segment.c 112 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * fs/f2fs/segment.c
  4. *
  5. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6. * http://www.samsung.com/
  7. */
  8. #include <linux/fs.h>
  9. #include <linux/f2fs_fs.h>
  10. #include <linux/bio.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/prefetch.h>
  13. #include <linux/kthread.h>
  14. #include <linux/swap.h>
  15. #include <linux/timer.h>
  16. #include <linux/freezer.h>
  17. #include <linux/sched/signal.h>
  18. #include "f2fs.h"
  19. #include "segment.h"
  20. #include "node.h"
  21. #include "gc.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. #define __reverse_ffz(x) __reverse_ffs(~(x))
  25. static struct kmem_cache *discard_entry_slab;
  26. static struct kmem_cache *discard_cmd_slab;
  27. static struct kmem_cache *sit_entry_set_slab;
  28. static struct kmem_cache *inmem_entry_slab;
  29. static unsigned long __reverse_ulong(unsigned char *str)
  30. {
  31. unsigned long tmp = 0;
  32. int shift = 24, idx = 0;
  33. #if BITS_PER_LONG == 64
  34. shift = 56;
  35. #endif
  36. while (shift >= 0) {
  37. tmp |= (unsigned long)str[idx++] << shift;
  38. shift -= BITS_PER_BYTE;
  39. }
  40. return tmp;
  41. }
  42. /*
  43. * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  44. * MSB and LSB are reversed in a byte by f2fs_set_bit.
  45. */
  46. static inline unsigned long __reverse_ffs(unsigned long word)
  47. {
  48. int num = 0;
  49. #if BITS_PER_LONG == 64
  50. if ((word & 0xffffffff00000000UL) == 0)
  51. num += 32;
  52. else
  53. word >>= 32;
  54. #endif
  55. if ((word & 0xffff0000) == 0)
  56. num += 16;
  57. else
  58. word >>= 16;
  59. if ((word & 0xff00) == 0)
  60. num += 8;
  61. else
  62. word >>= 8;
  63. if ((word & 0xf0) == 0)
  64. num += 4;
  65. else
  66. word >>= 4;
  67. if ((word & 0xc) == 0)
  68. num += 2;
  69. else
  70. word >>= 2;
  71. if ((word & 0x2) == 0)
  72. num += 1;
  73. return num;
  74. }
  75. /*
  76. * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  77. * f2fs_set_bit makes MSB and LSB reversed in a byte.
  78. * @size must be integral times of unsigned long.
  79. * Example:
  80. * MSB <--> LSB
  81. * f2fs_set_bit(0, bitmap) => 1000 0000
  82. * f2fs_set_bit(7, bitmap) => 0000 0001
  83. */
  84. static unsigned long __find_rev_next_bit(const unsigned long *addr,
  85. unsigned long size, unsigned long offset)
  86. {
  87. const unsigned long *p = addr + BIT_WORD(offset);
  88. unsigned long result = size;
  89. unsigned long tmp;
  90. if (offset >= size)
  91. return size;
  92. size -= (offset & ~(BITS_PER_LONG - 1));
  93. offset %= BITS_PER_LONG;
  94. while (1) {
  95. if (*p == 0)
  96. goto pass;
  97. tmp = __reverse_ulong((unsigned char *)p);
  98. tmp &= ~0UL >> offset;
  99. if (size < BITS_PER_LONG)
  100. tmp &= (~0UL << (BITS_PER_LONG - size));
  101. if (tmp)
  102. goto found;
  103. pass:
  104. if (size <= BITS_PER_LONG)
  105. break;
  106. size -= BITS_PER_LONG;
  107. offset = 0;
  108. p++;
  109. }
  110. return result;
  111. found:
  112. return result - size + __reverse_ffs(tmp);
  113. }
  114. static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
  115. unsigned long size, unsigned long offset)
  116. {
  117. const unsigned long *p = addr + BIT_WORD(offset);
  118. unsigned long result = size;
  119. unsigned long tmp;
  120. if (offset >= size)
  121. return size;
  122. size -= (offset & ~(BITS_PER_LONG - 1));
  123. offset %= BITS_PER_LONG;
  124. while (1) {
  125. if (*p == ~0UL)
  126. goto pass;
  127. tmp = __reverse_ulong((unsigned char *)p);
  128. if (offset)
  129. tmp |= ~0UL << (BITS_PER_LONG - offset);
  130. if (size < BITS_PER_LONG)
  131. tmp |= ~0UL >> size;
  132. if (tmp != ~0UL)
  133. goto found;
  134. pass:
  135. if (size <= BITS_PER_LONG)
  136. break;
  137. size -= BITS_PER_LONG;
  138. offset = 0;
  139. p++;
  140. }
  141. return result;
  142. found:
  143. return result - size + __reverse_ffz(tmp);
  144. }
  145. bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
  146. {
  147. int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
  148. int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
  149. int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
  150. if (test_opt(sbi, LFS))
  151. return false;
  152. if (sbi->gc_mode == GC_URGENT)
  153. return true;
  154. if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
  155. return true;
  156. return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
  157. SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
  158. }
  159. void f2fs_register_inmem_page(struct inode *inode, struct page *page)
  160. {
  161. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  162. struct f2fs_inode_info *fi = F2FS_I(inode);
  163. struct inmem_pages *new;
  164. f2fs_trace_pid(page);
  165. set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
  166. SetPagePrivate(page);
  167. new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
  168. /* add atomic page indices to the list */
  169. new->page = page;
  170. INIT_LIST_HEAD(&new->list);
  171. /* increase reference count with clean state */
  172. mutex_lock(&fi->inmem_lock);
  173. get_page(page);
  174. list_add_tail(&new->list, &fi->inmem_pages);
  175. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  176. if (list_empty(&fi->inmem_ilist))
  177. list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
  178. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  179. inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  180. mutex_unlock(&fi->inmem_lock);
  181. trace_f2fs_register_inmem_page(page, INMEM);
  182. }
  183. static int __revoke_inmem_pages(struct inode *inode,
  184. struct list_head *head, bool drop, bool recover)
  185. {
  186. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  187. struct inmem_pages *cur, *tmp;
  188. int err = 0;
  189. list_for_each_entry_safe(cur, tmp, head, list) {
  190. struct page *page = cur->page;
  191. if (drop)
  192. trace_f2fs_commit_inmem_page(page, INMEM_DROP);
  193. lock_page(page);
  194. f2fs_wait_on_page_writeback(page, DATA, true);
  195. if (recover) {
  196. struct dnode_of_data dn;
  197. struct node_info ni;
  198. trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
  199. retry:
  200. set_new_dnode(&dn, inode, NULL, NULL, 0);
  201. err = f2fs_get_dnode_of_data(&dn, page->index,
  202. LOOKUP_NODE);
  203. if (err) {
  204. if (err == -ENOMEM) {
  205. congestion_wait(BLK_RW_ASYNC, HZ/50);
  206. cond_resched();
  207. goto retry;
  208. }
  209. err = -EAGAIN;
  210. goto next;
  211. }
  212. err = f2fs_get_node_info(sbi, dn.nid, &ni);
  213. if (err) {
  214. f2fs_put_dnode(&dn);
  215. return err;
  216. }
  217. if (cur->old_addr == NEW_ADDR) {
  218. f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
  219. f2fs_update_data_blkaddr(&dn, NEW_ADDR);
  220. } else
  221. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  222. cur->old_addr, ni.version, true, true);
  223. f2fs_put_dnode(&dn);
  224. }
  225. next:
  226. /* we don't need to invalidate this in the sccessful status */
  227. if (drop || recover) {
  228. ClearPageUptodate(page);
  229. clear_cold_data(page);
  230. }
  231. set_page_private(page, 0);
  232. ClearPagePrivate(page);
  233. f2fs_put_page(page, 1);
  234. list_del(&cur->list);
  235. kmem_cache_free(inmem_entry_slab, cur);
  236. dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  237. }
  238. return err;
  239. }
  240. void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
  241. {
  242. struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
  243. struct inode *inode;
  244. struct f2fs_inode_info *fi;
  245. next:
  246. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  247. if (list_empty(head)) {
  248. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  249. return;
  250. }
  251. fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
  252. inode = igrab(&fi->vfs_inode);
  253. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  254. if (inode) {
  255. if (gc_failure) {
  256. if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
  257. goto drop;
  258. goto skip;
  259. }
  260. drop:
  261. set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
  262. f2fs_drop_inmem_pages(inode);
  263. iput(inode);
  264. }
  265. skip:
  266. congestion_wait(BLK_RW_ASYNC, HZ/50);
  267. cond_resched();
  268. goto next;
  269. }
  270. void f2fs_drop_inmem_pages(struct inode *inode)
  271. {
  272. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  273. struct f2fs_inode_info *fi = F2FS_I(inode);
  274. mutex_lock(&fi->inmem_lock);
  275. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  276. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  277. if (!list_empty(&fi->inmem_ilist))
  278. list_del_init(&fi->inmem_ilist);
  279. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  280. mutex_unlock(&fi->inmem_lock);
  281. clear_inode_flag(inode, FI_ATOMIC_FILE);
  282. fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
  283. stat_dec_atomic_write(inode);
  284. }
  285. void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
  286. {
  287. struct f2fs_inode_info *fi = F2FS_I(inode);
  288. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  289. struct list_head *head = &fi->inmem_pages;
  290. struct inmem_pages *cur = NULL;
  291. f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
  292. mutex_lock(&fi->inmem_lock);
  293. list_for_each_entry(cur, head, list) {
  294. if (cur->page == page)
  295. break;
  296. }
  297. f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
  298. list_del(&cur->list);
  299. mutex_unlock(&fi->inmem_lock);
  300. dec_page_count(sbi, F2FS_INMEM_PAGES);
  301. kmem_cache_free(inmem_entry_slab, cur);
  302. ClearPageUptodate(page);
  303. set_page_private(page, 0);
  304. ClearPagePrivate(page);
  305. f2fs_put_page(page, 0);
  306. trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
  307. }
  308. static int __f2fs_commit_inmem_pages(struct inode *inode)
  309. {
  310. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  311. struct f2fs_inode_info *fi = F2FS_I(inode);
  312. struct inmem_pages *cur, *tmp;
  313. struct f2fs_io_info fio = {
  314. .sbi = sbi,
  315. .ino = inode->i_ino,
  316. .type = DATA,
  317. .op = REQ_OP_WRITE,
  318. .op_flags = REQ_SYNC | REQ_PRIO,
  319. .io_type = FS_DATA_IO,
  320. };
  321. struct list_head revoke_list;
  322. bool submit_bio = false;
  323. int err = 0;
  324. INIT_LIST_HEAD(&revoke_list);
  325. list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
  326. struct page *page = cur->page;
  327. lock_page(page);
  328. if (page->mapping == inode->i_mapping) {
  329. trace_f2fs_commit_inmem_page(page, INMEM);
  330. set_page_dirty(page);
  331. f2fs_wait_on_page_writeback(page, DATA, true);
  332. if (clear_page_dirty_for_io(page)) {
  333. inode_dec_dirty_pages(inode);
  334. f2fs_remove_dirty_inode(inode);
  335. }
  336. retry:
  337. fio.page = page;
  338. fio.old_blkaddr = NULL_ADDR;
  339. fio.encrypted_page = NULL;
  340. fio.need_lock = LOCK_DONE;
  341. err = f2fs_do_write_data_page(&fio);
  342. if (err) {
  343. if (err == -ENOMEM) {
  344. congestion_wait(BLK_RW_ASYNC, HZ/50);
  345. cond_resched();
  346. goto retry;
  347. }
  348. unlock_page(page);
  349. break;
  350. }
  351. /* record old blkaddr for revoking */
  352. cur->old_addr = fio.old_blkaddr;
  353. submit_bio = true;
  354. }
  355. unlock_page(page);
  356. list_move_tail(&cur->list, &revoke_list);
  357. }
  358. if (submit_bio)
  359. f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
  360. if (err) {
  361. /*
  362. * try to revoke all committed pages, but still we could fail
  363. * due to no memory or other reason, if that happened, EAGAIN
  364. * will be returned, which means in such case, transaction is
  365. * already not integrity, caller should use journal to do the
  366. * recovery or rewrite & commit last transaction. For other
  367. * error number, revoking was done by filesystem itself.
  368. */
  369. err = __revoke_inmem_pages(inode, &revoke_list, false, true);
  370. /* drop all uncommitted pages */
  371. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  372. } else {
  373. __revoke_inmem_pages(inode, &revoke_list, false, false);
  374. }
  375. return err;
  376. }
  377. int f2fs_commit_inmem_pages(struct inode *inode)
  378. {
  379. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  380. struct f2fs_inode_info *fi = F2FS_I(inode);
  381. int err;
  382. f2fs_balance_fs(sbi, true);
  383. down_write(&fi->i_gc_rwsem[WRITE]);
  384. f2fs_lock_op(sbi);
  385. set_inode_flag(inode, FI_ATOMIC_COMMIT);
  386. mutex_lock(&fi->inmem_lock);
  387. err = __f2fs_commit_inmem_pages(inode);
  388. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  389. if (!list_empty(&fi->inmem_ilist))
  390. list_del_init(&fi->inmem_ilist);
  391. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  392. mutex_unlock(&fi->inmem_lock);
  393. clear_inode_flag(inode, FI_ATOMIC_COMMIT);
  394. f2fs_unlock_op(sbi);
  395. up_write(&fi->i_gc_rwsem[WRITE]);
  396. return err;
  397. }
  398. /*
  399. * This function balances dirty node and dentry pages.
  400. * In addition, it controls garbage collection.
  401. */
  402. void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
  403. {
  404. if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
  405. f2fs_show_injection_info(FAULT_CHECKPOINT);
  406. f2fs_stop_checkpoint(sbi, false);
  407. }
  408. /* balance_fs_bg is able to be pending */
  409. if (need && excess_cached_nats(sbi))
  410. f2fs_balance_fs_bg(sbi);
  411. if (f2fs_is_checkpoint_ready(sbi))
  412. return;
  413. /*
  414. * We should do GC or end up with checkpoint, if there are so many dirty
  415. * dir/node pages without enough free segments.
  416. */
  417. if (has_not_enough_free_secs(sbi, 0, 0)) {
  418. mutex_lock(&sbi->gc_mutex);
  419. f2fs_gc(sbi, false, false, NULL_SEGNO);
  420. }
  421. }
  422. void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
  423. {
  424. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  425. return;
  426. /* try to shrink extent cache when there is no enough memory */
  427. if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
  428. f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
  429. /* check the # of cached NAT entries */
  430. if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
  431. f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
  432. if (!f2fs_available_free_memory(sbi, FREE_NIDS))
  433. f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
  434. else
  435. f2fs_build_free_nids(sbi, false, false);
  436. if (!is_idle(sbi, REQ_TIME) &&
  437. (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
  438. return;
  439. /* checkpoint is the only way to shrink partial cached entries */
  440. if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
  441. !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
  442. excess_prefree_segs(sbi) ||
  443. excess_dirty_nats(sbi) ||
  444. excess_dirty_nodes(sbi) ||
  445. f2fs_time_over(sbi, CP_TIME)) {
  446. if (test_opt(sbi, DATA_FLUSH)) {
  447. struct blk_plug plug;
  448. blk_start_plug(&plug);
  449. f2fs_sync_dirty_inodes(sbi, FILE_INODE);
  450. blk_finish_plug(&plug);
  451. }
  452. f2fs_sync_fs(sbi->sb, true);
  453. stat_inc_bg_cp_count(sbi->stat_info);
  454. }
  455. }
  456. static int __submit_flush_wait(struct f2fs_sb_info *sbi,
  457. struct block_device *bdev)
  458. {
  459. struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
  460. int ret;
  461. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  462. bio_set_dev(bio, bdev);
  463. ret = submit_bio_wait(bio);
  464. bio_put(bio);
  465. trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
  466. test_opt(sbi, FLUSH_MERGE), ret);
  467. return ret;
  468. }
  469. static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
  470. {
  471. int ret = 0;
  472. int i;
  473. if (!sbi->s_ndevs)
  474. return __submit_flush_wait(sbi, sbi->sb->s_bdev);
  475. for (i = 0; i < sbi->s_ndevs; i++) {
  476. if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
  477. continue;
  478. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  479. if (ret)
  480. break;
  481. }
  482. return ret;
  483. }
  484. static int issue_flush_thread(void *data)
  485. {
  486. struct f2fs_sb_info *sbi = data;
  487. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  488. wait_queue_head_t *q = &fcc->flush_wait_queue;
  489. repeat:
  490. if (kthread_should_stop())
  491. return 0;
  492. sb_start_intwrite(sbi->sb);
  493. if (!llist_empty(&fcc->issue_list)) {
  494. struct flush_cmd *cmd, *next;
  495. int ret;
  496. fcc->dispatch_list = llist_del_all(&fcc->issue_list);
  497. fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
  498. cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
  499. ret = submit_flush_wait(sbi, cmd->ino);
  500. atomic_inc(&fcc->issued_flush);
  501. llist_for_each_entry_safe(cmd, next,
  502. fcc->dispatch_list, llnode) {
  503. cmd->ret = ret;
  504. complete(&cmd->wait);
  505. }
  506. fcc->dispatch_list = NULL;
  507. }
  508. sb_end_intwrite(sbi->sb);
  509. wait_event_interruptible(*q,
  510. kthread_should_stop() || !llist_empty(&fcc->issue_list));
  511. goto repeat;
  512. }
  513. int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
  514. {
  515. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  516. struct flush_cmd cmd;
  517. int ret;
  518. if (test_opt(sbi, NOBARRIER))
  519. return 0;
  520. if (!test_opt(sbi, FLUSH_MERGE)) {
  521. ret = submit_flush_wait(sbi, ino);
  522. atomic_inc(&fcc->issued_flush);
  523. return ret;
  524. }
  525. if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
  526. ret = submit_flush_wait(sbi, ino);
  527. atomic_dec(&fcc->issing_flush);
  528. atomic_inc(&fcc->issued_flush);
  529. return ret;
  530. }
  531. cmd.ino = ino;
  532. init_completion(&cmd.wait);
  533. llist_add(&cmd.llnode, &fcc->issue_list);
  534. /* update issue_list before we wake up issue_flush thread */
  535. smp_mb();
  536. if (waitqueue_active(&fcc->flush_wait_queue))
  537. wake_up(&fcc->flush_wait_queue);
  538. if (fcc->f2fs_issue_flush) {
  539. wait_for_completion(&cmd.wait);
  540. atomic_dec(&fcc->issing_flush);
  541. } else {
  542. struct llist_node *list;
  543. list = llist_del_all(&fcc->issue_list);
  544. if (!list) {
  545. wait_for_completion(&cmd.wait);
  546. atomic_dec(&fcc->issing_flush);
  547. } else {
  548. struct flush_cmd *tmp, *next;
  549. ret = submit_flush_wait(sbi, ino);
  550. llist_for_each_entry_safe(tmp, next, list, llnode) {
  551. if (tmp == &cmd) {
  552. cmd.ret = ret;
  553. atomic_dec(&fcc->issing_flush);
  554. continue;
  555. }
  556. tmp->ret = ret;
  557. complete(&tmp->wait);
  558. }
  559. }
  560. }
  561. return cmd.ret;
  562. }
  563. int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
  564. {
  565. dev_t dev = sbi->sb->s_bdev->bd_dev;
  566. struct flush_cmd_control *fcc;
  567. int err = 0;
  568. if (SM_I(sbi)->fcc_info) {
  569. fcc = SM_I(sbi)->fcc_info;
  570. if (fcc->f2fs_issue_flush)
  571. return err;
  572. goto init_thread;
  573. }
  574. fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
  575. if (!fcc)
  576. return -ENOMEM;
  577. atomic_set(&fcc->issued_flush, 0);
  578. atomic_set(&fcc->issing_flush, 0);
  579. init_waitqueue_head(&fcc->flush_wait_queue);
  580. init_llist_head(&fcc->issue_list);
  581. SM_I(sbi)->fcc_info = fcc;
  582. if (!test_opt(sbi, FLUSH_MERGE))
  583. return err;
  584. init_thread:
  585. fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
  586. "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
  587. if (IS_ERR(fcc->f2fs_issue_flush)) {
  588. err = PTR_ERR(fcc->f2fs_issue_flush);
  589. kfree(fcc);
  590. SM_I(sbi)->fcc_info = NULL;
  591. return err;
  592. }
  593. return err;
  594. }
  595. void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
  596. {
  597. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  598. if (fcc && fcc->f2fs_issue_flush) {
  599. struct task_struct *flush_thread = fcc->f2fs_issue_flush;
  600. fcc->f2fs_issue_flush = NULL;
  601. kthread_stop(flush_thread);
  602. }
  603. if (free) {
  604. kfree(fcc);
  605. SM_I(sbi)->fcc_info = NULL;
  606. }
  607. }
  608. int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
  609. {
  610. int ret = 0, i;
  611. if (!sbi->s_ndevs)
  612. return 0;
  613. for (i = 1; i < sbi->s_ndevs; i++) {
  614. if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
  615. continue;
  616. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  617. if (ret)
  618. break;
  619. spin_lock(&sbi->dev_lock);
  620. f2fs_clear_bit(i, (char *)&sbi->dirty_device);
  621. spin_unlock(&sbi->dev_lock);
  622. }
  623. return ret;
  624. }
  625. static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  626. enum dirty_type dirty_type)
  627. {
  628. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  629. /* need not be added */
  630. if (IS_CURSEG(sbi, segno))
  631. return;
  632. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  633. dirty_i->nr_dirty[dirty_type]++;
  634. if (dirty_type == DIRTY) {
  635. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  636. enum dirty_type t = sentry->type;
  637. if (unlikely(t >= DIRTY)) {
  638. f2fs_bug_on(sbi, 1);
  639. return;
  640. }
  641. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
  642. dirty_i->nr_dirty[t]++;
  643. }
  644. }
  645. static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  646. enum dirty_type dirty_type)
  647. {
  648. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  649. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  650. dirty_i->nr_dirty[dirty_type]--;
  651. if (dirty_type == DIRTY) {
  652. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  653. enum dirty_type t = sentry->type;
  654. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
  655. dirty_i->nr_dirty[t]--;
  656. if (get_valid_blocks(sbi, segno, true) == 0)
  657. clear_bit(GET_SEC_FROM_SEG(sbi, segno),
  658. dirty_i->victim_secmap);
  659. }
  660. }
  661. /*
  662. * Should not occur error such as -ENOMEM.
  663. * Adding dirty entry into seglist is not critical operation.
  664. * If a given segment is one of current working segments, it won't be added.
  665. */
  666. static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
  667. {
  668. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  669. unsigned short valid_blocks, ckpt_valid_blocks;
  670. if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
  671. return;
  672. mutex_lock(&dirty_i->seglist_lock);
  673. valid_blocks = get_valid_blocks(sbi, segno, false);
  674. ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
  675. if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
  676. ckpt_valid_blocks == sbi->blocks_per_seg)) {
  677. __locate_dirty_segment(sbi, segno, PRE);
  678. __remove_dirty_segment(sbi, segno, DIRTY);
  679. } else if (valid_blocks < sbi->blocks_per_seg) {
  680. __locate_dirty_segment(sbi, segno, DIRTY);
  681. } else {
  682. /* Recovery routine with SSR needs this */
  683. __remove_dirty_segment(sbi, segno, DIRTY);
  684. }
  685. mutex_unlock(&dirty_i->seglist_lock);
  686. }
  687. /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
  688. void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
  689. {
  690. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  691. unsigned int segno;
  692. mutex_lock(&dirty_i->seglist_lock);
  693. for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
  694. if (get_valid_blocks(sbi, segno, false))
  695. continue;
  696. if (IS_CURSEG(sbi, segno))
  697. continue;
  698. __locate_dirty_segment(sbi, segno, PRE);
  699. __remove_dirty_segment(sbi, segno, DIRTY);
  700. }
  701. mutex_unlock(&dirty_i->seglist_lock);
  702. }
  703. int f2fs_disable_cp_again(struct f2fs_sb_info *sbi)
  704. {
  705. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  706. block_t ovp = overprovision_segments(sbi) << sbi->log_blocks_per_seg;
  707. block_t holes[2] = {0, 0}; /* DATA and NODE */
  708. struct seg_entry *se;
  709. unsigned int segno;
  710. mutex_lock(&dirty_i->seglist_lock);
  711. for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
  712. se = get_seg_entry(sbi, segno);
  713. if (IS_NODESEG(se->type))
  714. holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
  715. else
  716. holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
  717. }
  718. mutex_unlock(&dirty_i->seglist_lock);
  719. if (holes[DATA] > ovp || holes[NODE] > ovp)
  720. return -EAGAIN;
  721. return 0;
  722. }
  723. /* This is only used by SBI_CP_DISABLED */
  724. static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
  725. {
  726. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  727. unsigned int segno = 0;
  728. mutex_lock(&dirty_i->seglist_lock);
  729. for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
  730. if (get_valid_blocks(sbi, segno, false))
  731. continue;
  732. if (get_ckpt_valid_blocks(sbi, segno))
  733. continue;
  734. mutex_unlock(&dirty_i->seglist_lock);
  735. return segno;
  736. }
  737. mutex_unlock(&dirty_i->seglist_lock);
  738. return NULL_SEGNO;
  739. }
  740. static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
  741. struct block_device *bdev, block_t lstart,
  742. block_t start, block_t len)
  743. {
  744. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  745. struct list_head *pend_list;
  746. struct discard_cmd *dc;
  747. f2fs_bug_on(sbi, !len);
  748. pend_list = &dcc->pend_list[plist_idx(len)];
  749. dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
  750. INIT_LIST_HEAD(&dc->list);
  751. dc->bdev = bdev;
  752. dc->lstart = lstart;
  753. dc->start = start;
  754. dc->len = len;
  755. dc->ref = 0;
  756. dc->state = D_PREP;
  757. dc->issuing = 0;
  758. dc->error = 0;
  759. init_completion(&dc->wait);
  760. list_add_tail(&dc->list, pend_list);
  761. spin_lock_init(&dc->lock);
  762. dc->bio_ref = 0;
  763. atomic_inc(&dcc->discard_cmd_cnt);
  764. dcc->undiscard_blks += len;
  765. return dc;
  766. }
  767. static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
  768. struct block_device *bdev, block_t lstart,
  769. block_t start, block_t len,
  770. struct rb_node *parent, struct rb_node **p,
  771. bool leftmost)
  772. {
  773. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  774. struct discard_cmd *dc;
  775. dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
  776. rb_link_node(&dc->rb_node, parent, p);
  777. rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
  778. return dc;
  779. }
  780. static void __detach_discard_cmd(struct discard_cmd_control *dcc,
  781. struct discard_cmd *dc)
  782. {
  783. if (dc->state == D_DONE)
  784. atomic_sub(dc->issuing, &dcc->issing_discard);
  785. list_del(&dc->list);
  786. rb_erase_cached(&dc->rb_node, &dcc->root);
  787. dcc->undiscard_blks -= dc->len;
  788. kmem_cache_free(discard_cmd_slab, dc);
  789. atomic_dec(&dcc->discard_cmd_cnt);
  790. }
  791. static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
  792. struct discard_cmd *dc)
  793. {
  794. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  795. unsigned long flags;
  796. trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
  797. spin_lock_irqsave(&dc->lock, flags);
  798. if (dc->bio_ref) {
  799. spin_unlock_irqrestore(&dc->lock, flags);
  800. return;
  801. }
  802. spin_unlock_irqrestore(&dc->lock, flags);
  803. f2fs_bug_on(sbi, dc->ref);
  804. if (dc->error == -EOPNOTSUPP)
  805. dc->error = 0;
  806. if (dc->error)
  807. printk_ratelimited(
  808. "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
  809. KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
  810. __detach_discard_cmd(dcc, dc);
  811. }
  812. static void f2fs_submit_discard_endio(struct bio *bio)
  813. {
  814. struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
  815. unsigned long flags;
  816. dc->error = blk_status_to_errno(bio->bi_status);
  817. spin_lock_irqsave(&dc->lock, flags);
  818. dc->bio_ref--;
  819. if (!dc->bio_ref && dc->state == D_SUBMIT) {
  820. dc->state = D_DONE;
  821. complete_all(&dc->wait);
  822. }
  823. spin_unlock_irqrestore(&dc->lock, flags);
  824. bio_put(bio);
  825. }
  826. static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
  827. block_t start, block_t end)
  828. {
  829. #ifdef CONFIG_F2FS_CHECK_FS
  830. struct seg_entry *sentry;
  831. unsigned int segno;
  832. block_t blk = start;
  833. unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
  834. unsigned long *map;
  835. while (blk < end) {
  836. segno = GET_SEGNO(sbi, blk);
  837. sentry = get_seg_entry(sbi, segno);
  838. offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
  839. if (end < START_BLOCK(sbi, segno + 1))
  840. size = GET_BLKOFF_FROM_SEG0(sbi, end);
  841. else
  842. size = max_blocks;
  843. map = (unsigned long *)(sentry->cur_valid_map);
  844. offset = __find_rev_next_bit(map, size, offset);
  845. f2fs_bug_on(sbi, offset != size);
  846. blk = START_BLOCK(sbi, segno + 1);
  847. }
  848. #endif
  849. }
  850. static void __init_discard_policy(struct f2fs_sb_info *sbi,
  851. struct discard_policy *dpolicy,
  852. int discard_type, unsigned int granularity)
  853. {
  854. /* common policy */
  855. dpolicy->type = discard_type;
  856. dpolicy->sync = true;
  857. dpolicy->ordered = false;
  858. dpolicy->granularity = granularity;
  859. dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
  860. dpolicy->io_aware_gran = MAX_PLIST_NUM;
  861. if (discard_type == DPOLICY_BG) {
  862. dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  863. dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
  864. dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
  865. dpolicy->io_aware = true;
  866. dpolicy->sync = false;
  867. dpolicy->ordered = true;
  868. if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
  869. dpolicy->granularity = 1;
  870. dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  871. }
  872. } else if (discard_type == DPOLICY_FORCE) {
  873. dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  874. dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
  875. dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
  876. dpolicy->io_aware = false;
  877. } else if (discard_type == DPOLICY_FSTRIM) {
  878. dpolicy->io_aware = false;
  879. } else if (discard_type == DPOLICY_UMOUNT) {
  880. dpolicy->max_requests = UINT_MAX;
  881. dpolicy->io_aware = false;
  882. }
  883. }
  884. static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
  885. struct block_device *bdev, block_t lstart,
  886. block_t start, block_t len);
  887. /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
  888. static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
  889. struct discard_policy *dpolicy,
  890. struct discard_cmd *dc,
  891. unsigned int *issued)
  892. {
  893. struct block_device *bdev = dc->bdev;
  894. struct request_queue *q = bdev_get_queue(bdev);
  895. unsigned int max_discard_blocks =
  896. SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
  897. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  898. struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
  899. &(dcc->fstrim_list) : &(dcc->wait_list);
  900. int flag = dpolicy->sync ? REQ_SYNC : 0;
  901. block_t lstart, start, len, total_len;
  902. int err = 0;
  903. if (dc->state != D_PREP)
  904. return 0;
  905. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  906. return 0;
  907. trace_f2fs_issue_discard(bdev, dc->start, dc->len);
  908. lstart = dc->lstart;
  909. start = dc->start;
  910. len = dc->len;
  911. total_len = len;
  912. dc->len = 0;
  913. while (total_len && *issued < dpolicy->max_requests && !err) {
  914. struct bio *bio = NULL;
  915. unsigned long flags;
  916. bool last = true;
  917. if (len > max_discard_blocks) {
  918. len = max_discard_blocks;
  919. last = false;
  920. }
  921. (*issued)++;
  922. if (*issued == dpolicy->max_requests)
  923. last = true;
  924. dc->len += len;
  925. if (time_to_inject(sbi, FAULT_DISCARD)) {
  926. f2fs_show_injection_info(FAULT_DISCARD);
  927. err = -EIO;
  928. goto submit;
  929. }
  930. err = __blkdev_issue_discard(bdev,
  931. SECTOR_FROM_BLOCK(start),
  932. SECTOR_FROM_BLOCK(len),
  933. GFP_NOFS, 0, &bio);
  934. submit:
  935. if (err) {
  936. spin_lock_irqsave(&dc->lock, flags);
  937. if (dc->state == D_PARTIAL)
  938. dc->state = D_SUBMIT;
  939. spin_unlock_irqrestore(&dc->lock, flags);
  940. break;
  941. }
  942. f2fs_bug_on(sbi, !bio);
  943. /*
  944. * should keep before submission to avoid D_DONE
  945. * right away
  946. */
  947. spin_lock_irqsave(&dc->lock, flags);
  948. if (last)
  949. dc->state = D_SUBMIT;
  950. else
  951. dc->state = D_PARTIAL;
  952. dc->bio_ref++;
  953. spin_unlock_irqrestore(&dc->lock, flags);
  954. atomic_inc(&dcc->issing_discard);
  955. dc->issuing++;
  956. list_move_tail(&dc->list, wait_list);
  957. /* sanity check on discard range */
  958. __check_sit_bitmap(sbi, start, start + len);
  959. bio->bi_private = dc;
  960. bio->bi_end_io = f2fs_submit_discard_endio;
  961. bio->bi_opf |= flag;
  962. submit_bio(bio);
  963. atomic_inc(&dcc->issued_discard);
  964. f2fs_update_iostat(sbi, FS_DISCARD, 1);
  965. lstart += len;
  966. start += len;
  967. total_len -= len;
  968. len = total_len;
  969. }
  970. if (!err && len)
  971. __update_discard_tree_range(sbi, bdev, lstart, start, len);
  972. return err;
  973. }
  974. static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
  975. struct block_device *bdev, block_t lstart,
  976. block_t start, block_t len,
  977. struct rb_node **insert_p,
  978. struct rb_node *insert_parent)
  979. {
  980. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  981. struct rb_node **p;
  982. struct rb_node *parent = NULL;
  983. struct discard_cmd *dc = NULL;
  984. bool leftmost = true;
  985. if (insert_p && insert_parent) {
  986. parent = insert_parent;
  987. p = insert_p;
  988. goto do_insert;
  989. }
  990. p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
  991. lstart, &leftmost);
  992. do_insert:
  993. dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
  994. p, leftmost);
  995. if (!dc)
  996. return NULL;
  997. return dc;
  998. }
  999. static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
  1000. struct discard_cmd *dc)
  1001. {
  1002. list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
  1003. }
  1004. static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
  1005. struct discard_cmd *dc, block_t blkaddr)
  1006. {
  1007. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1008. struct discard_info di = dc->di;
  1009. bool modified = false;
  1010. if (dc->state == D_DONE || dc->len == 1) {
  1011. __remove_discard_cmd(sbi, dc);
  1012. return;
  1013. }
  1014. dcc->undiscard_blks -= di.len;
  1015. if (blkaddr > di.lstart) {
  1016. dc->len = blkaddr - dc->lstart;
  1017. dcc->undiscard_blks += dc->len;
  1018. __relocate_discard_cmd(dcc, dc);
  1019. modified = true;
  1020. }
  1021. if (blkaddr < di.lstart + di.len - 1) {
  1022. if (modified) {
  1023. __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
  1024. di.start + blkaddr + 1 - di.lstart,
  1025. di.lstart + di.len - 1 - blkaddr,
  1026. NULL, NULL);
  1027. } else {
  1028. dc->lstart++;
  1029. dc->len--;
  1030. dc->start++;
  1031. dcc->undiscard_blks += dc->len;
  1032. __relocate_discard_cmd(dcc, dc);
  1033. }
  1034. }
  1035. }
  1036. static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
  1037. struct block_device *bdev, block_t lstart,
  1038. block_t start, block_t len)
  1039. {
  1040. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1041. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  1042. struct discard_cmd *dc;
  1043. struct discard_info di = {0};
  1044. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  1045. struct request_queue *q = bdev_get_queue(bdev);
  1046. unsigned int max_discard_blocks =
  1047. SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
  1048. block_t end = lstart + len;
  1049. dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
  1050. NULL, lstart,
  1051. (struct rb_entry **)&prev_dc,
  1052. (struct rb_entry **)&next_dc,
  1053. &insert_p, &insert_parent, true, NULL);
  1054. if (dc)
  1055. prev_dc = dc;
  1056. if (!prev_dc) {
  1057. di.lstart = lstart;
  1058. di.len = next_dc ? next_dc->lstart - lstart : len;
  1059. di.len = min(di.len, len);
  1060. di.start = start;
  1061. }
  1062. while (1) {
  1063. struct rb_node *node;
  1064. bool merged = false;
  1065. struct discard_cmd *tdc = NULL;
  1066. if (prev_dc) {
  1067. di.lstart = prev_dc->lstart + prev_dc->len;
  1068. if (di.lstart < lstart)
  1069. di.lstart = lstart;
  1070. if (di.lstart >= end)
  1071. break;
  1072. if (!next_dc || next_dc->lstart > end)
  1073. di.len = end - di.lstart;
  1074. else
  1075. di.len = next_dc->lstart - di.lstart;
  1076. di.start = start + di.lstart - lstart;
  1077. }
  1078. if (!di.len)
  1079. goto next;
  1080. if (prev_dc && prev_dc->state == D_PREP &&
  1081. prev_dc->bdev == bdev &&
  1082. __is_discard_back_mergeable(&di, &prev_dc->di,
  1083. max_discard_blocks)) {
  1084. prev_dc->di.len += di.len;
  1085. dcc->undiscard_blks += di.len;
  1086. __relocate_discard_cmd(dcc, prev_dc);
  1087. di = prev_dc->di;
  1088. tdc = prev_dc;
  1089. merged = true;
  1090. }
  1091. if (next_dc && next_dc->state == D_PREP &&
  1092. next_dc->bdev == bdev &&
  1093. __is_discard_front_mergeable(&di, &next_dc->di,
  1094. max_discard_blocks)) {
  1095. next_dc->di.lstart = di.lstart;
  1096. next_dc->di.len += di.len;
  1097. next_dc->di.start = di.start;
  1098. dcc->undiscard_blks += di.len;
  1099. __relocate_discard_cmd(dcc, next_dc);
  1100. if (tdc)
  1101. __remove_discard_cmd(sbi, tdc);
  1102. merged = true;
  1103. }
  1104. if (!merged) {
  1105. __insert_discard_tree(sbi, bdev, di.lstart, di.start,
  1106. di.len, NULL, NULL);
  1107. }
  1108. next:
  1109. prev_dc = next_dc;
  1110. if (!prev_dc)
  1111. break;
  1112. node = rb_next(&prev_dc->rb_node);
  1113. next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  1114. }
  1115. }
  1116. static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
  1117. struct block_device *bdev, block_t blkstart, block_t blklen)
  1118. {
  1119. block_t lblkstart = blkstart;
  1120. trace_f2fs_queue_discard(bdev, blkstart, blklen);
  1121. if (sbi->s_ndevs) {
  1122. int devi = f2fs_target_device_index(sbi, blkstart);
  1123. blkstart -= FDEV(devi).start_blk;
  1124. }
  1125. mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
  1126. __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
  1127. mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
  1128. return 0;
  1129. }
  1130. static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
  1131. struct discard_policy *dpolicy)
  1132. {
  1133. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1134. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  1135. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  1136. struct discard_cmd *dc;
  1137. struct blk_plug plug;
  1138. unsigned int pos = dcc->next_pos;
  1139. unsigned int issued = 0;
  1140. bool io_interrupted = false;
  1141. mutex_lock(&dcc->cmd_lock);
  1142. dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
  1143. NULL, pos,
  1144. (struct rb_entry **)&prev_dc,
  1145. (struct rb_entry **)&next_dc,
  1146. &insert_p, &insert_parent, true, NULL);
  1147. if (!dc)
  1148. dc = next_dc;
  1149. blk_start_plug(&plug);
  1150. while (dc) {
  1151. struct rb_node *node;
  1152. int err = 0;
  1153. if (dc->state != D_PREP)
  1154. goto next;
  1155. if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
  1156. io_interrupted = true;
  1157. break;
  1158. }
  1159. dcc->next_pos = dc->lstart + dc->len;
  1160. err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
  1161. if (issued >= dpolicy->max_requests)
  1162. break;
  1163. next:
  1164. node = rb_next(&dc->rb_node);
  1165. if (err)
  1166. __remove_discard_cmd(sbi, dc);
  1167. dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  1168. }
  1169. blk_finish_plug(&plug);
  1170. if (!dc)
  1171. dcc->next_pos = 0;
  1172. mutex_unlock(&dcc->cmd_lock);
  1173. if (!issued && io_interrupted)
  1174. issued = -1;
  1175. return issued;
  1176. }
  1177. static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
  1178. struct discard_policy *dpolicy)
  1179. {
  1180. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1181. struct list_head *pend_list;
  1182. struct discard_cmd *dc, *tmp;
  1183. struct blk_plug plug;
  1184. int i, issued = 0;
  1185. bool io_interrupted = false;
  1186. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  1187. if (i + 1 < dpolicy->granularity)
  1188. break;
  1189. if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
  1190. return __issue_discard_cmd_orderly(sbi, dpolicy);
  1191. pend_list = &dcc->pend_list[i];
  1192. mutex_lock(&dcc->cmd_lock);
  1193. if (list_empty(pend_list))
  1194. goto next;
  1195. if (unlikely(dcc->rbtree_check))
  1196. f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
  1197. &dcc->root));
  1198. blk_start_plug(&plug);
  1199. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  1200. f2fs_bug_on(sbi, dc->state != D_PREP);
  1201. if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
  1202. !is_idle(sbi, DISCARD_TIME)) {
  1203. io_interrupted = true;
  1204. break;
  1205. }
  1206. __submit_discard_cmd(sbi, dpolicy, dc, &issued);
  1207. if (issued >= dpolicy->max_requests)
  1208. break;
  1209. }
  1210. blk_finish_plug(&plug);
  1211. next:
  1212. mutex_unlock(&dcc->cmd_lock);
  1213. if (issued >= dpolicy->max_requests || io_interrupted)
  1214. break;
  1215. }
  1216. if (!issued && io_interrupted)
  1217. issued = -1;
  1218. return issued;
  1219. }
  1220. static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
  1221. {
  1222. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1223. struct list_head *pend_list;
  1224. struct discard_cmd *dc, *tmp;
  1225. int i;
  1226. bool dropped = false;
  1227. mutex_lock(&dcc->cmd_lock);
  1228. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  1229. pend_list = &dcc->pend_list[i];
  1230. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  1231. f2fs_bug_on(sbi, dc->state != D_PREP);
  1232. __remove_discard_cmd(sbi, dc);
  1233. dropped = true;
  1234. }
  1235. }
  1236. mutex_unlock(&dcc->cmd_lock);
  1237. return dropped;
  1238. }
  1239. void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
  1240. {
  1241. __drop_discard_cmd(sbi);
  1242. }
  1243. static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
  1244. struct discard_cmd *dc)
  1245. {
  1246. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1247. unsigned int len = 0;
  1248. wait_for_completion_io(&dc->wait);
  1249. mutex_lock(&dcc->cmd_lock);
  1250. f2fs_bug_on(sbi, dc->state != D_DONE);
  1251. dc->ref--;
  1252. if (!dc->ref) {
  1253. if (!dc->error)
  1254. len = dc->len;
  1255. __remove_discard_cmd(sbi, dc);
  1256. }
  1257. mutex_unlock(&dcc->cmd_lock);
  1258. return len;
  1259. }
  1260. static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
  1261. struct discard_policy *dpolicy,
  1262. block_t start, block_t end)
  1263. {
  1264. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1265. struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
  1266. &(dcc->fstrim_list) : &(dcc->wait_list);
  1267. struct discard_cmd *dc, *tmp;
  1268. bool need_wait;
  1269. unsigned int trimmed = 0;
  1270. next:
  1271. need_wait = false;
  1272. mutex_lock(&dcc->cmd_lock);
  1273. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  1274. if (dc->lstart + dc->len <= start || end <= dc->lstart)
  1275. continue;
  1276. if (dc->len < dpolicy->granularity)
  1277. continue;
  1278. if (dc->state == D_DONE && !dc->ref) {
  1279. wait_for_completion_io(&dc->wait);
  1280. if (!dc->error)
  1281. trimmed += dc->len;
  1282. __remove_discard_cmd(sbi, dc);
  1283. } else {
  1284. dc->ref++;
  1285. need_wait = true;
  1286. break;
  1287. }
  1288. }
  1289. mutex_unlock(&dcc->cmd_lock);
  1290. if (need_wait) {
  1291. trimmed += __wait_one_discard_bio(sbi, dc);
  1292. goto next;
  1293. }
  1294. return trimmed;
  1295. }
  1296. static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
  1297. struct discard_policy *dpolicy)
  1298. {
  1299. struct discard_policy dp;
  1300. unsigned int discard_blks;
  1301. if (dpolicy)
  1302. return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
  1303. /* wait all */
  1304. __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
  1305. discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
  1306. __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
  1307. discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
  1308. return discard_blks;
  1309. }
  1310. /* This should be covered by global mutex, &sit_i->sentry_lock */
  1311. static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
  1312. {
  1313. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1314. struct discard_cmd *dc;
  1315. bool need_wait = false;
  1316. mutex_lock(&dcc->cmd_lock);
  1317. dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
  1318. NULL, blkaddr);
  1319. if (dc) {
  1320. if (dc->state == D_PREP) {
  1321. __punch_discard_cmd(sbi, dc, blkaddr);
  1322. } else {
  1323. dc->ref++;
  1324. need_wait = true;
  1325. }
  1326. }
  1327. mutex_unlock(&dcc->cmd_lock);
  1328. if (need_wait)
  1329. __wait_one_discard_bio(sbi, dc);
  1330. }
  1331. void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
  1332. {
  1333. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1334. if (dcc && dcc->f2fs_issue_discard) {
  1335. struct task_struct *discard_thread = dcc->f2fs_issue_discard;
  1336. dcc->f2fs_issue_discard = NULL;
  1337. kthread_stop(discard_thread);
  1338. }
  1339. }
  1340. /* This comes from f2fs_put_super */
  1341. bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
  1342. {
  1343. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1344. struct discard_policy dpolicy;
  1345. bool dropped;
  1346. __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
  1347. dcc->discard_granularity);
  1348. __issue_discard_cmd(sbi, &dpolicy);
  1349. dropped = __drop_discard_cmd(sbi);
  1350. /* just to make sure there is no pending discard commands */
  1351. __wait_all_discard_cmd(sbi, NULL);
  1352. f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
  1353. return dropped;
  1354. }
  1355. static int issue_discard_thread(void *data)
  1356. {
  1357. struct f2fs_sb_info *sbi = data;
  1358. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1359. wait_queue_head_t *q = &dcc->discard_wait_queue;
  1360. struct discard_policy dpolicy;
  1361. unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
  1362. int issued;
  1363. set_freezable();
  1364. do {
  1365. __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
  1366. dcc->discard_granularity);
  1367. wait_event_interruptible_timeout(*q,
  1368. kthread_should_stop() || freezing(current) ||
  1369. dcc->discard_wake,
  1370. msecs_to_jiffies(wait_ms));
  1371. if (dcc->discard_wake)
  1372. dcc->discard_wake = 0;
  1373. if (try_to_freeze())
  1374. continue;
  1375. if (f2fs_readonly(sbi->sb))
  1376. continue;
  1377. if (kthread_should_stop())
  1378. return 0;
  1379. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  1380. wait_ms = dpolicy.max_interval;
  1381. continue;
  1382. }
  1383. if (sbi->gc_mode == GC_URGENT)
  1384. __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
  1385. sb_start_intwrite(sbi->sb);
  1386. issued = __issue_discard_cmd(sbi, &dpolicy);
  1387. if (issued > 0) {
  1388. __wait_all_discard_cmd(sbi, &dpolicy);
  1389. wait_ms = dpolicy.min_interval;
  1390. } else if (issued == -1){
  1391. wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
  1392. if (!wait_ms)
  1393. wait_ms = dpolicy.mid_interval;
  1394. } else {
  1395. wait_ms = dpolicy.max_interval;
  1396. }
  1397. sb_end_intwrite(sbi->sb);
  1398. } while (!kthread_should_stop());
  1399. return 0;
  1400. }
  1401. #ifdef CONFIG_BLK_DEV_ZONED
  1402. static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
  1403. struct block_device *bdev, block_t blkstart, block_t blklen)
  1404. {
  1405. sector_t sector, nr_sects;
  1406. block_t lblkstart = blkstart;
  1407. int devi = 0;
  1408. if (sbi->s_ndevs) {
  1409. devi = f2fs_target_device_index(sbi, blkstart);
  1410. blkstart -= FDEV(devi).start_blk;
  1411. }
  1412. /*
  1413. * We need to know the type of the zone: for conventional zones,
  1414. * use regular discard if the drive supports it. For sequential
  1415. * zones, reset the zone write pointer.
  1416. */
  1417. switch (get_blkz_type(sbi, bdev, blkstart)) {
  1418. case BLK_ZONE_TYPE_CONVENTIONAL:
  1419. if (!blk_queue_discard(bdev_get_queue(bdev)))
  1420. return 0;
  1421. return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
  1422. case BLK_ZONE_TYPE_SEQWRITE_REQ:
  1423. case BLK_ZONE_TYPE_SEQWRITE_PREF:
  1424. sector = SECTOR_FROM_BLOCK(blkstart);
  1425. nr_sects = SECTOR_FROM_BLOCK(blklen);
  1426. if (sector & (bdev_zone_sectors(bdev) - 1) ||
  1427. nr_sects != bdev_zone_sectors(bdev)) {
  1428. f2fs_msg(sbi->sb, KERN_INFO,
  1429. "(%d) %s: Unaligned discard attempted (block %x + %x)",
  1430. devi, sbi->s_ndevs ? FDEV(devi).path: "",
  1431. blkstart, blklen);
  1432. return -EIO;
  1433. }
  1434. trace_f2fs_issue_reset_zone(bdev, blkstart);
  1435. return blkdev_reset_zones(bdev, sector,
  1436. nr_sects, GFP_NOFS);
  1437. default:
  1438. /* Unknown zone type: broken device ? */
  1439. return -EIO;
  1440. }
  1441. }
  1442. #endif
  1443. static int __issue_discard_async(struct f2fs_sb_info *sbi,
  1444. struct block_device *bdev, block_t blkstart, block_t blklen)
  1445. {
  1446. #ifdef CONFIG_BLK_DEV_ZONED
  1447. if (f2fs_sb_has_blkzoned(sbi->sb) &&
  1448. bdev_zoned_model(bdev) != BLK_ZONED_NONE)
  1449. return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
  1450. #endif
  1451. return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
  1452. }
  1453. static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
  1454. block_t blkstart, block_t blklen)
  1455. {
  1456. sector_t start = blkstart, len = 0;
  1457. struct block_device *bdev;
  1458. struct seg_entry *se;
  1459. unsigned int offset;
  1460. block_t i;
  1461. int err = 0;
  1462. bdev = f2fs_target_device(sbi, blkstart, NULL);
  1463. for (i = blkstart; i < blkstart + blklen; i++, len++) {
  1464. if (i != start) {
  1465. struct block_device *bdev2 =
  1466. f2fs_target_device(sbi, i, NULL);
  1467. if (bdev2 != bdev) {
  1468. err = __issue_discard_async(sbi, bdev,
  1469. start, len);
  1470. if (err)
  1471. return err;
  1472. bdev = bdev2;
  1473. start = i;
  1474. len = 0;
  1475. }
  1476. }
  1477. se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
  1478. offset = GET_BLKOFF_FROM_SEG0(sbi, i);
  1479. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  1480. sbi->discard_blks--;
  1481. }
  1482. if (len)
  1483. err = __issue_discard_async(sbi, bdev, start, len);
  1484. return err;
  1485. }
  1486. static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
  1487. bool check_only)
  1488. {
  1489. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1490. int max_blocks = sbi->blocks_per_seg;
  1491. struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
  1492. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1493. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1494. unsigned long *discard_map = (unsigned long *)se->discard_map;
  1495. unsigned long *dmap = SIT_I(sbi)->tmp_map;
  1496. unsigned int start = 0, end = -1;
  1497. bool force = (cpc->reason & CP_DISCARD);
  1498. struct discard_entry *de = NULL;
  1499. struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
  1500. int i;
  1501. if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
  1502. return false;
  1503. if (!force) {
  1504. if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
  1505. SM_I(sbi)->dcc_info->nr_discards >=
  1506. SM_I(sbi)->dcc_info->max_discards)
  1507. return false;
  1508. }
  1509. /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
  1510. for (i = 0; i < entries; i++)
  1511. dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
  1512. (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
  1513. while (force || SM_I(sbi)->dcc_info->nr_discards <=
  1514. SM_I(sbi)->dcc_info->max_discards) {
  1515. start = __find_rev_next_bit(dmap, max_blocks, end + 1);
  1516. if (start >= max_blocks)
  1517. break;
  1518. end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
  1519. if (force && start && end != max_blocks
  1520. && (end - start) < cpc->trim_minlen)
  1521. continue;
  1522. if (check_only)
  1523. return true;
  1524. if (!de) {
  1525. de = f2fs_kmem_cache_alloc(discard_entry_slab,
  1526. GFP_F2FS_ZERO);
  1527. de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
  1528. list_add_tail(&de->list, head);
  1529. }
  1530. for (i = start; i < end; i++)
  1531. __set_bit_le(i, (void *)de->discard_map);
  1532. SM_I(sbi)->dcc_info->nr_discards += end - start;
  1533. }
  1534. return false;
  1535. }
  1536. static void release_discard_addr(struct discard_entry *entry)
  1537. {
  1538. list_del(&entry->list);
  1539. kmem_cache_free(discard_entry_slab, entry);
  1540. }
  1541. void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
  1542. {
  1543. struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
  1544. struct discard_entry *entry, *this;
  1545. /* drop caches */
  1546. list_for_each_entry_safe(entry, this, head, list)
  1547. release_discard_addr(entry);
  1548. }
  1549. /*
  1550. * Should call f2fs_clear_prefree_segments after checkpoint is done.
  1551. */
  1552. static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
  1553. {
  1554. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1555. unsigned int segno;
  1556. mutex_lock(&dirty_i->seglist_lock);
  1557. for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
  1558. __set_test_and_free(sbi, segno);
  1559. mutex_unlock(&dirty_i->seglist_lock);
  1560. }
  1561. void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
  1562. struct cp_control *cpc)
  1563. {
  1564. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1565. struct list_head *head = &dcc->entry_list;
  1566. struct discard_entry *entry, *this;
  1567. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1568. unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
  1569. unsigned int start = 0, end = -1;
  1570. unsigned int secno, start_segno;
  1571. bool force = (cpc->reason & CP_DISCARD);
  1572. bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
  1573. mutex_lock(&dirty_i->seglist_lock);
  1574. while (1) {
  1575. int i;
  1576. if (need_align && end != -1)
  1577. end--;
  1578. start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
  1579. if (start >= MAIN_SEGS(sbi))
  1580. break;
  1581. end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
  1582. start + 1);
  1583. if (need_align) {
  1584. start = rounddown(start, sbi->segs_per_sec);
  1585. end = roundup(end, sbi->segs_per_sec);
  1586. }
  1587. for (i = start; i < end; i++) {
  1588. if (test_and_clear_bit(i, prefree_map))
  1589. dirty_i->nr_dirty[PRE]--;
  1590. }
  1591. if (!f2fs_realtime_discard_enable(sbi))
  1592. continue;
  1593. if (force && start >= cpc->trim_start &&
  1594. (end - 1) <= cpc->trim_end)
  1595. continue;
  1596. if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
  1597. f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
  1598. (end - start) << sbi->log_blocks_per_seg);
  1599. continue;
  1600. }
  1601. next:
  1602. secno = GET_SEC_FROM_SEG(sbi, start);
  1603. start_segno = GET_SEG_FROM_SEC(sbi, secno);
  1604. if (!IS_CURSEC(sbi, secno) &&
  1605. !get_valid_blocks(sbi, start, true))
  1606. f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
  1607. sbi->segs_per_sec << sbi->log_blocks_per_seg);
  1608. start = start_segno + sbi->segs_per_sec;
  1609. if (start < end)
  1610. goto next;
  1611. else
  1612. end = start - 1;
  1613. }
  1614. mutex_unlock(&dirty_i->seglist_lock);
  1615. /* send small discards */
  1616. list_for_each_entry_safe(entry, this, head, list) {
  1617. unsigned int cur_pos = 0, next_pos, len, total_len = 0;
  1618. bool is_valid = test_bit_le(0, entry->discard_map);
  1619. find_next:
  1620. if (is_valid) {
  1621. next_pos = find_next_zero_bit_le(entry->discard_map,
  1622. sbi->blocks_per_seg, cur_pos);
  1623. len = next_pos - cur_pos;
  1624. if (f2fs_sb_has_blkzoned(sbi->sb) ||
  1625. (force && len < cpc->trim_minlen))
  1626. goto skip;
  1627. f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
  1628. len);
  1629. total_len += len;
  1630. } else {
  1631. next_pos = find_next_bit_le(entry->discard_map,
  1632. sbi->blocks_per_seg, cur_pos);
  1633. }
  1634. skip:
  1635. cur_pos = next_pos;
  1636. is_valid = !is_valid;
  1637. if (cur_pos < sbi->blocks_per_seg)
  1638. goto find_next;
  1639. release_discard_addr(entry);
  1640. dcc->nr_discards -= total_len;
  1641. }
  1642. wake_up_discard_thread(sbi, false);
  1643. }
  1644. static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
  1645. {
  1646. dev_t dev = sbi->sb->s_bdev->bd_dev;
  1647. struct discard_cmd_control *dcc;
  1648. int err = 0, i;
  1649. if (SM_I(sbi)->dcc_info) {
  1650. dcc = SM_I(sbi)->dcc_info;
  1651. goto init_thread;
  1652. }
  1653. dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
  1654. if (!dcc)
  1655. return -ENOMEM;
  1656. dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
  1657. INIT_LIST_HEAD(&dcc->entry_list);
  1658. for (i = 0; i < MAX_PLIST_NUM; i++)
  1659. INIT_LIST_HEAD(&dcc->pend_list[i]);
  1660. INIT_LIST_HEAD(&dcc->wait_list);
  1661. INIT_LIST_HEAD(&dcc->fstrim_list);
  1662. mutex_init(&dcc->cmd_lock);
  1663. atomic_set(&dcc->issued_discard, 0);
  1664. atomic_set(&dcc->issing_discard, 0);
  1665. atomic_set(&dcc->discard_cmd_cnt, 0);
  1666. dcc->nr_discards = 0;
  1667. dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
  1668. dcc->undiscard_blks = 0;
  1669. dcc->next_pos = 0;
  1670. dcc->root = RB_ROOT_CACHED;
  1671. dcc->rbtree_check = false;
  1672. init_waitqueue_head(&dcc->discard_wait_queue);
  1673. SM_I(sbi)->dcc_info = dcc;
  1674. init_thread:
  1675. dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
  1676. "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
  1677. if (IS_ERR(dcc->f2fs_issue_discard)) {
  1678. err = PTR_ERR(dcc->f2fs_issue_discard);
  1679. kfree(dcc);
  1680. SM_I(sbi)->dcc_info = NULL;
  1681. return err;
  1682. }
  1683. return err;
  1684. }
  1685. static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
  1686. {
  1687. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1688. if (!dcc)
  1689. return;
  1690. f2fs_stop_discard_thread(sbi);
  1691. kfree(dcc);
  1692. SM_I(sbi)->dcc_info = NULL;
  1693. }
  1694. static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
  1695. {
  1696. struct sit_info *sit_i = SIT_I(sbi);
  1697. if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
  1698. sit_i->dirty_sentries++;
  1699. return false;
  1700. }
  1701. return true;
  1702. }
  1703. static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
  1704. unsigned int segno, int modified)
  1705. {
  1706. struct seg_entry *se = get_seg_entry(sbi, segno);
  1707. se->type = type;
  1708. if (modified)
  1709. __mark_sit_entry_dirty(sbi, segno);
  1710. }
  1711. static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
  1712. {
  1713. struct seg_entry *se;
  1714. unsigned int segno, offset;
  1715. long int new_vblocks;
  1716. bool exist;
  1717. #ifdef CONFIG_F2FS_CHECK_FS
  1718. bool mir_exist;
  1719. #endif
  1720. segno = GET_SEGNO(sbi, blkaddr);
  1721. se = get_seg_entry(sbi, segno);
  1722. new_vblocks = se->valid_blocks + del;
  1723. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1724. f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
  1725. (new_vblocks > sbi->blocks_per_seg)));
  1726. se->valid_blocks = new_vblocks;
  1727. se->mtime = get_mtime(sbi, false);
  1728. if (se->mtime > SIT_I(sbi)->max_mtime)
  1729. SIT_I(sbi)->max_mtime = se->mtime;
  1730. /* Update valid block bitmap */
  1731. if (del > 0) {
  1732. exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
  1733. #ifdef CONFIG_F2FS_CHECK_FS
  1734. mir_exist = f2fs_test_and_set_bit(offset,
  1735. se->cur_valid_map_mir);
  1736. if (unlikely(exist != mir_exist)) {
  1737. f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
  1738. "when setting bitmap, blk:%u, old bit:%d",
  1739. blkaddr, exist);
  1740. f2fs_bug_on(sbi, 1);
  1741. }
  1742. #endif
  1743. if (unlikely(exist)) {
  1744. f2fs_msg(sbi->sb, KERN_ERR,
  1745. "Bitmap was wrongly set, blk:%u", blkaddr);
  1746. f2fs_bug_on(sbi, 1);
  1747. se->valid_blocks--;
  1748. del = 0;
  1749. }
  1750. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  1751. sbi->discard_blks--;
  1752. /* don't overwrite by SSR to keep node chain */
  1753. if (IS_NODESEG(se->type) &&
  1754. !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
  1755. if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
  1756. se->ckpt_valid_blocks++;
  1757. }
  1758. } else {
  1759. exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
  1760. #ifdef CONFIG_F2FS_CHECK_FS
  1761. mir_exist = f2fs_test_and_clear_bit(offset,
  1762. se->cur_valid_map_mir);
  1763. if (unlikely(exist != mir_exist)) {
  1764. f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
  1765. "when clearing bitmap, blk:%u, old bit:%d",
  1766. blkaddr, exist);
  1767. f2fs_bug_on(sbi, 1);
  1768. }
  1769. #endif
  1770. if (unlikely(!exist)) {
  1771. f2fs_msg(sbi->sb, KERN_ERR,
  1772. "Bitmap was wrongly cleared, blk:%u", blkaddr);
  1773. f2fs_bug_on(sbi, 1);
  1774. se->valid_blocks++;
  1775. del = 0;
  1776. } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
  1777. /*
  1778. * If checkpoints are off, we must not reuse data that
  1779. * was used in the previous checkpoint. If it was used
  1780. * before, we must track that to know how much space we
  1781. * really have.
  1782. */
  1783. if (f2fs_test_bit(offset, se->ckpt_valid_map))
  1784. sbi->unusable_block_count++;
  1785. }
  1786. if (f2fs_test_and_clear_bit(offset, se->discard_map))
  1787. sbi->discard_blks++;
  1788. }
  1789. if (!f2fs_test_bit(offset, se->ckpt_valid_map))
  1790. se->ckpt_valid_blocks += del;
  1791. __mark_sit_entry_dirty(sbi, segno);
  1792. /* update total number of valid blocks to be written in ckpt area */
  1793. SIT_I(sbi)->written_valid_blocks += del;
  1794. if (sbi->segs_per_sec > 1)
  1795. get_sec_entry(sbi, segno)->valid_blocks += del;
  1796. }
  1797. void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
  1798. {
  1799. unsigned int segno = GET_SEGNO(sbi, addr);
  1800. struct sit_info *sit_i = SIT_I(sbi);
  1801. f2fs_bug_on(sbi, addr == NULL_ADDR);
  1802. if (addr == NEW_ADDR)
  1803. return;
  1804. invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
  1805. /* add it into sit main buffer */
  1806. down_write(&sit_i->sentry_lock);
  1807. update_sit_entry(sbi, addr, -1);
  1808. /* add it into dirty seglist */
  1809. locate_dirty_segment(sbi, segno);
  1810. up_write(&sit_i->sentry_lock);
  1811. }
  1812. bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
  1813. {
  1814. struct sit_info *sit_i = SIT_I(sbi);
  1815. unsigned int segno, offset;
  1816. struct seg_entry *se;
  1817. bool is_cp = false;
  1818. if (!is_valid_data_blkaddr(sbi, blkaddr))
  1819. return true;
  1820. down_read(&sit_i->sentry_lock);
  1821. segno = GET_SEGNO(sbi, blkaddr);
  1822. se = get_seg_entry(sbi, segno);
  1823. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1824. if (f2fs_test_bit(offset, se->ckpt_valid_map))
  1825. is_cp = true;
  1826. up_read(&sit_i->sentry_lock);
  1827. return is_cp;
  1828. }
  1829. /*
  1830. * This function should be resided under the curseg_mutex lock
  1831. */
  1832. static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
  1833. struct f2fs_summary *sum)
  1834. {
  1835. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1836. void *addr = curseg->sum_blk;
  1837. addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
  1838. memcpy(addr, sum, sizeof(struct f2fs_summary));
  1839. }
  1840. /*
  1841. * Calculate the number of current summary pages for writing
  1842. */
  1843. int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
  1844. {
  1845. int valid_sum_count = 0;
  1846. int i, sum_in_page;
  1847. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1848. if (sbi->ckpt->alloc_type[i] == SSR)
  1849. valid_sum_count += sbi->blocks_per_seg;
  1850. else {
  1851. if (for_ra)
  1852. valid_sum_count += le16_to_cpu(
  1853. F2FS_CKPT(sbi)->cur_data_blkoff[i]);
  1854. else
  1855. valid_sum_count += curseg_blkoff(sbi, i);
  1856. }
  1857. }
  1858. sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
  1859. SUM_FOOTER_SIZE) / SUMMARY_SIZE;
  1860. if (valid_sum_count <= sum_in_page)
  1861. return 1;
  1862. else if ((valid_sum_count - sum_in_page) <=
  1863. (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
  1864. return 2;
  1865. return 3;
  1866. }
  1867. /*
  1868. * Caller should put this summary page
  1869. */
  1870. struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
  1871. {
  1872. return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
  1873. }
  1874. void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
  1875. void *src, block_t blk_addr)
  1876. {
  1877. struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
  1878. memcpy(page_address(page), src, PAGE_SIZE);
  1879. set_page_dirty(page);
  1880. f2fs_put_page(page, 1);
  1881. }
  1882. static void write_sum_page(struct f2fs_sb_info *sbi,
  1883. struct f2fs_summary_block *sum_blk, block_t blk_addr)
  1884. {
  1885. f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
  1886. }
  1887. static void write_current_sum_page(struct f2fs_sb_info *sbi,
  1888. int type, block_t blk_addr)
  1889. {
  1890. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1891. struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
  1892. struct f2fs_summary_block *src = curseg->sum_blk;
  1893. struct f2fs_summary_block *dst;
  1894. dst = (struct f2fs_summary_block *)page_address(page);
  1895. memset(dst, 0, PAGE_SIZE);
  1896. mutex_lock(&curseg->curseg_mutex);
  1897. down_read(&curseg->journal_rwsem);
  1898. memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
  1899. up_read(&curseg->journal_rwsem);
  1900. memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
  1901. memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
  1902. mutex_unlock(&curseg->curseg_mutex);
  1903. set_page_dirty(page);
  1904. f2fs_put_page(page, 1);
  1905. }
  1906. static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
  1907. {
  1908. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1909. unsigned int segno = curseg->segno + 1;
  1910. struct free_segmap_info *free_i = FREE_I(sbi);
  1911. if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
  1912. return !test_bit(segno, free_i->free_segmap);
  1913. return 0;
  1914. }
  1915. /*
  1916. * Find a new segment from the free segments bitmap to right order
  1917. * This function should be returned with success, otherwise BUG
  1918. */
  1919. static void get_new_segment(struct f2fs_sb_info *sbi,
  1920. unsigned int *newseg, bool new_sec, int dir)
  1921. {
  1922. struct free_segmap_info *free_i = FREE_I(sbi);
  1923. unsigned int segno, secno, zoneno;
  1924. unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
  1925. unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
  1926. unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
  1927. unsigned int left_start = hint;
  1928. bool init = true;
  1929. int go_left = 0;
  1930. int i;
  1931. spin_lock(&free_i->segmap_lock);
  1932. if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
  1933. segno = find_next_zero_bit(free_i->free_segmap,
  1934. GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
  1935. if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
  1936. goto got_it;
  1937. }
  1938. find_other_zone:
  1939. secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
  1940. if (secno >= MAIN_SECS(sbi)) {
  1941. if (dir == ALLOC_RIGHT) {
  1942. secno = find_next_zero_bit(free_i->free_secmap,
  1943. MAIN_SECS(sbi), 0);
  1944. f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
  1945. } else {
  1946. go_left = 1;
  1947. left_start = hint - 1;
  1948. }
  1949. }
  1950. if (go_left == 0)
  1951. goto skip_left;
  1952. while (test_bit(left_start, free_i->free_secmap)) {
  1953. if (left_start > 0) {
  1954. left_start--;
  1955. continue;
  1956. }
  1957. left_start = find_next_zero_bit(free_i->free_secmap,
  1958. MAIN_SECS(sbi), 0);
  1959. f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
  1960. break;
  1961. }
  1962. secno = left_start;
  1963. skip_left:
  1964. segno = GET_SEG_FROM_SEC(sbi, secno);
  1965. zoneno = GET_ZONE_FROM_SEC(sbi, secno);
  1966. /* give up on finding another zone */
  1967. if (!init)
  1968. goto got_it;
  1969. if (sbi->secs_per_zone == 1)
  1970. goto got_it;
  1971. if (zoneno == old_zoneno)
  1972. goto got_it;
  1973. if (dir == ALLOC_LEFT) {
  1974. if (!go_left && zoneno + 1 >= total_zones)
  1975. goto got_it;
  1976. if (go_left && zoneno == 0)
  1977. goto got_it;
  1978. }
  1979. for (i = 0; i < NR_CURSEG_TYPE; i++)
  1980. if (CURSEG_I(sbi, i)->zone == zoneno)
  1981. break;
  1982. if (i < NR_CURSEG_TYPE) {
  1983. /* zone is in user, try another */
  1984. if (go_left)
  1985. hint = zoneno * sbi->secs_per_zone - 1;
  1986. else if (zoneno + 1 >= total_zones)
  1987. hint = 0;
  1988. else
  1989. hint = (zoneno + 1) * sbi->secs_per_zone;
  1990. init = false;
  1991. goto find_other_zone;
  1992. }
  1993. got_it:
  1994. /* set it as dirty segment in free segmap */
  1995. f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
  1996. __set_inuse(sbi, segno);
  1997. *newseg = segno;
  1998. spin_unlock(&free_i->segmap_lock);
  1999. }
  2000. static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
  2001. {
  2002. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2003. struct summary_footer *sum_footer;
  2004. curseg->segno = curseg->next_segno;
  2005. curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
  2006. curseg->next_blkoff = 0;
  2007. curseg->next_segno = NULL_SEGNO;
  2008. sum_footer = &(curseg->sum_blk->footer);
  2009. memset(sum_footer, 0, sizeof(struct summary_footer));
  2010. if (IS_DATASEG(type))
  2011. SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
  2012. if (IS_NODESEG(type))
  2013. SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
  2014. __set_sit_entry_type(sbi, type, curseg->segno, modified);
  2015. }
  2016. static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
  2017. {
  2018. /* if segs_per_sec is large than 1, we need to keep original policy. */
  2019. if (sbi->segs_per_sec != 1)
  2020. return CURSEG_I(sbi, type)->segno;
  2021. if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
  2022. return 0;
  2023. if (test_opt(sbi, NOHEAP) &&
  2024. (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
  2025. return 0;
  2026. if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
  2027. return SIT_I(sbi)->last_victim[ALLOC_NEXT];
  2028. /* find segments from 0 to reuse freed segments */
  2029. if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
  2030. return 0;
  2031. return CURSEG_I(sbi, type)->segno;
  2032. }
  2033. /*
  2034. * Allocate a current working segment.
  2035. * This function always allocates a free segment in LFS manner.
  2036. */
  2037. static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
  2038. {
  2039. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2040. unsigned int segno = curseg->segno;
  2041. int dir = ALLOC_LEFT;
  2042. write_sum_page(sbi, curseg->sum_blk,
  2043. GET_SUM_BLOCK(sbi, segno));
  2044. if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
  2045. dir = ALLOC_RIGHT;
  2046. if (test_opt(sbi, NOHEAP))
  2047. dir = ALLOC_RIGHT;
  2048. segno = __get_next_segno(sbi, type);
  2049. get_new_segment(sbi, &segno, new_sec, dir);
  2050. curseg->next_segno = segno;
  2051. reset_curseg(sbi, type, 1);
  2052. curseg->alloc_type = LFS;
  2053. }
  2054. static void __next_free_blkoff(struct f2fs_sb_info *sbi,
  2055. struct curseg_info *seg, block_t start)
  2056. {
  2057. struct seg_entry *se = get_seg_entry(sbi, seg->segno);
  2058. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  2059. unsigned long *target_map = SIT_I(sbi)->tmp_map;
  2060. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  2061. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  2062. int i, pos;
  2063. for (i = 0; i < entries; i++)
  2064. target_map[i] = ckpt_map[i] | cur_map[i];
  2065. pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
  2066. seg->next_blkoff = pos;
  2067. }
  2068. /*
  2069. * If a segment is written by LFS manner, next block offset is just obtained
  2070. * by increasing the current block offset. However, if a segment is written by
  2071. * SSR manner, next block offset obtained by calling __next_free_blkoff
  2072. */
  2073. static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
  2074. struct curseg_info *seg)
  2075. {
  2076. if (seg->alloc_type == SSR)
  2077. __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
  2078. else
  2079. seg->next_blkoff++;
  2080. }
  2081. /*
  2082. * This function always allocates a used segment(from dirty seglist) by SSR
  2083. * manner, so it should recover the existing segment information of valid blocks
  2084. */
  2085. static void change_curseg(struct f2fs_sb_info *sbi, int type)
  2086. {
  2087. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2088. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2089. unsigned int new_segno = curseg->next_segno;
  2090. struct f2fs_summary_block *sum_node;
  2091. struct page *sum_page;
  2092. write_sum_page(sbi, curseg->sum_blk,
  2093. GET_SUM_BLOCK(sbi, curseg->segno));
  2094. __set_test_and_inuse(sbi, new_segno);
  2095. mutex_lock(&dirty_i->seglist_lock);
  2096. __remove_dirty_segment(sbi, new_segno, PRE);
  2097. __remove_dirty_segment(sbi, new_segno, DIRTY);
  2098. mutex_unlock(&dirty_i->seglist_lock);
  2099. reset_curseg(sbi, type, 1);
  2100. curseg->alloc_type = SSR;
  2101. __next_free_blkoff(sbi, curseg, 0);
  2102. sum_page = f2fs_get_sum_page(sbi, new_segno);
  2103. f2fs_bug_on(sbi, IS_ERR(sum_page));
  2104. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  2105. memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
  2106. f2fs_put_page(sum_page, 1);
  2107. }
  2108. static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
  2109. {
  2110. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2111. const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
  2112. unsigned segno = NULL_SEGNO;
  2113. int i, cnt;
  2114. bool reversed = false;
  2115. /* f2fs_need_SSR() already forces to do this */
  2116. if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
  2117. curseg->next_segno = segno;
  2118. return 1;
  2119. }
  2120. /* For node segments, let's do SSR more intensively */
  2121. if (IS_NODESEG(type)) {
  2122. if (type >= CURSEG_WARM_NODE) {
  2123. reversed = true;
  2124. i = CURSEG_COLD_NODE;
  2125. } else {
  2126. i = CURSEG_HOT_NODE;
  2127. }
  2128. cnt = NR_CURSEG_NODE_TYPE;
  2129. } else {
  2130. if (type >= CURSEG_WARM_DATA) {
  2131. reversed = true;
  2132. i = CURSEG_COLD_DATA;
  2133. } else {
  2134. i = CURSEG_HOT_DATA;
  2135. }
  2136. cnt = NR_CURSEG_DATA_TYPE;
  2137. }
  2138. for (; cnt-- > 0; reversed ? i-- : i++) {
  2139. if (i == type)
  2140. continue;
  2141. if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
  2142. curseg->next_segno = segno;
  2143. return 1;
  2144. }
  2145. }
  2146. /* find valid_blocks=0 in dirty list */
  2147. if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
  2148. segno = get_free_segment(sbi);
  2149. if (segno != NULL_SEGNO) {
  2150. curseg->next_segno = segno;
  2151. return 1;
  2152. }
  2153. }
  2154. return 0;
  2155. }
  2156. /*
  2157. * flush out current segment and replace it with new segment
  2158. * This function should be returned with success, otherwise BUG
  2159. */
  2160. static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
  2161. int type, bool force)
  2162. {
  2163. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2164. if (force)
  2165. new_curseg(sbi, type, true);
  2166. else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
  2167. type == CURSEG_WARM_NODE)
  2168. new_curseg(sbi, type, false);
  2169. else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
  2170. likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
  2171. new_curseg(sbi, type, false);
  2172. else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
  2173. change_curseg(sbi, type);
  2174. else
  2175. new_curseg(sbi, type, false);
  2176. stat_inc_seg_type(sbi, curseg);
  2177. }
  2178. void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
  2179. {
  2180. struct curseg_info *curseg;
  2181. unsigned int old_segno;
  2182. int i;
  2183. down_write(&SIT_I(sbi)->sentry_lock);
  2184. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2185. curseg = CURSEG_I(sbi, i);
  2186. old_segno = curseg->segno;
  2187. SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
  2188. locate_dirty_segment(sbi, old_segno);
  2189. }
  2190. up_write(&SIT_I(sbi)->sentry_lock);
  2191. }
  2192. static const struct segment_allocation default_salloc_ops = {
  2193. .allocate_segment = allocate_segment_by_default,
  2194. };
  2195. bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
  2196. struct cp_control *cpc)
  2197. {
  2198. __u64 trim_start = cpc->trim_start;
  2199. bool has_candidate = false;
  2200. down_write(&SIT_I(sbi)->sentry_lock);
  2201. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
  2202. if (add_discard_addrs(sbi, cpc, true)) {
  2203. has_candidate = true;
  2204. break;
  2205. }
  2206. }
  2207. up_write(&SIT_I(sbi)->sentry_lock);
  2208. cpc->trim_start = trim_start;
  2209. return has_candidate;
  2210. }
  2211. static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
  2212. struct discard_policy *dpolicy,
  2213. unsigned int start, unsigned int end)
  2214. {
  2215. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  2216. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  2217. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  2218. struct discard_cmd *dc;
  2219. struct blk_plug plug;
  2220. int issued;
  2221. unsigned int trimmed = 0;
  2222. next:
  2223. issued = 0;
  2224. mutex_lock(&dcc->cmd_lock);
  2225. if (unlikely(dcc->rbtree_check))
  2226. f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
  2227. &dcc->root));
  2228. dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
  2229. NULL, start,
  2230. (struct rb_entry **)&prev_dc,
  2231. (struct rb_entry **)&next_dc,
  2232. &insert_p, &insert_parent, true, NULL);
  2233. if (!dc)
  2234. dc = next_dc;
  2235. blk_start_plug(&plug);
  2236. while (dc && dc->lstart <= end) {
  2237. struct rb_node *node;
  2238. int err = 0;
  2239. if (dc->len < dpolicy->granularity)
  2240. goto skip;
  2241. if (dc->state != D_PREP) {
  2242. list_move_tail(&dc->list, &dcc->fstrim_list);
  2243. goto skip;
  2244. }
  2245. err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
  2246. if (issued >= dpolicy->max_requests) {
  2247. start = dc->lstart + dc->len;
  2248. if (err)
  2249. __remove_discard_cmd(sbi, dc);
  2250. blk_finish_plug(&plug);
  2251. mutex_unlock(&dcc->cmd_lock);
  2252. trimmed += __wait_all_discard_cmd(sbi, NULL);
  2253. congestion_wait(BLK_RW_ASYNC, HZ/50);
  2254. goto next;
  2255. }
  2256. skip:
  2257. node = rb_next(&dc->rb_node);
  2258. if (err)
  2259. __remove_discard_cmd(sbi, dc);
  2260. dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  2261. if (fatal_signal_pending(current))
  2262. break;
  2263. }
  2264. blk_finish_plug(&plug);
  2265. mutex_unlock(&dcc->cmd_lock);
  2266. return trimmed;
  2267. }
  2268. int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
  2269. {
  2270. __u64 start = F2FS_BYTES_TO_BLK(range->start);
  2271. __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
  2272. unsigned int start_segno, end_segno;
  2273. block_t start_block, end_block;
  2274. struct cp_control cpc;
  2275. struct discard_policy dpolicy;
  2276. unsigned long long trimmed = 0;
  2277. int err = 0;
  2278. bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
  2279. if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
  2280. return -EINVAL;
  2281. if (end < MAIN_BLKADDR(sbi))
  2282. goto out;
  2283. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  2284. f2fs_msg(sbi->sb, KERN_WARNING,
  2285. "Found FS corruption, run fsck to fix.");
  2286. return -EIO;
  2287. }
  2288. /* start/end segment number in main_area */
  2289. start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
  2290. end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
  2291. GET_SEGNO(sbi, end);
  2292. if (need_align) {
  2293. start_segno = rounddown(start_segno, sbi->segs_per_sec);
  2294. end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
  2295. }
  2296. cpc.reason = CP_DISCARD;
  2297. cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
  2298. cpc.trim_start = start_segno;
  2299. cpc.trim_end = end_segno;
  2300. if (sbi->discard_blks == 0)
  2301. goto out;
  2302. mutex_lock(&sbi->gc_mutex);
  2303. err = f2fs_write_checkpoint(sbi, &cpc);
  2304. mutex_unlock(&sbi->gc_mutex);
  2305. if (err)
  2306. goto out;
  2307. /*
  2308. * We filed discard candidates, but actually we don't need to wait for
  2309. * all of them, since they'll be issued in idle time along with runtime
  2310. * discard option. User configuration looks like using runtime discard
  2311. * or periodic fstrim instead of it.
  2312. */
  2313. if (f2fs_realtime_discard_enable(sbi))
  2314. goto out;
  2315. start_block = START_BLOCK(sbi, start_segno);
  2316. end_block = START_BLOCK(sbi, end_segno + 1);
  2317. __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
  2318. trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
  2319. start_block, end_block);
  2320. trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
  2321. start_block, end_block);
  2322. out:
  2323. if (!err)
  2324. range->len = F2FS_BLK_TO_BYTES(trimmed);
  2325. return err;
  2326. }
  2327. static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
  2328. {
  2329. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2330. if (curseg->next_blkoff < sbi->blocks_per_seg)
  2331. return true;
  2332. return false;
  2333. }
  2334. int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
  2335. {
  2336. switch (hint) {
  2337. case WRITE_LIFE_SHORT:
  2338. return CURSEG_HOT_DATA;
  2339. case WRITE_LIFE_EXTREME:
  2340. return CURSEG_COLD_DATA;
  2341. default:
  2342. return CURSEG_WARM_DATA;
  2343. }
  2344. }
  2345. /* This returns write hints for each segment type. This hints will be
  2346. * passed down to block layer. There are mapping tables which depend on
  2347. * the mount option 'whint_mode'.
  2348. *
  2349. * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
  2350. *
  2351. * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
  2352. *
  2353. * User F2FS Block
  2354. * ---- ---- -----
  2355. * META WRITE_LIFE_NOT_SET
  2356. * HOT_NODE "
  2357. * WARM_NODE "
  2358. * COLD_NODE "
  2359. * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
  2360. * extension list " "
  2361. *
  2362. * -- buffered io
  2363. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2364. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2365. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
  2366. * WRITE_LIFE_NONE " "
  2367. * WRITE_LIFE_MEDIUM " "
  2368. * WRITE_LIFE_LONG " "
  2369. *
  2370. * -- direct io
  2371. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2372. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2373. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
  2374. * WRITE_LIFE_NONE " WRITE_LIFE_NONE
  2375. * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
  2376. * WRITE_LIFE_LONG " WRITE_LIFE_LONG
  2377. *
  2378. * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
  2379. *
  2380. * User F2FS Block
  2381. * ---- ---- -----
  2382. * META WRITE_LIFE_MEDIUM;
  2383. * HOT_NODE WRITE_LIFE_NOT_SET
  2384. * WARM_NODE "
  2385. * COLD_NODE WRITE_LIFE_NONE
  2386. * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
  2387. * extension list " "
  2388. *
  2389. * -- buffered io
  2390. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2391. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2392. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
  2393. * WRITE_LIFE_NONE " "
  2394. * WRITE_LIFE_MEDIUM " "
  2395. * WRITE_LIFE_LONG " "
  2396. *
  2397. * -- direct io
  2398. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2399. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2400. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
  2401. * WRITE_LIFE_NONE " WRITE_LIFE_NONE
  2402. * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
  2403. * WRITE_LIFE_LONG " WRITE_LIFE_LONG
  2404. */
  2405. enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
  2406. enum page_type type, enum temp_type temp)
  2407. {
  2408. if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
  2409. if (type == DATA) {
  2410. if (temp == WARM)
  2411. return WRITE_LIFE_NOT_SET;
  2412. else if (temp == HOT)
  2413. return WRITE_LIFE_SHORT;
  2414. else if (temp == COLD)
  2415. return WRITE_LIFE_EXTREME;
  2416. } else {
  2417. return WRITE_LIFE_NOT_SET;
  2418. }
  2419. } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
  2420. if (type == DATA) {
  2421. if (temp == WARM)
  2422. return WRITE_LIFE_LONG;
  2423. else if (temp == HOT)
  2424. return WRITE_LIFE_SHORT;
  2425. else if (temp == COLD)
  2426. return WRITE_LIFE_EXTREME;
  2427. } else if (type == NODE) {
  2428. if (temp == WARM || temp == HOT)
  2429. return WRITE_LIFE_NOT_SET;
  2430. else if (temp == COLD)
  2431. return WRITE_LIFE_NONE;
  2432. } else if (type == META) {
  2433. return WRITE_LIFE_MEDIUM;
  2434. }
  2435. }
  2436. return WRITE_LIFE_NOT_SET;
  2437. }
  2438. static int __get_segment_type_2(struct f2fs_io_info *fio)
  2439. {
  2440. if (fio->type == DATA)
  2441. return CURSEG_HOT_DATA;
  2442. else
  2443. return CURSEG_HOT_NODE;
  2444. }
  2445. static int __get_segment_type_4(struct f2fs_io_info *fio)
  2446. {
  2447. if (fio->type == DATA) {
  2448. struct inode *inode = fio->page->mapping->host;
  2449. if (S_ISDIR(inode->i_mode))
  2450. return CURSEG_HOT_DATA;
  2451. else
  2452. return CURSEG_COLD_DATA;
  2453. } else {
  2454. if (IS_DNODE(fio->page) && is_cold_node(fio->page))
  2455. return CURSEG_WARM_NODE;
  2456. else
  2457. return CURSEG_COLD_NODE;
  2458. }
  2459. }
  2460. static int __get_segment_type_6(struct f2fs_io_info *fio)
  2461. {
  2462. if (fio->type == DATA) {
  2463. struct inode *inode = fio->page->mapping->host;
  2464. if (is_cold_data(fio->page) || file_is_cold(inode))
  2465. return CURSEG_COLD_DATA;
  2466. if (file_is_hot(inode) ||
  2467. is_inode_flag_set(inode, FI_HOT_DATA) ||
  2468. f2fs_is_atomic_file(inode) ||
  2469. f2fs_is_volatile_file(inode))
  2470. return CURSEG_HOT_DATA;
  2471. return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
  2472. } else {
  2473. if (IS_DNODE(fio->page))
  2474. return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
  2475. CURSEG_HOT_NODE;
  2476. return CURSEG_COLD_NODE;
  2477. }
  2478. }
  2479. static int __get_segment_type(struct f2fs_io_info *fio)
  2480. {
  2481. int type = 0;
  2482. switch (F2FS_OPTION(fio->sbi).active_logs) {
  2483. case 2:
  2484. type = __get_segment_type_2(fio);
  2485. break;
  2486. case 4:
  2487. type = __get_segment_type_4(fio);
  2488. break;
  2489. case 6:
  2490. type = __get_segment_type_6(fio);
  2491. break;
  2492. default:
  2493. f2fs_bug_on(fio->sbi, true);
  2494. }
  2495. if (IS_HOT(type))
  2496. fio->temp = HOT;
  2497. else if (IS_WARM(type))
  2498. fio->temp = WARM;
  2499. else
  2500. fio->temp = COLD;
  2501. return type;
  2502. }
  2503. void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
  2504. block_t old_blkaddr, block_t *new_blkaddr,
  2505. struct f2fs_summary *sum, int type,
  2506. struct f2fs_io_info *fio, bool add_list)
  2507. {
  2508. struct sit_info *sit_i = SIT_I(sbi);
  2509. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2510. down_read(&SM_I(sbi)->curseg_lock);
  2511. mutex_lock(&curseg->curseg_mutex);
  2512. down_write(&sit_i->sentry_lock);
  2513. *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  2514. f2fs_wait_discard_bio(sbi, *new_blkaddr);
  2515. /*
  2516. * __add_sum_entry should be resided under the curseg_mutex
  2517. * because, this function updates a summary entry in the
  2518. * current summary block.
  2519. */
  2520. __add_sum_entry(sbi, type, sum);
  2521. __refresh_next_blkoff(sbi, curseg);
  2522. stat_inc_block_count(sbi, curseg);
  2523. /*
  2524. * SIT information should be updated before segment allocation,
  2525. * since SSR needs latest valid block information.
  2526. */
  2527. update_sit_entry(sbi, *new_blkaddr, 1);
  2528. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  2529. update_sit_entry(sbi, old_blkaddr, -1);
  2530. if (!__has_curseg_space(sbi, type))
  2531. sit_i->s_ops->allocate_segment(sbi, type, false);
  2532. /*
  2533. * segment dirty status should be updated after segment allocation,
  2534. * so we just need to update status only one time after previous
  2535. * segment being closed.
  2536. */
  2537. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  2538. locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
  2539. up_write(&sit_i->sentry_lock);
  2540. if (page && IS_NODESEG(type)) {
  2541. fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
  2542. f2fs_inode_chksum_set(sbi, page);
  2543. }
  2544. if (add_list) {
  2545. struct f2fs_bio_info *io;
  2546. INIT_LIST_HEAD(&fio->list);
  2547. fio->in_list = true;
  2548. fio->retry = false;
  2549. io = sbi->write_io[fio->type] + fio->temp;
  2550. spin_lock(&io->io_lock);
  2551. list_add_tail(&fio->list, &io->io_list);
  2552. spin_unlock(&io->io_lock);
  2553. }
  2554. mutex_unlock(&curseg->curseg_mutex);
  2555. up_read(&SM_I(sbi)->curseg_lock);
  2556. }
  2557. static void update_device_state(struct f2fs_io_info *fio)
  2558. {
  2559. struct f2fs_sb_info *sbi = fio->sbi;
  2560. unsigned int devidx;
  2561. if (!sbi->s_ndevs)
  2562. return;
  2563. devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
  2564. /* update device state for fsync */
  2565. f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
  2566. /* update device state for checkpoint */
  2567. if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
  2568. spin_lock(&sbi->dev_lock);
  2569. f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
  2570. spin_unlock(&sbi->dev_lock);
  2571. }
  2572. }
  2573. static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
  2574. {
  2575. int type = __get_segment_type(fio);
  2576. bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
  2577. if (keep_order)
  2578. down_read(&fio->sbi->io_order_lock);
  2579. reallocate:
  2580. f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
  2581. &fio->new_blkaddr, sum, type, fio, true);
  2582. if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
  2583. invalidate_mapping_pages(META_MAPPING(fio->sbi),
  2584. fio->old_blkaddr, fio->old_blkaddr);
  2585. /* writeout dirty page into bdev */
  2586. f2fs_submit_page_write(fio);
  2587. if (fio->retry) {
  2588. fio->old_blkaddr = fio->new_blkaddr;
  2589. goto reallocate;
  2590. }
  2591. update_device_state(fio);
  2592. if (keep_order)
  2593. up_read(&fio->sbi->io_order_lock);
  2594. }
  2595. void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
  2596. enum iostat_type io_type)
  2597. {
  2598. struct f2fs_io_info fio = {
  2599. .sbi = sbi,
  2600. .type = META,
  2601. .temp = HOT,
  2602. .op = REQ_OP_WRITE,
  2603. .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
  2604. .old_blkaddr = page->index,
  2605. .new_blkaddr = page->index,
  2606. .page = page,
  2607. .encrypted_page = NULL,
  2608. .in_list = false,
  2609. };
  2610. if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
  2611. fio.op_flags &= ~REQ_META;
  2612. set_page_writeback(page);
  2613. ClearPageError(page);
  2614. f2fs_submit_page_write(&fio);
  2615. stat_inc_meta_count(sbi, page->index);
  2616. f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
  2617. }
  2618. void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
  2619. {
  2620. struct f2fs_summary sum;
  2621. set_summary(&sum, nid, 0, 0);
  2622. do_write_page(&sum, fio);
  2623. f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
  2624. }
  2625. void f2fs_outplace_write_data(struct dnode_of_data *dn,
  2626. struct f2fs_io_info *fio)
  2627. {
  2628. struct f2fs_sb_info *sbi = fio->sbi;
  2629. struct f2fs_summary sum;
  2630. f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
  2631. set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
  2632. do_write_page(&sum, fio);
  2633. f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
  2634. f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
  2635. }
  2636. int f2fs_inplace_write_data(struct f2fs_io_info *fio)
  2637. {
  2638. int err;
  2639. struct f2fs_sb_info *sbi = fio->sbi;
  2640. fio->new_blkaddr = fio->old_blkaddr;
  2641. /* i/o temperature is needed for passing down write hints */
  2642. __get_segment_type(fio);
  2643. f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
  2644. GET_SEGNO(sbi, fio->new_blkaddr))->type));
  2645. stat_inc_inplace_blocks(fio->sbi);
  2646. err = f2fs_submit_page_bio(fio);
  2647. if (!err)
  2648. update_device_state(fio);
  2649. f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
  2650. return err;
  2651. }
  2652. static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
  2653. unsigned int segno)
  2654. {
  2655. int i;
  2656. for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
  2657. if (CURSEG_I(sbi, i)->segno == segno)
  2658. break;
  2659. }
  2660. return i;
  2661. }
  2662. void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  2663. block_t old_blkaddr, block_t new_blkaddr,
  2664. bool recover_curseg, bool recover_newaddr)
  2665. {
  2666. struct sit_info *sit_i = SIT_I(sbi);
  2667. struct curseg_info *curseg;
  2668. unsigned int segno, old_cursegno;
  2669. struct seg_entry *se;
  2670. int type;
  2671. unsigned short old_blkoff;
  2672. segno = GET_SEGNO(sbi, new_blkaddr);
  2673. se = get_seg_entry(sbi, segno);
  2674. type = se->type;
  2675. down_write(&SM_I(sbi)->curseg_lock);
  2676. if (!recover_curseg) {
  2677. /* for recovery flow */
  2678. if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
  2679. if (old_blkaddr == NULL_ADDR)
  2680. type = CURSEG_COLD_DATA;
  2681. else
  2682. type = CURSEG_WARM_DATA;
  2683. }
  2684. } else {
  2685. if (IS_CURSEG(sbi, segno)) {
  2686. /* se->type is volatile as SSR allocation */
  2687. type = __f2fs_get_curseg(sbi, segno);
  2688. f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
  2689. } else {
  2690. type = CURSEG_WARM_DATA;
  2691. }
  2692. }
  2693. f2fs_bug_on(sbi, !IS_DATASEG(type));
  2694. curseg = CURSEG_I(sbi, type);
  2695. mutex_lock(&curseg->curseg_mutex);
  2696. down_write(&sit_i->sentry_lock);
  2697. old_cursegno = curseg->segno;
  2698. old_blkoff = curseg->next_blkoff;
  2699. /* change the current segment */
  2700. if (segno != curseg->segno) {
  2701. curseg->next_segno = segno;
  2702. change_curseg(sbi, type);
  2703. }
  2704. curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
  2705. __add_sum_entry(sbi, type, sum);
  2706. if (!recover_curseg || recover_newaddr)
  2707. update_sit_entry(sbi, new_blkaddr, 1);
  2708. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
  2709. invalidate_mapping_pages(META_MAPPING(sbi),
  2710. old_blkaddr, old_blkaddr);
  2711. update_sit_entry(sbi, old_blkaddr, -1);
  2712. }
  2713. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  2714. locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
  2715. locate_dirty_segment(sbi, old_cursegno);
  2716. if (recover_curseg) {
  2717. if (old_cursegno != curseg->segno) {
  2718. curseg->next_segno = old_cursegno;
  2719. change_curseg(sbi, type);
  2720. }
  2721. curseg->next_blkoff = old_blkoff;
  2722. }
  2723. up_write(&sit_i->sentry_lock);
  2724. mutex_unlock(&curseg->curseg_mutex);
  2725. up_write(&SM_I(sbi)->curseg_lock);
  2726. }
  2727. void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
  2728. block_t old_addr, block_t new_addr,
  2729. unsigned char version, bool recover_curseg,
  2730. bool recover_newaddr)
  2731. {
  2732. struct f2fs_summary sum;
  2733. set_summary(&sum, dn->nid, dn->ofs_in_node, version);
  2734. f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
  2735. recover_curseg, recover_newaddr);
  2736. f2fs_update_data_blkaddr(dn, new_addr);
  2737. }
  2738. void f2fs_wait_on_page_writeback(struct page *page,
  2739. enum page_type type, bool ordered)
  2740. {
  2741. if (PageWriteback(page)) {
  2742. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  2743. f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
  2744. if (ordered)
  2745. wait_on_page_writeback(page);
  2746. else
  2747. wait_for_stable_page(page);
  2748. }
  2749. }
  2750. void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
  2751. {
  2752. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2753. struct page *cpage;
  2754. if (!f2fs_post_read_required(inode))
  2755. return;
  2756. if (!is_valid_data_blkaddr(sbi, blkaddr))
  2757. return;
  2758. cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
  2759. if (cpage) {
  2760. f2fs_wait_on_page_writeback(cpage, DATA, true);
  2761. f2fs_put_page(cpage, 1);
  2762. }
  2763. }
  2764. void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
  2765. block_t len)
  2766. {
  2767. block_t i;
  2768. for (i = 0; i < len; i++)
  2769. f2fs_wait_on_block_writeback(inode, blkaddr + i);
  2770. }
  2771. static int read_compacted_summaries(struct f2fs_sb_info *sbi)
  2772. {
  2773. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2774. struct curseg_info *seg_i;
  2775. unsigned char *kaddr;
  2776. struct page *page;
  2777. block_t start;
  2778. int i, j, offset;
  2779. start = start_sum_block(sbi);
  2780. page = f2fs_get_meta_page(sbi, start++);
  2781. if (IS_ERR(page))
  2782. return PTR_ERR(page);
  2783. kaddr = (unsigned char *)page_address(page);
  2784. /* Step 1: restore nat cache */
  2785. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2786. memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
  2787. /* Step 2: restore sit cache */
  2788. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2789. memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
  2790. offset = 2 * SUM_JOURNAL_SIZE;
  2791. /* Step 3: restore summary entries */
  2792. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2793. unsigned short blk_off;
  2794. unsigned int segno;
  2795. seg_i = CURSEG_I(sbi, i);
  2796. segno = le32_to_cpu(ckpt->cur_data_segno[i]);
  2797. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
  2798. seg_i->next_segno = segno;
  2799. reset_curseg(sbi, i, 0);
  2800. seg_i->alloc_type = ckpt->alloc_type[i];
  2801. seg_i->next_blkoff = blk_off;
  2802. if (seg_i->alloc_type == SSR)
  2803. blk_off = sbi->blocks_per_seg;
  2804. for (j = 0; j < blk_off; j++) {
  2805. struct f2fs_summary *s;
  2806. s = (struct f2fs_summary *)(kaddr + offset);
  2807. seg_i->sum_blk->entries[j] = *s;
  2808. offset += SUMMARY_SIZE;
  2809. if (offset + SUMMARY_SIZE <= PAGE_SIZE -
  2810. SUM_FOOTER_SIZE)
  2811. continue;
  2812. f2fs_put_page(page, 1);
  2813. page = NULL;
  2814. page = f2fs_get_meta_page(sbi, start++);
  2815. if (IS_ERR(page))
  2816. return PTR_ERR(page);
  2817. kaddr = (unsigned char *)page_address(page);
  2818. offset = 0;
  2819. }
  2820. }
  2821. f2fs_put_page(page, 1);
  2822. return 0;
  2823. }
  2824. static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
  2825. {
  2826. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2827. struct f2fs_summary_block *sum;
  2828. struct curseg_info *curseg;
  2829. struct page *new;
  2830. unsigned short blk_off;
  2831. unsigned int segno = 0;
  2832. block_t blk_addr = 0;
  2833. int err = 0;
  2834. /* get segment number and block addr */
  2835. if (IS_DATASEG(type)) {
  2836. segno = le32_to_cpu(ckpt->cur_data_segno[type]);
  2837. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
  2838. CURSEG_HOT_DATA]);
  2839. if (__exist_node_summaries(sbi))
  2840. blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
  2841. else
  2842. blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
  2843. } else {
  2844. segno = le32_to_cpu(ckpt->cur_node_segno[type -
  2845. CURSEG_HOT_NODE]);
  2846. blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
  2847. CURSEG_HOT_NODE]);
  2848. if (__exist_node_summaries(sbi))
  2849. blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
  2850. type - CURSEG_HOT_NODE);
  2851. else
  2852. blk_addr = GET_SUM_BLOCK(sbi, segno);
  2853. }
  2854. new = f2fs_get_meta_page(sbi, blk_addr);
  2855. if (IS_ERR(new))
  2856. return PTR_ERR(new);
  2857. sum = (struct f2fs_summary_block *)page_address(new);
  2858. if (IS_NODESEG(type)) {
  2859. if (__exist_node_summaries(sbi)) {
  2860. struct f2fs_summary *ns = &sum->entries[0];
  2861. int i;
  2862. for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
  2863. ns->version = 0;
  2864. ns->ofs_in_node = 0;
  2865. }
  2866. } else {
  2867. err = f2fs_restore_node_summary(sbi, segno, sum);
  2868. if (err)
  2869. goto out;
  2870. }
  2871. }
  2872. /* set uncompleted segment to curseg */
  2873. curseg = CURSEG_I(sbi, type);
  2874. mutex_lock(&curseg->curseg_mutex);
  2875. /* update journal info */
  2876. down_write(&curseg->journal_rwsem);
  2877. memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
  2878. up_write(&curseg->journal_rwsem);
  2879. memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
  2880. memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
  2881. curseg->next_segno = segno;
  2882. reset_curseg(sbi, type, 0);
  2883. curseg->alloc_type = ckpt->alloc_type[type];
  2884. curseg->next_blkoff = blk_off;
  2885. mutex_unlock(&curseg->curseg_mutex);
  2886. out:
  2887. f2fs_put_page(new, 1);
  2888. return err;
  2889. }
  2890. static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
  2891. {
  2892. struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
  2893. struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
  2894. int type = CURSEG_HOT_DATA;
  2895. int err;
  2896. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
  2897. int npages = f2fs_npages_for_summary_flush(sbi, true);
  2898. if (npages >= 2)
  2899. f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
  2900. META_CP, true);
  2901. /* restore for compacted data summary */
  2902. err = read_compacted_summaries(sbi);
  2903. if (err)
  2904. return err;
  2905. type = CURSEG_HOT_NODE;
  2906. }
  2907. if (__exist_node_summaries(sbi))
  2908. f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
  2909. NR_CURSEG_TYPE - type, META_CP, true);
  2910. for (; type <= CURSEG_COLD_NODE; type++) {
  2911. err = read_normal_summaries(sbi, type);
  2912. if (err)
  2913. return err;
  2914. }
  2915. /* sanity check for summary blocks */
  2916. if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
  2917. sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
  2918. return -EINVAL;
  2919. return 0;
  2920. }
  2921. static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
  2922. {
  2923. struct page *page;
  2924. unsigned char *kaddr;
  2925. struct f2fs_summary *summary;
  2926. struct curseg_info *seg_i;
  2927. int written_size = 0;
  2928. int i, j;
  2929. page = f2fs_grab_meta_page(sbi, blkaddr++);
  2930. kaddr = (unsigned char *)page_address(page);
  2931. memset(kaddr, 0, PAGE_SIZE);
  2932. /* Step 1: write nat cache */
  2933. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2934. memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
  2935. written_size += SUM_JOURNAL_SIZE;
  2936. /* Step 2: write sit cache */
  2937. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2938. memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
  2939. written_size += SUM_JOURNAL_SIZE;
  2940. /* Step 3: write summary entries */
  2941. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2942. unsigned short blkoff;
  2943. seg_i = CURSEG_I(sbi, i);
  2944. if (sbi->ckpt->alloc_type[i] == SSR)
  2945. blkoff = sbi->blocks_per_seg;
  2946. else
  2947. blkoff = curseg_blkoff(sbi, i);
  2948. for (j = 0; j < blkoff; j++) {
  2949. if (!page) {
  2950. page = f2fs_grab_meta_page(sbi, blkaddr++);
  2951. kaddr = (unsigned char *)page_address(page);
  2952. memset(kaddr, 0, PAGE_SIZE);
  2953. written_size = 0;
  2954. }
  2955. summary = (struct f2fs_summary *)(kaddr + written_size);
  2956. *summary = seg_i->sum_blk->entries[j];
  2957. written_size += SUMMARY_SIZE;
  2958. if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
  2959. SUM_FOOTER_SIZE)
  2960. continue;
  2961. set_page_dirty(page);
  2962. f2fs_put_page(page, 1);
  2963. page = NULL;
  2964. }
  2965. }
  2966. if (page) {
  2967. set_page_dirty(page);
  2968. f2fs_put_page(page, 1);
  2969. }
  2970. }
  2971. static void write_normal_summaries(struct f2fs_sb_info *sbi,
  2972. block_t blkaddr, int type)
  2973. {
  2974. int i, end;
  2975. if (IS_DATASEG(type))
  2976. end = type + NR_CURSEG_DATA_TYPE;
  2977. else
  2978. end = type + NR_CURSEG_NODE_TYPE;
  2979. for (i = type; i < end; i++)
  2980. write_current_sum_page(sbi, i, blkaddr + (i - type));
  2981. }
  2982. void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2983. {
  2984. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
  2985. write_compacted_summaries(sbi, start_blk);
  2986. else
  2987. write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
  2988. }
  2989. void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2990. {
  2991. write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
  2992. }
  2993. int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
  2994. unsigned int val, int alloc)
  2995. {
  2996. int i;
  2997. if (type == NAT_JOURNAL) {
  2998. for (i = 0; i < nats_in_cursum(journal); i++) {
  2999. if (le32_to_cpu(nid_in_journal(journal, i)) == val)
  3000. return i;
  3001. }
  3002. if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
  3003. return update_nats_in_cursum(journal, 1);
  3004. } else if (type == SIT_JOURNAL) {
  3005. for (i = 0; i < sits_in_cursum(journal); i++)
  3006. if (le32_to_cpu(segno_in_journal(journal, i)) == val)
  3007. return i;
  3008. if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
  3009. return update_sits_in_cursum(journal, 1);
  3010. }
  3011. return -1;
  3012. }
  3013. static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
  3014. unsigned int segno)
  3015. {
  3016. return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
  3017. }
  3018. static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
  3019. unsigned int start)
  3020. {
  3021. struct sit_info *sit_i = SIT_I(sbi);
  3022. struct page *page;
  3023. pgoff_t src_off, dst_off;
  3024. src_off = current_sit_addr(sbi, start);
  3025. dst_off = next_sit_addr(sbi, src_off);
  3026. page = f2fs_grab_meta_page(sbi, dst_off);
  3027. seg_info_to_sit_page(sbi, page, start);
  3028. set_page_dirty(page);
  3029. set_to_next_sit(sit_i, start);
  3030. return page;
  3031. }
  3032. static struct sit_entry_set *grab_sit_entry_set(void)
  3033. {
  3034. struct sit_entry_set *ses =
  3035. f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
  3036. ses->entry_cnt = 0;
  3037. INIT_LIST_HEAD(&ses->set_list);
  3038. return ses;
  3039. }
  3040. static void release_sit_entry_set(struct sit_entry_set *ses)
  3041. {
  3042. list_del(&ses->set_list);
  3043. kmem_cache_free(sit_entry_set_slab, ses);
  3044. }
  3045. static void adjust_sit_entry_set(struct sit_entry_set *ses,
  3046. struct list_head *head)
  3047. {
  3048. struct sit_entry_set *next = ses;
  3049. if (list_is_last(&ses->set_list, head))
  3050. return;
  3051. list_for_each_entry_continue(next, head, set_list)
  3052. if (ses->entry_cnt <= next->entry_cnt)
  3053. break;
  3054. list_move_tail(&ses->set_list, &next->set_list);
  3055. }
  3056. static void add_sit_entry(unsigned int segno, struct list_head *head)
  3057. {
  3058. struct sit_entry_set *ses;
  3059. unsigned int start_segno = START_SEGNO(segno);
  3060. list_for_each_entry(ses, head, set_list) {
  3061. if (ses->start_segno == start_segno) {
  3062. ses->entry_cnt++;
  3063. adjust_sit_entry_set(ses, head);
  3064. return;
  3065. }
  3066. }
  3067. ses = grab_sit_entry_set();
  3068. ses->start_segno = start_segno;
  3069. ses->entry_cnt++;
  3070. list_add(&ses->set_list, head);
  3071. }
  3072. static void add_sits_in_set(struct f2fs_sb_info *sbi)
  3073. {
  3074. struct f2fs_sm_info *sm_info = SM_I(sbi);
  3075. struct list_head *set_list = &sm_info->sit_entry_set;
  3076. unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
  3077. unsigned int segno;
  3078. for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
  3079. add_sit_entry(segno, set_list);
  3080. }
  3081. static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
  3082. {
  3083. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  3084. struct f2fs_journal *journal = curseg->journal;
  3085. int i;
  3086. down_write(&curseg->journal_rwsem);
  3087. for (i = 0; i < sits_in_cursum(journal); i++) {
  3088. unsigned int segno;
  3089. bool dirtied;
  3090. segno = le32_to_cpu(segno_in_journal(journal, i));
  3091. dirtied = __mark_sit_entry_dirty(sbi, segno);
  3092. if (!dirtied)
  3093. add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
  3094. }
  3095. update_sits_in_cursum(journal, -i);
  3096. up_write(&curseg->journal_rwsem);
  3097. }
  3098. /*
  3099. * CP calls this function, which flushes SIT entries including sit_journal,
  3100. * and moves prefree segs to free segs.
  3101. */
  3102. void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  3103. {
  3104. struct sit_info *sit_i = SIT_I(sbi);
  3105. unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
  3106. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  3107. struct f2fs_journal *journal = curseg->journal;
  3108. struct sit_entry_set *ses, *tmp;
  3109. struct list_head *head = &SM_I(sbi)->sit_entry_set;
  3110. bool to_journal = true;
  3111. struct seg_entry *se;
  3112. down_write(&sit_i->sentry_lock);
  3113. if (!sit_i->dirty_sentries)
  3114. goto out;
  3115. /*
  3116. * add and account sit entries of dirty bitmap in sit entry
  3117. * set temporarily
  3118. */
  3119. add_sits_in_set(sbi);
  3120. /*
  3121. * if there are no enough space in journal to store dirty sit
  3122. * entries, remove all entries from journal and add and account
  3123. * them in sit entry set.
  3124. */
  3125. if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
  3126. remove_sits_in_journal(sbi);
  3127. /*
  3128. * there are two steps to flush sit entries:
  3129. * #1, flush sit entries to journal in current cold data summary block.
  3130. * #2, flush sit entries to sit page.
  3131. */
  3132. list_for_each_entry_safe(ses, tmp, head, set_list) {
  3133. struct page *page = NULL;
  3134. struct f2fs_sit_block *raw_sit = NULL;
  3135. unsigned int start_segno = ses->start_segno;
  3136. unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
  3137. (unsigned long)MAIN_SEGS(sbi));
  3138. unsigned int segno = start_segno;
  3139. if (to_journal &&
  3140. !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
  3141. to_journal = false;
  3142. if (to_journal) {
  3143. down_write(&curseg->journal_rwsem);
  3144. } else {
  3145. page = get_next_sit_page(sbi, start_segno);
  3146. raw_sit = page_address(page);
  3147. }
  3148. /* flush dirty sit entries in region of current sit set */
  3149. for_each_set_bit_from(segno, bitmap, end) {
  3150. int offset, sit_offset;
  3151. se = get_seg_entry(sbi, segno);
  3152. #ifdef CONFIG_F2FS_CHECK_FS
  3153. if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
  3154. SIT_VBLOCK_MAP_SIZE))
  3155. f2fs_bug_on(sbi, 1);
  3156. #endif
  3157. /* add discard candidates */
  3158. if (!(cpc->reason & CP_DISCARD)) {
  3159. cpc->trim_start = segno;
  3160. add_discard_addrs(sbi, cpc, false);
  3161. }
  3162. if (to_journal) {
  3163. offset = f2fs_lookup_journal_in_cursum(journal,
  3164. SIT_JOURNAL, segno, 1);
  3165. f2fs_bug_on(sbi, offset < 0);
  3166. segno_in_journal(journal, offset) =
  3167. cpu_to_le32(segno);
  3168. seg_info_to_raw_sit(se,
  3169. &sit_in_journal(journal, offset));
  3170. check_block_count(sbi, segno,
  3171. &sit_in_journal(journal, offset));
  3172. } else {
  3173. sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
  3174. seg_info_to_raw_sit(se,
  3175. &raw_sit->entries[sit_offset]);
  3176. check_block_count(sbi, segno,
  3177. &raw_sit->entries[sit_offset]);
  3178. }
  3179. __clear_bit(segno, bitmap);
  3180. sit_i->dirty_sentries--;
  3181. ses->entry_cnt--;
  3182. }
  3183. if (to_journal)
  3184. up_write(&curseg->journal_rwsem);
  3185. else
  3186. f2fs_put_page(page, 1);
  3187. f2fs_bug_on(sbi, ses->entry_cnt);
  3188. release_sit_entry_set(ses);
  3189. }
  3190. f2fs_bug_on(sbi, !list_empty(head));
  3191. f2fs_bug_on(sbi, sit_i->dirty_sentries);
  3192. out:
  3193. if (cpc->reason & CP_DISCARD) {
  3194. __u64 trim_start = cpc->trim_start;
  3195. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
  3196. add_discard_addrs(sbi, cpc, false);
  3197. cpc->trim_start = trim_start;
  3198. }
  3199. up_write(&sit_i->sentry_lock);
  3200. set_prefree_as_free_segments(sbi);
  3201. }
  3202. static int build_sit_info(struct f2fs_sb_info *sbi)
  3203. {
  3204. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  3205. struct sit_info *sit_i;
  3206. unsigned int sit_segs, start;
  3207. char *src_bitmap;
  3208. unsigned int bitmap_size;
  3209. /* allocate memory for SIT information */
  3210. sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
  3211. if (!sit_i)
  3212. return -ENOMEM;
  3213. SM_I(sbi)->sit_info = sit_i;
  3214. sit_i->sentries =
  3215. f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
  3216. MAIN_SEGS(sbi)),
  3217. GFP_KERNEL);
  3218. if (!sit_i->sentries)
  3219. return -ENOMEM;
  3220. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  3221. sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
  3222. GFP_KERNEL);
  3223. if (!sit_i->dirty_sentries_bitmap)
  3224. return -ENOMEM;
  3225. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  3226. sit_i->sentries[start].cur_valid_map
  3227. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  3228. sit_i->sentries[start].ckpt_valid_map
  3229. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  3230. if (!sit_i->sentries[start].cur_valid_map ||
  3231. !sit_i->sentries[start].ckpt_valid_map)
  3232. return -ENOMEM;
  3233. #ifdef CONFIG_F2FS_CHECK_FS
  3234. sit_i->sentries[start].cur_valid_map_mir
  3235. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  3236. if (!sit_i->sentries[start].cur_valid_map_mir)
  3237. return -ENOMEM;
  3238. #endif
  3239. sit_i->sentries[start].discard_map
  3240. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
  3241. GFP_KERNEL);
  3242. if (!sit_i->sentries[start].discard_map)
  3243. return -ENOMEM;
  3244. }
  3245. sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  3246. if (!sit_i->tmp_map)
  3247. return -ENOMEM;
  3248. if (sbi->segs_per_sec > 1) {
  3249. sit_i->sec_entries =
  3250. f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
  3251. MAIN_SECS(sbi)),
  3252. GFP_KERNEL);
  3253. if (!sit_i->sec_entries)
  3254. return -ENOMEM;
  3255. }
  3256. /* get information related with SIT */
  3257. sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
  3258. /* setup SIT bitmap from ckeckpoint pack */
  3259. bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
  3260. src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
  3261. sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  3262. if (!sit_i->sit_bitmap)
  3263. return -ENOMEM;
  3264. #ifdef CONFIG_F2FS_CHECK_FS
  3265. sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  3266. if (!sit_i->sit_bitmap_mir)
  3267. return -ENOMEM;
  3268. #endif
  3269. /* init SIT information */
  3270. sit_i->s_ops = &default_salloc_ops;
  3271. sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
  3272. sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
  3273. sit_i->written_valid_blocks = 0;
  3274. sit_i->bitmap_size = bitmap_size;
  3275. sit_i->dirty_sentries = 0;
  3276. sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
  3277. sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
  3278. sit_i->mounted_time = ktime_get_real_seconds();
  3279. init_rwsem(&sit_i->sentry_lock);
  3280. return 0;
  3281. }
  3282. static int build_free_segmap(struct f2fs_sb_info *sbi)
  3283. {
  3284. struct free_segmap_info *free_i;
  3285. unsigned int bitmap_size, sec_bitmap_size;
  3286. /* allocate memory for free segmap information */
  3287. free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
  3288. if (!free_i)
  3289. return -ENOMEM;
  3290. SM_I(sbi)->free_info = free_i;
  3291. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  3292. free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
  3293. if (!free_i->free_segmap)
  3294. return -ENOMEM;
  3295. sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  3296. free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
  3297. if (!free_i->free_secmap)
  3298. return -ENOMEM;
  3299. /* set all segments as dirty temporarily */
  3300. memset(free_i->free_segmap, 0xff, bitmap_size);
  3301. memset(free_i->free_secmap, 0xff, sec_bitmap_size);
  3302. /* init free segmap information */
  3303. free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
  3304. free_i->free_segments = 0;
  3305. free_i->free_sections = 0;
  3306. spin_lock_init(&free_i->segmap_lock);
  3307. return 0;
  3308. }
  3309. static int build_curseg(struct f2fs_sb_info *sbi)
  3310. {
  3311. struct curseg_info *array;
  3312. int i;
  3313. array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
  3314. GFP_KERNEL);
  3315. if (!array)
  3316. return -ENOMEM;
  3317. SM_I(sbi)->curseg_array = array;
  3318. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  3319. mutex_init(&array[i].curseg_mutex);
  3320. array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
  3321. if (!array[i].sum_blk)
  3322. return -ENOMEM;
  3323. init_rwsem(&array[i].journal_rwsem);
  3324. array[i].journal = f2fs_kzalloc(sbi,
  3325. sizeof(struct f2fs_journal), GFP_KERNEL);
  3326. if (!array[i].journal)
  3327. return -ENOMEM;
  3328. array[i].segno = NULL_SEGNO;
  3329. array[i].next_blkoff = 0;
  3330. }
  3331. return restore_curseg_summaries(sbi);
  3332. }
  3333. static int build_sit_entries(struct f2fs_sb_info *sbi)
  3334. {
  3335. struct sit_info *sit_i = SIT_I(sbi);
  3336. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  3337. struct f2fs_journal *journal = curseg->journal;
  3338. struct seg_entry *se;
  3339. struct f2fs_sit_entry sit;
  3340. int sit_blk_cnt = SIT_BLK_CNT(sbi);
  3341. unsigned int i, start, end;
  3342. unsigned int readed, start_blk = 0;
  3343. int err = 0;
  3344. block_t total_node_blocks = 0;
  3345. do {
  3346. readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
  3347. META_SIT, true);
  3348. start = start_blk * sit_i->sents_per_block;
  3349. end = (start_blk + readed) * sit_i->sents_per_block;
  3350. for (; start < end && start < MAIN_SEGS(sbi); start++) {
  3351. struct f2fs_sit_block *sit_blk;
  3352. struct page *page;
  3353. se = &sit_i->sentries[start];
  3354. page = get_current_sit_page(sbi, start);
  3355. if (IS_ERR(page))
  3356. return PTR_ERR(page);
  3357. sit_blk = (struct f2fs_sit_block *)page_address(page);
  3358. sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
  3359. f2fs_put_page(page, 1);
  3360. err = check_block_count(sbi, start, &sit);
  3361. if (err)
  3362. return err;
  3363. seg_info_from_raw_sit(se, &sit);
  3364. if (IS_NODESEG(se->type))
  3365. total_node_blocks += se->valid_blocks;
  3366. /* build discard map only one time */
  3367. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  3368. memset(se->discard_map, 0xff,
  3369. SIT_VBLOCK_MAP_SIZE);
  3370. } else {
  3371. memcpy(se->discard_map,
  3372. se->cur_valid_map,
  3373. SIT_VBLOCK_MAP_SIZE);
  3374. sbi->discard_blks +=
  3375. sbi->blocks_per_seg -
  3376. se->valid_blocks;
  3377. }
  3378. if (sbi->segs_per_sec > 1)
  3379. get_sec_entry(sbi, start)->valid_blocks +=
  3380. se->valid_blocks;
  3381. }
  3382. start_blk += readed;
  3383. } while (start_blk < sit_blk_cnt);
  3384. down_read(&curseg->journal_rwsem);
  3385. for (i = 0; i < sits_in_cursum(journal); i++) {
  3386. unsigned int old_valid_blocks;
  3387. start = le32_to_cpu(segno_in_journal(journal, i));
  3388. if (start >= MAIN_SEGS(sbi)) {
  3389. f2fs_msg(sbi->sb, KERN_ERR,
  3390. "Wrong journal entry on segno %u",
  3391. start);
  3392. set_sbi_flag(sbi, SBI_NEED_FSCK);
  3393. err = -EINVAL;
  3394. break;
  3395. }
  3396. se = &sit_i->sentries[start];
  3397. sit = sit_in_journal(journal, i);
  3398. old_valid_blocks = se->valid_blocks;
  3399. if (IS_NODESEG(se->type))
  3400. total_node_blocks -= old_valid_blocks;
  3401. err = check_block_count(sbi, start, &sit);
  3402. if (err)
  3403. break;
  3404. seg_info_from_raw_sit(se, &sit);
  3405. if (IS_NODESEG(se->type))
  3406. total_node_blocks += se->valid_blocks;
  3407. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  3408. memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
  3409. } else {
  3410. memcpy(se->discard_map, se->cur_valid_map,
  3411. SIT_VBLOCK_MAP_SIZE);
  3412. sbi->discard_blks += old_valid_blocks;
  3413. sbi->discard_blks -= se->valid_blocks;
  3414. }
  3415. if (sbi->segs_per_sec > 1) {
  3416. get_sec_entry(sbi, start)->valid_blocks +=
  3417. se->valid_blocks;
  3418. get_sec_entry(sbi, start)->valid_blocks -=
  3419. old_valid_blocks;
  3420. }
  3421. }
  3422. up_read(&curseg->journal_rwsem);
  3423. if (!err && total_node_blocks != valid_node_count(sbi)) {
  3424. f2fs_msg(sbi->sb, KERN_ERR,
  3425. "SIT is corrupted node# %u vs %u",
  3426. total_node_blocks, valid_node_count(sbi));
  3427. set_sbi_flag(sbi, SBI_NEED_FSCK);
  3428. err = -EINVAL;
  3429. }
  3430. return err;
  3431. }
  3432. static void init_free_segmap(struct f2fs_sb_info *sbi)
  3433. {
  3434. unsigned int start;
  3435. int type;
  3436. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  3437. struct seg_entry *sentry = get_seg_entry(sbi, start);
  3438. if (!sentry->valid_blocks)
  3439. __set_free(sbi, start);
  3440. else
  3441. SIT_I(sbi)->written_valid_blocks +=
  3442. sentry->valid_blocks;
  3443. }
  3444. /* set use the current segments */
  3445. for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
  3446. struct curseg_info *curseg_t = CURSEG_I(sbi, type);
  3447. __set_test_and_inuse(sbi, curseg_t->segno);
  3448. }
  3449. }
  3450. static void init_dirty_segmap(struct f2fs_sb_info *sbi)
  3451. {
  3452. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3453. struct free_segmap_info *free_i = FREE_I(sbi);
  3454. unsigned int segno = 0, offset = 0;
  3455. unsigned short valid_blocks;
  3456. while (1) {
  3457. /* find dirty segment based on free segmap */
  3458. segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
  3459. if (segno >= MAIN_SEGS(sbi))
  3460. break;
  3461. offset = segno + 1;
  3462. valid_blocks = get_valid_blocks(sbi, segno, false);
  3463. if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
  3464. continue;
  3465. if (valid_blocks > sbi->blocks_per_seg) {
  3466. f2fs_bug_on(sbi, 1);
  3467. continue;
  3468. }
  3469. mutex_lock(&dirty_i->seglist_lock);
  3470. __locate_dirty_segment(sbi, segno, DIRTY);
  3471. mutex_unlock(&dirty_i->seglist_lock);
  3472. }
  3473. }
  3474. static int init_victim_secmap(struct f2fs_sb_info *sbi)
  3475. {
  3476. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3477. unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  3478. dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
  3479. if (!dirty_i->victim_secmap)
  3480. return -ENOMEM;
  3481. return 0;
  3482. }
  3483. static int build_dirty_segmap(struct f2fs_sb_info *sbi)
  3484. {
  3485. struct dirty_seglist_info *dirty_i;
  3486. unsigned int bitmap_size, i;
  3487. /* allocate memory for dirty segments list information */
  3488. dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
  3489. GFP_KERNEL);
  3490. if (!dirty_i)
  3491. return -ENOMEM;
  3492. SM_I(sbi)->dirty_info = dirty_i;
  3493. mutex_init(&dirty_i->seglist_lock);
  3494. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  3495. for (i = 0; i < NR_DIRTY_TYPE; i++) {
  3496. dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
  3497. GFP_KERNEL);
  3498. if (!dirty_i->dirty_segmap[i])
  3499. return -ENOMEM;
  3500. }
  3501. init_dirty_segmap(sbi);
  3502. return init_victim_secmap(sbi);
  3503. }
  3504. /*
  3505. * Update min, max modified time for cost-benefit GC algorithm
  3506. */
  3507. static void init_min_max_mtime(struct f2fs_sb_info *sbi)
  3508. {
  3509. struct sit_info *sit_i = SIT_I(sbi);
  3510. unsigned int segno;
  3511. down_write(&sit_i->sentry_lock);
  3512. sit_i->min_mtime = ULLONG_MAX;
  3513. for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
  3514. unsigned int i;
  3515. unsigned long long mtime = 0;
  3516. for (i = 0; i < sbi->segs_per_sec; i++)
  3517. mtime += get_seg_entry(sbi, segno + i)->mtime;
  3518. mtime = div_u64(mtime, sbi->segs_per_sec);
  3519. if (sit_i->min_mtime > mtime)
  3520. sit_i->min_mtime = mtime;
  3521. }
  3522. sit_i->max_mtime = get_mtime(sbi, false);
  3523. up_write(&sit_i->sentry_lock);
  3524. }
  3525. int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
  3526. {
  3527. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  3528. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  3529. struct f2fs_sm_info *sm_info;
  3530. int err;
  3531. sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
  3532. if (!sm_info)
  3533. return -ENOMEM;
  3534. /* init sm info */
  3535. sbi->sm_info = sm_info;
  3536. sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
  3537. sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
  3538. sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
  3539. sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
  3540. sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
  3541. sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
  3542. sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
  3543. sm_info->rec_prefree_segments = sm_info->main_segments *
  3544. DEF_RECLAIM_PREFREE_SEGMENTS / 100;
  3545. if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
  3546. sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
  3547. if (!test_opt(sbi, LFS))
  3548. sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
  3549. sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
  3550. sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
  3551. sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
  3552. sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
  3553. sm_info->min_ssr_sections = reserved_sections(sbi);
  3554. INIT_LIST_HEAD(&sm_info->sit_entry_set);
  3555. init_rwsem(&sm_info->curseg_lock);
  3556. if (!f2fs_readonly(sbi->sb)) {
  3557. err = f2fs_create_flush_cmd_control(sbi);
  3558. if (err)
  3559. return err;
  3560. }
  3561. err = create_discard_cmd_control(sbi);
  3562. if (err)
  3563. return err;
  3564. err = build_sit_info(sbi);
  3565. if (err)
  3566. return err;
  3567. err = build_free_segmap(sbi);
  3568. if (err)
  3569. return err;
  3570. err = build_curseg(sbi);
  3571. if (err)
  3572. return err;
  3573. /* reinit free segmap based on SIT */
  3574. err = build_sit_entries(sbi);
  3575. if (err)
  3576. return err;
  3577. init_free_segmap(sbi);
  3578. err = build_dirty_segmap(sbi);
  3579. if (err)
  3580. return err;
  3581. init_min_max_mtime(sbi);
  3582. return 0;
  3583. }
  3584. static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
  3585. enum dirty_type dirty_type)
  3586. {
  3587. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3588. mutex_lock(&dirty_i->seglist_lock);
  3589. kvfree(dirty_i->dirty_segmap[dirty_type]);
  3590. dirty_i->nr_dirty[dirty_type] = 0;
  3591. mutex_unlock(&dirty_i->seglist_lock);
  3592. }
  3593. static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
  3594. {
  3595. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3596. kvfree(dirty_i->victim_secmap);
  3597. }
  3598. static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
  3599. {
  3600. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3601. int i;
  3602. if (!dirty_i)
  3603. return;
  3604. /* discard pre-free/dirty segments list */
  3605. for (i = 0; i < NR_DIRTY_TYPE; i++)
  3606. discard_dirty_segmap(sbi, i);
  3607. destroy_victim_secmap(sbi);
  3608. SM_I(sbi)->dirty_info = NULL;
  3609. kfree(dirty_i);
  3610. }
  3611. static void destroy_curseg(struct f2fs_sb_info *sbi)
  3612. {
  3613. struct curseg_info *array = SM_I(sbi)->curseg_array;
  3614. int i;
  3615. if (!array)
  3616. return;
  3617. SM_I(sbi)->curseg_array = NULL;
  3618. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  3619. kfree(array[i].sum_blk);
  3620. kfree(array[i].journal);
  3621. }
  3622. kfree(array);
  3623. }
  3624. static void destroy_free_segmap(struct f2fs_sb_info *sbi)
  3625. {
  3626. struct free_segmap_info *free_i = SM_I(sbi)->free_info;
  3627. if (!free_i)
  3628. return;
  3629. SM_I(sbi)->free_info = NULL;
  3630. kvfree(free_i->free_segmap);
  3631. kvfree(free_i->free_secmap);
  3632. kfree(free_i);
  3633. }
  3634. static void destroy_sit_info(struct f2fs_sb_info *sbi)
  3635. {
  3636. struct sit_info *sit_i = SIT_I(sbi);
  3637. unsigned int start;
  3638. if (!sit_i)
  3639. return;
  3640. if (sit_i->sentries) {
  3641. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  3642. kfree(sit_i->sentries[start].cur_valid_map);
  3643. #ifdef CONFIG_F2FS_CHECK_FS
  3644. kfree(sit_i->sentries[start].cur_valid_map_mir);
  3645. #endif
  3646. kfree(sit_i->sentries[start].ckpt_valid_map);
  3647. kfree(sit_i->sentries[start].discard_map);
  3648. }
  3649. }
  3650. kfree(sit_i->tmp_map);
  3651. kvfree(sit_i->sentries);
  3652. kvfree(sit_i->sec_entries);
  3653. kvfree(sit_i->dirty_sentries_bitmap);
  3654. SM_I(sbi)->sit_info = NULL;
  3655. kfree(sit_i->sit_bitmap);
  3656. #ifdef CONFIG_F2FS_CHECK_FS
  3657. kfree(sit_i->sit_bitmap_mir);
  3658. #endif
  3659. kfree(sit_i);
  3660. }
  3661. void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
  3662. {
  3663. struct f2fs_sm_info *sm_info = SM_I(sbi);
  3664. if (!sm_info)
  3665. return;
  3666. f2fs_destroy_flush_cmd_control(sbi, true);
  3667. destroy_discard_cmd_control(sbi);
  3668. destroy_dirty_segmap(sbi);
  3669. destroy_curseg(sbi);
  3670. destroy_free_segmap(sbi);
  3671. destroy_sit_info(sbi);
  3672. sbi->sm_info = NULL;
  3673. kfree(sm_info);
  3674. }
  3675. int __init f2fs_create_segment_manager_caches(void)
  3676. {
  3677. discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
  3678. sizeof(struct discard_entry));
  3679. if (!discard_entry_slab)
  3680. goto fail;
  3681. discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
  3682. sizeof(struct discard_cmd));
  3683. if (!discard_cmd_slab)
  3684. goto destroy_discard_entry;
  3685. sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
  3686. sizeof(struct sit_entry_set));
  3687. if (!sit_entry_set_slab)
  3688. goto destroy_discard_cmd;
  3689. inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
  3690. sizeof(struct inmem_pages));
  3691. if (!inmem_entry_slab)
  3692. goto destroy_sit_entry_set;
  3693. return 0;
  3694. destroy_sit_entry_set:
  3695. kmem_cache_destroy(sit_entry_set_slab);
  3696. destroy_discard_cmd:
  3697. kmem_cache_destroy(discard_cmd_slab);
  3698. destroy_discard_entry:
  3699. kmem_cache_destroy(discard_entry_slab);
  3700. fail:
  3701. return -ENOMEM;
  3702. }
  3703. void f2fs_destroy_segment_manager_caches(void)
  3704. {
  3705. kmem_cache_destroy(sit_entry_set_slab);
  3706. kmem_cache_destroy(discard_cmd_slab);
  3707. kmem_cache_destroy(discard_entry_slab);
  3708. kmem_cache_destroy(inmem_entry_slab);
  3709. }