mips.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * KVM/MIPS: MIPS specific KVM APIs
  7. *
  8. * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
  9. * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10. */
  11. #include <linux/errno.h>
  12. #include <linux/err.h>
  13. #include <linux/module.h>
  14. #include <linux/vmalloc.h>
  15. #include <linux/fs.h>
  16. #include <linux/bootmem.h>
  17. #include <asm/page.h>
  18. #include <asm/cacheflush.h>
  19. #include <asm/mmu_context.h>
  20. #include <linux/kvm_host.h>
  21. #include "interrupt.h"
  22. #include "commpage.h"
  23. #define CREATE_TRACE_POINTS
  24. #include "trace.h"
  25. #ifndef VECTORSPACING
  26. #define VECTORSPACING 0x100 /* for EI/VI mode */
  27. #endif
  28. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  29. struct kvm_stats_debugfs_item debugfs_entries[] = {
  30. { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
  31. { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
  32. { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
  33. { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
  34. { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  35. { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
  36. { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
  37. { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
  38. { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
  39. { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
  40. { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
  41. { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
  42. { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
  43. { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  44. { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
  45. {NULL}
  46. };
  47. static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  48. {
  49. int i;
  50. for_each_possible_cpu(i) {
  51. vcpu->arch.guest_kernel_asid[i] = 0;
  52. vcpu->arch.guest_user_asid[i] = 0;
  53. }
  54. return 0;
  55. }
  56. /*
  57. * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  58. * Config7, so we are "runnable" if interrupts are pending
  59. */
  60. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  61. {
  62. return !!(vcpu->arch.pending_exceptions);
  63. }
  64. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  65. {
  66. return 1;
  67. }
  68. int kvm_arch_hardware_enable(void *garbage)
  69. {
  70. return 0;
  71. }
  72. void kvm_arch_hardware_disable(void *garbage)
  73. {
  74. }
  75. int kvm_arch_hardware_setup(void)
  76. {
  77. return 0;
  78. }
  79. void kvm_arch_hardware_unsetup(void)
  80. {
  81. }
  82. void kvm_arch_check_processor_compat(void *rtn)
  83. {
  84. *(int *)rtn = 0;
  85. }
  86. static void kvm_mips_init_tlbs(struct kvm *kvm)
  87. {
  88. unsigned long wired;
  89. /*
  90. * Add a wired entry to the TLB, it is used to map the commpage to
  91. * the Guest kernel
  92. */
  93. wired = read_c0_wired();
  94. write_c0_wired(wired + 1);
  95. mtc0_tlbw_hazard();
  96. kvm->arch.commpage_tlb = wired;
  97. kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
  98. kvm->arch.commpage_tlb);
  99. }
  100. static void kvm_mips_init_vm_percpu(void *arg)
  101. {
  102. struct kvm *kvm = (struct kvm *)arg;
  103. kvm_mips_init_tlbs(kvm);
  104. kvm_mips_callbacks->vm_init(kvm);
  105. }
  106. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  107. {
  108. if (atomic_inc_return(&kvm_mips_instance) == 1) {
  109. kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
  110. __func__);
  111. on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
  112. }
  113. return 0;
  114. }
  115. void kvm_mips_free_vcpus(struct kvm *kvm)
  116. {
  117. unsigned int i;
  118. struct kvm_vcpu *vcpu;
  119. /* Put the pages we reserved for the guest pmap */
  120. for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
  121. if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
  122. kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
  123. }
  124. kfree(kvm->arch.guest_pmap);
  125. kvm_for_each_vcpu(i, vcpu, kvm) {
  126. kvm_arch_vcpu_free(vcpu);
  127. }
  128. mutex_lock(&kvm->lock);
  129. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  130. kvm->vcpus[i] = NULL;
  131. atomic_set(&kvm->online_vcpus, 0);
  132. mutex_unlock(&kvm->lock);
  133. }
  134. void kvm_arch_sync_events(struct kvm *kvm)
  135. {
  136. }
  137. static void kvm_mips_uninit_tlbs(void *arg)
  138. {
  139. /* Restore wired count */
  140. write_c0_wired(0);
  141. mtc0_tlbw_hazard();
  142. /* Clear out all the TLBs */
  143. kvm_local_flush_tlb_all();
  144. }
  145. void kvm_arch_destroy_vm(struct kvm *kvm)
  146. {
  147. kvm_mips_free_vcpus(kvm);
  148. /* If this is the last instance, restore wired count */
  149. if (atomic_dec_return(&kvm_mips_instance) == 0) {
  150. kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
  151. __func__);
  152. on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
  153. }
  154. }
  155. long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
  156. unsigned long arg)
  157. {
  158. return -ENOIOCTLCMD;
  159. }
  160. void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
  161. struct kvm_memory_slot *dont)
  162. {
  163. }
  164. int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
  165. unsigned long npages)
  166. {
  167. return 0;
  168. }
  169. void kvm_arch_memslots_updated(struct kvm *kvm)
  170. {
  171. }
  172. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  173. struct kvm_memory_slot *memslot,
  174. struct kvm_userspace_memory_region *mem,
  175. enum kvm_mr_change change)
  176. {
  177. return 0;
  178. }
  179. void kvm_arch_commit_memory_region(struct kvm *kvm,
  180. struct kvm_userspace_memory_region *mem,
  181. const struct kvm_memory_slot *old,
  182. enum kvm_mr_change change)
  183. {
  184. unsigned long npages = 0;
  185. int i;
  186. kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
  187. __func__, kvm, mem->slot, mem->guest_phys_addr,
  188. mem->memory_size, mem->userspace_addr);
  189. /* Setup Guest PMAP table */
  190. if (!kvm->arch.guest_pmap) {
  191. if (mem->slot == 0)
  192. npages = mem->memory_size >> PAGE_SHIFT;
  193. if (npages) {
  194. kvm->arch.guest_pmap_npages = npages;
  195. kvm->arch.guest_pmap =
  196. kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
  197. if (!kvm->arch.guest_pmap) {
  198. kvm_err("Failed to allocate guest PMAP");
  199. return;
  200. }
  201. kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
  202. npages, kvm->arch.guest_pmap);
  203. /* Now setup the page table */
  204. for (i = 0; i < npages; i++)
  205. kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
  206. }
  207. }
  208. }
  209. void kvm_arch_flush_shadow_all(struct kvm *kvm)
  210. {
  211. }
  212. void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
  213. struct kvm_memory_slot *slot)
  214. {
  215. }
  216. void kvm_arch_flush_shadow(struct kvm *kvm)
  217. {
  218. }
  219. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  220. {
  221. int err, size, offset;
  222. void *gebase;
  223. int i;
  224. struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
  225. if (!vcpu) {
  226. err = -ENOMEM;
  227. goto out;
  228. }
  229. err = kvm_vcpu_init(vcpu, kvm, id);
  230. if (err)
  231. goto out_free_cpu;
  232. kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
  233. /*
  234. * Allocate space for host mode exception handlers that handle
  235. * guest mode exits
  236. */
  237. if (cpu_has_veic || cpu_has_vint)
  238. size = 0x200 + VECTORSPACING * 64;
  239. else
  240. size = 0x4000;
  241. /* Save Linux EBASE */
  242. vcpu->arch.host_ebase = (void *)read_c0_ebase();
  243. gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
  244. if (!gebase) {
  245. err = -ENOMEM;
  246. goto out_free_cpu;
  247. }
  248. kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
  249. ALIGN(size, PAGE_SIZE), gebase);
  250. /* Save new ebase */
  251. vcpu->arch.guest_ebase = gebase;
  252. /* Copy L1 Guest Exception handler to correct offset */
  253. /* TLB Refill, EXL = 0 */
  254. memcpy(gebase, mips32_exception,
  255. mips32_exceptionEnd - mips32_exception);
  256. /* General Exception Entry point */
  257. memcpy(gebase + 0x180, mips32_exception,
  258. mips32_exceptionEnd - mips32_exception);
  259. /* For vectored interrupts poke the exception code @ all offsets 0-7 */
  260. for (i = 0; i < 8; i++) {
  261. kvm_debug("L1 Vectored handler @ %p\n",
  262. gebase + 0x200 + (i * VECTORSPACING));
  263. memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
  264. mips32_exceptionEnd - mips32_exception);
  265. }
  266. /* General handler, relocate to unmapped space for sanity's sake */
  267. offset = 0x2000;
  268. kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
  269. gebase + offset,
  270. mips32_GuestExceptionEnd - mips32_GuestException);
  271. memcpy(gebase + offset, mips32_GuestException,
  272. mips32_GuestExceptionEnd - mips32_GuestException);
  273. /* Invalidate the icache for these ranges */
  274. local_flush_icache_range((unsigned long)gebase,
  275. (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
  276. /*
  277. * Allocate comm page for guest kernel, a TLB will be reserved for
  278. * mapping GVA @ 0xFFFF8000 to this page
  279. */
  280. vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
  281. if (!vcpu->arch.kseg0_commpage) {
  282. err = -ENOMEM;
  283. goto out_free_gebase;
  284. }
  285. kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
  286. kvm_mips_commpage_init(vcpu);
  287. /* Init */
  288. vcpu->arch.last_sched_cpu = -1;
  289. /* Start off the timer */
  290. kvm_mips_init_count(vcpu);
  291. return vcpu;
  292. out_free_gebase:
  293. kfree(gebase);
  294. out_free_cpu:
  295. kfree(vcpu);
  296. out:
  297. return ERR_PTR(err);
  298. }
  299. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  300. {
  301. hrtimer_cancel(&vcpu->arch.comparecount_timer);
  302. kvm_vcpu_uninit(vcpu);
  303. kvm_mips_dump_stats(vcpu);
  304. kfree(vcpu->arch.guest_ebase);
  305. kfree(vcpu->arch.kseg0_commpage);
  306. }
  307. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  308. {
  309. kvm_arch_vcpu_free(vcpu);
  310. }
  311. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  312. struct kvm_guest_debug *dbg)
  313. {
  314. return -ENOIOCTLCMD;
  315. }
  316. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  317. {
  318. int r = 0;
  319. sigset_t sigsaved;
  320. if (vcpu->sigset_active)
  321. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  322. if (vcpu->mmio_needed) {
  323. if (!vcpu->mmio_is_write)
  324. kvm_mips_complete_mmio_load(vcpu, run);
  325. vcpu->mmio_needed = 0;
  326. }
  327. local_irq_disable();
  328. /* Check if we have any exceptions/interrupts pending */
  329. kvm_mips_deliver_interrupts(vcpu,
  330. kvm_read_c0_guest_cause(vcpu->arch.cop0));
  331. kvm_guest_enter();
  332. r = __kvm_mips_vcpu_run(run, vcpu);
  333. kvm_guest_exit();
  334. local_irq_enable();
  335. if (vcpu->sigset_active)
  336. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  337. return r;
  338. }
  339. int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  340. struct kvm_mips_interrupt *irq)
  341. {
  342. int intr = (int)irq->irq;
  343. struct kvm_vcpu *dvcpu = NULL;
  344. if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
  345. kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
  346. (int)intr);
  347. if (irq->cpu == -1)
  348. dvcpu = vcpu;
  349. else
  350. dvcpu = vcpu->kvm->vcpus[irq->cpu];
  351. if (intr == 2 || intr == 3 || intr == 4) {
  352. kvm_mips_callbacks->queue_io_int(dvcpu, irq);
  353. } else if (intr == -2 || intr == -3 || intr == -4) {
  354. kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
  355. } else {
  356. kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
  357. irq->cpu, irq->irq);
  358. return -EINVAL;
  359. }
  360. dvcpu->arch.wait = 0;
  361. if (waitqueue_active(&dvcpu->wq))
  362. wake_up_interruptible(&dvcpu->wq);
  363. return 0;
  364. }
  365. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  366. struct kvm_mp_state *mp_state)
  367. {
  368. return -ENOIOCTLCMD;
  369. }
  370. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  371. struct kvm_mp_state *mp_state)
  372. {
  373. return -ENOIOCTLCMD;
  374. }
  375. static u64 kvm_mips_get_one_regs[] = {
  376. KVM_REG_MIPS_R0,
  377. KVM_REG_MIPS_R1,
  378. KVM_REG_MIPS_R2,
  379. KVM_REG_MIPS_R3,
  380. KVM_REG_MIPS_R4,
  381. KVM_REG_MIPS_R5,
  382. KVM_REG_MIPS_R6,
  383. KVM_REG_MIPS_R7,
  384. KVM_REG_MIPS_R8,
  385. KVM_REG_MIPS_R9,
  386. KVM_REG_MIPS_R10,
  387. KVM_REG_MIPS_R11,
  388. KVM_REG_MIPS_R12,
  389. KVM_REG_MIPS_R13,
  390. KVM_REG_MIPS_R14,
  391. KVM_REG_MIPS_R15,
  392. KVM_REG_MIPS_R16,
  393. KVM_REG_MIPS_R17,
  394. KVM_REG_MIPS_R18,
  395. KVM_REG_MIPS_R19,
  396. KVM_REG_MIPS_R20,
  397. KVM_REG_MIPS_R21,
  398. KVM_REG_MIPS_R22,
  399. KVM_REG_MIPS_R23,
  400. KVM_REG_MIPS_R24,
  401. KVM_REG_MIPS_R25,
  402. KVM_REG_MIPS_R26,
  403. KVM_REG_MIPS_R27,
  404. KVM_REG_MIPS_R28,
  405. KVM_REG_MIPS_R29,
  406. KVM_REG_MIPS_R30,
  407. KVM_REG_MIPS_R31,
  408. KVM_REG_MIPS_HI,
  409. KVM_REG_MIPS_LO,
  410. KVM_REG_MIPS_PC,
  411. KVM_REG_MIPS_CP0_INDEX,
  412. KVM_REG_MIPS_CP0_CONTEXT,
  413. KVM_REG_MIPS_CP0_USERLOCAL,
  414. KVM_REG_MIPS_CP0_PAGEMASK,
  415. KVM_REG_MIPS_CP0_WIRED,
  416. KVM_REG_MIPS_CP0_HWRENA,
  417. KVM_REG_MIPS_CP0_BADVADDR,
  418. KVM_REG_MIPS_CP0_COUNT,
  419. KVM_REG_MIPS_CP0_ENTRYHI,
  420. KVM_REG_MIPS_CP0_COMPARE,
  421. KVM_REG_MIPS_CP0_STATUS,
  422. KVM_REG_MIPS_CP0_CAUSE,
  423. KVM_REG_MIPS_CP0_EPC,
  424. KVM_REG_MIPS_CP0_CONFIG,
  425. KVM_REG_MIPS_CP0_CONFIG1,
  426. KVM_REG_MIPS_CP0_CONFIG2,
  427. KVM_REG_MIPS_CP0_CONFIG3,
  428. KVM_REG_MIPS_CP0_CONFIG7,
  429. KVM_REG_MIPS_CP0_ERROREPC,
  430. KVM_REG_MIPS_COUNT_CTL,
  431. KVM_REG_MIPS_COUNT_RESUME,
  432. KVM_REG_MIPS_COUNT_HZ,
  433. };
  434. static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
  435. const struct kvm_one_reg *reg)
  436. {
  437. struct mips_coproc *cop0 = vcpu->arch.cop0;
  438. int ret;
  439. s64 v;
  440. switch (reg->id) {
  441. case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
  442. v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
  443. break;
  444. case KVM_REG_MIPS_HI:
  445. v = (long)vcpu->arch.hi;
  446. break;
  447. case KVM_REG_MIPS_LO:
  448. v = (long)vcpu->arch.lo;
  449. break;
  450. case KVM_REG_MIPS_PC:
  451. v = (long)vcpu->arch.pc;
  452. break;
  453. case KVM_REG_MIPS_CP0_INDEX:
  454. v = (long)kvm_read_c0_guest_index(cop0);
  455. break;
  456. case KVM_REG_MIPS_CP0_CONTEXT:
  457. v = (long)kvm_read_c0_guest_context(cop0);
  458. break;
  459. case KVM_REG_MIPS_CP0_USERLOCAL:
  460. v = (long)kvm_read_c0_guest_userlocal(cop0);
  461. break;
  462. case KVM_REG_MIPS_CP0_PAGEMASK:
  463. v = (long)kvm_read_c0_guest_pagemask(cop0);
  464. break;
  465. case KVM_REG_MIPS_CP0_WIRED:
  466. v = (long)kvm_read_c0_guest_wired(cop0);
  467. break;
  468. case KVM_REG_MIPS_CP0_HWRENA:
  469. v = (long)kvm_read_c0_guest_hwrena(cop0);
  470. break;
  471. case KVM_REG_MIPS_CP0_BADVADDR:
  472. v = (long)kvm_read_c0_guest_badvaddr(cop0);
  473. break;
  474. case KVM_REG_MIPS_CP0_ENTRYHI:
  475. v = (long)kvm_read_c0_guest_entryhi(cop0);
  476. break;
  477. case KVM_REG_MIPS_CP0_COMPARE:
  478. v = (long)kvm_read_c0_guest_compare(cop0);
  479. break;
  480. case KVM_REG_MIPS_CP0_STATUS:
  481. v = (long)kvm_read_c0_guest_status(cop0);
  482. break;
  483. case KVM_REG_MIPS_CP0_CAUSE:
  484. v = (long)kvm_read_c0_guest_cause(cop0);
  485. break;
  486. case KVM_REG_MIPS_CP0_EPC:
  487. v = (long)kvm_read_c0_guest_epc(cop0);
  488. break;
  489. case KVM_REG_MIPS_CP0_ERROREPC:
  490. v = (long)kvm_read_c0_guest_errorepc(cop0);
  491. break;
  492. case KVM_REG_MIPS_CP0_CONFIG:
  493. v = (long)kvm_read_c0_guest_config(cop0);
  494. break;
  495. case KVM_REG_MIPS_CP0_CONFIG1:
  496. v = (long)kvm_read_c0_guest_config1(cop0);
  497. break;
  498. case KVM_REG_MIPS_CP0_CONFIG2:
  499. v = (long)kvm_read_c0_guest_config2(cop0);
  500. break;
  501. case KVM_REG_MIPS_CP0_CONFIG3:
  502. v = (long)kvm_read_c0_guest_config3(cop0);
  503. break;
  504. case KVM_REG_MIPS_CP0_CONFIG7:
  505. v = (long)kvm_read_c0_guest_config7(cop0);
  506. break;
  507. /* registers to be handled specially */
  508. case KVM_REG_MIPS_CP0_COUNT:
  509. case KVM_REG_MIPS_COUNT_CTL:
  510. case KVM_REG_MIPS_COUNT_RESUME:
  511. case KVM_REG_MIPS_COUNT_HZ:
  512. ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
  513. if (ret)
  514. return ret;
  515. break;
  516. default:
  517. return -EINVAL;
  518. }
  519. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  520. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  521. return put_user(v, uaddr64);
  522. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  523. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  524. u32 v32 = (u32)v;
  525. return put_user(v32, uaddr32);
  526. } else {
  527. return -EINVAL;
  528. }
  529. }
  530. static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
  531. const struct kvm_one_reg *reg)
  532. {
  533. struct mips_coproc *cop0 = vcpu->arch.cop0;
  534. u64 v;
  535. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  536. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  537. if (get_user(v, uaddr64) != 0)
  538. return -EFAULT;
  539. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  540. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  541. s32 v32;
  542. if (get_user(v32, uaddr32) != 0)
  543. return -EFAULT;
  544. v = (s64)v32;
  545. } else {
  546. return -EINVAL;
  547. }
  548. switch (reg->id) {
  549. case KVM_REG_MIPS_R0:
  550. /* Silently ignore requests to set $0 */
  551. break;
  552. case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
  553. vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
  554. break;
  555. case KVM_REG_MIPS_HI:
  556. vcpu->arch.hi = v;
  557. break;
  558. case KVM_REG_MIPS_LO:
  559. vcpu->arch.lo = v;
  560. break;
  561. case KVM_REG_MIPS_PC:
  562. vcpu->arch.pc = v;
  563. break;
  564. case KVM_REG_MIPS_CP0_INDEX:
  565. kvm_write_c0_guest_index(cop0, v);
  566. break;
  567. case KVM_REG_MIPS_CP0_CONTEXT:
  568. kvm_write_c0_guest_context(cop0, v);
  569. break;
  570. case KVM_REG_MIPS_CP0_USERLOCAL:
  571. kvm_write_c0_guest_userlocal(cop0, v);
  572. break;
  573. case KVM_REG_MIPS_CP0_PAGEMASK:
  574. kvm_write_c0_guest_pagemask(cop0, v);
  575. break;
  576. case KVM_REG_MIPS_CP0_WIRED:
  577. kvm_write_c0_guest_wired(cop0, v);
  578. break;
  579. case KVM_REG_MIPS_CP0_HWRENA:
  580. kvm_write_c0_guest_hwrena(cop0, v);
  581. break;
  582. case KVM_REG_MIPS_CP0_BADVADDR:
  583. kvm_write_c0_guest_badvaddr(cop0, v);
  584. break;
  585. case KVM_REG_MIPS_CP0_ENTRYHI:
  586. kvm_write_c0_guest_entryhi(cop0, v);
  587. break;
  588. case KVM_REG_MIPS_CP0_STATUS:
  589. kvm_write_c0_guest_status(cop0, v);
  590. break;
  591. case KVM_REG_MIPS_CP0_EPC:
  592. kvm_write_c0_guest_epc(cop0, v);
  593. break;
  594. case KVM_REG_MIPS_CP0_ERROREPC:
  595. kvm_write_c0_guest_errorepc(cop0, v);
  596. break;
  597. /* registers to be handled specially */
  598. case KVM_REG_MIPS_CP0_COUNT:
  599. case KVM_REG_MIPS_CP0_COMPARE:
  600. case KVM_REG_MIPS_CP0_CAUSE:
  601. case KVM_REG_MIPS_COUNT_CTL:
  602. case KVM_REG_MIPS_COUNT_RESUME:
  603. case KVM_REG_MIPS_COUNT_HZ:
  604. return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
  605. default:
  606. return -EINVAL;
  607. }
  608. return 0;
  609. }
  610. long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
  611. unsigned long arg)
  612. {
  613. struct kvm_vcpu *vcpu = filp->private_data;
  614. void __user *argp = (void __user *)arg;
  615. long r;
  616. switch (ioctl) {
  617. case KVM_SET_ONE_REG:
  618. case KVM_GET_ONE_REG: {
  619. struct kvm_one_reg reg;
  620. if (copy_from_user(&reg, argp, sizeof(reg)))
  621. return -EFAULT;
  622. if (ioctl == KVM_SET_ONE_REG)
  623. return kvm_mips_set_reg(vcpu, &reg);
  624. else
  625. return kvm_mips_get_reg(vcpu, &reg);
  626. }
  627. case KVM_GET_REG_LIST: {
  628. struct kvm_reg_list __user *user_list = argp;
  629. u64 __user *reg_dest;
  630. struct kvm_reg_list reg_list;
  631. unsigned n;
  632. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  633. return -EFAULT;
  634. n = reg_list.n;
  635. reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
  636. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  637. return -EFAULT;
  638. if (n < reg_list.n)
  639. return -E2BIG;
  640. reg_dest = user_list->reg;
  641. if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
  642. sizeof(kvm_mips_get_one_regs)))
  643. return -EFAULT;
  644. return 0;
  645. }
  646. case KVM_NMI:
  647. /* Treat the NMI as a CPU reset */
  648. r = kvm_mips_reset_vcpu(vcpu);
  649. break;
  650. case KVM_INTERRUPT:
  651. {
  652. struct kvm_mips_interrupt irq;
  653. r = -EFAULT;
  654. if (copy_from_user(&irq, argp, sizeof(irq)))
  655. goto out;
  656. kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
  657. irq.irq);
  658. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  659. break;
  660. }
  661. default:
  662. r = -ENOIOCTLCMD;
  663. }
  664. out:
  665. return r;
  666. }
  667. /* Get (and clear) the dirty memory log for a memory slot. */
  668. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  669. {
  670. struct kvm_memory_slot *memslot;
  671. unsigned long ga, ga_end;
  672. int is_dirty = 0;
  673. int r;
  674. unsigned long n;
  675. mutex_lock(&kvm->slots_lock);
  676. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  677. if (r)
  678. goto out;
  679. /* If nothing is dirty, don't bother messing with page tables. */
  680. if (is_dirty) {
  681. memslot = &kvm->memslots->memslots[log->slot];
  682. ga = memslot->base_gfn << PAGE_SHIFT;
  683. ga_end = ga + (memslot->npages << PAGE_SHIFT);
  684. kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
  685. ga_end);
  686. n = kvm_dirty_bitmap_bytes(memslot);
  687. memset(memslot->dirty_bitmap, 0, n);
  688. }
  689. r = 0;
  690. out:
  691. mutex_unlock(&kvm->slots_lock);
  692. return r;
  693. }
  694. long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  695. {
  696. long r;
  697. switch (ioctl) {
  698. default:
  699. r = -ENOIOCTLCMD;
  700. }
  701. return r;
  702. }
  703. int kvm_arch_init(void *opaque)
  704. {
  705. if (kvm_mips_callbacks) {
  706. kvm_err("kvm: module already exists\n");
  707. return -EEXIST;
  708. }
  709. return kvm_mips_emulation_init(&kvm_mips_callbacks);
  710. }
  711. void kvm_arch_exit(void)
  712. {
  713. kvm_mips_callbacks = NULL;
  714. }
  715. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  716. struct kvm_sregs *sregs)
  717. {
  718. return -ENOIOCTLCMD;
  719. }
  720. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  721. struct kvm_sregs *sregs)
  722. {
  723. return -ENOIOCTLCMD;
  724. }
  725. int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  726. {
  727. return 0;
  728. }
  729. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  730. {
  731. return -ENOIOCTLCMD;
  732. }
  733. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  734. {
  735. return -ENOIOCTLCMD;
  736. }
  737. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  738. {
  739. return VM_FAULT_SIGBUS;
  740. }
  741. int kvm_dev_ioctl_check_extension(long ext)
  742. {
  743. int r;
  744. switch (ext) {
  745. case KVM_CAP_ONE_REG:
  746. r = 1;
  747. break;
  748. case KVM_CAP_COALESCED_MMIO:
  749. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  750. break;
  751. default:
  752. r = 0;
  753. break;
  754. }
  755. return r;
  756. }
  757. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  758. {
  759. return kvm_mips_pending_timer(vcpu);
  760. }
  761. int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
  762. {
  763. int i;
  764. struct mips_coproc *cop0;
  765. if (!vcpu)
  766. return -1;
  767. kvm_debug("VCPU Register Dump:\n");
  768. kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
  769. kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
  770. for (i = 0; i < 32; i += 4) {
  771. kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
  772. vcpu->arch.gprs[i],
  773. vcpu->arch.gprs[i + 1],
  774. vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
  775. }
  776. kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
  777. kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
  778. cop0 = vcpu->arch.cop0;
  779. kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
  780. kvm_read_c0_guest_status(cop0),
  781. kvm_read_c0_guest_cause(cop0));
  782. kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
  783. return 0;
  784. }
  785. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  786. {
  787. int i;
  788. for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  789. vcpu->arch.gprs[i] = regs->gpr[i];
  790. vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
  791. vcpu->arch.hi = regs->hi;
  792. vcpu->arch.lo = regs->lo;
  793. vcpu->arch.pc = regs->pc;
  794. return 0;
  795. }
  796. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  797. {
  798. int i;
  799. for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  800. regs->gpr[i] = vcpu->arch.gprs[i];
  801. regs->hi = vcpu->arch.hi;
  802. regs->lo = vcpu->arch.lo;
  803. regs->pc = vcpu->arch.pc;
  804. return 0;
  805. }
  806. static void kvm_mips_comparecount_func(unsigned long data)
  807. {
  808. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
  809. kvm_mips_callbacks->queue_timer_int(vcpu);
  810. vcpu->arch.wait = 0;
  811. if (waitqueue_active(&vcpu->wq))
  812. wake_up_interruptible(&vcpu->wq);
  813. }
  814. /* low level hrtimer wake routine */
  815. static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
  816. {
  817. struct kvm_vcpu *vcpu;
  818. vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
  819. kvm_mips_comparecount_func((unsigned long) vcpu);
  820. return kvm_mips_count_timeout(vcpu);
  821. }
  822. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  823. {
  824. kvm_mips_callbacks->vcpu_init(vcpu);
  825. hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
  826. HRTIMER_MODE_REL);
  827. vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
  828. return 0;
  829. }
  830. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  831. {
  832. }
  833. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  834. struct kvm_translation *tr)
  835. {
  836. return 0;
  837. }
  838. /* Initial guest state */
  839. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  840. {
  841. return kvm_mips_callbacks->vcpu_setup(vcpu);
  842. }
  843. static void kvm_mips_set_c0_status(void)
  844. {
  845. uint32_t status = read_c0_status();
  846. if (cpu_has_fpu)
  847. status |= (ST0_CU1);
  848. if (cpu_has_dsp)
  849. status |= (ST0_MX);
  850. write_c0_status(status);
  851. ehb();
  852. }
  853. /*
  854. * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
  855. */
  856. int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
  857. {
  858. uint32_t cause = vcpu->arch.host_cp0_cause;
  859. uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
  860. uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
  861. unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
  862. enum emulation_result er = EMULATE_DONE;
  863. int ret = RESUME_GUEST;
  864. /* Set a default exit reason */
  865. run->exit_reason = KVM_EXIT_UNKNOWN;
  866. run->ready_for_interrupt_injection = 1;
  867. /*
  868. * Set the appropriate status bits based on host CPU features,
  869. * before we hit the scheduler
  870. */
  871. kvm_mips_set_c0_status();
  872. local_irq_enable();
  873. kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
  874. cause, opc, run, vcpu);
  875. /*
  876. * Do a privilege check, if in UM most of these exit conditions end up
  877. * causing an exception to be delivered to the Guest Kernel
  878. */
  879. er = kvm_mips_check_privilege(cause, opc, run, vcpu);
  880. if (er == EMULATE_PRIV_FAIL) {
  881. goto skip_emul;
  882. } else if (er == EMULATE_FAIL) {
  883. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  884. ret = RESUME_HOST;
  885. goto skip_emul;
  886. }
  887. switch (exccode) {
  888. case T_INT:
  889. kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
  890. ++vcpu->stat.int_exits;
  891. trace_kvm_exit(vcpu, INT_EXITS);
  892. if (need_resched())
  893. cond_resched();
  894. ret = RESUME_GUEST;
  895. break;
  896. case T_COP_UNUSABLE:
  897. kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
  898. ++vcpu->stat.cop_unusable_exits;
  899. trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
  900. ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
  901. /* XXXKYMA: Might need to return to user space */
  902. if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
  903. ret = RESUME_HOST;
  904. break;
  905. case T_TLB_MOD:
  906. ++vcpu->stat.tlbmod_exits;
  907. trace_kvm_exit(vcpu, TLBMOD_EXITS);
  908. ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
  909. break;
  910. case T_TLB_ST_MISS:
  911. kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
  912. cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
  913. badvaddr);
  914. ++vcpu->stat.tlbmiss_st_exits;
  915. trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
  916. ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
  917. break;
  918. case T_TLB_LD_MISS:
  919. kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
  920. cause, opc, badvaddr);
  921. ++vcpu->stat.tlbmiss_ld_exits;
  922. trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
  923. ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
  924. break;
  925. case T_ADDR_ERR_ST:
  926. ++vcpu->stat.addrerr_st_exits;
  927. trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
  928. ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
  929. break;
  930. case T_ADDR_ERR_LD:
  931. ++vcpu->stat.addrerr_ld_exits;
  932. trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
  933. ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
  934. break;
  935. case T_SYSCALL:
  936. ++vcpu->stat.syscall_exits;
  937. trace_kvm_exit(vcpu, SYSCALL_EXITS);
  938. ret = kvm_mips_callbacks->handle_syscall(vcpu);
  939. break;
  940. case T_RES_INST:
  941. ++vcpu->stat.resvd_inst_exits;
  942. trace_kvm_exit(vcpu, RESVD_INST_EXITS);
  943. ret = kvm_mips_callbacks->handle_res_inst(vcpu);
  944. break;
  945. case T_BREAK:
  946. ++vcpu->stat.break_inst_exits;
  947. trace_kvm_exit(vcpu, BREAK_INST_EXITS);
  948. ret = kvm_mips_callbacks->handle_break(vcpu);
  949. break;
  950. default:
  951. kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
  952. exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
  953. kvm_read_c0_guest_status(vcpu->arch.cop0));
  954. kvm_arch_vcpu_dump_regs(vcpu);
  955. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  956. ret = RESUME_HOST;
  957. break;
  958. }
  959. skip_emul:
  960. local_irq_disable();
  961. if (er == EMULATE_DONE && !(ret & RESUME_HOST))
  962. kvm_mips_deliver_interrupts(vcpu, cause);
  963. if (!(ret & RESUME_HOST)) {
  964. /* Only check for signals if not already exiting to userspace */
  965. if (signal_pending(current)) {
  966. run->exit_reason = KVM_EXIT_INTR;
  967. ret = (-EINTR << 2) | RESUME_HOST;
  968. ++vcpu->stat.signal_exits;
  969. trace_kvm_exit(vcpu, SIGNAL_EXITS);
  970. }
  971. }
  972. return ret;
  973. }
  974. int __init kvm_mips_init(void)
  975. {
  976. int ret;
  977. ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  978. if (ret)
  979. return ret;
  980. /*
  981. * On MIPS, kernel modules are executed from "mapped space", which
  982. * requires TLBs. The TLB handling code is statically linked with
  983. * the rest of the kernel (tlb.c) to avoid the possibility of
  984. * double faulting. The issue is that the TLB code references
  985. * routines that are part of the the KVM module, which are only
  986. * available once the module is loaded.
  987. */
  988. kvm_mips_gfn_to_pfn = gfn_to_pfn;
  989. kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
  990. kvm_mips_is_error_pfn = is_error_pfn;
  991. pr_info("KVM/MIPS Initialized\n");
  992. return 0;
  993. }
  994. void __exit kvm_mips_exit(void)
  995. {
  996. kvm_exit();
  997. kvm_mips_gfn_to_pfn = NULL;
  998. kvm_mips_release_pfn_clean = NULL;
  999. kvm_mips_is_error_pfn = NULL;
  1000. pr_info("KVM/MIPS unloaded\n");
  1001. }
  1002. module_init(kvm_mips_init);
  1003. module_exit(kvm_mips_exit);
  1004. EXPORT_TRACEPOINT_SYMBOL(kvm_exit);