;
  2997. }
  2998. panel = &drrs->dp->attached_connector->panel;
  2999. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  3000. drrs->busy_frontbuffer_bits);
  3001. seq_puts(m, "\n\t\t");
  3002. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  3003. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  3004. vrefresh = panel->fixed_mode->vrefresh;
  3005. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  3006. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  3007. vrefresh = panel->downclock_mode->vrefresh;
  3008. } else {
  3009. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  3010. drrs->refresh_rate_type);
  3011. mutex_unlock(&drrs->mutex);
  3012. return;
  3013. }
  3014. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  3015. seq_puts(m, "\n\t\t");
  3016. mutex_unlock(&drrs->mutex);
  3017. } else {
  3018. /* DRRS not supported. Print the VBT parameter*/
  3019. seq_puts(m, "\tDRRS Supported : No");
  3020. }
  3021. seq_puts(m, "\n");
  3022. }
  3023. static int i915_drrs_status(struct seq_file *m, void *unused)
  3024. {
  3025. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3026. struct drm_device *dev = &dev_priv->drm;
  3027. struct intel_crtc *intel_crtc;
  3028. int active_crtc_cnt = 0;
  3029. drm_modeset_lock_all(dev);
  3030. for_each_intel_crtc(dev, intel_crtc) {
  3031. if (intel_crtc->base.state->active) {
  3032. active_crtc_cnt++;
  3033. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  3034. drrs_status_per_crtc(m, dev, intel_crtc);
  3035. }
  3036. }
  3037. drm_modeset_unlock_all(dev);
  3038. if (!active_crtc_cnt)
  3039. seq_puts(m, "No active crtc found\n");
  3040. return 0;
  3041. }
  3042. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  3043. {
  3044. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3045. struct drm_device *dev = &dev_priv->drm;
  3046. struct intel_encoder *intel_encoder;
  3047. struct intel_digital_port *intel_dig_port;
  3048. struct drm_connector *connector;
  3049. struct drm_connector_list_iter conn_iter;
  3050. drm_connector_list_iter_begin(dev, &conn_iter);
  3051. drm_for_each_connector_iter(connector, &conn_iter) {
  3052. if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
  3053. continue;
  3054. intel_encoder = intel_attached_encoder(connector);
  3055. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  3056. continue;
  3057. intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  3058. if (!intel_dig_port->dp.can_mst)
  3059. continue;
  3060. seq_printf(m, "MST Source Port %c\n",
  3061. port_name(intel_dig_port->port));
  3062. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  3063. }
  3064. drm_connector_list_iter_end(&conn_iter);
  3065. return 0;
  3066. }
  3067. static ssize_t i915_displayport_test_active_write(struct file *file,
  3068. const char __user *ubuf,
  3069. size_t len, loff_t *offp)
  3070. {
  3071. char *input_buffer;
  3072. int status = 0;
  3073. struct drm_device *dev;
  3074. struct drm_connector *connector;
  3075. struct drm_connector_list_iter conn_iter;
  3076. struct intel_dp *intel_dp;
  3077. int val = 0;
  3078. dev = ((struct seq_file *)file->private_data)->private;
  3079. if (len == 0)
  3080. return 0;
  3081. input_buffer = memdup_user_nul(ubuf, len);
  3082. if (IS_ERR(input_buffer))
  3083. return PTR_ERR(input_buffer);
  3084. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  3085. drm_connector_list_iter_begin(dev, &conn_iter);
  3086. drm_for_each_connector_iter(connector, &conn_iter) {
  3087. struct intel_encoder *encoder;
  3088. if (connector->connector_type !=
  3089. DRM_MODE_CONNECTOR_DisplayPort)
  3090. continue;
  3091. encoder = to_intel_encoder(connector->encoder);
  3092. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3093. continue;
  3094. if (encoder && connector->status == connector_status_connected) {
  3095. intel_dp = enc_to_intel_dp(&encoder->base);
  3096. status = kstrtoint(input_buffer, 10, &val);
  3097. if (status < 0)
  3098. break;
  3099. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  3100. /* To prevent erroneous activation of the compliance
  3101. * testing code, only accept an actual value of 1 here
  3102. */
  3103. if (val == 1)
  3104. intel_dp->compliance.test_active = 1;
  3105. else
  3106. intel_dp->compliance.test_active = 0;
  3107. }
  3108. }
  3109. drm_connector_list_iter_end(&conn_iter);
  3110. kfree(input_buffer);
  3111. if (status < 0)
  3112. return status;
  3113. *offp += len;
  3114. return len;
  3115. }
  3116. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  3117. {
  3118. struct drm_device *dev = m->private;
  3119. struct drm_connector *connector;
  3120. struct drm_connector_list_iter conn_iter;
  3121. struct intel_dp *intel_dp;
  3122. drm_connector_list_iter_begin(dev, &conn_iter);
  3123. drm_for_each_connector_iter(connector, &conn_iter) {
  3124. struct intel_encoder *encoder;
  3125. if (connector->connector_type !=
  3126. DRM_MODE_CONNECTOR_DisplayPort)
  3127. continue;
  3128. encoder = to_intel_encoder(connector->encoder);
  3129. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3130. continue;
  3131. if (encoder && connector->status == connector_status_connected) {
  3132. intel_dp = enc_to_intel_dp(&encoder->base);
  3133. if (intel_dp->compliance.test_active)
  3134. seq_puts(m, "1");
  3135. else
  3136. seq_puts(m, "0");
  3137. } else
  3138. seq_puts(m, "0");
  3139. }
  3140. drm_connector_list_iter_end(&conn_iter);
  3141. return 0;
  3142. }
  3143. static int i915_displayport_test_active_open(struct inode *inode,
  3144. struct file *file)
  3145. {
  3146. struct drm_i915_private *dev_priv = inode->i_private;
  3147. return single_open(file, i915_displayport_test_active_show,
  3148. &dev_priv->drm);
  3149. }
  3150. static const struct file_operations i915_displayport_test_active_fops = {
  3151. .owner = THIS_MODULE,
  3152. .open = i915_displayport_test_active_open,
  3153. .read = seq_read,
  3154. .llseek = seq_lseek,
  3155. .release = single_release,
  3156. .write = i915_displayport_test_active_write
  3157. };
  3158. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  3159. {
  3160. struct drm_device *dev = m->private;
  3161. struct drm_connector *connector;
  3162. struct drm_connector_list_iter conn_iter;
  3163. struct intel_dp *intel_dp;
  3164. drm_connector_list_iter_begin(dev, &conn_iter);
  3165. drm_for_each_connector_iter(connector, &conn_iter) {
  3166. struct intel_encoder *encoder;
  3167. if (connector->connector_type !=
  3168. DRM_MODE_CONNECTOR_DisplayPort)
  3169. continue;
  3170. encoder = to_intel_encoder(connector->encoder);
  3171. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3172. continue;
  3173. if (encoder && connector->status == connector_status_connected) {
  3174. intel_dp = enc_to_intel_dp(&encoder->base);
  3175. if (intel_dp->compliance.test_type ==
  3176. DP_TEST_LINK_EDID_READ)
  3177. seq_printf(m, "%lx",
  3178. intel_dp->compliance.test_data.edid);
  3179. else if (intel_dp->compliance.test_type ==
  3180. DP_TEST_LINK_VIDEO_PATTERN) {
  3181. seq_printf(m, "hdisplay: %d\n",
  3182. intel_dp->compliance.test_data.hdisplay);
  3183. seq_printf(m, "vdisplay: %d\n",
  3184. intel_dp->compliance.test_data.vdisplay);
  3185. seq_printf(m, "bpc: %u\n",
  3186. intel_dp->compliance.test_data.bpc);
  3187. }
  3188. } else
  3189. seq_puts(m, "0");
  3190. }
  3191. drm_connector_list_iter_end(&conn_iter);
  3192. return 0;
  3193. }
  3194. static int i915_displayport_test_data_open(struct inode *inode,
  3195. struct file *file)
  3196. {
  3197. struct drm_i915_private *dev_priv = inode->i_private;
  3198. return single_open(file, i915_displayport_test_data_show,
  3199. &dev_priv->drm);
  3200. }
  3201. static const struct file_operations i915_displayport_test_data_fops = {
  3202. .owner = THIS_MODULE,
  3203. .open = i915_displayport_test_data_open,
  3204. .read = seq_read,
  3205. .llseek = seq_lseek,
  3206. .release = single_release
  3207. };
  3208. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  3209. {
  3210. struct drm_device *dev = m->private;
  3211. struct drm_connector *connector;
  3212. struct drm_connector_list_iter conn_iter;
  3213. struct intel_dp *intel_dp;
  3214. drm_connector_list_iter_begin(dev, &conn_iter);
  3215. drm_for_each_connector_iter(connector, &conn_iter) {
  3216. struct intel_encoder *encoder;
  3217. if (connector->connector_type !=
  3218. DRM_MODE_CONNECTOR_DisplayPort)
  3219. continue;
  3220. encoder = to_intel_encoder(connector->encoder);
  3221. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3222. continue;
  3223. if (encoder && connector->status == connector_status_connected) {
  3224. intel_dp = enc_to_intel_dp(&encoder->base);
  3225. seq_printf(m, "%02lx", intel_dp->compliance.test_type);
  3226. } else
  3227. seq_puts(m, "0");
  3228. }
  3229. drm_connector_list_iter_end(&conn_iter);
  3230. return 0;
  3231. }
  3232. static int i915_displayport_test_type_open(struct inode *inode,
  3233. struct file *file)
  3234. {
  3235. struct drm_i915_private *dev_priv = inode->i_private;
  3236. return single_open(file, i915_displayport_test_type_show,
  3237. &dev_priv->drm);
  3238. }
  3239. static const struct file_operations i915_displayport_test_type_fops = {
  3240. .owner = THIS_MODULE,
  3241. .open = i915_displayport_test_type_open,
  3242. .read = seq_read,
  3243. .llseek = seq_lseek,
  3244. .release = single_release
  3245. };
  3246. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3247. {
  3248. struct drm_i915_private *dev_priv = m->private;
  3249. struct drm_device *dev = &dev_priv->drm;
  3250. int level;
  3251. int num_levels;
  3252. if (IS_CHERRYVIEW(dev_priv))
  3253. num_levels = 3;
  3254. else if (IS_VALLEYVIEW(dev_priv))
  3255. num_levels = 1;
  3256. else if (IS_G4X(dev_priv))
  3257. num_levels = 3;
  3258. else
  3259. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3260. drm_modeset_lock_all(dev);
  3261. for (level = 0; level < num_levels; level++) {
  3262. unsigned int latency = wm[level];
  3263. /*
  3264. * - WM1+ latency values in 0.5us units
  3265. * - latencies are in us on gen9/vlv/chv
  3266. */
  3267. if (INTEL_GEN(dev_priv) >= 9 ||
  3268. IS_VALLEYVIEW(dev_priv) ||
  3269. IS_CHERRYVIEW(dev_priv) ||
  3270. IS_G4X(dev_priv))
  3271. latency *= 10;
  3272. else if (level > 0)
  3273. latency *= 5;
  3274. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3275. level, wm[level], latency / 10, latency % 10);
  3276. }
  3277. drm_modeset_unlock_all(dev);
  3278. }
  3279. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3280. {
  3281. struct drm_i915_private *dev_priv = m->private;
  3282. const uint16_t *latencies;
  3283. if (INTEL_GEN(dev_priv) >= 9)
  3284. latencies = dev_priv->wm.skl_latency;
  3285. else
  3286. latencies = dev_priv->wm.pri_latency;
  3287. wm_latency_show(m, latencies);
  3288. return 0;
  3289. }
  3290. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3291. {
  3292. struct drm_i915_private *dev_priv = m->private;
  3293. const uint16_t *latencies;
  3294. if (INTEL_GEN(dev_priv) >= 9)
  3295. latencies = dev_priv->wm.skl_latency;
  3296. else
  3297. latencies = dev_priv->wm.spr_latency;
  3298. wm_latency_show(m, latencies);
  3299. return 0;
  3300. }
  3301. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3302. {
  3303. struct drm_i915_private *dev_priv = m->private;
  3304. const uint16_t *latencies;
  3305. if (INTEL_GEN(dev_priv) >= 9)
  3306. latencies = dev_priv->wm.skl_latency;
  3307. else
  3308. latencies = dev_priv->wm.cur_latency;
  3309. wm_latency_show(m, latencies);
  3310. return 0;
  3311. }
  3312. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3313. {
  3314. struct drm_i915_private *dev_priv = inode->i_private;
  3315. if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
  3316. return -ENODEV;
  3317. return single_open(file, pri_wm_latency_show, dev_priv);
  3318. }
  3319. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3320. {
  3321. struct drm_i915_private *dev_priv = inode->i_private;
  3322. if (HAS_GMCH_DISPLAY(dev_priv))
  3323. return -ENODEV;
  3324. return single_open(file, spr_wm_latency_show, dev_priv);
  3325. }
  3326. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3327. {
  3328. struct drm_i915_private *dev_priv = inode->i_private;
  3329. if (HAS_GMCH_DISPLAY(dev_priv))
  3330. return -ENODEV;
  3331. return single_open(file, cur_wm_latency_show, dev_priv);
  3332. }
  3333. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3334. size_t len, loff_t *offp, uint16_t wm[8])
  3335. {
  3336. struct seq_file *m = file->private_data;
  3337. struct drm_i915_private *dev_priv = m->private;
  3338. struct drm_device *dev = &dev_priv->drm;
  3339. uint16_t new[8] = { 0 };
  3340. int num_levels;
  3341. int level;
  3342. int ret;
  3343. char tmp[32];
  3344. if (IS_CHERRYVIEW(dev_priv))
  3345. num_levels = 3;
  3346. else if (IS_VALLEYVIEW(dev_priv))
  3347. num_levels = 1;
  3348. else if (IS_G4X(dev_priv))
  3349. num_levels = 3;
  3350. else
  3351. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3352. if (len >= sizeof(tmp))
  3353. return -EINVAL;
  3354. if (copy_from_user(tmp, ubuf, len))
  3355. return -EFAULT;
  3356. tmp[len] = '\0';
  3357. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3358. &new[0], &new[1], &new[2], &new[3],
  3359. &new[4], &new[5], &new[6], &new[7]);
  3360. if (ret != num_levels)
  3361. return -EINVAL;
  3362. drm_modeset_lock_all(dev);
  3363. for (level = 0; level < num_levels; level++)
  3364. wm[level] = new[level];
  3365. drm_modeset_unlock_all(dev);
  3366. return len;
  3367. }
  3368. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3369. size_t len, loff_t *offp)
  3370. {
  3371. struct seq_file *m = file->private_data;
  3372. struct drm_i915_private *dev_priv = m->private;
  3373. uint16_t *latencies;
  3374. if (INTEL_GEN(dev_priv) >= 9)
  3375. latencies = dev_priv->wm.skl_latency;
  3376. else
  3377. latencies = dev_priv->wm.pri_latency;
  3378. return wm_latency_write(file, ubuf, len, offp, latencies);
  3379. }
  3380. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3381. size_t len, loff_t *offp)
  3382. {
  3383. struct seq_file *m = file->private_data;
  3384. struct drm_i915_private *dev_priv = m->private;
  3385. uint16_t *latencies;
  3386. if (INTEL_GEN(dev_priv) >= 9)
  3387. latencies = dev_priv->wm.skl_latency;
  3388. else
  3389. latencies = dev_priv->wm.spr_latency;
  3390. return wm_latency_write(file, ubuf, len, offp, latencies);
  3391. }
  3392. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3393. size_t len, loff_t *offp)
  3394. {
  3395. struct seq_file *m = file->private_data;
  3396. struct drm_i915_private *dev_priv = m->private;
  3397. uint16_t *latencies;
  3398. if (INTEL_GEN(dev_priv) >= 9)
  3399. latencies = dev_priv->wm.skl_latency;
  3400. else
  3401. latencies = dev_priv->wm.cur_latency;
  3402. return wm_latency_write(file, ubuf, len, offp, latencies);
  3403. }
  3404. static const struct file_operations i915_pri_wm_latency_fops = {
  3405. .owner = THIS_MODULE,
  3406. .open = pri_wm_latency_open,
  3407. .read = seq_read,
  3408. .llseek = seq_lseek,
  3409. .release = single_release,
  3410. .write = pri_wm_latency_write
  3411. };
  3412. static const struct file_operations i915_spr_wm_latency_fops = {
  3413. .owner = THIS_MODULE,
  3414. .open = spr_wm_latency_open,
  3415. .read = seq_read,
  3416. .llseek = seq_lseek,
  3417. .release = single_release,
  3418. .write = spr_wm_latency_write
  3419. };
  3420. static const struct file_operations i915_cur_wm_latency_fops = {
  3421. .owner = THIS_MODULE,
  3422. .open = cur_wm_latency_open,
  3423. .read = seq_read,
  3424. .llseek = seq_lseek,
  3425. .release = single_release,
  3426. .write = cur_wm_latency_write
  3427. };
  3428. static int
  3429. i915_wedged_get(void *data, u64 *val)
  3430. {
  3431. struct drm_i915_private *dev_priv = data;
  3432. *val = i915_terminally_wedged(&dev_priv->gpu_error);
  3433. return 0;
  3434. }
  3435. static int
  3436. i915_wedged_set(void *data, u64 val)
  3437. {
  3438. struct drm_i915_private *i915 = data;
  3439. struct intel_engine_cs *engine;
  3440. unsigned int tmp;
  3441. /*
  3442. * There is no safeguard against this debugfs entry colliding
  3443. * with the hangcheck calling same i915_handle_error() in
  3444. * parallel, causing an explosion. For now we assume that the
  3445. * test harness is responsible enough not to inject gpu hangs
  3446. * while it is writing to 'i915_wedged'
  3447. */
  3448. if (i915_reset_backoff(&i915->gpu_error))
  3449. return -EAGAIN;
  3450. for_each_engine_masked(engine, i915, val, tmp) {
  3451. engine->hangcheck.seqno = intel_engine_get_seqno(engine);
  3452. engine->hangcheck.stalled = true;
  3453. }
  3454. i915_handle_error(i915, val, "Manually setting wedged to %llu", val);
  3455. wait_on_bit(&i915->gpu_error.flags,
  3456. I915_RESET_HANDOFF,
  3457. TASK_UNINTERRUPTIBLE);
  3458. return 0;
  3459. }
  3460. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  3461. i915_wedged_get, i915_wedged_set,
  3462. "%llu\n");
  3463. static int
  3464. fault_irq_set(struct drm_i915_private *i915,
  3465. unsigned long *irq,
  3466. unsigned long val)
  3467. {
  3468. int err;
  3469. err = mutex_lock_interruptible(&i915->drm.struct_mutex);
  3470. if (err)
  3471. return err;
  3472. err = i915_gem_wait_for_idle(i915,
  3473. I915_WAIT_LOCKED |
  3474. I915_WAIT_INTERRUPTIBLE);
  3475. if (err)
  3476. goto err_unlock;
  3477. *irq = val;
  3478. mutex_unlock(&i915->drm.struct_mutex);
  3479. /* Flush idle worker to disarm irq */
  3480. while (flush_delayed_work(&i915->gt.idle_work))
  3481. ;
  3482. return 0;
  3483. err_unlock:
  3484. mutex_unlock(&i915->drm.struct_mutex);
  3485. return err;
  3486. }
  3487. static int
  3488. i915_ring_missed_irq_get(void *data, u64 *val)
  3489. {
  3490. struct drm_i915_private *dev_priv = data;
  3491. *val = dev_priv->gpu_error.missed_irq_rings;
  3492. return 0;
  3493. }
  3494. static int
  3495. i915_ring_missed_irq_set(void *data, u64 val)
  3496. {
  3497. struct drm_i915_private *i915 = data;
  3498. return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
  3499. }
  3500. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  3501. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  3502. "0x%08llx\n");
  3503. static int
  3504. i915_ring_test_irq_get(void *data, u64 *val)
  3505. {
  3506. struct drm_i915_private *dev_priv = data;
  3507. *val = dev_priv->gpu_error.test_irq_rings;
  3508. return 0;
  3509. }
  3510. static int
  3511. i915_ring_test_irq_set(void *data, u64 val)
  3512. {
  3513. struct drm_i915_private *i915 = data;
  3514. val &= INTEL_INFO(i915)->ring_mask;
  3515. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  3516. return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
  3517. }
  3518. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  3519. i915_ring_test_irq_get, i915_ring_test_irq_set,
  3520. "0x%08llx\n");
  3521. #define DROP_UNBOUND 0x1
  3522. #define DROP_BOUND 0x2
  3523. #define DROP_RETIRE 0x4
  3524. #define DROP_ACTIVE 0x8
  3525. #define DROP_FREED 0x10
  3526. #define DROP_SHRINK_ALL 0x20
  3527. #define DROP_ALL (DROP_UNBOUND | \
  3528. DROP_BOUND | \
  3529. DROP_RETIRE | \
  3530. DROP_ACTIVE | \
  3531. DROP_FREED | \
  3532. DROP_SHRINK_ALL)
  3533. static int
  3534. i915_drop_caches_get(void *data, u64 *val)
  3535. {
  3536. *val = DROP_ALL;
  3537. return 0;
  3538. }
  3539. static int
  3540. i915_drop_caches_set(void *data, u64 val)
  3541. {
  3542. struct drm_i915_private *dev_priv = data;
  3543. struct drm_device *dev = &dev_priv->drm;
  3544. int ret = 0;
  3545. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  3546. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  3547. * on ioctls on -EAGAIN. */
  3548. if (val & (DROP_ACTIVE | DROP_RETIRE)) {
  3549. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3550. if (ret)
  3551. return ret;
  3552. if (val & DROP_ACTIVE)
  3553. ret = i915_gem_wait_for_idle(dev_priv,
  3554. I915_WAIT_INTERRUPTIBLE |
  3555. I915_WAIT_LOCKED);
  3556. if (val & DROP_RETIRE)
  3557. i915_gem_retire_requests(dev_priv);
  3558. mutex_unlock(&dev->struct_mutex);
  3559. }
  3560. lockdep_set_current_reclaim_state(GFP_KERNEL);
  3561. if (val & DROP_BOUND)
  3562. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
  3563. if (val & DROP_UNBOUND)
  3564. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
  3565. if (val & DROP_SHRINK_ALL)
  3566. i915_gem_shrink_all(dev_priv);
  3567. lockdep_clear_current_reclaim_state();
  3568. if (val & DROP_FREED) {
  3569. synchronize_rcu();
  3570. i915_gem_drain_freed_objects(dev_priv);
  3571. }
  3572. return ret;
  3573. }
  3574. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  3575. i915_drop_caches_get, i915_drop_caches_set,
  3576. "0x%08llx\n");
  3577. static int
  3578. i915_max_freq_get(void *data, u64 *val)
  3579. {
  3580. struct drm_i915_private *dev_priv = data;
  3581. if (INTEL_GEN(dev_priv) < 6)
  3582. return -ENODEV;
  3583. *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  3584. return 0;
  3585. }
  3586. static int
  3587. i915_max_freq_set(void *data, u64 val)
  3588. {
  3589. struct drm_i915_private *dev_priv = data;
  3590. u32 hw_max, hw_min;
  3591. int ret;
  3592. if (INTEL_GEN(dev_priv) < 6)
  3593. return -ENODEV;
  3594. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  3595. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3596. if (ret)
  3597. return ret;
  3598. /*
  3599. * Turbo will still be enabled, but won't go above the set value.
  3600. */
  3601. val = intel_freq_opcode(dev_priv, val);
  3602. hw_max = dev_priv->rps.max_freq;
  3603. hw_min = dev_priv->rps.min_freq;
  3604. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  3605. mutex_unlock(&dev_priv->rps.hw_lock);
  3606. return -EINVAL;
  3607. }
  3608. dev_priv->rps.max_freq_softlimit = val;
  3609. if (intel_set_rps(dev_priv, val))
  3610. DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
  3611. mutex_unlock(&dev_priv->rps.hw_lock);
  3612. return 0;
  3613. }
  3614. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  3615. i915_max_freq_get, i915_max_freq_set,
  3616. "%llu\n");
  3617. static int
  3618. i915_min_freq_get(void *data, u64 *val)
  3619. {
  3620. struct drm_i915_private *dev_priv = data;
  3621. if (INTEL_GEN(dev_priv) < 6)
  3622. return -ENODEV;
  3623. *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  3624. return 0;
  3625. }
  3626. static int
  3627. i915_min_freq_set(void *data, u64 val)
  3628. {
  3629. struct drm_i915_private *dev_priv = data;
  3630. u32 hw_max, hw_min;
  3631. int ret;
  3632. if (INTEL_GEN(dev_priv) < 6)
  3633. return -ENODEV;
  3634. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  3635. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3636. if (ret)
  3637. return ret;
  3638. /*
  3639. * Turbo will still be enabled, but won't go below the set value.
  3640. */
  3641. val = intel_freq_opcode(dev_priv, val);
  3642. hw_max = dev_priv->rps.max_freq;
  3643. hw_min = dev_priv->rps.min_freq;
  3644. if (val < hw_min ||
  3645. val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  3646. mutex_unlock(&dev_priv->rps.hw_lock);
  3647. return -EINVAL;
  3648. }
  3649. dev_priv->rps.min_freq_softlimit = val;
  3650. if (intel_set_rps(dev_priv, val))
  3651. DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
  3652. mutex_unlock(&dev_priv->rps.hw_lock);
  3653. return 0;
  3654. }
  3655. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  3656. i915_min_freq_get, i915_min_freq_set,
  3657. "%llu\n");
  3658. static int
  3659. i915_cache_sharing_get(void *data, u64 *val)
  3660. {
  3661. struct drm_i915_private *dev_priv = data;
  3662. u32 snpcr;
  3663. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  3664. return -ENODEV;
  3665. intel_runtime_pm_get(dev_priv);
  3666. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3667. intel_runtime_pm_put(dev_priv);
  3668. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  3669. return 0;
  3670. }
  3671. static int
  3672. i915_cache_sharing_set(void *data, u64 val)
  3673. {
  3674. struct drm_i915_private *dev_priv = data;
  3675. u32 snpcr;
  3676. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  3677. return -ENODEV;
  3678. if (val > 3)
  3679. return -EINVAL;
  3680. intel_runtime_pm_get(dev_priv);
  3681. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  3682. /* Update the cache sharing policy here as well */
  3683. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3684. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3685. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  3686. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3687. intel_runtime_pm_put(dev_priv);
  3688. return 0;
  3689. }
  3690. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  3691. i915_cache_sharing_get, i915_cache_sharing_set,
  3692. "%llu\n");
  3693. static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
  3694. struct sseu_dev_info *sseu)
  3695. {
  3696. int ss_max = 2;
  3697. int ss;
  3698. u32 sig1[ss_max], sig2[ss_max];
  3699. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  3700. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  3701. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  3702. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  3703. for (ss = 0; ss < ss_max; ss++) {
  3704. unsigned int eu_cnt;
  3705. if (sig1[ss] & CHV_SS_PG_ENABLE)
  3706. /* skip disabled subslice */
  3707. continue;
  3708. sseu->slice_mask = BIT(0);
  3709. sseu->subslice_mask |= BIT(ss);
  3710. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  3711. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  3712. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  3713. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  3714. sseu->eu_total += eu_cnt;
  3715. sseu->eu_per_subslice = max_t(unsigned int,
  3716. sseu->eu_per_subslice, eu_cnt);
  3717. }
  3718. }
  3719. static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
  3720. struct sseu_dev_info *sseu)
  3721. {
  3722. int s_max = 3, ss_max = 4;
  3723. int s, ss;
  3724. u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
  3725. /* BXT has a single slice and at most 3 subslices. */
  3726. if (IS_GEN9_LP(dev_priv)) {
  3727. s_max = 1;
  3728. ss_max = 3;
  3729. }
  3730. for (s = 0; s < s_max; s++) {
  3731. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  3732. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  3733. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  3734. }
  3735. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  3736. GEN9_PGCTL_SSA_EU19_ACK |
  3737. GEN9_PGCTL_SSA_EU210_ACK |
  3738. GEN9_PGCTL_SSA_EU311_ACK;
  3739. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  3740. GEN9_PGCTL_SSB_EU19_ACK |
  3741. GEN9_PGCTL_SSB_EU210_ACK |
  3742. GEN9_PGCTL_SSB_EU311_ACK;
  3743. for (s = 0; s < s_max; s++) {
  3744. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  3745. /* skip disabled slice */
  3746. continue;
  3747. sseu->slice_mask |= BIT(s);
  3748. if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv))
  3749. sseu->subslice_mask =
  3750. INTEL_INFO(dev_priv)->sseu.subslice_mask;
  3751. for (ss = 0; ss < ss_max; ss++) {
  3752. unsigned int eu_cnt;
  3753. if (IS_GEN9_LP(dev_priv)) {
  3754. if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  3755. /* skip disabled subslice */
  3756. continue;
  3757. sseu->subslice_mask |= BIT(ss);
  3758. }
  3759. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  3760. eu_mask[ss%2]);
  3761. sseu->eu_total += eu_cnt;
  3762. sseu->eu_per_subslice = max_t(unsigned int,
  3763. sseu->eu_per_subslice,
  3764. eu_cnt);
  3765. }
  3766. }
  3767. }
  3768. static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
  3769. struct sseu_dev_info *sseu)
  3770. {
  3771. u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
  3772. int s;
  3773. sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
  3774. if (sseu->slice_mask) {
  3775. sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
  3776. sseu->eu_per_subslice =
  3777. INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
  3778. sseu->eu_total = sseu->eu_per_subslice *
  3779. sseu_subslice_total(sseu);
  3780. /* subtract fused off EU(s) from enabled slice(s) */
  3781. for (s = 0; s < fls(sseu->slice_mask); s++) {
  3782. u8 subslice_7eu =
  3783. INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
  3784. sseu->eu_total -= hweight8(subslice_7eu);
  3785. }
  3786. }
  3787. }
  3788. static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
  3789. const struct sseu_dev_info *sseu)
  3790. {
  3791. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3792. const char *type = is_available_info ? "Available" : "Enabled";
  3793. seq_printf(m, " %s Slice Mask: %04x\n", type,
  3794. sseu->slice_mask);
  3795. seq_printf(m, " %s Slice Total: %u\n", type,
  3796. hweight8(sseu->slice_mask));
  3797. seq_printf(m, " %s Subslice Total: %u\n", type,
  3798. sseu_subslice_total(sseu));
  3799. seq_printf(m, " %s Subslice Mask: %04x\n", type,
  3800. sseu->subslice_mask);
  3801. seq_printf(m, " %s Subslice Per Slice: %u\n", type,
  3802. hweight8(sseu->subslice_mask));
  3803. seq_printf(m, " %s EU Total: %u\n", type,
  3804. sseu->eu_total);
  3805. seq_printf(m, " %s EU Per Subslice: %u\n", type,
  3806. sseu->eu_per_subslice);
  3807. if (!is_available_info)
  3808. return;
  3809. seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
  3810. if (HAS_POOLED_EU(dev_priv))
  3811. seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
  3812. seq_printf(m, " Has Slice Power Gating: %s\n",
  3813. yesno(sseu->has_slice_pg));
  3814. seq_printf(m, " Has Subslice Power Gating: %s\n",
  3815. yesno(sseu->has_subslice_pg));
  3816. seq_printf(m, " Has EU Power Gating: %s\n",
  3817. yesno(sseu->has_eu_pg));
  3818. }
  3819. static int i915_sseu_status(struct seq_file *m, void *unused)
  3820. {
  3821. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3822. struct sseu_dev_info sseu;
  3823. if (INTEL_GEN(dev_priv) < 8)
  3824. return -ENODEV;
  3825. seq_puts(m, "SSEU Device Info\n");
  3826. i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
  3827. seq_puts(m, "SSEU Device Status\n");
  3828. memset(&sseu, 0, sizeof(sseu));
  3829. intel_runtime_pm_get(dev_priv);
  3830. if (IS_CHERRYVIEW(dev_priv)) {
  3831. cherryview_sseu_device_status(dev_priv, &sseu);
  3832. } else if (IS_BROADWELL(dev_priv)) {
  3833. broadwell_sseu_device_status(dev_priv, &sseu);
  3834. } else if (INTEL_GEN(dev_priv) >= 9) {
  3835. gen9_sseu_device_status(dev_priv, &sseu);
  3836. }
  3837. intel_runtime_pm_put(dev_priv);
  3838. i915_print_sseu_info(m, false, &sseu);
  3839. return 0;
  3840. }
  3841. static int i915_forcewake_open(struct inode *inode, struct file *file)
  3842. {
  3843. struct drm_i915_private *dev_priv = inode->i_private;
  3844. if (INTEL_GEN(dev_priv) < 6)
  3845. return 0;
  3846. intel_runtime_pm_get(dev_priv);
  3847. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3848. return 0;
  3849. }
  3850. static int i915_forcewake_release(struct inode *inode, struct file *file)
  3851. {
  3852. struct drm_i915_private *dev_priv = inode->i_private;
  3853. if (INTEL_GEN(dev_priv) < 6)
  3854. return 0;
  3855. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3856. intel_runtime_pm_put(dev_priv);
  3857. return 0;
  3858. }
  3859. static const struct file_operations i915_forcewake_fops = {
  3860. .owner = THIS_MODULE,
  3861. .open = i915_forcewake_open,
  3862. .release = i915_forcewake_release,
  3863. };
  3864. static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
  3865. {
  3866. struct drm_i915_private *dev_priv = m->private;
  3867. struct i915_hotplug *hotplug = &dev_priv->hotplug;
  3868. seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
  3869. seq_printf(m, "Detected: %s\n",
  3870. yesno(delayed_work_pending(&hotplug->reenable_work)));
  3871. return 0;
  3872. }
  3873. static ssize_t i915_hpd_storm_ctl_write(struct file *file,
  3874. const char __user *ubuf, size_t len,
  3875. loff_t *offp)
  3876. {
  3877. struct seq_file *m = file->private_data;
  3878. struct drm_i915_private *dev_priv = m->private;
  3879. struct i915_hotplug *hotplug = &dev_priv->hotplug;
  3880. unsigned int new_threshold;
  3881. int i;
  3882. char *newline;
  3883. char tmp[16];
  3884. if (len >= sizeof(tmp))
  3885. return -EINVAL;
  3886. if (copy_from_user(tmp, ubuf, len))
  3887. return -EFAULT;
  3888. tmp[len] = '\0';
  3889. /* Strip newline, if any */
  3890. newline = strchr(tmp, '\n');
  3891. if (newline)
  3892. *newline = '\0';
  3893. if (strcmp(tmp, "reset") == 0)
  3894. new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
  3895. else if (kstrtouint(tmp, 10, &new_threshold) != 0)
  3896. return -EINVAL;
  3897. if (new_threshold > 0)
  3898. DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
  3899. new_threshold);
  3900. else
  3901. DRM_DEBUG_KMS("Disabling HPD storm detection\n");
  3902. spin_lock_irq(&dev_priv->irq_lock);
  3903. hotplug->hpd_storm_threshold = new_threshold;
  3904. /* Reset the HPD storm stats so we don't accidentally trigger a storm */
  3905. for_each_hpd_pin(i)
  3906. hotplug->stats[i].count = 0;
  3907. spin_unlock_irq(&dev_priv->irq_lock);
  3908. /* Re-enable hpd immediately if we were in an irq storm */
  3909. flush_delayed_work(&dev_priv->hotplug.reenable_work);
  3910. return len;
  3911. }
  3912. static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
  3913. {
  3914. return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
  3915. }
  3916. static const struct file_operations i915_hpd_storm_ctl_fops = {
  3917. .owner = THIS_MODULE,
  3918. .open = i915_hpd_storm_ctl_open,
  3919. .read = seq_read,
  3920. .llseek = seq_lseek,
  3921. .release = single_release,
  3922. .write = i915_hpd_storm_ctl_write
  3923. };
  3924. static const struct drm_info_list i915_debugfs_list[] = {
  3925. {"i915_capabilities", i915_capabilities, 0},
  3926. {"i915_gem_objects", i915_gem_object_info, 0},
  3927. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  3928. {"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
  3929. {"i915_gem_stolen", i915_gem_stolen_list_info },
  3930. {"i915_gem_request", i915_gem_request_info, 0},
  3931. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  3932. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  3933. {"i915_gem_interrupt", i915_interrupt_info, 0},
  3934. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  3935. {"i915_guc_info", i915_guc_info, 0},
  3936. {"i915_guc_load_status", i915_guc_load_status_info, 0},
  3937. {"i915_guc_log_dump", i915_guc_log_dump, 0},
  3938. {"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1},
  3939. {"i915_guc_stage_pool", i915_guc_stage_pool, 0},
  3940. {"i915_huc_load_status", i915_huc_load_status_info, 0},
  3941. {"i915_frequency_info", i915_frequency_info, 0},
  3942. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  3943. {"i915_reset_info", i915_reset_info, 0},
  3944. {"i915_drpc_info", i915_drpc_info, 0},
  3945. {"i915_emon_status", i915_emon_status, 0},
  3946. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  3947. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  3948. {"i915_fbc_status", i915_fbc_status, 0},
  3949. {"i915_ips_status", i915_ips_status, 0},
  3950. {"i915_sr_status", i915_sr_status, 0},
  3951. {"i915_opregion", i915_opregion, 0},
  3952. {"i915_vbt", i915_vbt, 0},
  3953. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  3954. {"i915_context_status", i915_context_status, 0},
  3955. {"i915_dump_lrc", i915_dump_lrc, 0},
  3956. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  3957. {"i915_swizzle_info", i915_swizzle_info, 0},
  3958. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  3959. {"i915_llc", i915_llc, 0},
  3960. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  3961. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  3962. {"i915_energy_uJ", i915_energy_uJ, 0},
  3963. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  3964. {"i915_power_domain_info", i915_power_domain_info, 0},
  3965. {"i915_dmc_info", i915_dmc_info, 0},
  3966. {"i915_display_info", i915_display_info, 0},
  3967. {"i915_engine_info", i915_engine_info, 0},
  3968. {"i915_semaphore_status", i915_semaphore_status, 0},
  3969. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  3970. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  3971. {"i915_wa_registers", i915_wa_registers, 0},
  3972. {"i915_ddb_info", i915_ddb_info, 0},
  3973. {"i915_sseu_status", i915_sseu_status, 0},
  3974. {"i915_drrs_status", i915_drrs_status, 0},
  3975. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  3976. };
  3977. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  3978. static const struct i915_debugfs_files {
  3979. const char *name;
  3980. const struct file_operations *fops;
  3981. } i915_debugfs_files[] = {
  3982. {"i915_wedged", &i915_wedged_fops},
  3983. {"i915_max_freq", &i915_max_freq_fops},
  3984. {"i915_min_freq", &i915_min_freq_fops},
  3985. {"i915_cache_sharing", &i915_cache_sharing_fops},
  3986. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  3987. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  3988. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  3989. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  3990. {"i915_error_state", &i915_error_state_fops},
  3991. {"i915_gpu_info", &i915_gpu_info_fops},
  3992. #endif
  3993. {"i915_next_seqno", &i915_next_seqno_fops},
  3994. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  3995. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  3996. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  3997. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  3998. {"i915_fbc_false_color", &i915_fbc_false_color_fops},
  3999. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  4000. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  4001. {"i915_dp_test_active", &i915_displayport_test_active_fops},
  4002. {"i915_guc_log_control", &i915_guc_log_control_fops},
  4003. {"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops}
  4004. };
  4005. int i915_debugfs_register(struct drm_i915_private *dev_priv)
  4006. {
  4007. struct drm_minor *minor = dev_priv->drm.primary;
  4008. struct dentry *ent;
  4009. int ret, i;
  4010. ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
  4011. minor->debugfs_root, to_i915(minor->dev),
  4012. &i915_forcewake_fops);
  4013. if (!ent)
  4014. return -ENOMEM;
  4015. ret = intel_pipe_crc_create(minor);
  4016. if (ret)
  4017. return ret;
  4018. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4019. ent = debugfs_create_file(i915_debugfs_files[i].name,
  4020. S_IRUGO | S_IWUSR,
  4021. minor->debugfs_root,
  4022. to_i915(minor->dev),
  4023. i915_debugfs_files[i].fops);
  4024. if (!ent)
  4025. return -ENOMEM;
  4026. }
  4027. return drm_debugfs_create_files(i915_debugfs_list,
  4028. I915_DEBUGFS_ENTRIES,
  4029. minor->debugfs_root, minor);
  4030. }
  4031. struct dpcd_block {
  4032. /* DPCD dump start address. */
  4033. unsigned int offset;
  4034. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  4035. unsigned int end;
  4036. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  4037. size_t size;
  4038. /* Only valid for eDP. */
  4039. bool edp;
  4040. };
  4041. static const struct dpcd_block i915_dpcd_debug[] = {
  4042. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  4043. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  4044. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  4045. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  4046. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  4047. { .offset = DP_SET_POWER },
  4048. { .offset = DP_EDP_DPCD_REV },
  4049. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  4050. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  4051. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  4052. };
  4053. static int i915_dpcd_show(struct seq_file *m, void *data)
  4054. {
  4055. struct drm_connector *connector = m->private;
  4056. struct intel_dp *intel_dp =
  4057. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4058. uint8_t buf[16];
  4059. ssize_t err;
  4060. int i;
  4061. if (connector->status != connector_status_connected)
  4062. return -ENODEV;
  4063. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  4064. const struct dpcd_block *b = &i915_dpcd_debug[i];
  4065. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  4066. if (b->edp &&
  4067. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  4068. continue;
  4069. /* low tech for now */
  4070. if (WARN_ON(size > sizeof(buf)))
  4071. continue;
  4072. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  4073. if (err <= 0) {
  4074. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  4075. size, b->offset, err);
  4076. continue;
  4077. }
  4078. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  4079. }
  4080. return 0;
  4081. }
  4082. static int i915_dpcd_open(struct inode *inode, struct file *file)
  4083. {
  4084. return single_open(file, i915_dpcd_show, inode->i_private);
  4085. }
  4086. static const struct file_operations i915_dpcd_fops = {
  4087. .owner = THIS_MODULE,
  4088. .open = i915_dpcd_open,
  4089. .read = seq_read,
  4090. .llseek = seq_lseek,
  4091. .release = single_release,
  4092. };
  4093. static int i915_panel_show(struct seq_file *m, void *data)
  4094. {
  4095. struct drm_connector *connector = m->private;
  4096. struct intel_dp *intel_dp =
  4097. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4098. if (connector->status != connector_status_connected)
  4099. return -ENODEV;
  4100. seq_printf(m, "Panel power up delay: %d\n",
  4101. intel_dp->panel_power_up_delay);
  4102. seq_printf(m, "Panel power down delay: %d\n",
  4103. intel_dp->panel_power_down_delay);
  4104. seq_printf(m, "Backlight on delay: %d\n",
  4105. intel_dp->backlight_on_delay);
  4106. seq_printf(m, "Backlight off delay: %d\n",
  4107. intel_dp->backlight_off_delay);
  4108. return 0;
  4109. }
  4110. static int i915_panel_open(struct inode *inode, struct file *file)
  4111. {
  4112. return single_open(file, i915_panel_show, inode->i_private);
  4113. }
  4114. static const struct file_operations i915_panel_fops = {
  4115. .owner = THIS_MODULE,
  4116. .open = i915_panel_open,
  4117. .read = seq_read,
  4118. .llseek = seq_lseek,
  4119. .release = single_release,
  4120. };
  4121. /**
  4122. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  4123. * @connector: pointer to a registered drm_connector
  4124. *
  4125. * Cleanup will be done by drm_connector_unregister() through a call to
  4126. * drm_debugfs_connector_remove().
  4127. *
  4128. * Returns 0 on success, negative error codes on error.
  4129. */
  4130. int i915_debugfs_connector_add(struct drm_connector *connector)
  4131. {
  4132. struct dentry *root = connector->debugfs_entry;
  4133. /* The connector must have been registered beforehands. */
  4134. if (!root)
  4135. return -ENODEV;
  4136. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  4137. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4138. debugfs_create_file("i915_dpcd", S_IRUGO, root,
  4139. connector, &i915_dpcd_fops);
  4140. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4141. debugfs_create_file("i915_panel_timings", S_IRUGO, root,
  4142. connector, &i915_panel_fops);
  4143. return 0;
  4144. }