multiorder.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447
  1. /*
  2. * multiorder.c: Multi-order radix tree entry testing
  3. * Copyright (c) 2016 Intel Corporation
  4. * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
  5. * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. */
  16. #include <linux/radix-tree.h>
  17. #include <linux/slab.h>
  18. #include <linux/errno.h>
  19. #include <pthread.h>
  20. #include "test.h"
  21. #define for_each_index(i, base, order) \
  22. for (i = base; i < base + (1 << order); i++)
  23. static void __multiorder_tag_test(int index, int order)
  24. {
  25. RADIX_TREE(tree, GFP_KERNEL);
  26. int base, err, i;
  27. /* our canonical entry */
  28. base = index & ~((1 << order) - 1);
  29. printv(2, "Multiorder tag test with index %d, canonical entry %d\n",
  30. index, base);
  31. err = item_insert_order(&tree, index, order);
  32. assert(!err);
  33. /*
  34. * Verify we get collisions for covered indices. We try and fail to
  35. * insert a value entry so we don't leak memory via
  36. * item_insert_order().
  37. */
  38. for_each_index(i, base, order) {
  39. err = __radix_tree_insert(&tree, i, order, xa_mk_value(0xA0));
  40. assert(err == -EEXIST);
  41. }
  42. for_each_index(i, base, order) {
  43. assert(!radix_tree_tag_get(&tree, i, 0));
  44. assert(!radix_tree_tag_get(&tree, i, 1));
  45. }
  46. assert(radix_tree_tag_set(&tree, index, 0));
  47. for_each_index(i, base, order) {
  48. assert(radix_tree_tag_get(&tree, i, 0));
  49. assert(!radix_tree_tag_get(&tree, i, 1));
  50. }
  51. assert(tag_tagged_items(&tree, 0, ~0UL, 10, XA_MARK_0, XA_MARK_1) == 1);
  52. assert(radix_tree_tag_clear(&tree, index, 0));
  53. for_each_index(i, base, order) {
  54. assert(!radix_tree_tag_get(&tree, i, 0));
  55. assert(radix_tree_tag_get(&tree, i, 1));
  56. }
  57. assert(radix_tree_tag_clear(&tree, index, 1));
  58. assert(!radix_tree_tagged(&tree, 0));
  59. assert(!radix_tree_tagged(&tree, 1));
  60. item_kill_tree(&tree);
  61. }
  62. static void __multiorder_tag_test2(unsigned order, unsigned long index2)
  63. {
  64. RADIX_TREE(tree, GFP_KERNEL);
  65. unsigned long index = (1 << order);
  66. index2 += index;
  67. assert(item_insert_order(&tree, 0, order) == 0);
  68. assert(item_insert(&tree, index2) == 0);
  69. assert(radix_tree_tag_set(&tree, 0, 0));
  70. assert(radix_tree_tag_set(&tree, index2, 0));
  71. assert(tag_tagged_items(&tree, 0, ~0UL, 10, XA_MARK_0, XA_MARK_1) == 2);
  72. item_kill_tree(&tree);
  73. }
  74. static void multiorder_tag_tests(void)
  75. {
  76. int i, j;
  77. /* test multi-order entry for indices 0-7 with no sibling pointers */
  78. __multiorder_tag_test(0, 3);
  79. __multiorder_tag_test(5, 3);
  80. /* test multi-order entry for indices 8-15 with no sibling pointers */
  81. __multiorder_tag_test(8, 3);
  82. __multiorder_tag_test(15, 3);
  83. /*
  84. * Our order 5 entry covers indices 0-31 in a tree with height=2.
  85. * This is broken up as follows:
  86. * 0-7: canonical entry
  87. * 8-15: sibling 1
  88. * 16-23: sibling 2
  89. * 24-31: sibling 3
  90. */
  91. __multiorder_tag_test(0, 5);
  92. __multiorder_tag_test(29, 5);
  93. /* same test, but with indices 32-63 */
  94. __multiorder_tag_test(32, 5);
  95. __multiorder_tag_test(44, 5);
  96. /*
  97. * Our order 8 entry covers indices 0-255 in a tree with height=3.
  98. * This is broken up as follows:
  99. * 0-63: canonical entry
  100. * 64-127: sibling 1
  101. * 128-191: sibling 2
  102. * 192-255: sibling 3
  103. */
  104. __multiorder_tag_test(0, 8);
  105. __multiorder_tag_test(190, 8);
  106. /* same test, but with indices 256-511 */
  107. __multiorder_tag_test(256, 8);
  108. __multiorder_tag_test(300, 8);
  109. __multiorder_tag_test(0x12345678UL, 8);
  110. for (i = 1; i < 10; i++)
  111. for (j = 0; j < (10 << i); j++)
  112. __multiorder_tag_test2(i, j);
  113. }
  114. static void multiorder_check(unsigned long index, int order)
  115. {
  116. unsigned long i;
  117. unsigned long min = index & ~((1UL << order) - 1);
  118. unsigned long max = min + (1UL << order);
  119. void **slot;
  120. struct item *item2 = item_create(min, order);
  121. RADIX_TREE(tree, GFP_KERNEL);
  122. printv(2, "Multiorder index %ld, order %d\n", index, order);
  123. assert(item_insert_order(&tree, index, order) == 0);
  124. for (i = min; i < max; i++) {
  125. struct item *item = item_lookup(&tree, i);
  126. assert(item != 0);
  127. assert(item->index == index);
  128. }
  129. for (i = 0; i < min; i++)
  130. item_check_absent(&tree, i);
  131. for (i = max; i < 2*max; i++)
  132. item_check_absent(&tree, i);
  133. for (i = min; i < max; i++)
  134. assert(radix_tree_insert(&tree, i, item2) == -EEXIST);
  135. slot = radix_tree_lookup_slot(&tree, index);
  136. free(*slot);
  137. radix_tree_replace_slot(&tree, slot, item2);
  138. for (i = min; i < max; i++) {
  139. struct item *item = item_lookup(&tree, i);
  140. assert(item != 0);
  141. assert(item->index == min);
  142. }
  143. assert(item_delete(&tree, min) != 0);
  144. for (i = 0; i < 2*max; i++)
  145. item_check_absent(&tree, i);
  146. }
  147. static void multiorder_shrink(unsigned long index, int order)
  148. {
  149. unsigned long i;
  150. unsigned long max = 1 << order;
  151. RADIX_TREE(tree, GFP_KERNEL);
  152. struct radix_tree_node *node;
  153. printv(2, "Multiorder shrink index %ld, order %d\n", index, order);
  154. assert(item_insert_order(&tree, 0, order) == 0);
  155. node = tree.xa_head;
  156. assert(item_insert(&tree, index) == 0);
  157. assert(node != tree.xa_head);
  158. assert(item_delete(&tree, index) != 0);
  159. assert(node == tree.xa_head);
  160. for (i = 0; i < max; i++) {
  161. struct item *item = item_lookup(&tree, i);
  162. assert(item != 0);
  163. assert(item->index == 0);
  164. }
  165. for (i = max; i < 2*max; i++)
  166. item_check_absent(&tree, i);
  167. if (!item_delete(&tree, 0)) {
  168. printv(2, "failed to delete index %ld (order %d)\n", index, order);
  169. abort();
  170. }
  171. for (i = 0; i < 2*max; i++)
  172. item_check_absent(&tree, i);
  173. }
  174. static void multiorder_insert_bug(void)
  175. {
  176. RADIX_TREE(tree, GFP_KERNEL);
  177. item_insert(&tree, 0);
  178. radix_tree_tag_set(&tree, 0, 0);
  179. item_insert_order(&tree, 3 << 6, 6);
  180. item_kill_tree(&tree);
  181. }
  182. void multiorder_iteration(void)
  183. {
  184. RADIX_TREE(tree, GFP_KERNEL);
  185. struct radix_tree_iter iter;
  186. void **slot;
  187. int i, j, err;
  188. printv(1, "Multiorder iteration test\n");
  189. #define NUM_ENTRIES 11
  190. int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
  191. int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7};
  192. for (i = 0; i < NUM_ENTRIES; i++) {
  193. err = item_insert_order(&tree, index[i], order[i]);
  194. assert(!err);
  195. }
  196. for (j = 0; j < 256; j++) {
  197. for (i = 0; i < NUM_ENTRIES; i++)
  198. if (j <= (index[i] | ((1 << order[i]) - 1)))
  199. break;
  200. radix_tree_for_each_slot(slot, &tree, &iter, j) {
  201. int height = order[i] / RADIX_TREE_MAP_SHIFT;
  202. int shift = height * RADIX_TREE_MAP_SHIFT;
  203. unsigned long mask = (1UL << order[i]) - 1;
  204. struct item *item = *slot;
  205. assert((iter.index | mask) == (index[i] | mask));
  206. assert(iter.shift == shift);
  207. assert(!radix_tree_is_internal_node(item));
  208. assert((item->index | mask) == (index[i] | mask));
  209. assert(item->order == order[i]);
  210. i++;
  211. }
  212. }
  213. item_kill_tree(&tree);
  214. }
  215. void multiorder_tagged_iteration(void)
  216. {
  217. RADIX_TREE(tree, GFP_KERNEL);
  218. struct radix_tree_iter iter;
  219. void **slot;
  220. int i, j;
  221. printv(1, "Multiorder tagged iteration test\n");
  222. #define MT_NUM_ENTRIES 9
  223. int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
  224. int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7};
  225. #define TAG_ENTRIES 7
  226. int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
  227. for (i = 0; i < MT_NUM_ENTRIES; i++)
  228. assert(!item_insert_order(&tree, index[i], order[i]));
  229. assert(!radix_tree_tagged(&tree, 1));
  230. for (i = 0; i < TAG_ENTRIES; i++)
  231. assert(radix_tree_tag_set(&tree, tag_index[i], 1));
  232. for (j = 0; j < 256; j++) {
  233. int k;
  234. for (i = 0; i < TAG_ENTRIES; i++) {
  235. for (k = i; index[k] < tag_index[i]; k++)
  236. ;
  237. if (j <= (index[k] | ((1 << order[k]) - 1)))
  238. break;
  239. }
  240. radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) {
  241. unsigned long mask;
  242. struct item *item = *slot;
  243. for (k = i; index[k] < tag_index[i]; k++)
  244. ;
  245. mask = (1UL << order[k]) - 1;
  246. assert((iter.index | mask) == (tag_index[i] | mask));
  247. assert(!radix_tree_is_internal_node(item));
  248. assert((item->index | mask) == (tag_index[i] | mask));
  249. assert(item->order == order[k]);
  250. i++;
  251. }
  252. }
  253. assert(tag_tagged_items(&tree, 0, ~0UL, TAG_ENTRIES, XA_MARK_1,
  254. XA_MARK_2) == TAG_ENTRIES);
  255. for (j = 0; j < 256; j++) {
  256. int mask, k;
  257. for (i = 0; i < TAG_ENTRIES; i++) {
  258. for (k = i; index[k] < tag_index[i]; k++)
  259. ;
  260. if (j <= (index[k] | ((1 << order[k]) - 1)))
  261. break;
  262. }
  263. radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) {
  264. struct item *item = *slot;
  265. for (k = i; index[k] < tag_index[i]; k++)
  266. ;
  267. mask = (1 << order[k]) - 1;
  268. assert((iter.index | mask) == (tag_index[i] | mask));
  269. assert(!radix_tree_is_internal_node(item));
  270. assert((item->index | mask) == (tag_index[i] | mask));
  271. assert(item->order == order[k]);
  272. i++;
  273. }
  274. }
  275. assert(tag_tagged_items(&tree, 1, ~0UL, MT_NUM_ENTRIES * 2, XA_MARK_1,
  276. XA_MARK_0) == TAG_ENTRIES);
  277. i = 0;
  278. radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) {
  279. assert(iter.index == tag_index[i]);
  280. i++;
  281. }
  282. item_kill_tree(&tree);
  283. }
  284. bool stop_iteration = false;
  285. static void *creator_func(void *ptr)
  286. {
  287. /* 'order' is set up to ensure we have sibling entries */
  288. unsigned int order = RADIX_TREE_MAP_SHIFT - 1;
  289. struct radix_tree_root *tree = ptr;
  290. int i;
  291. for (i = 0; i < 10000; i++) {
  292. item_insert_order(tree, 0, order);
  293. item_delete_rcu(tree, 0);
  294. }
  295. stop_iteration = true;
  296. return NULL;
  297. }
  298. static void *iterator_func(void *ptr)
  299. {
  300. struct radix_tree_root *tree = ptr;
  301. struct radix_tree_iter iter;
  302. struct item *item;
  303. void **slot;
  304. while (!stop_iteration) {
  305. rcu_read_lock();
  306. radix_tree_for_each_slot(slot, tree, &iter, 0) {
  307. item = radix_tree_deref_slot(slot);
  308. if (!item)
  309. continue;
  310. if (radix_tree_deref_retry(item)) {
  311. slot = radix_tree_iter_retry(&iter);
  312. continue;
  313. }
  314. item_sanity(item, iter.index);
  315. }
  316. rcu_read_unlock();
  317. }
  318. return NULL;
  319. }
  320. static void multiorder_iteration_race(void)
  321. {
  322. const int num_threads = sysconf(_SC_NPROCESSORS_ONLN);
  323. pthread_t worker_thread[num_threads];
  324. RADIX_TREE(tree, GFP_KERNEL);
  325. int i;
  326. pthread_create(&worker_thread[0], NULL, &creator_func, &tree);
  327. for (i = 1; i < num_threads; i++)
  328. pthread_create(&worker_thread[i], NULL, &iterator_func, &tree);
  329. for (i = 0; i < num_threads; i++)
  330. pthread_join(worker_thread[i], NULL);
  331. item_kill_tree(&tree);
  332. }
  333. void multiorder_checks(void)
  334. {
  335. int i;
  336. for (i = 0; i < 20; i++) {
  337. multiorder_check(200, i);
  338. multiorder_check(0, i);
  339. multiorder_check((1UL << i) + 1, i);
  340. }
  341. for (i = 0; i < 15; i++)
  342. multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i);
  343. multiorder_insert_bug();
  344. multiorder_tag_tests();
  345. multiorder_iteration();
  346. multiorder_tagged_iteration();
  347. multiorder_iteration_race();
  348. radix_tree_cpu_dead(0);
  349. }
  350. int __weak main(void)
  351. {
  352. radix_tree_init();
  353. multiorder_checks();
  354. return 0;
  355. }