amd_iommu.c 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476
  1. /*
  2. * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <jroedel@suse.de>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/ratelimit.h>
  20. #include <linux/pci.h>
  21. #include <linux/acpi.h>
  22. #include <linux/amba/bus.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/pci-ats.h>
  25. #include <linux/bitmap.h>
  26. #include <linux/slab.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/dma-direct.h>
  31. #include <linux/iommu-helper.h>
  32. #include <linux/iommu.h>
  33. #include <linux/delay.h>
  34. #include <linux/amd-iommu.h>
  35. #include <linux/notifier.h>
  36. #include <linux/export.h>
  37. #include <linux/irq.h>
  38. #include <linux/msi.h>
  39. #include <linux/dma-contiguous.h>
  40. #include <linux/irqdomain.h>
  41. #include <linux/percpu.h>
  42. #include <linux/iova.h>
  43. #include <asm/irq_remapping.h>
  44. #include <asm/io_apic.h>
  45. #include <asm/apic.h>
  46. #include <asm/hw_irq.h>
  47. #include <asm/msidef.h>
  48. #include <asm/proto.h>
  49. #include <asm/iommu.h>
  50. #include <asm/gart.h>
  51. #include <asm/dma.h>
  52. #include "amd_iommu_proto.h"
  53. #include "amd_iommu_types.h"
  54. #include "irq_remapping.h"
  55. #define AMD_IOMMU_MAPPING_ERROR 0
  56. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  57. #define LOOP_TIMEOUT 100000
  58. /* IO virtual address start page frame number */
  59. #define IOVA_START_PFN (1)
  60. #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
  61. /* Reserved IOVA ranges */
  62. #define MSI_RANGE_START (0xfee00000)
  63. #define MSI_RANGE_END (0xfeefffff)
  64. #define HT_RANGE_START (0xfd00000000ULL)
  65. #define HT_RANGE_END (0xffffffffffULL)
  66. /*
  67. * This bitmap is used to advertise the page sizes our hardware support
  68. * to the IOMMU core, which will then use this information to split
  69. * physically contiguous memory regions it is mapping into page sizes
  70. * that we support.
  71. *
  72. * 512GB Pages are not supported due to a hardware bug
  73. */
  74. #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
  75. static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
  76. static DEFINE_SPINLOCK(pd_bitmap_lock);
  77. /* List of all available dev_data structures */
  78. static LLIST_HEAD(dev_data_list);
  79. LIST_HEAD(ioapic_map);
  80. LIST_HEAD(hpet_map);
  81. LIST_HEAD(acpihid_map);
  82. /*
  83. * Domain for untranslated devices - only allocated
  84. * if iommu=pt passed on kernel cmd line.
  85. */
  86. const struct iommu_ops amd_iommu_ops;
  87. static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  88. int amd_iommu_max_glx_val = -1;
  89. static const struct dma_map_ops amd_iommu_dma_ops;
  90. /*
  91. * general struct to manage commands send to an IOMMU
  92. */
  93. struct iommu_cmd {
  94. u32 data[4];
  95. };
  96. struct kmem_cache *amd_iommu_irq_cache;
  97. static void update_domain(struct protection_domain *domain);
  98. static int protection_domain_init(struct protection_domain *domain);
  99. static void detach_device(struct device *dev);
  100. static void iova_domain_flush_tlb(struct iova_domain *iovad);
  101. /*
  102. * Data container for a dma_ops specific protection domain
  103. */
  104. struct dma_ops_domain {
  105. /* generic protection domain information */
  106. struct protection_domain domain;
  107. /* IOVA RB-Tree */
  108. struct iova_domain iovad;
  109. };
  110. static struct iova_domain reserved_iova_ranges;
  111. static struct lock_class_key reserved_rbtree_key;
  112. /****************************************************************************
  113. *
  114. * Helper functions
  115. *
  116. ****************************************************************************/
  117. static inline int match_hid_uid(struct device *dev,
  118. struct acpihid_map_entry *entry)
  119. {
  120. const char *hid, *uid;
  121. hid = acpi_device_hid(ACPI_COMPANION(dev));
  122. uid = acpi_device_uid(ACPI_COMPANION(dev));
  123. if (!hid || !(*hid))
  124. return -ENODEV;
  125. if (!uid || !(*uid))
  126. return strcmp(hid, entry->hid);
  127. if (!(*entry->uid))
  128. return strcmp(hid, entry->hid);
  129. return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
  130. }
  131. static inline u16 get_pci_device_id(struct device *dev)
  132. {
  133. struct pci_dev *pdev = to_pci_dev(dev);
  134. return PCI_DEVID(pdev->bus->number, pdev->devfn);
  135. }
  136. static inline int get_acpihid_device_id(struct device *dev,
  137. struct acpihid_map_entry **entry)
  138. {
  139. struct acpihid_map_entry *p;
  140. list_for_each_entry(p, &acpihid_map, list) {
  141. if (!match_hid_uid(dev, p)) {
  142. if (entry)
  143. *entry = p;
  144. return p->devid;
  145. }
  146. }
  147. return -EINVAL;
  148. }
  149. static inline int get_device_id(struct device *dev)
  150. {
  151. int devid;
  152. if (dev_is_pci(dev))
  153. devid = get_pci_device_id(dev);
  154. else
  155. devid = get_acpihid_device_id(dev, NULL);
  156. return devid;
  157. }
  158. static struct protection_domain *to_pdomain(struct iommu_domain *dom)
  159. {
  160. return container_of(dom, struct protection_domain, domain);
  161. }
  162. static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
  163. {
  164. BUG_ON(domain->flags != PD_DMA_OPS_MASK);
  165. return container_of(domain, struct dma_ops_domain, domain);
  166. }
  167. static struct iommu_dev_data *alloc_dev_data(u16 devid)
  168. {
  169. struct iommu_dev_data *dev_data;
  170. dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  171. if (!dev_data)
  172. return NULL;
  173. dev_data->devid = devid;
  174. ratelimit_default_init(&dev_data->rs);
  175. llist_add(&dev_data->dev_data_list, &dev_data_list);
  176. return dev_data;
  177. }
  178. static struct iommu_dev_data *search_dev_data(u16 devid)
  179. {
  180. struct iommu_dev_data *dev_data;
  181. struct llist_node *node;
  182. if (llist_empty(&dev_data_list))
  183. return NULL;
  184. node = dev_data_list.first;
  185. llist_for_each_entry(dev_data, node, dev_data_list) {
  186. if (dev_data->devid == devid)
  187. return dev_data;
  188. }
  189. return NULL;
  190. }
  191. static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
  192. {
  193. *(u16 *)data = alias;
  194. return 0;
  195. }
  196. static u16 get_alias(struct device *dev)
  197. {
  198. struct pci_dev *pdev = to_pci_dev(dev);
  199. u16 devid, ivrs_alias, pci_alias;
  200. /* The callers make sure that get_device_id() does not fail here */
  201. devid = get_device_id(dev);
  202. ivrs_alias = amd_iommu_alias_table[devid];
  203. pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
  204. if (ivrs_alias == pci_alias)
  205. return ivrs_alias;
  206. /*
  207. * DMA alias showdown
  208. *
  209. * The IVRS is fairly reliable in telling us about aliases, but it
  210. * can't know about every screwy device. If we don't have an IVRS
  211. * reported alias, use the PCI reported alias. In that case we may
  212. * still need to initialize the rlookup and dev_table entries if the
  213. * alias is to a non-existent device.
  214. */
  215. if (ivrs_alias == devid) {
  216. if (!amd_iommu_rlookup_table[pci_alias]) {
  217. amd_iommu_rlookup_table[pci_alias] =
  218. amd_iommu_rlookup_table[devid];
  219. memcpy(amd_iommu_dev_table[pci_alias].data,
  220. amd_iommu_dev_table[devid].data,
  221. sizeof(amd_iommu_dev_table[pci_alias].data));
  222. }
  223. return pci_alias;
  224. }
  225. pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
  226. "for device %s[%04x:%04x], kernel reported alias "
  227. "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
  228. PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
  229. PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
  230. PCI_FUNC(pci_alias));
  231. /*
  232. * If we don't have a PCI DMA alias and the IVRS alias is on the same
  233. * bus, then the IVRS table may know about a quirk that we don't.
  234. */
  235. if (pci_alias == devid &&
  236. PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
  237. pci_add_dma_alias(pdev, ivrs_alias & 0xff);
  238. pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
  239. PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
  240. dev_name(dev));
  241. }
  242. return ivrs_alias;
  243. }
  244. static struct iommu_dev_data *find_dev_data(u16 devid)
  245. {
  246. struct iommu_dev_data *dev_data;
  247. struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
  248. dev_data = search_dev_data(devid);
  249. if (dev_data == NULL) {
  250. dev_data = alloc_dev_data(devid);
  251. if (!dev_data)
  252. return NULL;
  253. if (translation_pre_enabled(iommu))
  254. dev_data->defer_attach = true;
  255. }
  256. return dev_data;
  257. }
  258. struct iommu_dev_data *get_dev_data(struct device *dev)
  259. {
  260. return dev->archdata.iommu;
  261. }
  262. EXPORT_SYMBOL(get_dev_data);
  263. /*
  264. * Find or create an IOMMU group for a acpihid device.
  265. */
  266. static struct iommu_group *acpihid_device_group(struct device *dev)
  267. {
  268. struct acpihid_map_entry *p, *entry = NULL;
  269. int devid;
  270. devid = get_acpihid_device_id(dev, &entry);
  271. if (devid < 0)
  272. return ERR_PTR(devid);
  273. list_for_each_entry(p, &acpihid_map, list) {
  274. if ((devid == p->devid) && p->group)
  275. entry->group = p->group;
  276. }
  277. if (!entry->group)
  278. entry->group = generic_device_group(dev);
  279. else
  280. iommu_group_ref_get(entry->group);
  281. return entry->group;
  282. }
  283. static bool pci_iommuv2_capable(struct pci_dev *pdev)
  284. {
  285. static const int caps[] = {
  286. PCI_EXT_CAP_ID_ATS,
  287. PCI_EXT_CAP_ID_PRI,
  288. PCI_EXT_CAP_ID_PASID,
  289. };
  290. int i, pos;
  291. if (pci_ats_disabled())
  292. return false;
  293. for (i = 0; i < 3; ++i) {
  294. pos = pci_find_ext_capability(pdev, caps[i]);
  295. if (pos == 0)
  296. return false;
  297. }
  298. return true;
  299. }
  300. static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
  301. {
  302. struct iommu_dev_data *dev_data;
  303. dev_data = get_dev_data(&pdev->dev);
  304. return dev_data->errata & (1 << erratum) ? true : false;
  305. }
  306. /*
  307. * This function checks if the driver got a valid device from the caller to
  308. * avoid dereferencing invalid pointers.
  309. */
  310. static bool check_device(struct device *dev)
  311. {
  312. int devid;
  313. if (!dev || !dev->dma_mask)
  314. return false;
  315. devid = get_device_id(dev);
  316. if (devid < 0)
  317. return false;
  318. /* Out of our scope? */
  319. if (devid > amd_iommu_last_bdf)
  320. return false;
  321. if (amd_iommu_rlookup_table[devid] == NULL)
  322. return false;
  323. return true;
  324. }
  325. static void init_iommu_group(struct device *dev)
  326. {
  327. struct iommu_group *group;
  328. group = iommu_group_get_for_dev(dev);
  329. if (IS_ERR(group))
  330. return;
  331. iommu_group_put(group);
  332. }
  333. static int iommu_init_device(struct device *dev)
  334. {
  335. struct iommu_dev_data *dev_data;
  336. struct amd_iommu *iommu;
  337. int devid;
  338. if (dev->archdata.iommu)
  339. return 0;
  340. devid = get_device_id(dev);
  341. if (devid < 0)
  342. return devid;
  343. iommu = amd_iommu_rlookup_table[devid];
  344. dev_data = find_dev_data(devid);
  345. if (!dev_data)
  346. return -ENOMEM;
  347. dev_data->alias = get_alias(dev);
  348. if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
  349. struct amd_iommu *iommu;
  350. iommu = amd_iommu_rlookup_table[dev_data->devid];
  351. dev_data->iommu_v2 = iommu->is_iommu_v2;
  352. }
  353. dev->archdata.iommu = dev_data;
  354. iommu_device_link(&iommu->iommu, dev);
  355. return 0;
  356. }
  357. static void iommu_ignore_device(struct device *dev)
  358. {
  359. u16 alias;
  360. int devid;
  361. devid = get_device_id(dev);
  362. if (devid < 0)
  363. return;
  364. alias = get_alias(dev);
  365. memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
  366. memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
  367. amd_iommu_rlookup_table[devid] = NULL;
  368. amd_iommu_rlookup_table[alias] = NULL;
  369. }
  370. static void iommu_uninit_device(struct device *dev)
  371. {
  372. struct iommu_dev_data *dev_data;
  373. struct amd_iommu *iommu;
  374. int devid;
  375. devid = get_device_id(dev);
  376. if (devid < 0)
  377. return;
  378. iommu = amd_iommu_rlookup_table[devid];
  379. dev_data = search_dev_data(devid);
  380. if (!dev_data)
  381. return;
  382. if (dev_data->domain)
  383. detach_device(dev);
  384. iommu_device_unlink(&iommu->iommu, dev);
  385. iommu_group_remove_device(dev);
  386. /* Remove dma-ops */
  387. dev->dma_ops = NULL;
  388. /*
  389. * We keep dev_data around for unplugged devices and reuse it when the
  390. * device is re-plugged - not doing so would introduce a ton of races.
  391. */
  392. }
  393. /****************************************************************************
  394. *
  395. * Interrupt handling functions
  396. *
  397. ****************************************************************************/
  398. static void dump_dte_entry(u16 devid)
  399. {
  400. int i;
  401. for (i = 0; i < 4; ++i)
  402. pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
  403. amd_iommu_dev_table[devid].data[i]);
  404. }
  405. static void dump_command(unsigned long phys_addr)
  406. {
  407. struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
  408. int i;
  409. for (i = 0; i < 4; ++i)
  410. pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
  411. }
  412. static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
  413. u64 address, int flags)
  414. {
  415. struct iommu_dev_data *dev_data = NULL;
  416. struct pci_dev *pdev;
  417. pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
  418. devid & 0xff);
  419. if (pdev)
  420. dev_data = get_dev_data(&pdev->dev);
  421. if (dev_data && __ratelimit(&dev_data->rs)) {
  422. dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  423. domain_id, address, flags);
  424. } else if (printk_ratelimit()) {
  425. pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  426. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  427. domain_id, address, flags);
  428. }
  429. if (pdev)
  430. pci_dev_put(pdev);
  431. }
  432. static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
  433. {
  434. struct device *dev = iommu->iommu.dev;
  435. int type, devid, pasid, flags, tag;
  436. volatile u32 *event = __evt;
  437. int count = 0;
  438. u64 address;
  439. retry:
  440. type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  441. devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  442. pasid = PPR_PASID(*(u64 *)&event[0]);
  443. flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  444. address = (u64)(((u64)event[3]) << 32) | event[2];
  445. if (type == 0) {
  446. /* Did we hit the erratum? */
  447. if (++count == LOOP_TIMEOUT) {
  448. pr_err("AMD-Vi: No event written to event log\n");
  449. return;
  450. }
  451. udelay(1);
  452. goto retry;
  453. }
  454. if (type == EVENT_TYPE_IO_FAULT) {
  455. amd_iommu_report_page_fault(devid, pasid, address, flags);
  456. return;
  457. } else {
  458. dev_err(dev, "AMD-Vi: Event logged [");
  459. }
  460. switch (type) {
  461. case EVENT_TYPE_ILL_DEV:
  462. dev_err(dev, "ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
  463. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  464. pasid, address, flags);
  465. dump_dte_entry(devid);
  466. break;
  467. case EVENT_TYPE_DEV_TAB_ERR:
  468. dev_err(dev, "DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  469. "address=0x%016llx flags=0x%04x]\n",
  470. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  471. address, flags);
  472. break;
  473. case EVENT_TYPE_PAGE_TAB_ERR:
  474. dev_err(dev, "PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  475. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  476. pasid, address, flags);
  477. break;
  478. case EVENT_TYPE_ILL_CMD:
  479. dev_err(dev, "ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  480. dump_command(address);
  481. break;
  482. case EVENT_TYPE_CMD_HARD_ERR:
  483. dev_err(dev, "COMMAND_HARDWARE_ERROR address=0x%016llx flags=0x%04x]\n",
  484. address, flags);
  485. break;
  486. case EVENT_TYPE_IOTLB_INV_TO:
  487. dev_err(dev, "IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%016llx]\n",
  488. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  489. address);
  490. break;
  491. case EVENT_TYPE_INV_DEV_REQ:
  492. dev_err(dev, "INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
  493. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  494. pasid, address, flags);
  495. break;
  496. case EVENT_TYPE_INV_PPR_REQ:
  497. pasid = ((event[0] >> 16) & 0xFFFF)
  498. | ((event[1] << 6) & 0xF0000);
  499. tag = event[1] & 0x03FF;
  500. dev_err(dev, "INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
  501. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  502. pasid, address, flags);
  503. break;
  504. default:
  505. dev_err(dev, "UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
  506. event[0], event[1], event[2], event[3]);
  507. }
  508. memset(__evt, 0, 4 * sizeof(u32));
  509. }
  510. static void iommu_poll_events(struct amd_iommu *iommu)
  511. {
  512. u32 head, tail;
  513. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  514. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  515. while (head != tail) {
  516. iommu_print_event(iommu, iommu->evt_buf + head);
  517. head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
  518. }
  519. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  520. }
  521. static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
  522. {
  523. struct amd_iommu_fault fault;
  524. if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
  525. pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
  526. return;
  527. }
  528. fault.address = raw[1];
  529. fault.pasid = PPR_PASID(raw[0]);
  530. fault.device_id = PPR_DEVID(raw[0]);
  531. fault.tag = PPR_TAG(raw[0]);
  532. fault.flags = PPR_FLAGS(raw[0]);
  533. atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
  534. }
  535. static void iommu_poll_ppr_log(struct amd_iommu *iommu)
  536. {
  537. u32 head, tail;
  538. if (iommu->ppr_log == NULL)
  539. return;
  540. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  541. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  542. while (head != tail) {
  543. volatile u64 *raw;
  544. u64 entry[2];
  545. int i;
  546. raw = (u64 *)(iommu->ppr_log + head);
  547. /*
  548. * Hardware bug: Interrupt may arrive before the entry is
  549. * written to memory. If this happens we need to wait for the
  550. * entry to arrive.
  551. */
  552. for (i = 0; i < LOOP_TIMEOUT; ++i) {
  553. if (PPR_REQ_TYPE(raw[0]) != 0)
  554. break;
  555. udelay(1);
  556. }
  557. /* Avoid memcpy function-call overhead */
  558. entry[0] = raw[0];
  559. entry[1] = raw[1];
  560. /*
  561. * To detect the hardware bug we need to clear the entry
  562. * back to zero.
  563. */
  564. raw[0] = raw[1] = 0UL;
  565. /* Update head pointer of hardware ring-buffer */
  566. head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
  567. writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  568. /* Handle PPR entry */
  569. iommu_handle_ppr_entry(iommu, entry);
  570. /* Refresh ring-buffer information */
  571. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  572. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  573. }
  574. }
  575. #ifdef CONFIG_IRQ_REMAP
  576. static int (*iommu_ga_log_notifier)(u32);
  577. int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
  578. {
  579. iommu_ga_log_notifier = notifier;
  580. return 0;
  581. }
  582. EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
  583. static void iommu_poll_ga_log(struct amd_iommu *iommu)
  584. {
  585. u32 head, tail, cnt = 0;
  586. if (iommu->ga_log == NULL)
  587. return;
  588. head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
  589. tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
  590. while (head != tail) {
  591. volatile u64 *raw;
  592. u64 log_entry;
  593. raw = (u64 *)(iommu->ga_log + head);
  594. cnt++;
  595. /* Avoid memcpy function-call overhead */
  596. log_entry = *raw;
  597. /* Update head pointer of hardware ring-buffer */
  598. head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
  599. writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
  600. /* Handle GA entry */
  601. switch (GA_REQ_TYPE(log_entry)) {
  602. case GA_GUEST_NR:
  603. if (!iommu_ga_log_notifier)
  604. break;
  605. pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
  606. __func__, GA_DEVID(log_entry),
  607. GA_TAG(log_entry));
  608. if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
  609. pr_err("AMD-Vi: GA log notifier failed.\n");
  610. break;
  611. default:
  612. break;
  613. }
  614. }
  615. }
  616. #endif /* CONFIG_IRQ_REMAP */
  617. #define AMD_IOMMU_INT_MASK \
  618. (MMIO_STATUS_EVT_INT_MASK | \
  619. MMIO_STATUS_PPR_INT_MASK | \
  620. MMIO_STATUS_GALOG_INT_MASK)
  621. irqreturn_t amd_iommu_int_thread(int irq, void *data)
  622. {
  623. struct amd_iommu *iommu = (struct amd_iommu *) data;
  624. u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  625. while (status & AMD_IOMMU_INT_MASK) {
  626. /* Enable EVT and PPR and GA interrupts again */
  627. writel(AMD_IOMMU_INT_MASK,
  628. iommu->mmio_base + MMIO_STATUS_OFFSET);
  629. if (status & MMIO_STATUS_EVT_INT_MASK) {
  630. pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
  631. iommu_poll_events(iommu);
  632. }
  633. if (status & MMIO_STATUS_PPR_INT_MASK) {
  634. pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
  635. iommu_poll_ppr_log(iommu);
  636. }
  637. #ifdef CONFIG_IRQ_REMAP
  638. if (status & MMIO_STATUS_GALOG_INT_MASK) {
  639. pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
  640. iommu_poll_ga_log(iommu);
  641. }
  642. #endif
  643. /*
  644. * Hardware bug: ERBT1312
  645. * When re-enabling interrupt (by writing 1
  646. * to clear the bit), the hardware might also try to set
  647. * the interrupt bit in the event status register.
  648. * In this scenario, the bit will be set, and disable
  649. * subsequent interrupts.
  650. *
  651. * Workaround: The IOMMU driver should read back the
  652. * status register and check if the interrupt bits are cleared.
  653. * If not, driver will need to go through the interrupt handler
  654. * again and re-clear the bits
  655. */
  656. status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  657. }
  658. return IRQ_HANDLED;
  659. }
  660. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  661. {
  662. return IRQ_WAKE_THREAD;
  663. }
  664. /****************************************************************************
  665. *
  666. * IOMMU command queuing functions
  667. *
  668. ****************************************************************************/
  669. static int wait_on_sem(volatile u64 *sem)
  670. {
  671. int i = 0;
  672. while (*sem == 0 && i < LOOP_TIMEOUT) {
  673. udelay(1);
  674. i += 1;
  675. }
  676. if (i == LOOP_TIMEOUT) {
  677. pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
  678. return -EIO;
  679. }
  680. return 0;
  681. }
  682. static void copy_cmd_to_buffer(struct amd_iommu *iommu,
  683. struct iommu_cmd *cmd)
  684. {
  685. u8 *target;
  686. target = iommu->cmd_buf + iommu->cmd_buf_tail;
  687. iommu->cmd_buf_tail += sizeof(*cmd);
  688. iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
  689. /* Copy command to buffer */
  690. memcpy(target, cmd, sizeof(*cmd));
  691. /* Tell the IOMMU about it */
  692. writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  693. }
  694. static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
  695. {
  696. u64 paddr = iommu_virt_to_phys((void *)address);
  697. WARN_ON(address & 0x7ULL);
  698. memset(cmd, 0, sizeof(*cmd));
  699. cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
  700. cmd->data[1] = upper_32_bits(paddr);
  701. cmd->data[2] = 1;
  702. CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
  703. }
  704. static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
  705. {
  706. memset(cmd, 0, sizeof(*cmd));
  707. cmd->data[0] = devid;
  708. CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
  709. }
  710. static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  711. size_t size, u16 domid, int pde)
  712. {
  713. u64 pages;
  714. bool s;
  715. pages = iommu_num_pages(address, size, PAGE_SIZE);
  716. s = false;
  717. if (pages > 1) {
  718. /*
  719. * If we have to flush more than one page, flush all
  720. * TLB entries for this domain
  721. */
  722. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  723. s = true;
  724. }
  725. address &= PAGE_MASK;
  726. memset(cmd, 0, sizeof(*cmd));
  727. cmd->data[1] |= domid;
  728. cmd->data[2] = lower_32_bits(address);
  729. cmd->data[3] = upper_32_bits(address);
  730. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  731. if (s) /* size bit - we flush more than one 4kb page */
  732. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  733. if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
  734. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  735. }
  736. static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
  737. u64 address, size_t size)
  738. {
  739. u64 pages;
  740. bool s;
  741. pages = iommu_num_pages(address, size, PAGE_SIZE);
  742. s = false;
  743. if (pages > 1) {
  744. /*
  745. * If we have to flush more than one page, flush all
  746. * TLB entries for this domain
  747. */
  748. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  749. s = true;
  750. }
  751. address &= PAGE_MASK;
  752. memset(cmd, 0, sizeof(*cmd));
  753. cmd->data[0] = devid;
  754. cmd->data[0] |= (qdep & 0xff) << 24;
  755. cmd->data[1] = devid;
  756. cmd->data[2] = lower_32_bits(address);
  757. cmd->data[3] = upper_32_bits(address);
  758. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  759. if (s)
  760. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  761. }
  762. static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
  763. u64 address, bool size)
  764. {
  765. memset(cmd, 0, sizeof(*cmd));
  766. address &= ~(0xfffULL);
  767. cmd->data[0] = pasid;
  768. cmd->data[1] = domid;
  769. cmd->data[2] = lower_32_bits(address);
  770. cmd->data[3] = upper_32_bits(address);
  771. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  772. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  773. if (size)
  774. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  775. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  776. }
  777. static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
  778. int qdep, u64 address, bool size)
  779. {
  780. memset(cmd, 0, sizeof(*cmd));
  781. address &= ~(0xfffULL);
  782. cmd->data[0] = devid;
  783. cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
  784. cmd->data[0] |= (qdep & 0xff) << 24;
  785. cmd->data[1] = devid;
  786. cmd->data[1] |= (pasid & 0xff) << 16;
  787. cmd->data[2] = lower_32_bits(address);
  788. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  789. cmd->data[3] = upper_32_bits(address);
  790. if (size)
  791. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  792. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  793. }
  794. static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
  795. int status, int tag, bool gn)
  796. {
  797. memset(cmd, 0, sizeof(*cmd));
  798. cmd->data[0] = devid;
  799. if (gn) {
  800. cmd->data[1] = pasid;
  801. cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
  802. }
  803. cmd->data[3] = tag & 0x1ff;
  804. cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
  805. CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
  806. }
  807. static void build_inv_all(struct iommu_cmd *cmd)
  808. {
  809. memset(cmd, 0, sizeof(*cmd));
  810. CMD_SET_TYPE(cmd, CMD_INV_ALL);
  811. }
  812. static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
  813. {
  814. memset(cmd, 0, sizeof(*cmd));
  815. cmd->data[0] = devid;
  816. CMD_SET_TYPE(cmd, CMD_INV_IRT);
  817. }
  818. /*
  819. * Writes the command to the IOMMUs command buffer and informs the
  820. * hardware about the new command.
  821. */
  822. static int __iommu_queue_command_sync(struct amd_iommu *iommu,
  823. struct iommu_cmd *cmd,
  824. bool sync)
  825. {
  826. unsigned int count = 0;
  827. u32 left, next_tail;
  828. next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
  829. again:
  830. left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
  831. if (left <= 0x20) {
  832. /* Skip udelay() the first time around */
  833. if (count++) {
  834. if (count == LOOP_TIMEOUT) {
  835. pr_err("AMD-Vi: Command buffer timeout\n");
  836. return -EIO;
  837. }
  838. udelay(1);
  839. }
  840. /* Update head and recheck remaining space */
  841. iommu->cmd_buf_head = readl(iommu->mmio_base +
  842. MMIO_CMD_HEAD_OFFSET);
  843. goto again;
  844. }
  845. copy_cmd_to_buffer(iommu, cmd);
  846. /* Do we need to make sure all commands are processed? */
  847. iommu->need_sync = sync;
  848. return 0;
  849. }
  850. static int iommu_queue_command_sync(struct amd_iommu *iommu,
  851. struct iommu_cmd *cmd,
  852. bool sync)
  853. {
  854. unsigned long flags;
  855. int ret;
  856. raw_spin_lock_irqsave(&iommu->lock, flags);
  857. ret = __iommu_queue_command_sync(iommu, cmd, sync);
  858. raw_spin_unlock_irqrestore(&iommu->lock, flags);
  859. return ret;
  860. }
  861. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  862. {
  863. return iommu_queue_command_sync(iommu, cmd, true);
  864. }
  865. /*
  866. * This function queues a completion wait command into the command
  867. * buffer of an IOMMU
  868. */
  869. static int iommu_completion_wait(struct amd_iommu *iommu)
  870. {
  871. struct iommu_cmd cmd;
  872. unsigned long flags;
  873. int ret;
  874. if (!iommu->need_sync)
  875. return 0;
  876. build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
  877. raw_spin_lock_irqsave(&iommu->lock, flags);
  878. iommu->cmd_sem = 0;
  879. ret = __iommu_queue_command_sync(iommu, &cmd, false);
  880. if (ret)
  881. goto out_unlock;
  882. ret = wait_on_sem(&iommu->cmd_sem);
  883. out_unlock:
  884. raw_spin_unlock_irqrestore(&iommu->lock, flags);
  885. return ret;
  886. }
  887. static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
  888. {
  889. struct iommu_cmd cmd;
  890. build_inv_dte(&cmd, devid);
  891. return iommu_queue_command(iommu, &cmd);
  892. }
  893. static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
  894. {
  895. u32 devid;
  896. for (devid = 0; devid <= 0xffff; ++devid)
  897. iommu_flush_dte(iommu, devid);
  898. iommu_completion_wait(iommu);
  899. }
  900. /*
  901. * This function uses heavy locking and may disable irqs for some time. But
  902. * this is no issue because it is only called during resume.
  903. */
  904. static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
  905. {
  906. u32 dom_id;
  907. for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
  908. struct iommu_cmd cmd;
  909. build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  910. dom_id, 1);
  911. iommu_queue_command(iommu, &cmd);
  912. }
  913. iommu_completion_wait(iommu);
  914. }
  915. static void amd_iommu_flush_all(struct amd_iommu *iommu)
  916. {
  917. struct iommu_cmd cmd;
  918. build_inv_all(&cmd);
  919. iommu_queue_command(iommu, &cmd);
  920. iommu_completion_wait(iommu);
  921. }
  922. static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
  923. {
  924. struct iommu_cmd cmd;
  925. build_inv_irt(&cmd, devid);
  926. iommu_queue_command(iommu, &cmd);
  927. }
  928. static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
  929. {
  930. u32 devid;
  931. for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
  932. iommu_flush_irt(iommu, devid);
  933. iommu_completion_wait(iommu);
  934. }
  935. void iommu_flush_all_caches(struct amd_iommu *iommu)
  936. {
  937. if (iommu_feature(iommu, FEATURE_IA)) {
  938. amd_iommu_flush_all(iommu);
  939. } else {
  940. amd_iommu_flush_dte_all(iommu);
  941. amd_iommu_flush_irt_all(iommu);
  942. amd_iommu_flush_tlb_all(iommu);
  943. }
  944. }
  945. /*
  946. * Command send function for flushing on-device TLB
  947. */
  948. static int device_flush_iotlb(struct iommu_dev_data *dev_data,
  949. u64 address, size_t size)
  950. {
  951. struct amd_iommu *iommu;
  952. struct iommu_cmd cmd;
  953. int qdep;
  954. qdep = dev_data->ats.qdep;
  955. iommu = amd_iommu_rlookup_table[dev_data->devid];
  956. build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
  957. return iommu_queue_command(iommu, &cmd);
  958. }
  959. /*
  960. * Command send function for invalidating a device table entry
  961. */
  962. static int device_flush_dte(struct iommu_dev_data *dev_data)
  963. {
  964. struct amd_iommu *iommu;
  965. u16 alias;
  966. int ret;
  967. iommu = amd_iommu_rlookup_table[dev_data->devid];
  968. alias = dev_data->alias;
  969. ret = iommu_flush_dte(iommu, dev_data->devid);
  970. if (!ret && alias != dev_data->devid)
  971. ret = iommu_flush_dte(iommu, alias);
  972. if (ret)
  973. return ret;
  974. if (dev_data->ats.enabled)
  975. ret = device_flush_iotlb(dev_data, 0, ~0UL);
  976. return ret;
  977. }
  978. /*
  979. * TLB invalidation function which is called from the mapping functions.
  980. * It invalidates a single PTE if the range to flush is within a single
  981. * page. Otherwise it flushes the whole TLB of the IOMMU.
  982. */
  983. static void __domain_flush_pages(struct protection_domain *domain,
  984. u64 address, size_t size, int pde)
  985. {
  986. struct iommu_dev_data *dev_data;
  987. struct iommu_cmd cmd;
  988. int ret = 0, i;
  989. build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
  990. for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
  991. if (!domain->dev_iommu[i])
  992. continue;
  993. /*
  994. * Devices of this domain are behind this IOMMU
  995. * We need a TLB flush
  996. */
  997. ret |= iommu_queue_command(amd_iommus[i], &cmd);
  998. }
  999. list_for_each_entry(dev_data, &domain->dev_list, list) {
  1000. if (!dev_data->ats.enabled)
  1001. continue;
  1002. ret |= device_flush_iotlb(dev_data, address, size);
  1003. }
  1004. WARN_ON(ret);
  1005. }
  1006. static void domain_flush_pages(struct protection_domain *domain,
  1007. u64 address, size_t size)
  1008. {
  1009. __domain_flush_pages(domain, address, size, 0);
  1010. }
  1011. /* Flush the whole IO/TLB for a given protection domain */
  1012. static void domain_flush_tlb(struct protection_domain *domain)
  1013. {
  1014. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
  1015. }
  1016. /* Flush the whole IO/TLB for a given protection domain - including PDE */
  1017. static void domain_flush_tlb_pde(struct protection_domain *domain)
  1018. {
  1019. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
  1020. }
  1021. static void domain_flush_complete(struct protection_domain *domain)
  1022. {
  1023. int i;
  1024. for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
  1025. if (domain && !domain->dev_iommu[i])
  1026. continue;
  1027. /*
  1028. * Devices of this domain are behind this IOMMU
  1029. * We need to wait for completion of all commands.
  1030. */
  1031. iommu_completion_wait(amd_iommus[i]);
  1032. }
  1033. }
  1034. /*
  1035. * This function flushes the DTEs for all devices in domain
  1036. */
  1037. static void domain_flush_devices(struct protection_domain *domain)
  1038. {
  1039. struct iommu_dev_data *dev_data;
  1040. list_for_each_entry(dev_data, &domain->dev_list, list)
  1041. device_flush_dte(dev_data);
  1042. }
  1043. /****************************************************************************
  1044. *
  1045. * The functions below are used the create the page table mappings for
  1046. * unity mapped regions.
  1047. *
  1048. ****************************************************************************/
  1049. /*
  1050. * This function is used to add another level to an IO page table. Adding
  1051. * another level increases the size of the address space by 9 bits to a size up
  1052. * to 64 bits.
  1053. */
  1054. static bool increase_address_space(struct protection_domain *domain,
  1055. gfp_t gfp)
  1056. {
  1057. u64 *pte;
  1058. if (domain->mode == PAGE_MODE_6_LEVEL)
  1059. /* address space already 64 bit large */
  1060. return false;
  1061. pte = (void *)get_zeroed_page(gfp);
  1062. if (!pte)
  1063. return false;
  1064. *pte = PM_LEVEL_PDE(domain->mode,
  1065. iommu_virt_to_phys(domain->pt_root));
  1066. domain->pt_root = pte;
  1067. domain->mode += 1;
  1068. domain->updated = true;
  1069. return true;
  1070. }
  1071. static u64 *alloc_pte(struct protection_domain *domain,
  1072. unsigned long address,
  1073. unsigned long page_size,
  1074. u64 **pte_page,
  1075. gfp_t gfp)
  1076. {
  1077. int level, end_lvl;
  1078. u64 *pte, *page;
  1079. BUG_ON(!is_power_of_2(page_size));
  1080. while (address > PM_LEVEL_SIZE(domain->mode))
  1081. increase_address_space(domain, gfp);
  1082. level = domain->mode - 1;
  1083. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  1084. address = PAGE_SIZE_ALIGN(address, page_size);
  1085. end_lvl = PAGE_SIZE_LEVEL(page_size);
  1086. while (level > end_lvl) {
  1087. u64 __pte, __npte;
  1088. __pte = *pte;
  1089. if (!IOMMU_PTE_PRESENT(__pte)) {
  1090. page = (u64 *)get_zeroed_page(gfp);
  1091. if (!page)
  1092. return NULL;
  1093. __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
  1094. /* pte could have been changed somewhere. */
  1095. if (cmpxchg64(pte, __pte, __npte) != __pte) {
  1096. free_page((unsigned long)page);
  1097. continue;
  1098. }
  1099. }
  1100. /* No level skipping support yet */
  1101. if (PM_PTE_LEVEL(*pte) != level)
  1102. return NULL;
  1103. level -= 1;
  1104. pte = IOMMU_PTE_PAGE(*pte);
  1105. if (pte_page && level == end_lvl)
  1106. *pte_page = pte;
  1107. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1108. }
  1109. return pte;
  1110. }
  1111. /*
  1112. * This function checks if there is a PTE for a given dma address. If
  1113. * there is one, it returns the pointer to it.
  1114. */
  1115. static u64 *fetch_pte(struct protection_domain *domain,
  1116. unsigned long address,
  1117. unsigned long *page_size)
  1118. {
  1119. int level;
  1120. u64 *pte;
  1121. if (address > PM_LEVEL_SIZE(domain->mode))
  1122. return NULL;
  1123. level = domain->mode - 1;
  1124. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  1125. *page_size = PTE_LEVEL_PAGE_SIZE(level);
  1126. while (level > 0) {
  1127. /* Not Present */
  1128. if (!IOMMU_PTE_PRESENT(*pte))
  1129. return NULL;
  1130. /* Large PTE */
  1131. if (PM_PTE_LEVEL(*pte) == 7 ||
  1132. PM_PTE_LEVEL(*pte) == 0)
  1133. break;
  1134. /* No level skipping support yet */
  1135. if (PM_PTE_LEVEL(*pte) != level)
  1136. return NULL;
  1137. level -= 1;
  1138. /* Walk to the next level */
  1139. pte = IOMMU_PTE_PAGE(*pte);
  1140. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1141. *page_size = PTE_LEVEL_PAGE_SIZE(level);
  1142. }
  1143. if (PM_PTE_LEVEL(*pte) == 0x07) {
  1144. unsigned long pte_mask;
  1145. /*
  1146. * If we have a series of large PTEs, make
  1147. * sure to return a pointer to the first one.
  1148. */
  1149. *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
  1150. pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
  1151. pte = (u64 *)(((unsigned long)pte) & pte_mask);
  1152. }
  1153. return pte;
  1154. }
  1155. /*
  1156. * Generic mapping functions. It maps a physical address into a DMA
  1157. * address space. It allocates the page table pages if necessary.
  1158. * In the future it can be extended to a generic mapping function
  1159. * supporting all features of AMD IOMMU page tables like level skipping
  1160. * and full 64 bit address spaces.
  1161. */
  1162. static int iommu_map_page(struct protection_domain *dom,
  1163. unsigned long bus_addr,
  1164. unsigned long phys_addr,
  1165. unsigned long page_size,
  1166. int prot,
  1167. gfp_t gfp)
  1168. {
  1169. u64 __pte, *pte;
  1170. int i, count;
  1171. BUG_ON(!IS_ALIGNED(bus_addr, page_size));
  1172. BUG_ON(!IS_ALIGNED(phys_addr, page_size));
  1173. if (!(prot & IOMMU_PROT_MASK))
  1174. return -EINVAL;
  1175. count = PAGE_SIZE_PTE_COUNT(page_size);
  1176. pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
  1177. if (!pte)
  1178. return -ENOMEM;
  1179. for (i = 0; i < count; ++i)
  1180. if (IOMMU_PTE_PRESENT(pte[i]))
  1181. return -EBUSY;
  1182. if (count > 1) {
  1183. __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
  1184. __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
  1185. } else
  1186. __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
  1187. if (prot & IOMMU_PROT_IR)
  1188. __pte |= IOMMU_PTE_IR;
  1189. if (prot & IOMMU_PROT_IW)
  1190. __pte |= IOMMU_PTE_IW;
  1191. for (i = 0; i < count; ++i)
  1192. pte[i] = __pte;
  1193. update_domain(dom);
  1194. return 0;
  1195. }
  1196. static unsigned long iommu_unmap_page(struct protection_domain *dom,
  1197. unsigned long bus_addr,
  1198. unsigned long page_size)
  1199. {
  1200. unsigned long long unmapped;
  1201. unsigned long unmap_size;
  1202. u64 *pte;
  1203. BUG_ON(!is_power_of_2(page_size));
  1204. unmapped = 0;
  1205. while (unmapped < page_size) {
  1206. pte = fetch_pte(dom, bus_addr, &unmap_size);
  1207. if (pte) {
  1208. int i, count;
  1209. count = PAGE_SIZE_PTE_COUNT(unmap_size);
  1210. for (i = 0; i < count; i++)
  1211. pte[i] = 0ULL;
  1212. }
  1213. bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
  1214. unmapped += unmap_size;
  1215. }
  1216. BUG_ON(unmapped && !is_power_of_2(unmapped));
  1217. return unmapped;
  1218. }
  1219. /****************************************************************************
  1220. *
  1221. * The next functions belong to the address allocator for the dma_ops
  1222. * interface functions.
  1223. *
  1224. ****************************************************************************/
  1225. static unsigned long dma_ops_alloc_iova(struct device *dev,
  1226. struct dma_ops_domain *dma_dom,
  1227. unsigned int pages, u64 dma_mask)
  1228. {
  1229. unsigned long pfn = 0;
  1230. pages = __roundup_pow_of_two(pages);
  1231. if (dma_mask > DMA_BIT_MASK(32))
  1232. pfn = alloc_iova_fast(&dma_dom->iovad, pages,
  1233. IOVA_PFN(DMA_BIT_MASK(32)), false);
  1234. if (!pfn)
  1235. pfn = alloc_iova_fast(&dma_dom->iovad, pages,
  1236. IOVA_PFN(dma_mask), true);
  1237. return (pfn << PAGE_SHIFT);
  1238. }
  1239. static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
  1240. unsigned long address,
  1241. unsigned int pages)
  1242. {
  1243. pages = __roundup_pow_of_two(pages);
  1244. address >>= PAGE_SHIFT;
  1245. free_iova_fast(&dma_dom->iovad, address, pages);
  1246. }
  1247. /****************************************************************************
  1248. *
  1249. * The next functions belong to the domain allocation. A domain is
  1250. * allocated for every IOMMU as the default domain. If device isolation
  1251. * is enabled, every device get its own domain. The most important thing
  1252. * about domains is the page table mapping the DMA address space they
  1253. * contain.
  1254. *
  1255. ****************************************************************************/
  1256. /*
  1257. * This function adds a protection domain to the global protection domain list
  1258. */
  1259. static void add_domain_to_list(struct protection_domain *domain)
  1260. {
  1261. unsigned long flags;
  1262. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1263. list_add(&domain->list, &amd_iommu_pd_list);
  1264. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1265. }
  1266. /*
  1267. * This function removes a protection domain to the global
  1268. * protection domain list
  1269. */
  1270. static void del_domain_from_list(struct protection_domain *domain)
  1271. {
  1272. unsigned long flags;
  1273. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1274. list_del(&domain->list);
  1275. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1276. }
  1277. static u16 domain_id_alloc(void)
  1278. {
  1279. int id;
  1280. spin_lock(&pd_bitmap_lock);
  1281. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  1282. BUG_ON(id == 0);
  1283. if (id > 0 && id < MAX_DOMAIN_ID)
  1284. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  1285. else
  1286. id = 0;
  1287. spin_unlock(&pd_bitmap_lock);
  1288. return id;
  1289. }
  1290. static void domain_id_free(int id)
  1291. {
  1292. spin_lock(&pd_bitmap_lock);
  1293. if (id > 0 && id < MAX_DOMAIN_ID)
  1294. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  1295. spin_unlock(&pd_bitmap_lock);
  1296. }
  1297. #define DEFINE_FREE_PT_FN(LVL, FN) \
  1298. static void free_pt_##LVL (unsigned long __pt) \
  1299. { \
  1300. unsigned long p; \
  1301. u64 *pt; \
  1302. int i; \
  1303. \
  1304. pt = (u64 *)__pt; \
  1305. \
  1306. for (i = 0; i < 512; ++i) { \
  1307. /* PTE present? */ \
  1308. if (!IOMMU_PTE_PRESENT(pt[i])) \
  1309. continue; \
  1310. \
  1311. /* Large PTE? */ \
  1312. if (PM_PTE_LEVEL(pt[i]) == 0 || \
  1313. PM_PTE_LEVEL(pt[i]) == 7) \
  1314. continue; \
  1315. \
  1316. p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
  1317. FN(p); \
  1318. } \
  1319. free_page((unsigned long)pt); \
  1320. }
  1321. DEFINE_FREE_PT_FN(l2, free_page)
  1322. DEFINE_FREE_PT_FN(l3, free_pt_l2)
  1323. DEFINE_FREE_PT_FN(l4, free_pt_l3)
  1324. DEFINE_FREE_PT_FN(l5, free_pt_l4)
  1325. DEFINE_FREE_PT_FN(l6, free_pt_l5)
  1326. static void free_pagetable(struct protection_domain *domain)
  1327. {
  1328. unsigned long root = (unsigned long)domain->pt_root;
  1329. switch (domain->mode) {
  1330. case PAGE_MODE_NONE:
  1331. break;
  1332. case PAGE_MODE_1_LEVEL:
  1333. free_page(root);
  1334. break;
  1335. case PAGE_MODE_2_LEVEL:
  1336. free_pt_l2(root);
  1337. break;
  1338. case PAGE_MODE_3_LEVEL:
  1339. free_pt_l3(root);
  1340. break;
  1341. case PAGE_MODE_4_LEVEL:
  1342. free_pt_l4(root);
  1343. break;
  1344. case PAGE_MODE_5_LEVEL:
  1345. free_pt_l5(root);
  1346. break;
  1347. case PAGE_MODE_6_LEVEL:
  1348. free_pt_l6(root);
  1349. break;
  1350. default:
  1351. BUG();
  1352. }
  1353. }
  1354. static void free_gcr3_tbl_level1(u64 *tbl)
  1355. {
  1356. u64 *ptr;
  1357. int i;
  1358. for (i = 0; i < 512; ++i) {
  1359. if (!(tbl[i] & GCR3_VALID))
  1360. continue;
  1361. ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
  1362. free_page((unsigned long)ptr);
  1363. }
  1364. }
  1365. static void free_gcr3_tbl_level2(u64 *tbl)
  1366. {
  1367. u64 *ptr;
  1368. int i;
  1369. for (i = 0; i < 512; ++i) {
  1370. if (!(tbl[i] & GCR3_VALID))
  1371. continue;
  1372. ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
  1373. free_gcr3_tbl_level1(ptr);
  1374. }
  1375. }
  1376. static void free_gcr3_table(struct protection_domain *domain)
  1377. {
  1378. if (domain->glx == 2)
  1379. free_gcr3_tbl_level2(domain->gcr3_tbl);
  1380. else if (domain->glx == 1)
  1381. free_gcr3_tbl_level1(domain->gcr3_tbl);
  1382. else
  1383. BUG_ON(domain->glx != 0);
  1384. free_page((unsigned long)domain->gcr3_tbl);
  1385. }
  1386. static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
  1387. {
  1388. domain_flush_tlb(&dom->domain);
  1389. domain_flush_complete(&dom->domain);
  1390. }
  1391. static void iova_domain_flush_tlb(struct iova_domain *iovad)
  1392. {
  1393. struct dma_ops_domain *dom;
  1394. dom = container_of(iovad, struct dma_ops_domain, iovad);
  1395. dma_ops_domain_flush_tlb(dom);
  1396. }
  1397. /*
  1398. * Free a domain, only used if something went wrong in the
  1399. * allocation path and we need to free an already allocated page table
  1400. */
  1401. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  1402. {
  1403. if (!dom)
  1404. return;
  1405. del_domain_from_list(&dom->domain);
  1406. put_iova_domain(&dom->iovad);
  1407. free_pagetable(&dom->domain);
  1408. if (dom->domain.id)
  1409. domain_id_free(dom->domain.id);
  1410. kfree(dom);
  1411. }
  1412. /*
  1413. * Allocates a new protection domain usable for the dma_ops functions.
  1414. * It also initializes the page table and the address allocator data
  1415. * structures required for the dma_ops interface
  1416. */
  1417. static struct dma_ops_domain *dma_ops_domain_alloc(void)
  1418. {
  1419. struct dma_ops_domain *dma_dom;
  1420. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  1421. if (!dma_dom)
  1422. return NULL;
  1423. if (protection_domain_init(&dma_dom->domain))
  1424. goto free_dma_dom;
  1425. dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
  1426. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1427. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  1428. if (!dma_dom->domain.pt_root)
  1429. goto free_dma_dom;
  1430. init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
  1431. if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
  1432. goto free_dma_dom;
  1433. /* Initialize reserved ranges */
  1434. copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
  1435. add_domain_to_list(&dma_dom->domain);
  1436. return dma_dom;
  1437. free_dma_dom:
  1438. dma_ops_domain_free(dma_dom);
  1439. return NULL;
  1440. }
  1441. /*
  1442. * little helper function to check whether a given protection domain is a
  1443. * dma_ops domain
  1444. */
  1445. static bool dma_ops_domain(struct protection_domain *domain)
  1446. {
  1447. return domain->flags & PD_DMA_OPS_MASK;
  1448. }
  1449. static void set_dte_entry(u16 devid, struct protection_domain *domain,
  1450. bool ats, bool ppr)
  1451. {
  1452. u64 pte_root = 0;
  1453. u64 flags = 0;
  1454. if (domain->mode != PAGE_MODE_NONE)
  1455. pte_root = iommu_virt_to_phys(domain->pt_root);
  1456. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  1457. << DEV_ENTRY_MODE_SHIFT;
  1458. pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
  1459. flags = amd_iommu_dev_table[devid].data[1];
  1460. if (ats)
  1461. flags |= DTE_FLAG_IOTLB;
  1462. if (ppr) {
  1463. struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
  1464. if (iommu_feature(iommu, FEATURE_EPHSUP))
  1465. pte_root |= 1ULL << DEV_ENTRY_PPR;
  1466. }
  1467. if (domain->flags & PD_IOMMUV2_MASK) {
  1468. u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
  1469. u64 glx = domain->glx;
  1470. u64 tmp;
  1471. pte_root |= DTE_FLAG_GV;
  1472. pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
  1473. /* First mask out possible old values for GCR3 table */
  1474. tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
  1475. flags &= ~tmp;
  1476. tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
  1477. flags &= ~tmp;
  1478. /* Encode GCR3 table into DTE */
  1479. tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
  1480. pte_root |= tmp;
  1481. tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
  1482. flags |= tmp;
  1483. tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
  1484. flags |= tmp;
  1485. }
  1486. flags &= ~DEV_DOMID_MASK;
  1487. flags |= domain->id;
  1488. amd_iommu_dev_table[devid].data[1] = flags;
  1489. amd_iommu_dev_table[devid].data[0] = pte_root;
  1490. }
  1491. static void clear_dte_entry(u16 devid)
  1492. {
  1493. /* remove entry from the device table seen by the hardware */
  1494. amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV;
  1495. amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
  1496. amd_iommu_apply_erratum_63(devid);
  1497. }
  1498. static void do_attach(struct iommu_dev_data *dev_data,
  1499. struct protection_domain *domain)
  1500. {
  1501. struct amd_iommu *iommu;
  1502. u16 alias;
  1503. bool ats;
  1504. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1505. alias = dev_data->alias;
  1506. ats = dev_data->ats.enabled;
  1507. /* Update data structures */
  1508. dev_data->domain = domain;
  1509. list_add(&dev_data->list, &domain->dev_list);
  1510. /* Do reference counting */
  1511. domain->dev_iommu[iommu->index] += 1;
  1512. domain->dev_cnt += 1;
  1513. /* Update device table */
  1514. set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
  1515. if (alias != dev_data->devid)
  1516. set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
  1517. device_flush_dte(dev_data);
  1518. }
  1519. static void do_detach(struct iommu_dev_data *dev_data)
  1520. {
  1521. struct amd_iommu *iommu;
  1522. u16 alias;
  1523. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1524. alias = dev_data->alias;
  1525. /* decrease reference counters */
  1526. dev_data->domain->dev_iommu[iommu->index] -= 1;
  1527. dev_data->domain->dev_cnt -= 1;
  1528. /* Update data structures */
  1529. dev_data->domain = NULL;
  1530. list_del(&dev_data->list);
  1531. clear_dte_entry(dev_data->devid);
  1532. if (alias != dev_data->devid)
  1533. clear_dte_entry(alias);
  1534. /* Flush the DTE entry */
  1535. device_flush_dte(dev_data);
  1536. }
  1537. /*
  1538. * If a device is not yet associated with a domain, this function makes the
  1539. * device visible in the domain
  1540. */
  1541. static int __attach_device(struct iommu_dev_data *dev_data,
  1542. struct protection_domain *domain)
  1543. {
  1544. int ret;
  1545. /*
  1546. * Must be called with IRQs disabled. Warn here to detect early
  1547. * when its not.
  1548. */
  1549. WARN_ON(!irqs_disabled());
  1550. /* lock domain */
  1551. spin_lock(&domain->lock);
  1552. ret = -EBUSY;
  1553. if (dev_data->domain != NULL)
  1554. goto out_unlock;
  1555. /* Attach alias group root */
  1556. do_attach(dev_data, domain);
  1557. ret = 0;
  1558. out_unlock:
  1559. /* ready */
  1560. spin_unlock(&domain->lock);
  1561. return ret;
  1562. }
  1563. static void pdev_iommuv2_disable(struct pci_dev *pdev)
  1564. {
  1565. pci_disable_ats(pdev);
  1566. pci_disable_pri(pdev);
  1567. pci_disable_pasid(pdev);
  1568. }
  1569. /* FIXME: Change generic reset-function to do the same */
  1570. static int pri_reset_while_enabled(struct pci_dev *pdev)
  1571. {
  1572. u16 control;
  1573. int pos;
  1574. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1575. if (!pos)
  1576. return -EINVAL;
  1577. pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
  1578. control |= PCI_PRI_CTRL_RESET;
  1579. pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
  1580. return 0;
  1581. }
  1582. static int pdev_iommuv2_enable(struct pci_dev *pdev)
  1583. {
  1584. bool reset_enable;
  1585. int reqs, ret;
  1586. /* FIXME: Hardcode number of outstanding requests for now */
  1587. reqs = 32;
  1588. if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
  1589. reqs = 1;
  1590. reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
  1591. /* Only allow access to user-accessible pages */
  1592. ret = pci_enable_pasid(pdev, 0);
  1593. if (ret)
  1594. goto out_err;
  1595. /* First reset the PRI state of the device */
  1596. ret = pci_reset_pri(pdev);
  1597. if (ret)
  1598. goto out_err;
  1599. /* Enable PRI */
  1600. ret = pci_enable_pri(pdev, reqs);
  1601. if (ret)
  1602. goto out_err;
  1603. if (reset_enable) {
  1604. ret = pri_reset_while_enabled(pdev);
  1605. if (ret)
  1606. goto out_err;
  1607. }
  1608. ret = pci_enable_ats(pdev, PAGE_SHIFT);
  1609. if (ret)
  1610. goto out_err;
  1611. return 0;
  1612. out_err:
  1613. pci_disable_pri(pdev);
  1614. pci_disable_pasid(pdev);
  1615. return ret;
  1616. }
  1617. /* FIXME: Move this to PCI code */
  1618. #define PCI_PRI_TLP_OFF (1 << 15)
  1619. static bool pci_pri_tlp_required(struct pci_dev *pdev)
  1620. {
  1621. u16 status;
  1622. int pos;
  1623. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1624. if (!pos)
  1625. return false;
  1626. pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
  1627. return (status & PCI_PRI_TLP_OFF) ? true : false;
  1628. }
  1629. /*
  1630. * If a device is not yet associated with a domain, this function makes the
  1631. * device visible in the domain
  1632. */
  1633. static int attach_device(struct device *dev,
  1634. struct protection_domain *domain)
  1635. {
  1636. struct pci_dev *pdev;
  1637. struct iommu_dev_data *dev_data;
  1638. unsigned long flags;
  1639. int ret;
  1640. dev_data = get_dev_data(dev);
  1641. if (!dev_is_pci(dev))
  1642. goto skip_ats_check;
  1643. pdev = to_pci_dev(dev);
  1644. if (domain->flags & PD_IOMMUV2_MASK) {
  1645. if (!dev_data->passthrough)
  1646. return -EINVAL;
  1647. if (dev_data->iommu_v2) {
  1648. if (pdev_iommuv2_enable(pdev) != 0)
  1649. return -EINVAL;
  1650. dev_data->ats.enabled = true;
  1651. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1652. dev_data->pri_tlp = pci_pri_tlp_required(pdev);
  1653. }
  1654. } else if (amd_iommu_iotlb_sup &&
  1655. pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
  1656. dev_data->ats.enabled = true;
  1657. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1658. }
  1659. skip_ats_check:
  1660. spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1661. ret = __attach_device(dev_data, domain);
  1662. spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1663. /*
  1664. * We might boot into a crash-kernel here. The crashed kernel
  1665. * left the caches in the IOMMU dirty. So we have to flush
  1666. * here to evict all dirty stuff.
  1667. */
  1668. domain_flush_tlb_pde(domain);
  1669. return ret;
  1670. }
  1671. /*
  1672. * Removes a device from a protection domain (unlocked)
  1673. */
  1674. static void __detach_device(struct iommu_dev_data *dev_data)
  1675. {
  1676. struct protection_domain *domain;
  1677. /*
  1678. * Must be called with IRQs disabled. Warn here to detect early
  1679. * when its not.
  1680. */
  1681. WARN_ON(!irqs_disabled());
  1682. domain = dev_data->domain;
  1683. spin_lock(&domain->lock);
  1684. do_detach(dev_data);
  1685. spin_unlock(&domain->lock);
  1686. }
  1687. /*
  1688. * Removes a device from a protection domain (with devtable_lock held)
  1689. */
  1690. static void detach_device(struct device *dev)
  1691. {
  1692. struct protection_domain *domain;
  1693. struct iommu_dev_data *dev_data;
  1694. unsigned long flags;
  1695. dev_data = get_dev_data(dev);
  1696. domain = dev_data->domain;
  1697. /*
  1698. * First check if the device is still attached. It might already
  1699. * be detached from its domain because the generic
  1700. * iommu_detach_group code detached it and we try again here in
  1701. * our alias handling.
  1702. */
  1703. if (WARN_ON(!dev_data->domain))
  1704. return;
  1705. /* lock device table */
  1706. spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1707. __detach_device(dev_data);
  1708. spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1709. if (!dev_is_pci(dev))
  1710. return;
  1711. if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
  1712. pdev_iommuv2_disable(to_pci_dev(dev));
  1713. else if (dev_data->ats.enabled)
  1714. pci_disable_ats(to_pci_dev(dev));
  1715. dev_data->ats.enabled = false;
  1716. }
  1717. static int amd_iommu_add_device(struct device *dev)
  1718. {
  1719. struct iommu_dev_data *dev_data;
  1720. struct iommu_domain *domain;
  1721. struct amd_iommu *iommu;
  1722. int ret, devid;
  1723. if (!check_device(dev) || get_dev_data(dev))
  1724. return 0;
  1725. devid = get_device_id(dev);
  1726. if (devid < 0)
  1727. return devid;
  1728. iommu = amd_iommu_rlookup_table[devid];
  1729. ret = iommu_init_device(dev);
  1730. if (ret) {
  1731. if (ret != -ENOTSUPP)
  1732. pr_err("Failed to initialize device %s - trying to proceed anyway\n",
  1733. dev_name(dev));
  1734. iommu_ignore_device(dev);
  1735. dev->dma_ops = &dma_direct_ops;
  1736. goto out;
  1737. }
  1738. init_iommu_group(dev);
  1739. dev_data = get_dev_data(dev);
  1740. BUG_ON(!dev_data);
  1741. if (iommu_pass_through || dev_data->iommu_v2)
  1742. iommu_request_dm_for_dev(dev);
  1743. /* Domains are initialized for this device - have a look what we ended up with */
  1744. domain = iommu_get_domain_for_dev(dev);
  1745. if (domain->type == IOMMU_DOMAIN_IDENTITY)
  1746. dev_data->passthrough = true;
  1747. else
  1748. dev->dma_ops = &amd_iommu_dma_ops;
  1749. out:
  1750. iommu_completion_wait(iommu);
  1751. return 0;
  1752. }
  1753. static void amd_iommu_remove_device(struct device *dev)
  1754. {
  1755. struct amd_iommu *iommu;
  1756. int devid;
  1757. if (!check_device(dev))
  1758. return;
  1759. devid = get_device_id(dev);
  1760. if (devid < 0)
  1761. return;
  1762. iommu = amd_iommu_rlookup_table[devid];
  1763. iommu_uninit_device(dev);
  1764. iommu_completion_wait(iommu);
  1765. }
  1766. static struct iommu_group *amd_iommu_device_group(struct device *dev)
  1767. {
  1768. if (dev_is_pci(dev))
  1769. return pci_device_group(dev);
  1770. return acpihid_device_group(dev);
  1771. }
  1772. /*****************************************************************************
  1773. *
  1774. * The next functions belong to the dma_ops mapping/unmapping code.
  1775. *
  1776. *****************************************************************************/
  1777. /*
  1778. * In the dma_ops path we only have the struct device. This function
  1779. * finds the corresponding IOMMU, the protection domain and the
  1780. * requestor id for a given device.
  1781. * If the device is not yet associated with a domain this is also done
  1782. * in this function.
  1783. */
  1784. static struct protection_domain *get_domain(struct device *dev)
  1785. {
  1786. struct protection_domain *domain;
  1787. struct iommu_domain *io_domain;
  1788. if (!check_device(dev))
  1789. return ERR_PTR(-EINVAL);
  1790. domain = get_dev_data(dev)->domain;
  1791. if (domain == NULL && get_dev_data(dev)->defer_attach) {
  1792. get_dev_data(dev)->defer_attach = false;
  1793. io_domain = iommu_get_domain_for_dev(dev);
  1794. domain = to_pdomain(io_domain);
  1795. attach_device(dev, domain);
  1796. }
  1797. if (domain == NULL)
  1798. return ERR_PTR(-EBUSY);
  1799. if (!dma_ops_domain(domain))
  1800. return ERR_PTR(-EBUSY);
  1801. return domain;
  1802. }
  1803. static void update_device_table(struct protection_domain *domain)
  1804. {
  1805. struct iommu_dev_data *dev_data;
  1806. list_for_each_entry(dev_data, &domain->dev_list, list) {
  1807. set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
  1808. dev_data->iommu_v2);
  1809. if (dev_data->devid == dev_data->alias)
  1810. continue;
  1811. /* There is an alias, update device table entry for it */
  1812. set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
  1813. dev_data->iommu_v2);
  1814. }
  1815. }
  1816. static void update_domain(struct protection_domain *domain)
  1817. {
  1818. if (!domain->updated)
  1819. return;
  1820. update_device_table(domain);
  1821. domain_flush_devices(domain);
  1822. domain_flush_tlb_pde(domain);
  1823. domain->updated = false;
  1824. }
  1825. static int dir2prot(enum dma_data_direction direction)
  1826. {
  1827. if (direction == DMA_TO_DEVICE)
  1828. return IOMMU_PROT_IR;
  1829. else if (direction == DMA_FROM_DEVICE)
  1830. return IOMMU_PROT_IW;
  1831. else if (direction == DMA_BIDIRECTIONAL)
  1832. return IOMMU_PROT_IW | IOMMU_PROT_IR;
  1833. else
  1834. return 0;
  1835. }
  1836. /*
  1837. * This function contains common code for mapping of a physically
  1838. * contiguous memory region into DMA address space. It is used by all
  1839. * mapping functions provided with this IOMMU driver.
  1840. * Must be called with the domain lock held.
  1841. */
  1842. static dma_addr_t __map_single(struct device *dev,
  1843. struct dma_ops_domain *dma_dom,
  1844. phys_addr_t paddr,
  1845. size_t size,
  1846. enum dma_data_direction direction,
  1847. u64 dma_mask)
  1848. {
  1849. dma_addr_t offset = paddr & ~PAGE_MASK;
  1850. dma_addr_t address, start, ret;
  1851. unsigned int pages;
  1852. int prot = 0;
  1853. int i;
  1854. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  1855. paddr &= PAGE_MASK;
  1856. address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
  1857. if (address == AMD_IOMMU_MAPPING_ERROR)
  1858. goto out;
  1859. prot = dir2prot(direction);
  1860. start = address;
  1861. for (i = 0; i < pages; ++i) {
  1862. ret = iommu_map_page(&dma_dom->domain, start, paddr,
  1863. PAGE_SIZE, prot, GFP_ATOMIC);
  1864. if (ret)
  1865. goto out_unmap;
  1866. paddr += PAGE_SIZE;
  1867. start += PAGE_SIZE;
  1868. }
  1869. address += offset;
  1870. if (unlikely(amd_iommu_np_cache)) {
  1871. domain_flush_pages(&dma_dom->domain, address, size);
  1872. domain_flush_complete(&dma_dom->domain);
  1873. }
  1874. out:
  1875. return address;
  1876. out_unmap:
  1877. for (--i; i >= 0; --i) {
  1878. start -= PAGE_SIZE;
  1879. iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
  1880. }
  1881. domain_flush_tlb(&dma_dom->domain);
  1882. domain_flush_complete(&dma_dom->domain);
  1883. dma_ops_free_iova(dma_dom, address, pages);
  1884. return AMD_IOMMU_MAPPING_ERROR;
  1885. }
  1886. /*
  1887. * Does the reverse of the __map_single function. Must be called with
  1888. * the domain lock held too
  1889. */
  1890. static void __unmap_single(struct dma_ops_domain *dma_dom,
  1891. dma_addr_t dma_addr,
  1892. size_t size,
  1893. int dir)
  1894. {
  1895. dma_addr_t i, start;
  1896. unsigned int pages;
  1897. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  1898. dma_addr &= PAGE_MASK;
  1899. start = dma_addr;
  1900. for (i = 0; i < pages; ++i) {
  1901. iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
  1902. start += PAGE_SIZE;
  1903. }
  1904. if (amd_iommu_unmap_flush) {
  1905. dma_ops_free_iova(dma_dom, dma_addr, pages);
  1906. domain_flush_tlb(&dma_dom->domain);
  1907. domain_flush_complete(&dma_dom->domain);
  1908. } else {
  1909. pages = __roundup_pow_of_two(pages);
  1910. queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
  1911. }
  1912. }
  1913. /*
  1914. * The exported map_single function for dma_ops.
  1915. */
  1916. static dma_addr_t map_page(struct device *dev, struct page *page,
  1917. unsigned long offset, size_t size,
  1918. enum dma_data_direction dir,
  1919. unsigned long attrs)
  1920. {
  1921. phys_addr_t paddr = page_to_phys(page) + offset;
  1922. struct protection_domain *domain;
  1923. struct dma_ops_domain *dma_dom;
  1924. u64 dma_mask;
  1925. domain = get_domain(dev);
  1926. if (PTR_ERR(domain) == -EINVAL)
  1927. return (dma_addr_t)paddr;
  1928. else if (IS_ERR(domain))
  1929. return AMD_IOMMU_MAPPING_ERROR;
  1930. dma_mask = *dev->dma_mask;
  1931. dma_dom = to_dma_ops_domain(domain);
  1932. return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
  1933. }
  1934. /*
  1935. * The exported unmap_single function for dma_ops.
  1936. */
  1937. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  1938. enum dma_data_direction dir, unsigned long attrs)
  1939. {
  1940. struct protection_domain *domain;
  1941. struct dma_ops_domain *dma_dom;
  1942. domain = get_domain(dev);
  1943. if (IS_ERR(domain))
  1944. return;
  1945. dma_dom = to_dma_ops_domain(domain);
  1946. __unmap_single(dma_dom, dma_addr, size, dir);
  1947. }
  1948. static int sg_num_pages(struct device *dev,
  1949. struct scatterlist *sglist,
  1950. int nelems)
  1951. {
  1952. unsigned long mask, boundary_size;
  1953. struct scatterlist *s;
  1954. int i, npages = 0;
  1955. mask = dma_get_seg_boundary(dev);
  1956. boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
  1957. 1UL << (BITS_PER_LONG - PAGE_SHIFT);
  1958. for_each_sg(sglist, s, nelems, i) {
  1959. int p, n;
  1960. s->dma_address = npages << PAGE_SHIFT;
  1961. p = npages % boundary_size;
  1962. n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
  1963. if (p + n > boundary_size)
  1964. npages += boundary_size - p;
  1965. npages += n;
  1966. }
  1967. return npages;
  1968. }
  1969. /*
  1970. * The exported map_sg function for dma_ops (handles scatter-gather
  1971. * lists).
  1972. */
  1973. static int map_sg(struct device *dev, struct scatterlist *sglist,
  1974. int nelems, enum dma_data_direction direction,
  1975. unsigned long attrs)
  1976. {
  1977. int mapped_pages = 0, npages = 0, prot = 0, i;
  1978. struct protection_domain *domain;
  1979. struct dma_ops_domain *dma_dom;
  1980. struct scatterlist *s;
  1981. unsigned long address;
  1982. u64 dma_mask;
  1983. domain = get_domain(dev);
  1984. if (IS_ERR(domain))
  1985. return 0;
  1986. dma_dom = to_dma_ops_domain(domain);
  1987. dma_mask = *dev->dma_mask;
  1988. npages = sg_num_pages(dev, sglist, nelems);
  1989. address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
  1990. if (address == AMD_IOMMU_MAPPING_ERROR)
  1991. goto out_err;
  1992. prot = dir2prot(direction);
  1993. /* Map all sg entries */
  1994. for_each_sg(sglist, s, nelems, i) {
  1995. int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
  1996. for (j = 0; j < pages; ++j) {
  1997. unsigned long bus_addr, phys_addr;
  1998. int ret;
  1999. bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
  2000. phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
  2001. ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
  2002. if (ret)
  2003. goto out_unmap;
  2004. mapped_pages += 1;
  2005. }
  2006. }
  2007. /* Everything is mapped - write the right values into s->dma_address */
  2008. for_each_sg(sglist, s, nelems, i) {
  2009. s->dma_address += address + s->offset;
  2010. s->dma_length = s->length;
  2011. }
  2012. return nelems;
  2013. out_unmap:
  2014. pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
  2015. dev_name(dev), npages);
  2016. for_each_sg(sglist, s, nelems, i) {
  2017. int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
  2018. for (j = 0; j < pages; ++j) {
  2019. unsigned long bus_addr;
  2020. bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
  2021. iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
  2022. if (--mapped_pages)
  2023. goto out_free_iova;
  2024. }
  2025. }
  2026. out_free_iova:
  2027. free_iova_fast(&dma_dom->iovad, address, npages);
  2028. out_err:
  2029. return 0;
  2030. }
  2031. /*
  2032. * The exported map_sg function for dma_ops (handles scatter-gather
  2033. * lists).
  2034. */
  2035. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  2036. int nelems, enum dma_data_direction dir,
  2037. unsigned long attrs)
  2038. {
  2039. struct protection_domain *domain;
  2040. struct dma_ops_domain *dma_dom;
  2041. unsigned long startaddr;
  2042. int npages = 2;
  2043. domain = get_domain(dev);
  2044. if (IS_ERR(domain))
  2045. return;
  2046. startaddr = sg_dma_address(sglist) & PAGE_MASK;
  2047. dma_dom = to_dma_ops_domain(domain);
  2048. npages = sg_num_pages(dev, sglist, nelems);
  2049. __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
  2050. }
  2051. /*
  2052. * The exported alloc_coherent function for dma_ops.
  2053. */
  2054. static void *alloc_coherent(struct device *dev, size_t size,
  2055. dma_addr_t *dma_addr, gfp_t flag,
  2056. unsigned long attrs)
  2057. {
  2058. u64 dma_mask = dev->coherent_dma_mask;
  2059. struct protection_domain *domain;
  2060. struct dma_ops_domain *dma_dom;
  2061. struct page *page;
  2062. domain = get_domain(dev);
  2063. if (PTR_ERR(domain) == -EINVAL) {
  2064. page = alloc_pages(flag, get_order(size));
  2065. *dma_addr = page_to_phys(page);
  2066. return page_address(page);
  2067. } else if (IS_ERR(domain))
  2068. return NULL;
  2069. dma_dom = to_dma_ops_domain(domain);
  2070. size = PAGE_ALIGN(size);
  2071. dma_mask = dev->coherent_dma_mask;
  2072. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  2073. flag |= __GFP_ZERO;
  2074. page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
  2075. if (!page) {
  2076. if (!gfpflags_allow_blocking(flag))
  2077. return NULL;
  2078. page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
  2079. get_order(size), flag);
  2080. if (!page)
  2081. return NULL;
  2082. }
  2083. if (!dma_mask)
  2084. dma_mask = *dev->dma_mask;
  2085. *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
  2086. size, DMA_BIDIRECTIONAL, dma_mask);
  2087. if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
  2088. goto out_free;
  2089. return page_address(page);
  2090. out_free:
  2091. if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
  2092. __free_pages(page, get_order(size));
  2093. return NULL;
  2094. }
  2095. /*
  2096. * The exported free_coherent function for dma_ops.
  2097. */
  2098. static void free_coherent(struct device *dev, size_t size,
  2099. void *virt_addr, dma_addr_t dma_addr,
  2100. unsigned long attrs)
  2101. {
  2102. struct protection_domain *domain;
  2103. struct dma_ops_domain *dma_dom;
  2104. struct page *page;
  2105. page = virt_to_page(virt_addr);
  2106. size = PAGE_ALIGN(size);
  2107. domain = get_domain(dev);
  2108. if (IS_ERR(domain))
  2109. goto free_mem;
  2110. dma_dom = to_dma_ops_domain(domain);
  2111. __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
  2112. free_mem:
  2113. if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
  2114. __free_pages(page, get_order(size));
  2115. }
  2116. /*
  2117. * This function is called by the DMA layer to find out if we can handle a
  2118. * particular device. It is part of the dma_ops.
  2119. */
  2120. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  2121. {
  2122. if (!dma_direct_supported(dev, mask))
  2123. return 0;
  2124. return check_device(dev);
  2125. }
  2126. static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
  2127. {
  2128. return dma_addr == AMD_IOMMU_MAPPING_ERROR;
  2129. }
  2130. static const struct dma_map_ops amd_iommu_dma_ops = {
  2131. .alloc = alloc_coherent,
  2132. .free = free_coherent,
  2133. .map_page = map_page,
  2134. .unmap_page = unmap_page,
  2135. .map_sg = map_sg,
  2136. .unmap_sg = unmap_sg,
  2137. .dma_supported = amd_iommu_dma_supported,
  2138. .mapping_error = amd_iommu_mapping_error,
  2139. };
  2140. static int init_reserved_iova_ranges(void)
  2141. {
  2142. struct pci_dev *pdev = NULL;
  2143. struct iova *val;
  2144. init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
  2145. lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
  2146. &reserved_rbtree_key);
  2147. /* MSI memory range */
  2148. val = reserve_iova(&reserved_iova_ranges,
  2149. IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
  2150. if (!val) {
  2151. pr_err("Reserving MSI range failed\n");
  2152. return -ENOMEM;
  2153. }
  2154. /* HT memory range */
  2155. val = reserve_iova(&reserved_iova_ranges,
  2156. IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
  2157. if (!val) {
  2158. pr_err("Reserving HT range failed\n");
  2159. return -ENOMEM;
  2160. }
  2161. /*
  2162. * Memory used for PCI resources
  2163. * FIXME: Check whether we can reserve the PCI-hole completly
  2164. */
  2165. for_each_pci_dev(pdev) {
  2166. int i;
  2167. for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
  2168. struct resource *r = &pdev->resource[i];
  2169. if (!(r->flags & IORESOURCE_MEM))
  2170. continue;
  2171. val = reserve_iova(&reserved_iova_ranges,
  2172. IOVA_PFN(r->start),
  2173. IOVA_PFN(r->end));
  2174. if (!val) {
  2175. pr_err("Reserve pci-resource range failed\n");
  2176. return -ENOMEM;
  2177. }
  2178. }
  2179. }
  2180. return 0;
  2181. }
  2182. int __init amd_iommu_init_api(void)
  2183. {
  2184. int ret, err = 0;
  2185. ret = iova_cache_get();
  2186. if (ret)
  2187. return ret;
  2188. ret = init_reserved_iova_ranges();
  2189. if (ret)
  2190. return ret;
  2191. err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
  2192. if (err)
  2193. return err;
  2194. #ifdef CONFIG_ARM_AMBA
  2195. err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
  2196. if (err)
  2197. return err;
  2198. #endif
  2199. err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
  2200. if (err)
  2201. return err;
  2202. return 0;
  2203. }
  2204. int __init amd_iommu_init_dma_ops(void)
  2205. {
  2206. swiotlb = (iommu_pass_through || sme_me_mask) ? 1 : 0;
  2207. iommu_detected = 1;
  2208. /*
  2209. * In case we don't initialize SWIOTLB (actually the common case
  2210. * when AMD IOMMU is enabled and SME is not active), make sure there
  2211. * are global dma_ops set as a fall-back for devices not handled by
  2212. * this driver (for example non-PCI devices). When SME is active,
  2213. * make sure that swiotlb variable remains set so the global dma_ops
  2214. * continue to be SWIOTLB.
  2215. */
  2216. if (!swiotlb)
  2217. dma_ops = &dma_direct_ops;
  2218. if (amd_iommu_unmap_flush)
  2219. pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
  2220. else
  2221. pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
  2222. return 0;
  2223. }
  2224. /*****************************************************************************
  2225. *
  2226. * The following functions belong to the exported interface of AMD IOMMU
  2227. *
  2228. * This interface allows access to lower level functions of the IOMMU
  2229. * like protection domain handling and assignement of devices to domains
  2230. * which is not possible with the dma_ops interface.
  2231. *
  2232. *****************************************************************************/
  2233. static void cleanup_domain(struct protection_domain *domain)
  2234. {
  2235. struct iommu_dev_data *entry;
  2236. unsigned long flags;
  2237. spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
  2238. while (!list_empty(&domain->dev_list)) {
  2239. entry = list_first_entry(&domain->dev_list,
  2240. struct iommu_dev_data, list);
  2241. BUG_ON(!entry->domain);
  2242. __detach_device(entry);
  2243. }
  2244. spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  2245. }
  2246. static void protection_domain_free(struct protection_domain *domain)
  2247. {
  2248. if (!domain)
  2249. return;
  2250. del_domain_from_list(domain);
  2251. if (domain->id)
  2252. domain_id_free(domain->id);
  2253. kfree(domain);
  2254. }
  2255. static int protection_domain_init(struct protection_domain *domain)
  2256. {
  2257. spin_lock_init(&domain->lock);
  2258. mutex_init(&domain->api_lock);
  2259. domain->id = domain_id_alloc();
  2260. if (!domain->id)
  2261. return -ENOMEM;
  2262. INIT_LIST_HEAD(&domain->dev_list);
  2263. return 0;
  2264. }
  2265. static struct protection_domain *protection_domain_alloc(void)
  2266. {
  2267. struct protection_domain *domain;
  2268. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  2269. if (!domain)
  2270. return NULL;
  2271. if (protection_domain_init(domain))
  2272. goto out_err;
  2273. add_domain_to_list(domain);
  2274. return domain;
  2275. out_err:
  2276. kfree(domain);
  2277. return NULL;
  2278. }
  2279. static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
  2280. {
  2281. struct protection_domain *pdomain;
  2282. struct dma_ops_domain *dma_domain;
  2283. switch (type) {
  2284. case IOMMU_DOMAIN_UNMANAGED:
  2285. pdomain = protection_domain_alloc();
  2286. if (!pdomain)
  2287. return NULL;
  2288. pdomain->mode = PAGE_MODE_3_LEVEL;
  2289. pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  2290. if (!pdomain->pt_root) {
  2291. protection_domain_free(pdomain);
  2292. return NULL;
  2293. }
  2294. pdomain->domain.geometry.aperture_start = 0;
  2295. pdomain->domain.geometry.aperture_end = ~0ULL;
  2296. pdomain->domain.geometry.force_aperture = true;
  2297. break;
  2298. case IOMMU_DOMAIN_DMA:
  2299. dma_domain = dma_ops_domain_alloc();
  2300. if (!dma_domain) {
  2301. pr_err("AMD-Vi: Failed to allocate\n");
  2302. return NULL;
  2303. }
  2304. pdomain = &dma_domain->domain;
  2305. break;
  2306. case IOMMU_DOMAIN_IDENTITY:
  2307. pdomain = protection_domain_alloc();
  2308. if (!pdomain)
  2309. return NULL;
  2310. pdomain->mode = PAGE_MODE_NONE;
  2311. break;
  2312. default:
  2313. return NULL;
  2314. }
  2315. return &pdomain->domain;
  2316. }
  2317. static void amd_iommu_domain_free(struct iommu_domain *dom)
  2318. {
  2319. struct protection_domain *domain;
  2320. struct dma_ops_domain *dma_dom;
  2321. domain = to_pdomain(dom);
  2322. if (domain->dev_cnt > 0)
  2323. cleanup_domain(domain);
  2324. BUG_ON(domain->dev_cnt != 0);
  2325. if (!dom)
  2326. return;
  2327. switch (dom->type) {
  2328. case IOMMU_DOMAIN_DMA:
  2329. /* Now release the domain */
  2330. dma_dom = to_dma_ops_domain(domain);
  2331. dma_ops_domain_free(dma_dom);
  2332. break;
  2333. default:
  2334. if (domain->mode != PAGE_MODE_NONE)
  2335. free_pagetable(domain);
  2336. if (domain->flags & PD_IOMMUV2_MASK)
  2337. free_gcr3_table(domain);
  2338. protection_domain_free(domain);
  2339. break;
  2340. }
  2341. }
  2342. static void amd_iommu_detach_device(struct iommu_domain *dom,
  2343. struct device *dev)
  2344. {
  2345. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  2346. struct amd_iommu *iommu;
  2347. int devid;
  2348. if (!check_device(dev))
  2349. return;
  2350. devid = get_device_id(dev);
  2351. if (devid < 0)
  2352. return;
  2353. if (dev_data->domain != NULL)
  2354. detach_device(dev);
  2355. iommu = amd_iommu_rlookup_table[devid];
  2356. if (!iommu)
  2357. return;
  2358. #ifdef CONFIG_IRQ_REMAP
  2359. if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
  2360. (dom->type == IOMMU_DOMAIN_UNMANAGED))
  2361. dev_data->use_vapic = 0;
  2362. #endif
  2363. iommu_completion_wait(iommu);
  2364. }
  2365. static int amd_iommu_attach_device(struct iommu_domain *dom,
  2366. struct device *dev)
  2367. {
  2368. struct protection_domain *domain = to_pdomain(dom);
  2369. struct iommu_dev_data *dev_data;
  2370. struct amd_iommu *iommu;
  2371. int ret;
  2372. if (!check_device(dev))
  2373. return -EINVAL;
  2374. dev_data = dev->archdata.iommu;
  2375. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2376. if (!iommu)
  2377. return -EINVAL;
  2378. if (dev_data->domain)
  2379. detach_device(dev);
  2380. ret = attach_device(dev, domain);
  2381. #ifdef CONFIG_IRQ_REMAP
  2382. if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
  2383. if (dom->type == IOMMU_DOMAIN_UNMANAGED)
  2384. dev_data->use_vapic = 1;
  2385. else
  2386. dev_data->use_vapic = 0;
  2387. }
  2388. #endif
  2389. iommu_completion_wait(iommu);
  2390. return ret;
  2391. }
  2392. static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
  2393. phys_addr_t paddr, size_t page_size, int iommu_prot)
  2394. {
  2395. struct protection_domain *domain = to_pdomain(dom);
  2396. int prot = 0;
  2397. int ret;
  2398. if (domain->mode == PAGE_MODE_NONE)
  2399. return -EINVAL;
  2400. if (iommu_prot & IOMMU_READ)
  2401. prot |= IOMMU_PROT_IR;
  2402. if (iommu_prot & IOMMU_WRITE)
  2403. prot |= IOMMU_PROT_IW;
  2404. mutex_lock(&domain->api_lock);
  2405. ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
  2406. mutex_unlock(&domain->api_lock);
  2407. return ret;
  2408. }
  2409. static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
  2410. size_t page_size)
  2411. {
  2412. struct protection_domain *domain = to_pdomain(dom);
  2413. size_t unmap_size;
  2414. if (domain->mode == PAGE_MODE_NONE)
  2415. return 0;
  2416. mutex_lock(&domain->api_lock);
  2417. unmap_size = iommu_unmap_page(domain, iova, page_size);
  2418. mutex_unlock(&domain->api_lock);
  2419. return unmap_size;
  2420. }
  2421. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  2422. dma_addr_t iova)
  2423. {
  2424. struct protection_domain *domain = to_pdomain(dom);
  2425. unsigned long offset_mask, pte_pgsize;
  2426. u64 *pte, __pte;
  2427. if (domain->mode == PAGE_MODE_NONE)
  2428. return iova;
  2429. pte = fetch_pte(domain, iova, &pte_pgsize);
  2430. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  2431. return 0;
  2432. offset_mask = pte_pgsize - 1;
  2433. __pte = *pte & PM_ADDR_MASK;
  2434. return (__pte & ~offset_mask) | (iova & offset_mask);
  2435. }
  2436. static bool amd_iommu_capable(enum iommu_cap cap)
  2437. {
  2438. switch (cap) {
  2439. case IOMMU_CAP_CACHE_COHERENCY:
  2440. return true;
  2441. case IOMMU_CAP_INTR_REMAP:
  2442. return (irq_remapping_enabled == 1);
  2443. case IOMMU_CAP_NOEXEC:
  2444. return false;
  2445. }
  2446. return false;
  2447. }
  2448. static void amd_iommu_get_resv_regions(struct device *dev,
  2449. struct list_head *head)
  2450. {
  2451. struct iommu_resv_region *region;
  2452. struct unity_map_entry *entry;
  2453. int devid;
  2454. devid = get_device_id(dev);
  2455. if (devid < 0)
  2456. return;
  2457. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  2458. size_t length;
  2459. int prot = 0;
  2460. if (devid < entry->devid_start || devid > entry->devid_end)
  2461. continue;
  2462. length = entry->address_end - entry->address_start;
  2463. if (entry->prot & IOMMU_PROT_IR)
  2464. prot |= IOMMU_READ;
  2465. if (entry->prot & IOMMU_PROT_IW)
  2466. prot |= IOMMU_WRITE;
  2467. region = iommu_alloc_resv_region(entry->address_start,
  2468. length, prot,
  2469. IOMMU_RESV_DIRECT);
  2470. if (!region) {
  2471. pr_err("Out of memory allocating dm-regions for %s\n",
  2472. dev_name(dev));
  2473. return;
  2474. }
  2475. list_add_tail(&region->list, head);
  2476. }
  2477. region = iommu_alloc_resv_region(MSI_RANGE_START,
  2478. MSI_RANGE_END - MSI_RANGE_START + 1,
  2479. 0, IOMMU_RESV_MSI);
  2480. if (!region)
  2481. return;
  2482. list_add_tail(&region->list, head);
  2483. region = iommu_alloc_resv_region(HT_RANGE_START,
  2484. HT_RANGE_END - HT_RANGE_START + 1,
  2485. 0, IOMMU_RESV_RESERVED);
  2486. if (!region)
  2487. return;
  2488. list_add_tail(&region->list, head);
  2489. }
  2490. static void amd_iommu_put_resv_regions(struct device *dev,
  2491. struct list_head *head)
  2492. {
  2493. struct iommu_resv_region *entry, *next;
  2494. list_for_each_entry_safe(entry, next, head, list)
  2495. kfree(entry);
  2496. }
  2497. static void amd_iommu_apply_resv_region(struct device *dev,
  2498. struct iommu_domain *domain,
  2499. struct iommu_resv_region *region)
  2500. {
  2501. struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
  2502. unsigned long start, end;
  2503. start = IOVA_PFN(region->start);
  2504. end = IOVA_PFN(region->start + region->length - 1);
  2505. WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
  2506. }
  2507. static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
  2508. struct device *dev)
  2509. {
  2510. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  2511. return dev_data->defer_attach;
  2512. }
  2513. static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
  2514. {
  2515. struct protection_domain *dom = to_pdomain(domain);
  2516. domain_flush_tlb_pde(dom);
  2517. domain_flush_complete(dom);
  2518. }
  2519. static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
  2520. unsigned long iova, size_t size)
  2521. {
  2522. }
  2523. const struct iommu_ops amd_iommu_ops = {
  2524. .capable = amd_iommu_capable,
  2525. .domain_alloc = amd_iommu_domain_alloc,
  2526. .domain_free = amd_iommu_domain_free,
  2527. .attach_dev = amd_iommu_attach_device,
  2528. .detach_dev = amd_iommu_detach_device,
  2529. .map = amd_iommu_map,
  2530. .unmap = amd_iommu_unmap,
  2531. .iova_to_phys = amd_iommu_iova_to_phys,
  2532. .add_device = amd_iommu_add_device,
  2533. .remove_device = amd_iommu_remove_device,
  2534. .device_group = amd_iommu_device_group,
  2535. .get_resv_regions = amd_iommu_get_resv_regions,
  2536. .put_resv_regions = amd_iommu_put_resv_regions,
  2537. .apply_resv_region = amd_iommu_apply_resv_region,
  2538. .is_attach_deferred = amd_iommu_is_attach_deferred,
  2539. .pgsize_bitmap = AMD_IOMMU_PGSIZES,
  2540. .flush_iotlb_all = amd_iommu_flush_iotlb_all,
  2541. .iotlb_range_add = amd_iommu_iotlb_range_add,
  2542. .iotlb_sync = amd_iommu_flush_iotlb_all,
  2543. };
  2544. /*****************************************************************************
  2545. *
  2546. * The next functions do a basic initialization of IOMMU for pass through
  2547. * mode
  2548. *
  2549. * In passthrough mode the IOMMU is initialized and enabled but not used for
  2550. * DMA-API translation.
  2551. *
  2552. *****************************************************************************/
  2553. /* IOMMUv2 specific functions */
  2554. int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
  2555. {
  2556. return atomic_notifier_chain_register(&ppr_notifier, nb);
  2557. }
  2558. EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
  2559. int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
  2560. {
  2561. return atomic_notifier_chain_unregister(&ppr_notifier, nb);
  2562. }
  2563. EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
  2564. void amd_iommu_domain_direct_map(struct iommu_domain *dom)
  2565. {
  2566. struct protection_domain *domain = to_pdomain(dom);
  2567. unsigned long flags;
  2568. spin_lock_irqsave(&domain->lock, flags);
  2569. /* Update data structure */
  2570. domain->mode = PAGE_MODE_NONE;
  2571. domain->updated = true;
  2572. /* Make changes visible to IOMMUs */
  2573. update_domain(domain);
  2574. /* Page-table is not visible to IOMMU anymore, so free it */
  2575. free_pagetable(domain);
  2576. spin_unlock_irqrestore(&domain->lock, flags);
  2577. }
  2578. EXPORT_SYMBOL(amd_iommu_domain_direct_map);
  2579. int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
  2580. {
  2581. struct protection_domain *domain = to_pdomain(dom);
  2582. unsigned long flags;
  2583. int levels, ret;
  2584. if (pasids <= 0 || pasids > (PASID_MASK + 1))
  2585. return -EINVAL;
  2586. /* Number of GCR3 table levels required */
  2587. for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
  2588. levels += 1;
  2589. if (levels > amd_iommu_max_glx_val)
  2590. return -EINVAL;
  2591. spin_lock_irqsave(&domain->lock, flags);
  2592. /*
  2593. * Save us all sanity checks whether devices already in the
  2594. * domain support IOMMUv2. Just force that the domain has no
  2595. * devices attached when it is switched into IOMMUv2 mode.
  2596. */
  2597. ret = -EBUSY;
  2598. if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
  2599. goto out;
  2600. ret = -ENOMEM;
  2601. domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
  2602. if (domain->gcr3_tbl == NULL)
  2603. goto out;
  2604. domain->glx = levels;
  2605. domain->flags |= PD_IOMMUV2_MASK;
  2606. domain->updated = true;
  2607. update_domain(domain);
  2608. ret = 0;
  2609. out:
  2610. spin_unlock_irqrestore(&domain->lock, flags);
  2611. return ret;
  2612. }
  2613. EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
  2614. static int __flush_pasid(struct protection_domain *domain, int pasid,
  2615. u64 address, bool size)
  2616. {
  2617. struct iommu_dev_data *dev_data;
  2618. struct iommu_cmd cmd;
  2619. int i, ret;
  2620. if (!(domain->flags & PD_IOMMUV2_MASK))
  2621. return -EINVAL;
  2622. build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
  2623. /*
  2624. * IOMMU TLB needs to be flushed before Device TLB to
  2625. * prevent device TLB refill from IOMMU TLB
  2626. */
  2627. for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
  2628. if (domain->dev_iommu[i] == 0)
  2629. continue;
  2630. ret = iommu_queue_command(amd_iommus[i], &cmd);
  2631. if (ret != 0)
  2632. goto out;
  2633. }
  2634. /* Wait until IOMMU TLB flushes are complete */
  2635. domain_flush_complete(domain);
  2636. /* Now flush device TLBs */
  2637. list_for_each_entry(dev_data, &domain->dev_list, list) {
  2638. struct amd_iommu *iommu;
  2639. int qdep;
  2640. /*
  2641. There might be non-IOMMUv2 capable devices in an IOMMUv2
  2642. * domain.
  2643. */
  2644. if (!dev_data->ats.enabled)
  2645. continue;
  2646. qdep = dev_data->ats.qdep;
  2647. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2648. build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
  2649. qdep, address, size);
  2650. ret = iommu_queue_command(iommu, &cmd);
  2651. if (ret != 0)
  2652. goto out;
  2653. }
  2654. /* Wait until all device TLBs are flushed */
  2655. domain_flush_complete(domain);
  2656. ret = 0;
  2657. out:
  2658. return ret;
  2659. }
  2660. static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
  2661. u64 address)
  2662. {
  2663. return __flush_pasid(domain, pasid, address, false);
  2664. }
  2665. int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
  2666. u64 address)
  2667. {
  2668. struct protection_domain *domain = to_pdomain(dom);
  2669. unsigned long flags;
  2670. int ret;
  2671. spin_lock_irqsave(&domain->lock, flags);
  2672. ret = __amd_iommu_flush_page(domain, pasid, address);
  2673. spin_unlock_irqrestore(&domain->lock, flags);
  2674. return ret;
  2675. }
  2676. EXPORT_SYMBOL(amd_iommu_flush_page);
  2677. static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
  2678. {
  2679. return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  2680. true);
  2681. }
  2682. int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
  2683. {
  2684. struct protection_domain *domain = to_pdomain(dom);
  2685. unsigned long flags;
  2686. int ret;
  2687. spin_lock_irqsave(&domain->lock, flags);
  2688. ret = __amd_iommu_flush_tlb(domain, pasid);
  2689. spin_unlock_irqrestore(&domain->lock, flags);
  2690. return ret;
  2691. }
  2692. EXPORT_SYMBOL(amd_iommu_flush_tlb);
  2693. static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
  2694. {
  2695. int index;
  2696. u64 *pte;
  2697. while (true) {
  2698. index = (pasid >> (9 * level)) & 0x1ff;
  2699. pte = &root[index];
  2700. if (level == 0)
  2701. break;
  2702. if (!(*pte & GCR3_VALID)) {
  2703. if (!alloc)
  2704. return NULL;
  2705. root = (void *)get_zeroed_page(GFP_ATOMIC);
  2706. if (root == NULL)
  2707. return NULL;
  2708. *pte = iommu_virt_to_phys(root) | GCR3_VALID;
  2709. }
  2710. root = iommu_phys_to_virt(*pte & PAGE_MASK);
  2711. level -= 1;
  2712. }
  2713. return pte;
  2714. }
  2715. static int __set_gcr3(struct protection_domain *domain, int pasid,
  2716. unsigned long cr3)
  2717. {
  2718. u64 *pte;
  2719. if (domain->mode != PAGE_MODE_NONE)
  2720. return -EINVAL;
  2721. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
  2722. if (pte == NULL)
  2723. return -ENOMEM;
  2724. *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
  2725. return __amd_iommu_flush_tlb(domain, pasid);
  2726. }
  2727. static int __clear_gcr3(struct protection_domain *domain, int pasid)
  2728. {
  2729. u64 *pte;
  2730. if (domain->mode != PAGE_MODE_NONE)
  2731. return -EINVAL;
  2732. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
  2733. if (pte == NULL)
  2734. return 0;
  2735. *pte = 0;
  2736. return __amd_iommu_flush_tlb(domain, pasid);
  2737. }
  2738. int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
  2739. unsigned long cr3)
  2740. {
  2741. struct protection_domain *domain = to_pdomain(dom);
  2742. unsigned long flags;
  2743. int ret;
  2744. spin_lock_irqsave(&domain->lock, flags);
  2745. ret = __set_gcr3(domain, pasid, cr3);
  2746. spin_unlock_irqrestore(&domain->lock, flags);
  2747. return ret;
  2748. }
  2749. EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
  2750. int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
  2751. {
  2752. struct protection_domain *domain = to_pdomain(dom);
  2753. unsigned long flags;
  2754. int ret;
  2755. spin_lock_irqsave(&domain->lock, flags);
  2756. ret = __clear_gcr3(domain, pasid);
  2757. spin_unlock_irqrestore(&domain->lock, flags);
  2758. return ret;
  2759. }
  2760. EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
  2761. int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
  2762. int status, int tag)
  2763. {
  2764. struct iommu_dev_data *dev_data;
  2765. struct amd_iommu *iommu;
  2766. struct iommu_cmd cmd;
  2767. dev_data = get_dev_data(&pdev->dev);
  2768. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2769. build_complete_ppr(&cmd, dev_data->devid, pasid, status,
  2770. tag, dev_data->pri_tlp);
  2771. return iommu_queue_command(iommu, &cmd);
  2772. }
  2773. EXPORT_SYMBOL(amd_iommu_complete_ppr);
  2774. struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
  2775. {
  2776. struct protection_domain *pdomain;
  2777. pdomain = get_domain(&pdev->dev);
  2778. if (IS_ERR(pdomain))
  2779. return NULL;
  2780. /* Only return IOMMUv2 domains */
  2781. if (!(pdomain->flags & PD_IOMMUV2_MASK))
  2782. return NULL;
  2783. return &pdomain->domain;
  2784. }
  2785. EXPORT_SYMBOL(amd_iommu_get_v2_domain);
  2786. void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
  2787. {
  2788. struct iommu_dev_data *dev_data;
  2789. if (!amd_iommu_v2_supported())
  2790. return;
  2791. dev_data = get_dev_data(&pdev->dev);
  2792. dev_data->errata |= (1 << erratum);
  2793. }
  2794. EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
  2795. int amd_iommu_device_info(struct pci_dev *pdev,
  2796. struct amd_iommu_device_info *info)
  2797. {
  2798. int max_pasids;
  2799. int pos;
  2800. if (pdev == NULL || info == NULL)
  2801. return -EINVAL;
  2802. if (!amd_iommu_v2_supported())
  2803. return -EINVAL;
  2804. memset(info, 0, sizeof(*info));
  2805. if (!pci_ats_disabled()) {
  2806. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
  2807. if (pos)
  2808. info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
  2809. }
  2810. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  2811. if (pos)
  2812. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
  2813. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
  2814. if (pos) {
  2815. int features;
  2816. max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
  2817. max_pasids = min(max_pasids, (1 << 20));
  2818. info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
  2819. info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
  2820. features = pci_pasid_features(pdev);
  2821. if (features & PCI_PASID_CAP_EXEC)
  2822. info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
  2823. if (features & PCI_PASID_CAP_PRIV)
  2824. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
  2825. }
  2826. return 0;
  2827. }
  2828. EXPORT_SYMBOL(amd_iommu_device_info);
  2829. #ifdef CONFIG_IRQ_REMAP
  2830. /*****************************************************************************
  2831. *
  2832. * Interrupt Remapping Implementation
  2833. *
  2834. *****************************************************************************/
  2835. static struct irq_chip amd_ir_chip;
  2836. static DEFINE_SPINLOCK(iommu_table_lock);
  2837. static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
  2838. {
  2839. u64 dte;
  2840. dte = amd_iommu_dev_table[devid].data[2];
  2841. dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
  2842. dte |= iommu_virt_to_phys(table->table);
  2843. dte |= DTE_IRQ_REMAP_INTCTL;
  2844. dte |= DTE_IRQ_TABLE_LEN;
  2845. dte |= DTE_IRQ_REMAP_ENABLE;
  2846. amd_iommu_dev_table[devid].data[2] = dte;
  2847. }
  2848. static struct irq_remap_table *get_irq_table(u16 devid)
  2849. {
  2850. struct irq_remap_table *table;
  2851. if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
  2852. "%s: no iommu for devid %x\n", __func__, devid))
  2853. return NULL;
  2854. table = irq_lookup_table[devid];
  2855. if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
  2856. return NULL;
  2857. return table;
  2858. }
  2859. static struct irq_remap_table *__alloc_irq_table(void)
  2860. {
  2861. struct irq_remap_table *table;
  2862. table = kzalloc(sizeof(*table), GFP_KERNEL);
  2863. if (!table)
  2864. return NULL;
  2865. table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
  2866. if (!table->table) {
  2867. kfree(table);
  2868. return NULL;
  2869. }
  2870. raw_spin_lock_init(&table->lock);
  2871. if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
  2872. memset(table->table, 0,
  2873. MAX_IRQS_PER_TABLE * sizeof(u32));
  2874. else
  2875. memset(table->table, 0,
  2876. (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
  2877. return table;
  2878. }
  2879. static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
  2880. struct irq_remap_table *table)
  2881. {
  2882. irq_lookup_table[devid] = table;
  2883. set_dte_irq_entry(devid, table);
  2884. iommu_flush_dte(iommu, devid);
  2885. }
  2886. static struct irq_remap_table *alloc_irq_table(u16 devid)
  2887. {
  2888. struct irq_remap_table *table = NULL;
  2889. struct irq_remap_table *new_table = NULL;
  2890. struct amd_iommu *iommu;
  2891. unsigned long flags;
  2892. u16 alias;
  2893. spin_lock_irqsave(&iommu_table_lock, flags);
  2894. iommu = amd_iommu_rlookup_table[devid];
  2895. if (!iommu)
  2896. goto out_unlock;
  2897. table = irq_lookup_table[devid];
  2898. if (table)
  2899. goto out_unlock;
  2900. alias = amd_iommu_alias_table[devid];
  2901. table = irq_lookup_table[alias];
  2902. if (table) {
  2903. set_remap_table_entry(iommu, devid, table);
  2904. goto out_wait;
  2905. }
  2906. spin_unlock_irqrestore(&iommu_table_lock, flags);
  2907. /* Nothing there yet, allocate new irq remapping table */
  2908. new_table = __alloc_irq_table();
  2909. if (!new_table)
  2910. return NULL;
  2911. spin_lock_irqsave(&iommu_table_lock, flags);
  2912. table = irq_lookup_table[devid];
  2913. if (table)
  2914. goto out_unlock;
  2915. table = irq_lookup_table[alias];
  2916. if (table) {
  2917. set_remap_table_entry(iommu, devid, table);
  2918. goto out_wait;
  2919. }
  2920. table = new_table;
  2921. new_table = NULL;
  2922. set_remap_table_entry(iommu, devid, table);
  2923. if (devid != alias)
  2924. set_remap_table_entry(iommu, alias, table);
  2925. out_wait:
  2926. iommu_completion_wait(iommu);
  2927. out_unlock:
  2928. spin_unlock_irqrestore(&iommu_table_lock, flags);
  2929. if (new_table) {
  2930. kmem_cache_free(amd_iommu_irq_cache, new_table->table);
  2931. kfree(new_table);
  2932. }
  2933. return table;
  2934. }
  2935. static int alloc_irq_index(u16 devid, int count, bool align)
  2936. {
  2937. struct irq_remap_table *table;
  2938. int index, c, alignment = 1;
  2939. unsigned long flags;
  2940. struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
  2941. if (!iommu)
  2942. return -ENODEV;
  2943. table = alloc_irq_table(devid);
  2944. if (!table)
  2945. return -ENODEV;
  2946. if (align)
  2947. alignment = roundup_pow_of_two(count);
  2948. raw_spin_lock_irqsave(&table->lock, flags);
  2949. /* Scan table for free entries */
  2950. for (index = ALIGN(table->min_index, alignment), c = 0;
  2951. index < MAX_IRQS_PER_TABLE;) {
  2952. if (!iommu->irte_ops->is_allocated(table, index)) {
  2953. c += 1;
  2954. } else {
  2955. c = 0;
  2956. index = ALIGN(index + 1, alignment);
  2957. continue;
  2958. }
  2959. if (c == count) {
  2960. for (; c != 0; --c)
  2961. iommu->irte_ops->set_allocated(table, index - c + 1);
  2962. index -= count - 1;
  2963. goto out;
  2964. }
  2965. index++;
  2966. }
  2967. index = -ENOSPC;
  2968. out:
  2969. raw_spin_unlock_irqrestore(&table->lock, flags);
  2970. return index;
  2971. }
  2972. static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
  2973. struct amd_ir_data *data)
  2974. {
  2975. struct irq_remap_table *table;
  2976. struct amd_iommu *iommu;
  2977. unsigned long flags;
  2978. struct irte_ga *entry;
  2979. iommu = amd_iommu_rlookup_table[devid];
  2980. if (iommu == NULL)
  2981. return -EINVAL;
  2982. table = get_irq_table(devid);
  2983. if (!table)
  2984. return -ENOMEM;
  2985. raw_spin_lock_irqsave(&table->lock, flags);
  2986. entry = (struct irte_ga *)table->table;
  2987. entry = &entry[index];
  2988. entry->lo.fields_remap.valid = 0;
  2989. entry->hi.val = irte->hi.val;
  2990. entry->lo.val = irte->lo.val;
  2991. entry->lo.fields_remap.valid = 1;
  2992. if (data)
  2993. data->ref = entry;
  2994. raw_spin_unlock_irqrestore(&table->lock, flags);
  2995. iommu_flush_irt(iommu, devid);
  2996. iommu_completion_wait(iommu);
  2997. return 0;
  2998. }
  2999. static int modify_irte(u16 devid, int index, union irte *irte)
  3000. {
  3001. struct irq_remap_table *table;
  3002. struct amd_iommu *iommu;
  3003. unsigned long flags;
  3004. iommu = amd_iommu_rlookup_table[devid];
  3005. if (iommu == NULL)
  3006. return -EINVAL;
  3007. table = get_irq_table(devid);
  3008. if (!table)
  3009. return -ENOMEM;
  3010. raw_spin_lock_irqsave(&table->lock, flags);
  3011. table->table[index] = irte->val;
  3012. raw_spin_unlock_irqrestore(&table->lock, flags);
  3013. iommu_flush_irt(iommu, devid);
  3014. iommu_completion_wait(iommu);
  3015. return 0;
  3016. }
  3017. static void free_irte(u16 devid, int index)
  3018. {
  3019. struct irq_remap_table *table;
  3020. struct amd_iommu *iommu;
  3021. unsigned long flags;
  3022. iommu = amd_iommu_rlookup_table[devid];
  3023. if (iommu == NULL)
  3024. return;
  3025. table = get_irq_table(devid);
  3026. if (!table)
  3027. return;
  3028. raw_spin_lock_irqsave(&table->lock, flags);
  3029. iommu->irte_ops->clear_allocated(table, index);
  3030. raw_spin_unlock_irqrestore(&table->lock, flags);
  3031. iommu_flush_irt(iommu, devid);
  3032. iommu_completion_wait(iommu);
  3033. }
  3034. static void irte_prepare(void *entry,
  3035. u32 delivery_mode, u32 dest_mode,
  3036. u8 vector, u32 dest_apicid, int devid)
  3037. {
  3038. union irte *irte = (union irte *) entry;
  3039. irte->val = 0;
  3040. irte->fields.vector = vector;
  3041. irte->fields.int_type = delivery_mode;
  3042. irte->fields.destination = dest_apicid;
  3043. irte->fields.dm = dest_mode;
  3044. irte->fields.valid = 1;
  3045. }
  3046. static void irte_ga_prepare(void *entry,
  3047. u32 delivery_mode, u32 dest_mode,
  3048. u8 vector, u32 dest_apicid, int devid)
  3049. {
  3050. struct irte_ga *irte = (struct irte_ga *) entry;
  3051. irte->lo.val = 0;
  3052. irte->hi.val = 0;
  3053. irte->lo.fields_remap.int_type = delivery_mode;
  3054. irte->lo.fields_remap.dm = dest_mode;
  3055. irte->hi.fields.vector = vector;
  3056. irte->lo.fields_remap.destination = dest_apicid;
  3057. irte->lo.fields_remap.valid = 1;
  3058. }
  3059. static void irte_activate(void *entry, u16 devid, u16 index)
  3060. {
  3061. union irte *irte = (union irte *) entry;
  3062. irte->fields.valid = 1;
  3063. modify_irte(devid, index, irte);
  3064. }
  3065. static void irte_ga_activate(void *entry, u16 devid, u16 index)
  3066. {
  3067. struct irte_ga *irte = (struct irte_ga *) entry;
  3068. irte->lo.fields_remap.valid = 1;
  3069. modify_irte_ga(devid, index, irte, NULL);
  3070. }
  3071. static void irte_deactivate(void *entry, u16 devid, u16 index)
  3072. {
  3073. union irte *irte = (union irte *) entry;
  3074. irte->fields.valid = 0;
  3075. modify_irte(devid, index, irte);
  3076. }
  3077. static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
  3078. {
  3079. struct irte_ga *irte = (struct irte_ga *) entry;
  3080. irte->lo.fields_remap.valid = 0;
  3081. modify_irte_ga(devid, index, irte, NULL);
  3082. }
  3083. static void irte_set_affinity(void *entry, u16 devid, u16 index,
  3084. u8 vector, u32 dest_apicid)
  3085. {
  3086. union irte *irte = (union irte *) entry;
  3087. irte->fields.vector = vector;
  3088. irte->fields.destination = dest_apicid;
  3089. modify_irte(devid, index, irte);
  3090. }
  3091. static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
  3092. u8 vector, u32 dest_apicid)
  3093. {
  3094. struct irte_ga *irte = (struct irte_ga *) entry;
  3095. if (!irte->lo.fields_remap.guest_mode) {
  3096. irte->hi.fields.vector = vector;
  3097. irte->lo.fields_remap.destination = dest_apicid;
  3098. modify_irte_ga(devid, index, irte, NULL);
  3099. }
  3100. }
  3101. #define IRTE_ALLOCATED (~1U)
  3102. static void irte_set_allocated(struct irq_remap_table *table, int index)
  3103. {
  3104. table->table[index] = IRTE_ALLOCATED;
  3105. }
  3106. static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
  3107. {
  3108. struct irte_ga *ptr = (struct irte_ga *)table->table;
  3109. struct irte_ga *irte = &ptr[index];
  3110. memset(&irte->lo.val, 0, sizeof(u64));
  3111. memset(&irte->hi.val, 0, sizeof(u64));
  3112. irte->hi.fields.vector = 0xff;
  3113. }
  3114. static bool irte_is_allocated(struct irq_remap_table *table, int index)
  3115. {
  3116. union irte *ptr = (union irte *)table->table;
  3117. union irte *irte = &ptr[index];
  3118. return irte->val != 0;
  3119. }
  3120. static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
  3121. {
  3122. struct irte_ga *ptr = (struct irte_ga *)table->table;
  3123. struct irte_ga *irte = &ptr[index];
  3124. return irte->hi.fields.vector != 0;
  3125. }
  3126. static void irte_clear_allocated(struct irq_remap_table *table, int index)
  3127. {
  3128. table->table[index] = 0;
  3129. }
  3130. static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
  3131. {
  3132. struct irte_ga *ptr = (struct irte_ga *)table->table;
  3133. struct irte_ga *irte = &ptr[index];
  3134. memset(&irte->lo.val, 0, sizeof(u64));
  3135. memset(&irte->hi.val, 0, sizeof(u64));
  3136. }
  3137. static int get_devid(struct irq_alloc_info *info)
  3138. {
  3139. int devid = -1;
  3140. switch (info->type) {
  3141. case X86_IRQ_ALLOC_TYPE_IOAPIC:
  3142. devid = get_ioapic_devid(info->ioapic_id);
  3143. break;
  3144. case X86_IRQ_ALLOC_TYPE_HPET:
  3145. devid = get_hpet_devid(info->hpet_id);
  3146. break;
  3147. case X86_IRQ_ALLOC_TYPE_MSI:
  3148. case X86_IRQ_ALLOC_TYPE_MSIX:
  3149. devid = get_device_id(&info->msi_dev->dev);
  3150. break;
  3151. default:
  3152. BUG_ON(1);
  3153. break;
  3154. }
  3155. return devid;
  3156. }
  3157. static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
  3158. {
  3159. struct amd_iommu *iommu;
  3160. int devid;
  3161. if (!info)
  3162. return NULL;
  3163. devid = get_devid(info);
  3164. if (devid >= 0) {
  3165. iommu = amd_iommu_rlookup_table[devid];
  3166. if (iommu)
  3167. return iommu->ir_domain;
  3168. }
  3169. return NULL;
  3170. }
  3171. static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
  3172. {
  3173. struct amd_iommu *iommu;
  3174. int devid;
  3175. if (!info)
  3176. return NULL;
  3177. switch (info->type) {
  3178. case X86_IRQ_ALLOC_TYPE_MSI:
  3179. case X86_IRQ_ALLOC_TYPE_MSIX:
  3180. devid = get_device_id(&info->msi_dev->dev);
  3181. if (devid < 0)
  3182. return NULL;
  3183. iommu = amd_iommu_rlookup_table[devid];
  3184. if (iommu)
  3185. return iommu->msi_domain;
  3186. break;
  3187. default:
  3188. break;
  3189. }
  3190. return NULL;
  3191. }
  3192. struct irq_remap_ops amd_iommu_irq_ops = {
  3193. .prepare = amd_iommu_prepare,
  3194. .enable = amd_iommu_enable,
  3195. .disable = amd_iommu_disable,
  3196. .reenable = amd_iommu_reenable,
  3197. .enable_faulting = amd_iommu_enable_faulting,
  3198. .get_ir_irq_domain = get_ir_irq_domain,
  3199. .get_irq_domain = get_irq_domain,
  3200. };
  3201. static void irq_remapping_prepare_irte(struct amd_ir_data *data,
  3202. struct irq_cfg *irq_cfg,
  3203. struct irq_alloc_info *info,
  3204. int devid, int index, int sub_handle)
  3205. {
  3206. struct irq_2_irte *irte_info = &data->irq_2_irte;
  3207. struct msi_msg *msg = &data->msi_entry;
  3208. struct IO_APIC_route_entry *entry;
  3209. struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
  3210. if (!iommu)
  3211. return;
  3212. data->irq_2_irte.devid = devid;
  3213. data->irq_2_irte.index = index + sub_handle;
  3214. iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
  3215. apic->irq_dest_mode, irq_cfg->vector,
  3216. irq_cfg->dest_apicid, devid);
  3217. switch (info->type) {
  3218. case X86_IRQ_ALLOC_TYPE_IOAPIC:
  3219. /* Setup IOAPIC entry */
  3220. entry = info->ioapic_entry;
  3221. info->ioapic_entry = NULL;
  3222. memset(entry, 0, sizeof(*entry));
  3223. entry->vector = index;
  3224. entry->mask = 0;
  3225. entry->trigger = info->ioapic_trigger;
  3226. entry->polarity = info->ioapic_polarity;
  3227. /* Mask level triggered irqs. */
  3228. if (info->ioapic_trigger)
  3229. entry->mask = 1;
  3230. break;
  3231. case X86_IRQ_ALLOC_TYPE_HPET:
  3232. case X86_IRQ_ALLOC_TYPE_MSI:
  3233. case X86_IRQ_ALLOC_TYPE_MSIX:
  3234. msg->address_hi = MSI_ADDR_BASE_HI;
  3235. msg->address_lo = MSI_ADDR_BASE_LO;
  3236. msg->data = irte_info->index;
  3237. break;
  3238. default:
  3239. BUG_ON(1);
  3240. break;
  3241. }
  3242. }
  3243. struct amd_irte_ops irte_32_ops = {
  3244. .prepare = irte_prepare,
  3245. .activate = irte_activate,
  3246. .deactivate = irte_deactivate,
  3247. .set_affinity = irte_set_affinity,
  3248. .set_allocated = irte_set_allocated,
  3249. .is_allocated = irte_is_allocated,
  3250. .clear_allocated = irte_clear_allocated,
  3251. };
  3252. struct amd_irte_ops irte_128_ops = {
  3253. .prepare = irte_ga_prepare,
  3254. .activate = irte_ga_activate,
  3255. .deactivate = irte_ga_deactivate,
  3256. .set_affinity = irte_ga_set_affinity,
  3257. .set_allocated = irte_ga_set_allocated,
  3258. .is_allocated = irte_ga_is_allocated,
  3259. .clear_allocated = irte_ga_clear_allocated,
  3260. };
  3261. static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
  3262. unsigned int nr_irqs, void *arg)
  3263. {
  3264. struct irq_alloc_info *info = arg;
  3265. struct irq_data *irq_data;
  3266. struct amd_ir_data *data = NULL;
  3267. struct irq_cfg *cfg;
  3268. int i, ret, devid;
  3269. int index;
  3270. if (!info)
  3271. return -EINVAL;
  3272. if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
  3273. info->type != X86_IRQ_ALLOC_TYPE_MSIX)
  3274. return -EINVAL;
  3275. /*
  3276. * With IRQ remapping enabled, don't need contiguous CPU vectors
  3277. * to support multiple MSI interrupts.
  3278. */
  3279. if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
  3280. info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
  3281. devid = get_devid(info);
  3282. if (devid < 0)
  3283. return -EINVAL;
  3284. ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
  3285. if (ret < 0)
  3286. return ret;
  3287. if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
  3288. struct irq_remap_table *table;
  3289. struct amd_iommu *iommu;
  3290. table = alloc_irq_table(devid);
  3291. if (table) {
  3292. if (!table->min_index) {
  3293. /*
  3294. * Keep the first 32 indexes free for IOAPIC
  3295. * interrupts.
  3296. */
  3297. table->min_index = 32;
  3298. iommu = amd_iommu_rlookup_table[devid];
  3299. for (i = 0; i < 32; ++i)
  3300. iommu->irte_ops->set_allocated(table, i);
  3301. }
  3302. WARN_ON(table->min_index != 32);
  3303. index = info->ioapic_pin;
  3304. } else {
  3305. index = -ENOMEM;
  3306. }
  3307. } else {
  3308. bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
  3309. index = alloc_irq_index(devid, nr_irqs, align);
  3310. }
  3311. if (index < 0) {
  3312. pr_warn("Failed to allocate IRTE\n");
  3313. ret = index;
  3314. goto out_free_parent;
  3315. }
  3316. for (i = 0; i < nr_irqs; i++) {
  3317. irq_data = irq_domain_get_irq_data(domain, virq + i);
  3318. cfg = irqd_cfg(irq_data);
  3319. if (!irq_data || !cfg) {
  3320. ret = -EINVAL;
  3321. goto out_free_data;
  3322. }
  3323. ret = -ENOMEM;
  3324. data = kzalloc(sizeof(*data), GFP_KERNEL);
  3325. if (!data)
  3326. goto out_free_data;
  3327. if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
  3328. data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
  3329. else
  3330. data->entry = kzalloc(sizeof(struct irte_ga),
  3331. GFP_KERNEL);
  3332. if (!data->entry) {
  3333. kfree(data);
  3334. goto out_free_data;
  3335. }
  3336. irq_data->hwirq = (devid << 16) + i;
  3337. irq_data->chip_data = data;
  3338. irq_data->chip = &amd_ir_chip;
  3339. irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
  3340. irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
  3341. }
  3342. return 0;
  3343. out_free_data:
  3344. for (i--; i >= 0; i--) {
  3345. irq_data = irq_domain_get_irq_data(domain, virq + i);
  3346. if (irq_data)
  3347. kfree(irq_data->chip_data);
  3348. }
  3349. for (i = 0; i < nr_irqs; i++)
  3350. free_irte(devid, index + i);
  3351. out_free_parent:
  3352. irq_domain_free_irqs_common(domain, virq, nr_irqs);
  3353. return ret;
  3354. }
  3355. static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
  3356. unsigned int nr_irqs)
  3357. {
  3358. struct irq_2_irte *irte_info;
  3359. struct irq_data *irq_data;
  3360. struct amd_ir_data *data;
  3361. int i;
  3362. for (i = 0; i < nr_irqs; i++) {
  3363. irq_data = irq_domain_get_irq_data(domain, virq + i);
  3364. if (irq_data && irq_data->chip_data) {
  3365. data = irq_data->chip_data;
  3366. irte_info = &data->irq_2_irte;
  3367. free_irte(irte_info->devid, irte_info->index);
  3368. kfree(data->entry);
  3369. kfree(data);
  3370. }
  3371. }
  3372. irq_domain_free_irqs_common(domain, virq, nr_irqs);
  3373. }
  3374. static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
  3375. struct amd_ir_data *ir_data,
  3376. struct irq_2_irte *irte_info,
  3377. struct irq_cfg *cfg);
  3378. static int irq_remapping_activate(struct irq_domain *domain,
  3379. struct irq_data *irq_data, bool reserve)
  3380. {
  3381. struct amd_ir_data *data = irq_data->chip_data;
  3382. struct irq_2_irte *irte_info = &data->irq_2_irte;
  3383. struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
  3384. struct irq_cfg *cfg = irqd_cfg(irq_data);
  3385. if (!iommu)
  3386. return 0;
  3387. iommu->irte_ops->activate(data->entry, irte_info->devid,
  3388. irte_info->index);
  3389. amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
  3390. return 0;
  3391. }
  3392. static void irq_remapping_deactivate(struct irq_domain *domain,
  3393. struct irq_data *irq_data)
  3394. {
  3395. struct amd_ir_data *data = irq_data->chip_data;
  3396. struct irq_2_irte *irte_info = &data->irq_2_irte;
  3397. struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
  3398. if (iommu)
  3399. iommu->irte_ops->deactivate(data->entry, irte_info->devid,
  3400. irte_info->index);
  3401. }
  3402. static const struct irq_domain_ops amd_ir_domain_ops = {
  3403. .alloc = irq_remapping_alloc,
  3404. .free = irq_remapping_free,
  3405. .activate = irq_remapping_activate,
  3406. .deactivate = irq_remapping_deactivate,
  3407. };
  3408. static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
  3409. {
  3410. struct amd_iommu *iommu;
  3411. struct amd_iommu_pi_data *pi_data = vcpu_info;
  3412. struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
  3413. struct amd_ir_data *ir_data = data->chip_data;
  3414. struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
  3415. struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
  3416. struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
  3417. /* Note:
  3418. * This device has never been set up for guest mode.
  3419. * we should not modify the IRTE
  3420. */
  3421. if (!dev_data || !dev_data->use_vapic)
  3422. return 0;
  3423. pi_data->ir_data = ir_data;
  3424. /* Note:
  3425. * SVM tries to set up for VAPIC mode, but we are in
  3426. * legacy mode. So, we force legacy mode instead.
  3427. */
  3428. if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
  3429. pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
  3430. __func__);
  3431. pi_data->is_guest_mode = false;
  3432. }
  3433. iommu = amd_iommu_rlookup_table[irte_info->devid];
  3434. if (iommu == NULL)
  3435. return -EINVAL;
  3436. pi_data->prev_ga_tag = ir_data->cached_ga_tag;
  3437. if (pi_data->is_guest_mode) {
  3438. /* Setting */
  3439. irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
  3440. irte->hi.fields.vector = vcpu_pi_info->vector;
  3441. irte->lo.fields_vapic.ga_log_intr = 1;
  3442. irte->lo.fields_vapic.guest_mode = 1;
  3443. irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
  3444. ir_data->cached_ga_tag = pi_data->ga_tag;
  3445. } else {
  3446. /* Un-Setting */
  3447. struct irq_cfg *cfg = irqd_cfg(data);
  3448. irte->hi.val = 0;
  3449. irte->lo.val = 0;
  3450. irte->hi.fields.vector = cfg->vector;
  3451. irte->lo.fields_remap.guest_mode = 0;
  3452. irte->lo.fields_remap.destination = cfg->dest_apicid;
  3453. irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
  3454. irte->lo.fields_remap.dm = apic->irq_dest_mode;
  3455. /*
  3456. * This communicates the ga_tag back to the caller
  3457. * so that it can do all the necessary clean up.
  3458. */
  3459. ir_data->cached_ga_tag = 0;
  3460. }
  3461. return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
  3462. }
  3463. static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
  3464. struct amd_ir_data *ir_data,
  3465. struct irq_2_irte *irte_info,
  3466. struct irq_cfg *cfg)
  3467. {
  3468. /*
  3469. * Atomically updates the IRTE with the new destination, vector
  3470. * and flushes the interrupt entry cache.
  3471. */
  3472. iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
  3473. irte_info->index, cfg->vector,
  3474. cfg->dest_apicid);
  3475. }
  3476. static int amd_ir_set_affinity(struct irq_data *data,
  3477. const struct cpumask *mask, bool force)
  3478. {
  3479. struct amd_ir_data *ir_data = data->chip_data;
  3480. struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
  3481. struct irq_cfg *cfg = irqd_cfg(data);
  3482. struct irq_data *parent = data->parent_data;
  3483. struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
  3484. int ret;
  3485. if (!iommu)
  3486. return -ENODEV;
  3487. ret = parent->chip->irq_set_affinity(parent, mask, force);
  3488. if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
  3489. return ret;
  3490. amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
  3491. /*
  3492. * After this point, all the interrupts will start arriving
  3493. * at the new destination. So, time to cleanup the previous
  3494. * vector allocation.
  3495. */
  3496. send_cleanup_vector(cfg);
  3497. return IRQ_SET_MASK_OK_DONE;
  3498. }
  3499. static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
  3500. {
  3501. struct amd_ir_data *ir_data = irq_data->chip_data;
  3502. *msg = ir_data->msi_entry;
  3503. }
  3504. static struct irq_chip amd_ir_chip = {
  3505. .name = "AMD-IR",
  3506. .irq_ack = apic_ack_irq,
  3507. .irq_set_affinity = amd_ir_set_affinity,
  3508. .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
  3509. .irq_compose_msi_msg = ir_compose_msi_msg,
  3510. };
  3511. int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
  3512. {
  3513. struct fwnode_handle *fn;
  3514. fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
  3515. if (!fn)
  3516. return -ENOMEM;
  3517. iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
  3518. irq_domain_free_fwnode(fn);
  3519. if (!iommu->ir_domain)
  3520. return -ENOMEM;
  3521. iommu->ir_domain->parent = arch_get_ir_parent_domain();
  3522. iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
  3523. "AMD-IR-MSI",
  3524. iommu->index);
  3525. return 0;
  3526. }
  3527. int amd_iommu_update_ga(int cpu, bool is_run, void *data)
  3528. {
  3529. unsigned long flags;
  3530. struct amd_iommu *iommu;
  3531. struct irq_remap_table *table;
  3532. struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
  3533. int devid = ir_data->irq_2_irte.devid;
  3534. struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
  3535. struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
  3536. if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
  3537. !ref || !entry || !entry->lo.fields_vapic.guest_mode)
  3538. return 0;
  3539. iommu = amd_iommu_rlookup_table[devid];
  3540. if (!iommu)
  3541. return -ENODEV;
  3542. table = get_irq_table(devid);
  3543. if (!table)
  3544. return -ENODEV;
  3545. raw_spin_lock_irqsave(&table->lock, flags);
  3546. if (ref->lo.fields_vapic.guest_mode) {
  3547. if (cpu >= 0)
  3548. ref->lo.fields_vapic.destination = cpu;
  3549. ref->lo.fields_vapic.is_run = is_run;
  3550. barrier();
  3551. }
  3552. raw_spin_unlock_irqrestore(&table->lock, flags);
  3553. iommu_flush_irt(iommu, devid);
  3554. iommu_completion_wait(iommu);
  3555. return 0;
  3556. }
  3557. EXPORT_SYMBOL(amd_iommu_update_ga);
  3558. #endif