kfd_device_queue_manager.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/list.h>
  25. #include <linux/types.h>
  26. #include <linux/printk.h>
  27. #include <linux/bitops.h>
  28. #include <linux/sched.h>
  29. #include "kfd_priv.h"
  30. #include "kfd_device_queue_manager.h"
  31. #include "kfd_mqd_manager.h"
  32. #include "cik_regs.h"
  33. #include "kfd_kernel_queue.h"
  34. /* Size of the per-pipe EOP queue */
  35. #define CIK_HPD_EOP_BYTES_LOG2 11
  36. #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
  37. static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
  38. unsigned int pasid, unsigned int vmid);
  39. static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
  40. struct queue *q,
  41. struct qcm_process_device *qpd);
  42. static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
  43. static int destroy_queues_cpsch(struct device_queue_manager *dqm,
  44. bool preempt_static_queues, bool lock);
  45. static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
  46. struct queue *q,
  47. struct qcm_process_device *qpd);
  48. static void deallocate_sdma_queue(struct device_queue_manager *dqm,
  49. unsigned int sdma_queue_id);
  50. static inline
  51. enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
  52. {
  53. if (type == KFD_QUEUE_TYPE_SDMA)
  54. return KFD_MQD_TYPE_SDMA;
  55. return KFD_MQD_TYPE_CP;
  56. }
  57. static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
  58. {
  59. int i;
  60. int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec
  61. + pipe * dqm->dev->shared_resources.num_queue_per_pipe;
  62. /* queue is available for KFD usage if bit is 1 */
  63. for (i = 0; i < dqm->dev->shared_resources.num_queue_per_pipe; ++i)
  64. if (test_bit(pipe_offset + i,
  65. dqm->dev->shared_resources.queue_bitmap))
  66. return true;
  67. return false;
  68. }
  69. unsigned int get_queues_num(struct device_queue_manager *dqm)
  70. {
  71. BUG_ON(!dqm || !dqm->dev);
  72. return bitmap_weight(dqm->dev->shared_resources.queue_bitmap,
  73. KGD_MAX_QUEUES);
  74. }
  75. unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
  76. {
  77. BUG_ON(!dqm || !dqm->dev);
  78. return dqm->dev->shared_resources.num_queue_per_pipe;
  79. }
  80. unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
  81. {
  82. BUG_ON(!dqm || !dqm->dev);
  83. return dqm->dev->shared_resources.num_pipe_per_mec;
  84. }
  85. void program_sh_mem_settings(struct device_queue_manager *dqm,
  86. struct qcm_process_device *qpd)
  87. {
  88. return dqm->dev->kfd2kgd->program_sh_mem_settings(
  89. dqm->dev->kgd, qpd->vmid,
  90. qpd->sh_mem_config,
  91. qpd->sh_mem_ape1_base,
  92. qpd->sh_mem_ape1_limit,
  93. qpd->sh_mem_bases);
  94. }
  95. static int allocate_vmid(struct device_queue_manager *dqm,
  96. struct qcm_process_device *qpd,
  97. struct queue *q)
  98. {
  99. int bit, allocated_vmid;
  100. if (dqm->vmid_bitmap == 0)
  101. return -ENOMEM;
  102. bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
  103. clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
  104. /* Kaveri kfd vmid's starts from vmid 8 */
  105. allocated_vmid = bit + KFD_VMID_START_OFFSET;
  106. pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
  107. qpd->vmid = allocated_vmid;
  108. q->properties.vmid = allocated_vmid;
  109. set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
  110. program_sh_mem_settings(dqm, qpd);
  111. return 0;
  112. }
  113. static void deallocate_vmid(struct device_queue_manager *dqm,
  114. struct qcm_process_device *qpd,
  115. struct queue *q)
  116. {
  117. int bit = qpd->vmid - KFD_VMID_START_OFFSET;
  118. /* Release the vmid mapping */
  119. set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
  120. set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
  121. qpd->vmid = 0;
  122. q->properties.vmid = 0;
  123. }
  124. static int create_queue_nocpsch(struct device_queue_manager *dqm,
  125. struct queue *q,
  126. struct qcm_process_device *qpd,
  127. int *allocated_vmid)
  128. {
  129. int retval;
  130. BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
  131. pr_debug("kfd: In func %s\n", __func__);
  132. print_queue(q);
  133. mutex_lock(&dqm->lock);
  134. if (dqm->total_queue_count >= max_num_of_queues_per_device) {
  135. pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
  136. dqm->total_queue_count);
  137. mutex_unlock(&dqm->lock);
  138. return -EPERM;
  139. }
  140. if (list_empty(&qpd->queues_list)) {
  141. retval = allocate_vmid(dqm, qpd, q);
  142. if (retval != 0) {
  143. mutex_unlock(&dqm->lock);
  144. return retval;
  145. }
  146. }
  147. *allocated_vmid = qpd->vmid;
  148. q->properties.vmid = qpd->vmid;
  149. if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
  150. retval = create_compute_queue_nocpsch(dqm, q, qpd);
  151. if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
  152. retval = create_sdma_queue_nocpsch(dqm, q, qpd);
  153. if (retval != 0) {
  154. if (list_empty(&qpd->queues_list)) {
  155. deallocate_vmid(dqm, qpd, q);
  156. *allocated_vmid = 0;
  157. }
  158. mutex_unlock(&dqm->lock);
  159. return retval;
  160. }
  161. list_add(&q->list, &qpd->queues_list);
  162. if (q->properties.is_active)
  163. dqm->queue_count++;
  164. if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
  165. dqm->sdma_queue_count++;
  166. /*
  167. * Unconditionally increment this counter, regardless of the queue's
  168. * type or whether the queue is active.
  169. */
  170. dqm->total_queue_count++;
  171. pr_debug("Total of %d queues are accountable so far\n",
  172. dqm->total_queue_count);
  173. mutex_unlock(&dqm->lock);
  174. return 0;
  175. }
  176. static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
  177. {
  178. bool set;
  179. int pipe, bit, i;
  180. set = false;
  181. for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_per_mec(dqm);
  182. pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
  183. if (!is_pipe_enabled(dqm, 0, pipe))
  184. continue;
  185. if (dqm->allocated_queues[pipe] != 0) {
  186. bit = find_first_bit(
  187. (unsigned long *)&dqm->allocated_queues[pipe],
  188. get_queues_per_pipe(dqm));
  189. clear_bit(bit,
  190. (unsigned long *)&dqm->allocated_queues[pipe]);
  191. q->pipe = pipe;
  192. q->queue = bit;
  193. set = true;
  194. break;
  195. }
  196. }
  197. if (!set)
  198. return -EBUSY;
  199. pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
  200. __func__, q->pipe, q->queue);
  201. /* horizontal hqd allocation */
  202. dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
  203. return 0;
  204. }
  205. static inline void deallocate_hqd(struct device_queue_manager *dqm,
  206. struct queue *q)
  207. {
  208. set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
  209. }
  210. static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
  211. struct queue *q,
  212. struct qcm_process_device *qpd)
  213. {
  214. int retval;
  215. struct mqd_manager *mqd;
  216. BUG_ON(!dqm || !q || !qpd);
  217. mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
  218. if (mqd == NULL)
  219. return -ENOMEM;
  220. retval = allocate_hqd(dqm, q);
  221. if (retval != 0)
  222. return retval;
  223. retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
  224. &q->gart_mqd_addr, &q->properties);
  225. if (retval != 0) {
  226. deallocate_hqd(dqm, q);
  227. return retval;
  228. }
  229. pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
  230. q->pipe,
  231. q->queue);
  232. retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
  233. q->queue, (uint32_t __user *) q->properties.write_ptr);
  234. if (retval != 0) {
  235. deallocate_hqd(dqm, q);
  236. mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
  237. return retval;
  238. }
  239. return 0;
  240. }
  241. static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
  242. struct qcm_process_device *qpd,
  243. struct queue *q)
  244. {
  245. int retval;
  246. struct mqd_manager *mqd;
  247. BUG_ON(!dqm || !q || !q->mqd || !qpd);
  248. retval = 0;
  249. pr_debug("kfd: In Func %s\n", __func__);
  250. mutex_lock(&dqm->lock);
  251. if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
  252. mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
  253. if (mqd == NULL) {
  254. retval = -ENOMEM;
  255. goto out;
  256. }
  257. deallocate_hqd(dqm, q);
  258. } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
  259. mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
  260. if (mqd == NULL) {
  261. retval = -ENOMEM;
  262. goto out;
  263. }
  264. dqm->sdma_queue_count--;
  265. deallocate_sdma_queue(dqm, q->sdma_id);
  266. } else {
  267. pr_debug("q->properties.type is invalid (%d)\n",
  268. q->properties.type);
  269. retval = -EINVAL;
  270. goto out;
  271. }
  272. retval = mqd->destroy_mqd(mqd, q->mqd,
  273. KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
  274. QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
  275. q->pipe, q->queue);
  276. if (retval != 0)
  277. goto out;
  278. mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
  279. list_del(&q->list);
  280. if (list_empty(&qpd->queues_list))
  281. deallocate_vmid(dqm, qpd, q);
  282. if (q->properties.is_active)
  283. dqm->queue_count--;
  284. /*
  285. * Unconditionally decrement this counter, regardless of the queue's
  286. * type
  287. */
  288. dqm->total_queue_count--;
  289. pr_debug("Total of %d queues are accountable so far\n",
  290. dqm->total_queue_count);
  291. out:
  292. mutex_unlock(&dqm->lock);
  293. return retval;
  294. }
  295. static int update_queue(struct device_queue_manager *dqm, struct queue *q)
  296. {
  297. int retval;
  298. struct mqd_manager *mqd;
  299. bool prev_active = false;
  300. BUG_ON(!dqm || !q || !q->mqd);
  301. mutex_lock(&dqm->lock);
  302. mqd = dqm->ops.get_mqd_manager(dqm,
  303. get_mqd_type_from_queue_type(q->properties.type));
  304. if (mqd == NULL) {
  305. mutex_unlock(&dqm->lock);
  306. return -ENOMEM;
  307. }
  308. if (q->properties.is_active)
  309. prev_active = true;
  310. /*
  311. *
  312. * check active state vs. the previous state
  313. * and modify counter accordingly
  314. */
  315. retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
  316. if ((q->properties.is_active) && (!prev_active))
  317. dqm->queue_count++;
  318. else if ((!q->properties.is_active) && (prev_active))
  319. dqm->queue_count--;
  320. if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
  321. retval = execute_queues_cpsch(dqm, false);
  322. mutex_unlock(&dqm->lock);
  323. return retval;
  324. }
  325. static struct mqd_manager *get_mqd_manager_nocpsch(
  326. struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
  327. {
  328. struct mqd_manager *mqd;
  329. BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
  330. pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
  331. mqd = dqm->mqds[type];
  332. if (!mqd) {
  333. mqd = mqd_manager_init(type, dqm->dev);
  334. if (mqd == NULL)
  335. pr_err("kfd: mqd manager is NULL");
  336. dqm->mqds[type] = mqd;
  337. }
  338. return mqd;
  339. }
  340. static int register_process_nocpsch(struct device_queue_manager *dqm,
  341. struct qcm_process_device *qpd)
  342. {
  343. struct device_process_node *n;
  344. int retval;
  345. BUG_ON(!dqm || !qpd);
  346. pr_debug("kfd: In func %s\n", __func__);
  347. n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
  348. if (!n)
  349. return -ENOMEM;
  350. n->qpd = qpd;
  351. mutex_lock(&dqm->lock);
  352. list_add(&n->list, &dqm->queues);
  353. retval = dqm->ops_asic_specific.register_process(dqm, qpd);
  354. dqm->processes_count++;
  355. mutex_unlock(&dqm->lock);
  356. return retval;
  357. }
  358. static int unregister_process_nocpsch(struct device_queue_manager *dqm,
  359. struct qcm_process_device *qpd)
  360. {
  361. int retval;
  362. struct device_process_node *cur, *next;
  363. BUG_ON(!dqm || !qpd);
  364. pr_debug("In func %s\n", __func__);
  365. pr_debug("qpd->queues_list is %s\n",
  366. list_empty(&qpd->queues_list) ? "empty" : "not empty");
  367. retval = 0;
  368. mutex_lock(&dqm->lock);
  369. list_for_each_entry_safe(cur, next, &dqm->queues, list) {
  370. if (qpd == cur->qpd) {
  371. list_del(&cur->list);
  372. kfree(cur);
  373. dqm->processes_count--;
  374. goto out;
  375. }
  376. }
  377. /* qpd not found in dqm list */
  378. retval = 1;
  379. out:
  380. mutex_unlock(&dqm->lock);
  381. return retval;
  382. }
  383. static int
  384. set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
  385. unsigned int vmid)
  386. {
  387. uint32_t pasid_mapping;
  388. pasid_mapping = (pasid == 0) ? 0 :
  389. (uint32_t)pasid |
  390. ATC_VMID_PASID_MAPPING_VALID;
  391. return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
  392. dqm->dev->kgd, pasid_mapping,
  393. vmid);
  394. }
  395. static void init_interrupts(struct device_queue_manager *dqm)
  396. {
  397. unsigned int i;
  398. BUG_ON(dqm == NULL);
  399. for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
  400. if (is_pipe_enabled(dqm, 0, i))
  401. dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i);
  402. }
  403. static int init_scheduler(struct device_queue_manager *dqm)
  404. {
  405. int retval = 0;
  406. BUG_ON(!dqm);
  407. pr_debug("kfd: In %s\n", __func__);
  408. return retval;
  409. }
  410. static int initialize_nocpsch(struct device_queue_manager *dqm)
  411. {
  412. int i;
  413. BUG_ON(!dqm);
  414. pr_debug("kfd: In func %s num of pipes: %d\n",
  415. __func__, get_pipes_per_mec(dqm));
  416. mutex_init(&dqm->lock);
  417. INIT_LIST_HEAD(&dqm->queues);
  418. dqm->queue_count = dqm->next_pipe_to_allocate = 0;
  419. dqm->sdma_queue_count = 0;
  420. dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
  421. sizeof(unsigned int), GFP_KERNEL);
  422. if (!dqm->allocated_queues) {
  423. mutex_destroy(&dqm->lock);
  424. return -ENOMEM;
  425. }
  426. for (i = 0; i < get_pipes_per_mec(dqm); i++)
  427. dqm->allocated_queues[i] = (1 << get_queues_per_pipe(dqm)) - 1;
  428. dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
  429. dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
  430. init_scheduler(dqm);
  431. return 0;
  432. }
  433. static void uninitialize_nocpsch(struct device_queue_manager *dqm)
  434. {
  435. int i;
  436. BUG_ON(!dqm);
  437. BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
  438. kfree(dqm->allocated_queues);
  439. for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
  440. kfree(dqm->mqds[i]);
  441. mutex_destroy(&dqm->lock);
  442. kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
  443. }
  444. static int start_nocpsch(struct device_queue_manager *dqm)
  445. {
  446. init_interrupts(dqm);
  447. return 0;
  448. }
  449. static int stop_nocpsch(struct device_queue_manager *dqm)
  450. {
  451. return 0;
  452. }
  453. static int allocate_sdma_queue(struct device_queue_manager *dqm,
  454. unsigned int *sdma_queue_id)
  455. {
  456. int bit;
  457. if (dqm->sdma_bitmap == 0)
  458. return -ENOMEM;
  459. bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
  460. CIK_SDMA_QUEUES);
  461. clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
  462. *sdma_queue_id = bit;
  463. return 0;
  464. }
  465. static void deallocate_sdma_queue(struct device_queue_manager *dqm,
  466. unsigned int sdma_queue_id)
  467. {
  468. if (sdma_queue_id >= CIK_SDMA_QUEUES)
  469. return;
  470. set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
  471. }
  472. static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
  473. struct queue *q,
  474. struct qcm_process_device *qpd)
  475. {
  476. struct mqd_manager *mqd;
  477. int retval;
  478. mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
  479. if (!mqd)
  480. return -ENOMEM;
  481. retval = allocate_sdma_queue(dqm, &q->sdma_id);
  482. if (retval != 0)
  483. return retval;
  484. q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
  485. q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;
  486. pr_debug("kfd: sdma id is: %d\n", q->sdma_id);
  487. pr_debug(" sdma queue id: %d\n", q->properties.sdma_queue_id);
  488. pr_debug(" sdma engine id: %d\n", q->properties.sdma_engine_id);
  489. dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
  490. retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
  491. &q->gart_mqd_addr, &q->properties);
  492. if (retval != 0) {
  493. deallocate_sdma_queue(dqm, q->sdma_id);
  494. return retval;
  495. }
  496. retval = mqd->load_mqd(mqd, q->mqd, 0,
  497. 0, NULL);
  498. if (retval != 0) {
  499. deallocate_sdma_queue(dqm, q->sdma_id);
  500. mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
  501. return retval;
  502. }
  503. return 0;
  504. }
  505. /*
  506. * Device Queue Manager implementation for cp scheduler
  507. */
  508. static int set_sched_resources(struct device_queue_manager *dqm)
  509. {
  510. int i, mec;
  511. struct scheduling_resources res;
  512. BUG_ON(!dqm);
  513. pr_debug("kfd: In func %s\n", __func__);
  514. res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
  515. res.vmid_mask <<= KFD_VMID_START_OFFSET;
  516. res.queue_mask = 0;
  517. for (i = 0; i < KGD_MAX_QUEUES; ++i) {
  518. mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
  519. / dqm->dev->shared_resources.num_pipe_per_mec;
  520. if (!test_bit(i, dqm->dev->shared_resources.queue_bitmap))
  521. continue;
  522. /* only acquire queues from the first MEC */
  523. if (mec > 0)
  524. continue;
  525. /* This situation may be hit in the future if a new HW
  526. * generation exposes more than 64 queues. If so, the
  527. * definition of res.queue_mask needs updating */
  528. if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
  529. pr_err("Invalid queue enabled by amdgpu: %d\n", i);
  530. break;
  531. }
  532. res.queue_mask |= (1ull << i);
  533. }
  534. res.gws_mask = res.oac_mask = res.gds_heap_base =
  535. res.gds_heap_size = 0;
  536. pr_debug("kfd: scheduling resources:\n"
  537. " vmid mask: 0x%8X\n"
  538. " queue mask: 0x%8llX\n",
  539. res.vmid_mask, res.queue_mask);
  540. return pm_send_set_resources(&dqm->packets, &res);
  541. }
  542. static int initialize_cpsch(struct device_queue_manager *dqm)
  543. {
  544. int retval;
  545. BUG_ON(!dqm);
  546. pr_debug("kfd: In func %s num of pipes: %d\n",
  547. __func__, get_pipes_per_mec(dqm));
  548. mutex_init(&dqm->lock);
  549. INIT_LIST_HEAD(&dqm->queues);
  550. dqm->queue_count = dqm->processes_count = 0;
  551. dqm->sdma_queue_count = 0;
  552. dqm->active_runlist = false;
  553. retval = dqm->ops_asic_specific.initialize(dqm);
  554. if (retval != 0)
  555. goto fail_init_pipelines;
  556. return 0;
  557. fail_init_pipelines:
  558. mutex_destroy(&dqm->lock);
  559. return retval;
  560. }
  561. static int start_cpsch(struct device_queue_manager *dqm)
  562. {
  563. struct device_process_node *node;
  564. int retval;
  565. BUG_ON(!dqm);
  566. retval = 0;
  567. retval = pm_init(&dqm->packets, dqm);
  568. if (retval != 0)
  569. goto fail_packet_manager_init;
  570. retval = set_sched_resources(dqm);
  571. if (retval != 0)
  572. goto fail_set_sched_resources;
  573. pr_debug("kfd: allocating fence memory\n");
  574. /* allocate fence memory on the gart */
  575. retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
  576. &dqm->fence_mem);
  577. if (retval != 0)
  578. goto fail_allocate_vidmem;
  579. dqm->fence_addr = dqm->fence_mem->cpu_ptr;
  580. dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
  581. init_interrupts(dqm);
  582. list_for_each_entry(node, &dqm->queues, list)
  583. if (node->qpd->pqm->process && dqm->dev)
  584. kfd_bind_process_to_device(dqm->dev,
  585. node->qpd->pqm->process);
  586. execute_queues_cpsch(dqm, true);
  587. return 0;
  588. fail_allocate_vidmem:
  589. fail_set_sched_resources:
  590. pm_uninit(&dqm->packets);
  591. fail_packet_manager_init:
  592. return retval;
  593. }
  594. static int stop_cpsch(struct device_queue_manager *dqm)
  595. {
  596. struct device_process_node *node;
  597. struct kfd_process_device *pdd;
  598. BUG_ON(!dqm);
  599. destroy_queues_cpsch(dqm, true, true);
  600. list_for_each_entry(node, &dqm->queues, list) {
  601. pdd = qpd_to_pdd(node->qpd);
  602. pdd->bound = false;
  603. }
  604. kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
  605. pm_uninit(&dqm->packets);
  606. return 0;
  607. }
  608. static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
  609. struct kernel_queue *kq,
  610. struct qcm_process_device *qpd)
  611. {
  612. BUG_ON(!dqm || !kq || !qpd);
  613. pr_debug("kfd: In func %s\n", __func__);
  614. mutex_lock(&dqm->lock);
  615. if (dqm->total_queue_count >= max_num_of_queues_per_device) {
  616. pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n",
  617. dqm->total_queue_count);
  618. mutex_unlock(&dqm->lock);
  619. return -EPERM;
  620. }
  621. /*
  622. * Unconditionally increment this counter, regardless of the queue's
  623. * type or whether the queue is active.
  624. */
  625. dqm->total_queue_count++;
  626. pr_debug("Total of %d queues are accountable so far\n",
  627. dqm->total_queue_count);
  628. list_add(&kq->list, &qpd->priv_queue_list);
  629. dqm->queue_count++;
  630. qpd->is_debug = true;
  631. execute_queues_cpsch(dqm, false);
  632. mutex_unlock(&dqm->lock);
  633. return 0;
  634. }
  635. static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
  636. struct kernel_queue *kq,
  637. struct qcm_process_device *qpd)
  638. {
  639. BUG_ON(!dqm || !kq);
  640. pr_debug("kfd: In %s\n", __func__);
  641. mutex_lock(&dqm->lock);
  642. /* here we actually preempt the DIQ */
  643. destroy_queues_cpsch(dqm, true, false);
  644. list_del(&kq->list);
  645. dqm->queue_count--;
  646. qpd->is_debug = false;
  647. execute_queues_cpsch(dqm, false);
  648. /*
  649. * Unconditionally decrement this counter, regardless of the queue's
  650. * type.
  651. */
  652. dqm->total_queue_count--;
  653. pr_debug("Total of %d queues are accountable so far\n",
  654. dqm->total_queue_count);
  655. mutex_unlock(&dqm->lock);
  656. }
  657. static void select_sdma_engine_id(struct queue *q)
  658. {
  659. static int sdma_id;
  660. q->sdma_id = sdma_id;
  661. sdma_id = (sdma_id + 1) % 2;
  662. }
  663. static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
  664. struct qcm_process_device *qpd, int *allocate_vmid)
  665. {
  666. int retval;
  667. struct mqd_manager *mqd;
  668. BUG_ON(!dqm || !q || !qpd);
  669. retval = 0;
  670. if (allocate_vmid)
  671. *allocate_vmid = 0;
  672. mutex_lock(&dqm->lock);
  673. if (dqm->total_queue_count >= max_num_of_queues_per_device) {
  674. pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
  675. dqm->total_queue_count);
  676. retval = -EPERM;
  677. goto out;
  678. }
  679. if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
  680. select_sdma_engine_id(q);
  681. mqd = dqm->ops.get_mqd_manager(dqm,
  682. get_mqd_type_from_queue_type(q->properties.type));
  683. if (mqd == NULL) {
  684. mutex_unlock(&dqm->lock);
  685. return -ENOMEM;
  686. }
  687. dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
  688. retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
  689. &q->gart_mqd_addr, &q->properties);
  690. if (retval != 0)
  691. goto out;
  692. list_add(&q->list, &qpd->queues_list);
  693. if (q->properties.is_active) {
  694. dqm->queue_count++;
  695. retval = execute_queues_cpsch(dqm, false);
  696. }
  697. if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
  698. dqm->sdma_queue_count++;
  699. /*
  700. * Unconditionally increment this counter, regardless of the queue's
  701. * type or whether the queue is active.
  702. */
  703. dqm->total_queue_count++;
  704. pr_debug("Total of %d queues are accountable so far\n",
  705. dqm->total_queue_count);
  706. out:
  707. mutex_unlock(&dqm->lock);
  708. return retval;
  709. }
  710. int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
  711. unsigned int fence_value,
  712. unsigned long timeout)
  713. {
  714. BUG_ON(!fence_addr);
  715. timeout += jiffies;
  716. while (*fence_addr != fence_value) {
  717. if (time_after(jiffies, timeout)) {
  718. pr_err("kfd: qcm fence wait loop timeout expired\n");
  719. return -ETIME;
  720. }
  721. schedule();
  722. }
  723. return 0;
  724. }
  725. static int destroy_sdma_queues(struct device_queue_manager *dqm,
  726. unsigned int sdma_engine)
  727. {
  728. return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
  729. KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES, 0, false,
  730. sdma_engine);
  731. }
  732. static int destroy_queues_cpsch(struct device_queue_manager *dqm,
  733. bool preempt_static_queues, bool lock)
  734. {
  735. int retval;
  736. enum kfd_preempt_type_filter preempt_type;
  737. struct kfd_process_device *pdd;
  738. BUG_ON(!dqm);
  739. retval = 0;
  740. if (lock)
  741. mutex_lock(&dqm->lock);
  742. if (!dqm->active_runlist)
  743. goto out;
  744. pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
  745. dqm->sdma_queue_count);
  746. if (dqm->sdma_queue_count > 0) {
  747. destroy_sdma_queues(dqm, 0);
  748. destroy_sdma_queues(dqm, 1);
  749. }
  750. preempt_type = preempt_static_queues ?
  751. KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES :
  752. KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES;
  753. retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
  754. preempt_type, 0, false, 0);
  755. if (retval != 0)
  756. goto out;
  757. *dqm->fence_addr = KFD_FENCE_INIT;
  758. pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
  759. KFD_FENCE_COMPLETED);
  760. /* should be timed out */
  761. retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
  762. QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
  763. if (retval != 0) {
  764. pdd = kfd_get_process_device_data(dqm->dev,
  765. kfd_get_process(current));
  766. pdd->reset_wavefronts = true;
  767. goto out;
  768. }
  769. pm_release_ib(&dqm->packets);
  770. dqm->active_runlist = false;
  771. out:
  772. if (lock)
  773. mutex_unlock(&dqm->lock);
  774. return retval;
  775. }
  776. static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
  777. {
  778. int retval;
  779. BUG_ON(!dqm);
  780. if (lock)
  781. mutex_lock(&dqm->lock);
  782. retval = destroy_queues_cpsch(dqm, false, false);
  783. if (retval != 0) {
  784. pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
  785. goto out;
  786. }
  787. if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
  788. retval = 0;
  789. goto out;
  790. }
  791. if (dqm->active_runlist) {
  792. retval = 0;
  793. goto out;
  794. }
  795. retval = pm_send_runlist(&dqm->packets, &dqm->queues);
  796. if (retval != 0) {
  797. pr_err("kfd: failed to execute runlist");
  798. goto out;
  799. }
  800. dqm->active_runlist = true;
  801. out:
  802. if (lock)
  803. mutex_unlock(&dqm->lock);
  804. return retval;
  805. }
  806. static int destroy_queue_cpsch(struct device_queue_manager *dqm,
  807. struct qcm_process_device *qpd,
  808. struct queue *q)
  809. {
  810. int retval;
  811. struct mqd_manager *mqd;
  812. bool preempt_all_queues;
  813. BUG_ON(!dqm || !qpd || !q);
  814. preempt_all_queues = false;
  815. retval = 0;
  816. /* remove queue from list to prevent rescheduling after preemption */
  817. mutex_lock(&dqm->lock);
  818. if (qpd->is_debug) {
  819. /*
  820. * error, currently we do not allow to destroy a queue
  821. * of a currently debugged process
  822. */
  823. retval = -EBUSY;
  824. goto failed_try_destroy_debugged_queue;
  825. }
  826. mqd = dqm->ops.get_mqd_manager(dqm,
  827. get_mqd_type_from_queue_type(q->properties.type));
  828. if (!mqd) {
  829. retval = -ENOMEM;
  830. goto failed;
  831. }
  832. if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
  833. dqm->sdma_queue_count--;
  834. list_del(&q->list);
  835. if (q->properties.is_active)
  836. dqm->queue_count--;
  837. execute_queues_cpsch(dqm, false);
  838. mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
  839. /*
  840. * Unconditionally decrement this counter, regardless of the queue's
  841. * type
  842. */
  843. dqm->total_queue_count--;
  844. pr_debug("Total of %d queues are accountable so far\n",
  845. dqm->total_queue_count);
  846. mutex_unlock(&dqm->lock);
  847. return 0;
  848. failed:
  849. failed_try_destroy_debugged_queue:
  850. mutex_unlock(&dqm->lock);
  851. return retval;
  852. }
  853. /*
  854. * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
  855. * stay in user mode.
  856. */
  857. #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
  858. /* APE1 limit is inclusive and 64K aligned. */
  859. #define APE1_LIMIT_ALIGNMENT 0xFFFF
  860. static bool set_cache_memory_policy(struct device_queue_manager *dqm,
  861. struct qcm_process_device *qpd,
  862. enum cache_policy default_policy,
  863. enum cache_policy alternate_policy,
  864. void __user *alternate_aperture_base,
  865. uint64_t alternate_aperture_size)
  866. {
  867. bool retval;
  868. pr_debug("kfd: In func %s\n", __func__);
  869. mutex_lock(&dqm->lock);
  870. if (alternate_aperture_size == 0) {
  871. /* base > limit disables APE1 */
  872. qpd->sh_mem_ape1_base = 1;
  873. qpd->sh_mem_ape1_limit = 0;
  874. } else {
  875. /*
  876. * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
  877. * SH_MEM_APE1_BASE[31:0], 0x0000 }
  878. * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
  879. * SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
  880. * Verify that the base and size parameters can be
  881. * represented in this format and convert them.
  882. * Additionally restrict APE1 to user-mode addresses.
  883. */
  884. uint64_t base = (uintptr_t)alternate_aperture_base;
  885. uint64_t limit = base + alternate_aperture_size - 1;
  886. if (limit <= base)
  887. goto out;
  888. if ((base & APE1_FIXED_BITS_MASK) != 0)
  889. goto out;
  890. if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
  891. goto out;
  892. qpd->sh_mem_ape1_base = base >> 16;
  893. qpd->sh_mem_ape1_limit = limit >> 16;
  894. }
  895. retval = dqm->ops_asic_specific.set_cache_memory_policy(
  896. dqm,
  897. qpd,
  898. default_policy,
  899. alternate_policy,
  900. alternate_aperture_base,
  901. alternate_aperture_size);
  902. if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
  903. program_sh_mem_settings(dqm, qpd);
  904. pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
  905. qpd->sh_mem_config, qpd->sh_mem_ape1_base,
  906. qpd->sh_mem_ape1_limit);
  907. mutex_unlock(&dqm->lock);
  908. return retval;
  909. out:
  910. mutex_unlock(&dqm->lock);
  911. return false;
  912. }
  913. struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
  914. {
  915. struct device_queue_manager *dqm;
  916. BUG_ON(!dev);
  917. pr_debug("kfd: loading device queue manager\n");
  918. dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
  919. if (!dqm)
  920. return NULL;
  921. dqm->dev = dev;
  922. switch (sched_policy) {
  923. case KFD_SCHED_POLICY_HWS:
  924. case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
  925. /* initialize dqm for cp scheduling */
  926. dqm->ops.create_queue = create_queue_cpsch;
  927. dqm->ops.initialize = initialize_cpsch;
  928. dqm->ops.start = start_cpsch;
  929. dqm->ops.stop = stop_cpsch;
  930. dqm->ops.destroy_queue = destroy_queue_cpsch;
  931. dqm->ops.update_queue = update_queue;
  932. dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
  933. dqm->ops.register_process = register_process_nocpsch;
  934. dqm->ops.unregister_process = unregister_process_nocpsch;
  935. dqm->ops.uninitialize = uninitialize_nocpsch;
  936. dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
  937. dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
  938. dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
  939. break;
  940. case KFD_SCHED_POLICY_NO_HWS:
  941. /* initialize dqm for no cp scheduling */
  942. dqm->ops.start = start_nocpsch;
  943. dqm->ops.stop = stop_nocpsch;
  944. dqm->ops.create_queue = create_queue_nocpsch;
  945. dqm->ops.destroy_queue = destroy_queue_nocpsch;
  946. dqm->ops.update_queue = update_queue;
  947. dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
  948. dqm->ops.register_process = register_process_nocpsch;
  949. dqm->ops.unregister_process = unregister_process_nocpsch;
  950. dqm->ops.initialize = initialize_nocpsch;
  951. dqm->ops.uninitialize = uninitialize_nocpsch;
  952. dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
  953. break;
  954. default:
  955. BUG();
  956. break;
  957. }
  958. switch (dev->device_info->asic_family) {
  959. case CHIP_CARRIZO:
  960. device_queue_manager_init_vi(&dqm->ops_asic_specific);
  961. break;
  962. case CHIP_KAVERI:
  963. device_queue_manager_init_cik(&dqm->ops_asic_specific);
  964. break;
  965. }
  966. if (dqm->ops.initialize(dqm) != 0) {
  967. kfree(dqm);
  968. return NULL;
  969. }
  970. return dqm;
  971. }
  972. void device_queue_manager_uninit(struct device_queue_manager *dqm)
  973. {
  974. BUG_ON(!dqm);
  975. dqm->ops.uninitialize(dqm);
  976. kfree(dqm);
  977. }