flow_dissector.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604
  1. #include <linux/kernel.h>
  2. #include <linux/skbuff.h>
  3. #include <linux/export.h>
  4. #include <linux/ip.h>
  5. #include <linux/ipv6.h>
  6. #include <linux/if_vlan.h>
  7. #include <net/dsa.h>
  8. #include <net/dst_metadata.h>
  9. #include <net/ip.h>
  10. #include <net/ipv6.h>
  11. #include <net/gre.h>
  12. #include <net/pptp.h>
  13. #include <net/tipc.h>
  14. #include <linux/igmp.h>
  15. #include <linux/icmp.h>
  16. #include <linux/sctp.h>
  17. #include <linux/dccp.h>
  18. #include <linux/if_tunnel.h>
  19. #include <linux/if_pppox.h>
  20. #include <linux/ppp_defs.h>
  21. #include <linux/stddef.h>
  22. #include <linux/if_ether.h>
  23. #include <linux/mpls.h>
  24. #include <linux/tcp.h>
  25. #include <net/flow_dissector.h>
  26. #include <scsi/fc/fc_fcoe.h>
  27. #include <uapi/linux/batadv_packet.h>
  28. #include <linux/bpf.h>
  29. static DEFINE_MUTEX(flow_dissector_mutex);
  30. static void dissector_set_key(struct flow_dissector *flow_dissector,
  31. enum flow_dissector_key_id key_id)
  32. {
  33. flow_dissector->used_keys |= (1 << key_id);
  34. }
  35. void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
  36. const struct flow_dissector_key *key,
  37. unsigned int key_count)
  38. {
  39. unsigned int i;
  40. memset(flow_dissector, 0, sizeof(*flow_dissector));
  41. for (i = 0; i < key_count; i++, key++) {
  42. /* User should make sure that every key target offset is withing
  43. * boundaries of unsigned short.
  44. */
  45. BUG_ON(key->offset > USHRT_MAX);
  46. BUG_ON(dissector_uses_key(flow_dissector,
  47. key->key_id));
  48. dissector_set_key(flow_dissector, key->key_id);
  49. flow_dissector->offset[key->key_id] = key->offset;
  50. }
  51. /* Ensure that the dissector always includes control and basic key.
  52. * That way we are able to avoid handling lack of these in fast path.
  53. */
  54. BUG_ON(!dissector_uses_key(flow_dissector,
  55. FLOW_DISSECTOR_KEY_CONTROL));
  56. BUG_ON(!dissector_uses_key(flow_dissector,
  57. FLOW_DISSECTOR_KEY_BASIC));
  58. }
  59. EXPORT_SYMBOL(skb_flow_dissector_init);
  60. int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
  61. struct bpf_prog *prog)
  62. {
  63. struct bpf_prog *attached;
  64. struct net *net;
  65. net = current->nsproxy->net_ns;
  66. mutex_lock(&flow_dissector_mutex);
  67. attached = rcu_dereference_protected(net->flow_dissector_prog,
  68. lockdep_is_held(&flow_dissector_mutex));
  69. if (attached) {
  70. /* Only one BPF program can be attached at a time */
  71. mutex_unlock(&flow_dissector_mutex);
  72. return -EEXIST;
  73. }
  74. rcu_assign_pointer(net->flow_dissector_prog, prog);
  75. mutex_unlock(&flow_dissector_mutex);
  76. return 0;
  77. }
  78. int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
  79. {
  80. struct bpf_prog *attached;
  81. struct net *net;
  82. net = current->nsproxy->net_ns;
  83. mutex_lock(&flow_dissector_mutex);
  84. attached = rcu_dereference_protected(net->flow_dissector_prog,
  85. lockdep_is_held(&flow_dissector_mutex));
  86. if (!attached) {
  87. mutex_unlock(&flow_dissector_mutex);
  88. return -ENOENT;
  89. }
  90. bpf_prog_put(attached);
  91. RCU_INIT_POINTER(net->flow_dissector_prog, NULL);
  92. mutex_unlock(&flow_dissector_mutex);
  93. return 0;
  94. }
  95. /**
  96. * skb_flow_get_be16 - extract be16 entity
  97. * @skb: sk_buff to extract from
  98. * @poff: offset to extract at
  99. * @data: raw buffer pointer to the packet
  100. * @hlen: packet header length
  101. *
  102. * The function will try to retrieve a be32 entity at
  103. * offset poff
  104. */
  105. static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
  106. void *data, int hlen)
  107. {
  108. __be16 *u, _u;
  109. u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
  110. if (u)
  111. return *u;
  112. return 0;
  113. }
  114. /**
  115. * __skb_flow_get_ports - extract the upper layer ports and return them
  116. * @skb: sk_buff to extract the ports from
  117. * @thoff: transport header offset
  118. * @ip_proto: protocol for which to get port offset
  119. * @data: raw buffer pointer to the packet, if NULL use skb->data
  120. * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
  121. *
  122. * The function will try to retrieve the ports at offset thoff + poff where poff
  123. * is the protocol port offset returned from proto_ports_offset
  124. */
  125. __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
  126. void *data, int hlen)
  127. {
  128. int poff = proto_ports_offset(ip_proto);
  129. if (!data) {
  130. data = skb->data;
  131. hlen = skb_headlen(skb);
  132. }
  133. if (poff >= 0) {
  134. __be32 *ports, _ports;
  135. ports = __skb_header_pointer(skb, thoff + poff,
  136. sizeof(_ports), data, hlen, &_ports);
  137. if (ports)
  138. return *ports;
  139. }
  140. return 0;
  141. }
  142. EXPORT_SYMBOL(__skb_flow_get_ports);
  143. static void
  144. skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
  145. struct flow_dissector *flow_dissector,
  146. void *target_container)
  147. {
  148. struct flow_dissector_key_control *ctrl;
  149. if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
  150. return;
  151. ctrl = skb_flow_dissector_target(flow_dissector,
  152. FLOW_DISSECTOR_KEY_ENC_CONTROL,
  153. target_container);
  154. ctrl->addr_type = type;
  155. }
  156. void
  157. skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
  158. struct flow_dissector *flow_dissector,
  159. void *target_container)
  160. {
  161. struct ip_tunnel_info *info;
  162. struct ip_tunnel_key *key;
  163. /* A quick check to see if there might be something to do. */
  164. if (!dissector_uses_key(flow_dissector,
  165. FLOW_DISSECTOR_KEY_ENC_KEYID) &&
  166. !dissector_uses_key(flow_dissector,
  167. FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
  168. !dissector_uses_key(flow_dissector,
  169. FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
  170. !dissector_uses_key(flow_dissector,
  171. FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
  172. !dissector_uses_key(flow_dissector,
  173. FLOW_DISSECTOR_KEY_ENC_PORTS) &&
  174. !dissector_uses_key(flow_dissector,
  175. FLOW_DISSECTOR_KEY_ENC_IP) &&
  176. !dissector_uses_key(flow_dissector,
  177. FLOW_DISSECTOR_KEY_ENC_OPTS))
  178. return;
  179. info = skb_tunnel_info(skb);
  180. if (!info)
  181. return;
  182. key = &info->key;
  183. switch (ip_tunnel_info_af(info)) {
  184. case AF_INET:
  185. skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
  186. flow_dissector,
  187. target_container);
  188. if (dissector_uses_key(flow_dissector,
  189. FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
  190. struct flow_dissector_key_ipv4_addrs *ipv4;
  191. ipv4 = skb_flow_dissector_target(flow_dissector,
  192. FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
  193. target_container);
  194. ipv4->src = key->u.ipv4.src;
  195. ipv4->dst = key->u.ipv4.dst;
  196. }
  197. break;
  198. case AF_INET6:
  199. skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
  200. flow_dissector,
  201. target_container);
  202. if (dissector_uses_key(flow_dissector,
  203. FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
  204. struct flow_dissector_key_ipv6_addrs *ipv6;
  205. ipv6 = skb_flow_dissector_target(flow_dissector,
  206. FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
  207. target_container);
  208. ipv6->src = key->u.ipv6.src;
  209. ipv6->dst = key->u.ipv6.dst;
  210. }
  211. break;
  212. }
  213. if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
  214. struct flow_dissector_key_keyid *keyid;
  215. keyid = skb_flow_dissector_target(flow_dissector,
  216. FLOW_DISSECTOR_KEY_ENC_KEYID,
  217. target_container);
  218. keyid->keyid = tunnel_id_to_key32(key->tun_id);
  219. }
  220. if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
  221. struct flow_dissector_key_ports *tp;
  222. tp = skb_flow_dissector_target(flow_dissector,
  223. FLOW_DISSECTOR_KEY_ENC_PORTS,
  224. target_container);
  225. tp->src = key->tp_src;
  226. tp->dst = key->tp_dst;
  227. }
  228. if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
  229. struct flow_dissector_key_ip *ip;
  230. ip = skb_flow_dissector_target(flow_dissector,
  231. FLOW_DISSECTOR_KEY_ENC_IP,
  232. target_container);
  233. ip->tos = key->tos;
  234. ip->ttl = key->ttl;
  235. }
  236. if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
  237. struct flow_dissector_key_enc_opts *enc_opt;
  238. enc_opt = skb_flow_dissector_target(flow_dissector,
  239. FLOW_DISSECTOR_KEY_ENC_OPTS,
  240. target_container);
  241. if (info->options_len) {
  242. enc_opt->len = info->options_len;
  243. ip_tunnel_info_opts_get(enc_opt->data, info);
  244. enc_opt->dst_opt_type = info->key.tun_flags &
  245. TUNNEL_OPTIONS_PRESENT;
  246. }
  247. }
  248. }
  249. EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
  250. static enum flow_dissect_ret
  251. __skb_flow_dissect_mpls(const struct sk_buff *skb,
  252. struct flow_dissector *flow_dissector,
  253. void *target_container, void *data, int nhoff, int hlen)
  254. {
  255. struct flow_dissector_key_keyid *key_keyid;
  256. struct mpls_label *hdr, _hdr[2];
  257. u32 entry, label;
  258. if (!dissector_uses_key(flow_dissector,
  259. FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
  260. !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
  261. return FLOW_DISSECT_RET_OUT_GOOD;
  262. hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
  263. hlen, &_hdr);
  264. if (!hdr)
  265. return FLOW_DISSECT_RET_OUT_BAD;
  266. entry = ntohl(hdr[0].entry);
  267. label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
  268. if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
  269. struct flow_dissector_key_mpls *key_mpls;
  270. key_mpls = skb_flow_dissector_target(flow_dissector,
  271. FLOW_DISSECTOR_KEY_MPLS,
  272. target_container);
  273. key_mpls->mpls_label = label;
  274. key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
  275. >> MPLS_LS_TTL_SHIFT;
  276. key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
  277. >> MPLS_LS_TC_SHIFT;
  278. key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
  279. >> MPLS_LS_S_SHIFT;
  280. }
  281. if (label == MPLS_LABEL_ENTROPY) {
  282. key_keyid = skb_flow_dissector_target(flow_dissector,
  283. FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
  284. target_container);
  285. key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
  286. }
  287. return FLOW_DISSECT_RET_OUT_GOOD;
  288. }
  289. static enum flow_dissect_ret
  290. __skb_flow_dissect_arp(const struct sk_buff *skb,
  291. struct flow_dissector *flow_dissector,
  292. void *target_container, void *data, int nhoff, int hlen)
  293. {
  294. struct flow_dissector_key_arp *key_arp;
  295. struct {
  296. unsigned char ar_sha[ETH_ALEN];
  297. unsigned char ar_sip[4];
  298. unsigned char ar_tha[ETH_ALEN];
  299. unsigned char ar_tip[4];
  300. } *arp_eth, _arp_eth;
  301. const struct arphdr *arp;
  302. struct arphdr _arp;
  303. if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
  304. return FLOW_DISSECT_RET_OUT_GOOD;
  305. arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
  306. hlen, &_arp);
  307. if (!arp)
  308. return FLOW_DISSECT_RET_OUT_BAD;
  309. if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
  310. arp->ar_pro != htons(ETH_P_IP) ||
  311. arp->ar_hln != ETH_ALEN ||
  312. arp->ar_pln != 4 ||
  313. (arp->ar_op != htons(ARPOP_REPLY) &&
  314. arp->ar_op != htons(ARPOP_REQUEST)))
  315. return FLOW_DISSECT_RET_OUT_BAD;
  316. arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
  317. sizeof(_arp_eth), data,
  318. hlen, &_arp_eth);
  319. if (!arp_eth)
  320. return FLOW_DISSECT_RET_OUT_BAD;
  321. key_arp = skb_flow_dissector_target(flow_dissector,
  322. FLOW_DISSECTOR_KEY_ARP,
  323. target_container);
  324. memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
  325. memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
  326. /* Only store the lower byte of the opcode;
  327. * this covers ARPOP_REPLY and ARPOP_REQUEST.
  328. */
  329. key_arp->op = ntohs(arp->ar_op) & 0xff;
  330. ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
  331. ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
  332. return FLOW_DISSECT_RET_OUT_GOOD;
  333. }
  334. static enum flow_dissect_ret
  335. __skb_flow_dissect_gre(const struct sk_buff *skb,
  336. struct flow_dissector_key_control *key_control,
  337. struct flow_dissector *flow_dissector,
  338. void *target_container, void *data,
  339. __be16 *p_proto, int *p_nhoff, int *p_hlen,
  340. unsigned int flags)
  341. {
  342. struct flow_dissector_key_keyid *key_keyid;
  343. struct gre_base_hdr *hdr, _hdr;
  344. int offset = 0;
  345. u16 gre_ver;
  346. hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
  347. data, *p_hlen, &_hdr);
  348. if (!hdr)
  349. return FLOW_DISSECT_RET_OUT_BAD;
  350. /* Only look inside GRE without routing */
  351. if (hdr->flags & GRE_ROUTING)
  352. return FLOW_DISSECT_RET_OUT_GOOD;
  353. /* Only look inside GRE for version 0 and 1 */
  354. gre_ver = ntohs(hdr->flags & GRE_VERSION);
  355. if (gre_ver > 1)
  356. return FLOW_DISSECT_RET_OUT_GOOD;
  357. *p_proto = hdr->protocol;
  358. if (gre_ver) {
  359. /* Version1 must be PPTP, and check the flags */
  360. if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
  361. return FLOW_DISSECT_RET_OUT_GOOD;
  362. }
  363. offset += sizeof(struct gre_base_hdr);
  364. if (hdr->flags & GRE_CSUM)
  365. offset += sizeof(((struct gre_full_hdr *) 0)->csum) +
  366. sizeof(((struct gre_full_hdr *) 0)->reserved1);
  367. if (hdr->flags & GRE_KEY) {
  368. const __be32 *keyid;
  369. __be32 _keyid;
  370. keyid = __skb_header_pointer(skb, *p_nhoff + offset,
  371. sizeof(_keyid),
  372. data, *p_hlen, &_keyid);
  373. if (!keyid)
  374. return FLOW_DISSECT_RET_OUT_BAD;
  375. if (dissector_uses_key(flow_dissector,
  376. FLOW_DISSECTOR_KEY_GRE_KEYID)) {
  377. key_keyid = skb_flow_dissector_target(flow_dissector,
  378. FLOW_DISSECTOR_KEY_GRE_KEYID,
  379. target_container);
  380. if (gre_ver == 0)
  381. key_keyid->keyid = *keyid;
  382. else
  383. key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
  384. }
  385. offset += sizeof(((struct gre_full_hdr *) 0)->key);
  386. }
  387. if (hdr->flags & GRE_SEQ)
  388. offset += sizeof(((struct pptp_gre_header *) 0)->seq);
  389. if (gre_ver == 0) {
  390. if (*p_proto == htons(ETH_P_TEB)) {
  391. const struct ethhdr *eth;
  392. struct ethhdr _eth;
  393. eth = __skb_header_pointer(skb, *p_nhoff + offset,
  394. sizeof(_eth),
  395. data, *p_hlen, &_eth);
  396. if (!eth)
  397. return FLOW_DISSECT_RET_OUT_BAD;
  398. *p_proto = eth->h_proto;
  399. offset += sizeof(*eth);
  400. /* Cap headers that we access via pointers at the
  401. * end of the Ethernet header as our maximum alignment
  402. * at that point is only 2 bytes.
  403. */
  404. if (NET_IP_ALIGN)
  405. *p_hlen = *p_nhoff + offset;
  406. }
  407. } else { /* version 1, must be PPTP */
  408. u8 _ppp_hdr[PPP_HDRLEN];
  409. u8 *ppp_hdr;
  410. if (hdr->flags & GRE_ACK)
  411. offset += sizeof(((struct pptp_gre_header *) 0)->ack);
  412. ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
  413. sizeof(_ppp_hdr),
  414. data, *p_hlen, _ppp_hdr);
  415. if (!ppp_hdr)
  416. return FLOW_DISSECT_RET_OUT_BAD;
  417. switch (PPP_PROTOCOL(ppp_hdr)) {
  418. case PPP_IP:
  419. *p_proto = htons(ETH_P_IP);
  420. break;
  421. case PPP_IPV6:
  422. *p_proto = htons(ETH_P_IPV6);
  423. break;
  424. default:
  425. /* Could probably catch some more like MPLS */
  426. break;
  427. }
  428. offset += PPP_HDRLEN;
  429. }
  430. *p_nhoff += offset;
  431. key_control->flags |= FLOW_DIS_ENCAPSULATION;
  432. if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
  433. return FLOW_DISSECT_RET_OUT_GOOD;
  434. return FLOW_DISSECT_RET_PROTO_AGAIN;
  435. }
  436. /**
  437. * __skb_flow_dissect_batadv() - dissect batman-adv header
  438. * @skb: sk_buff to with the batman-adv header
  439. * @key_control: flow dissectors control key
  440. * @data: raw buffer pointer to the packet, if NULL use skb->data
  441. * @p_proto: pointer used to update the protocol to process next
  442. * @p_nhoff: pointer used to update inner network header offset
  443. * @hlen: packet header length
  444. * @flags: any combination of FLOW_DISSECTOR_F_*
  445. *
  446. * ETH_P_BATMAN packets are tried to be dissected. Only
  447. * &struct batadv_unicast packets are actually processed because they contain an
  448. * inner ethernet header and are usually followed by actual network header. This
  449. * allows the flow dissector to continue processing the packet.
  450. *
  451. * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
  452. * FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
  453. * otherwise FLOW_DISSECT_RET_OUT_BAD
  454. */
  455. static enum flow_dissect_ret
  456. __skb_flow_dissect_batadv(const struct sk_buff *skb,
  457. struct flow_dissector_key_control *key_control,
  458. void *data, __be16 *p_proto, int *p_nhoff, int hlen,
  459. unsigned int flags)
  460. {
  461. struct {
  462. struct batadv_unicast_packet batadv_unicast;
  463. struct ethhdr eth;
  464. } *hdr, _hdr;
  465. hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
  466. &_hdr);
  467. if (!hdr)
  468. return FLOW_DISSECT_RET_OUT_BAD;
  469. if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
  470. return FLOW_DISSECT_RET_OUT_BAD;
  471. if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
  472. return FLOW_DISSECT_RET_OUT_BAD;
  473. *p_proto = hdr->eth.h_proto;
  474. *p_nhoff += sizeof(*hdr);
  475. key_control->flags |= FLOW_DIS_ENCAPSULATION;
  476. if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
  477. return FLOW_DISSECT_RET_OUT_GOOD;
  478. return FLOW_DISSECT_RET_PROTO_AGAIN;
  479. }
  480. static void
  481. __skb_flow_dissect_tcp(const struct sk_buff *skb,
  482. struct flow_dissector *flow_dissector,
  483. void *target_container, void *data, int thoff, int hlen)
  484. {
  485. struct flow_dissector_key_tcp *key_tcp;
  486. struct tcphdr *th, _th;
  487. if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
  488. return;
  489. th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
  490. if (!th)
  491. return;
  492. if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
  493. return;
  494. key_tcp = skb_flow_dissector_target(flow_dissector,
  495. FLOW_DISSECTOR_KEY_TCP,
  496. target_container);
  497. key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
  498. }
  499. static void
  500. __skb_flow_dissect_ipv4(const struct sk_buff *skb,
  501. struct flow_dissector *flow_dissector,
  502. void *target_container, void *data, const struct iphdr *iph)
  503. {
  504. struct flow_dissector_key_ip *key_ip;
  505. if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
  506. return;
  507. key_ip = skb_flow_dissector_target(flow_dissector,
  508. FLOW_DISSECTOR_KEY_IP,
  509. target_container);
  510. key_ip->tos = iph->tos;
  511. key_ip->ttl = iph->ttl;
  512. }
  513. static void
  514. __skb_flow_dissect_ipv6(const struct sk_buff *skb,
  515. struct flow_dissector *flow_dissector,
  516. void *target_container, void *data, const struct ipv6hdr *iph)
  517. {
  518. struct flow_dissector_key_ip *key_ip;
  519. if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
  520. return;
  521. key_ip = skb_flow_dissector_target(flow_dissector,
  522. FLOW_DISSECTOR_KEY_IP,
  523. target_container);
  524. key_ip->tos = ipv6_get_dsfield(iph);
  525. key_ip->ttl = iph->hop_limit;
  526. }
  527. /* Maximum number of protocol headers that can be parsed in
  528. * __skb_flow_dissect
  529. */
  530. #define MAX_FLOW_DISSECT_HDRS 15
  531. static bool skb_flow_dissect_allowed(int *num_hdrs)
  532. {
  533. ++*num_hdrs;
  534. return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
  535. }
  536. static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
  537. struct flow_dissector *flow_dissector,
  538. void *target_container)
  539. {
  540. struct flow_dissector_key_control *key_control;
  541. struct flow_dissector_key_basic *key_basic;
  542. struct flow_dissector_key_addrs *key_addrs;
  543. struct flow_dissector_key_ports *key_ports;
  544. key_control = skb_flow_dissector_target(flow_dissector,
  545. FLOW_DISSECTOR_KEY_CONTROL,
  546. target_container);
  547. key_control->thoff = flow_keys->thoff;
  548. if (flow_keys->is_frag)
  549. key_control->flags |= FLOW_DIS_IS_FRAGMENT;
  550. if (flow_keys->is_first_frag)
  551. key_control->flags |= FLOW_DIS_FIRST_FRAG;
  552. if (flow_keys->is_encap)
  553. key_control->flags |= FLOW_DIS_ENCAPSULATION;
  554. key_basic = skb_flow_dissector_target(flow_dissector,
  555. FLOW_DISSECTOR_KEY_BASIC,
  556. target_container);
  557. key_basic->n_proto = flow_keys->n_proto;
  558. key_basic->ip_proto = flow_keys->ip_proto;
  559. if (flow_keys->addr_proto == ETH_P_IP &&
  560. dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
  561. key_addrs = skb_flow_dissector_target(flow_dissector,
  562. FLOW_DISSECTOR_KEY_IPV4_ADDRS,
  563. target_container);
  564. key_addrs->v4addrs.src = flow_keys->ipv4_src;
  565. key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
  566. key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  567. } else if (flow_keys->addr_proto == ETH_P_IPV6 &&
  568. dissector_uses_key(flow_dissector,
  569. FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
  570. key_addrs = skb_flow_dissector_target(flow_dissector,
  571. FLOW_DISSECTOR_KEY_IPV6_ADDRS,
  572. target_container);
  573. memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
  574. sizeof(key_addrs->v6addrs));
  575. key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  576. }
  577. if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) {
  578. key_ports = skb_flow_dissector_target(flow_dissector,
  579. FLOW_DISSECTOR_KEY_PORTS,
  580. target_container);
  581. key_ports->src = flow_keys->sport;
  582. key_ports->dst = flow_keys->dport;
  583. }
  584. }
  585. /**
  586. * __skb_flow_dissect - extract the flow_keys struct and return it
  587. * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
  588. * @flow_dissector: list of keys to dissect
  589. * @target_container: target structure to put dissected values into
  590. * @data: raw buffer pointer to the packet, if NULL use skb->data
  591. * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
  592. * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
  593. * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
  594. *
  595. * The function will try to retrieve individual keys into target specified
  596. * by flow_dissector from either the skbuff or a raw buffer specified by the
  597. * rest parameters.
  598. *
  599. * Caller must take care of zeroing target container memory.
  600. */
  601. bool __skb_flow_dissect(const struct sk_buff *skb,
  602. struct flow_dissector *flow_dissector,
  603. void *target_container,
  604. void *data, __be16 proto, int nhoff, int hlen,
  605. unsigned int flags)
  606. {
  607. struct flow_dissector_key_control *key_control;
  608. struct flow_dissector_key_basic *key_basic;
  609. struct flow_dissector_key_addrs *key_addrs;
  610. struct flow_dissector_key_ports *key_ports;
  611. struct flow_dissector_key_icmp *key_icmp;
  612. struct flow_dissector_key_tags *key_tags;
  613. struct flow_dissector_key_vlan *key_vlan;
  614. enum flow_dissect_ret fdret;
  615. enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
  616. struct bpf_prog *attached;
  617. int num_hdrs = 0;
  618. u8 ip_proto = 0;
  619. bool ret;
  620. if (!data) {
  621. data = skb->data;
  622. proto = skb_vlan_tag_present(skb) ?
  623. skb->vlan_proto : skb->protocol;
  624. nhoff = skb_network_offset(skb);
  625. hlen = skb_headlen(skb);
  626. #if IS_ENABLED(CONFIG_NET_DSA)
  627. if (unlikely(skb->dev && netdev_uses_dsa(skb->dev))) {
  628. const struct dsa_device_ops *ops;
  629. int offset;
  630. ops = skb->dev->dsa_ptr->tag_ops;
  631. if (ops->flow_dissect &&
  632. !ops->flow_dissect(skb, &proto, &offset)) {
  633. hlen -= offset;
  634. nhoff += offset;
  635. }
  636. }
  637. #endif
  638. }
  639. /* It is ensured by skb_flow_dissector_init() that control key will
  640. * be always present.
  641. */
  642. key_control = skb_flow_dissector_target(flow_dissector,
  643. FLOW_DISSECTOR_KEY_CONTROL,
  644. target_container);
  645. /* It is ensured by skb_flow_dissector_init() that basic key will
  646. * be always present.
  647. */
  648. key_basic = skb_flow_dissector_target(flow_dissector,
  649. FLOW_DISSECTOR_KEY_BASIC,
  650. target_container);
  651. rcu_read_lock();
  652. attached = skb ? rcu_dereference(dev_net(skb->dev)->flow_dissector_prog)
  653. : NULL;
  654. if (attached) {
  655. /* Note that even though the const qualifier is discarded
  656. * throughout the execution of the BPF program, all changes(the
  657. * control block) are reverted after the BPF program returns.
  658. * Therefore, __skb_flow_dissect does not alter the skb.
  659. */
  660. struct bpf_flow_keys flow_keys = {};
  661. struct bpf_skb_data_end cb_saved;
  662. struct bpf_skb_data_end *cb;
  663. u32 result;
  664. cb = (struct bpf_skb_data_end *)skb->cb;
  665. /* Save Control Block */
  666. memcpy(&cb_saved, cb, sizeof(cb_saved));
  667. memset(cb, 0, sizeof(cb_saved));
  668. /* Pass parameters to the BPF program */
  669. cb->qdisc_cb.flow_keys = &flow_keys;
  670. flow_keys.nhoff = nhoff;
  671. bpf_compute_data_pointers((struct sk_buff *)skb);
  672. result = BPF_PROG_RUN(attached, skb);
  673. /* Restore state */
  674. memcpy(cb, &cb_saved, sizeof(cb_saved));
  675. __skb_flow_bpf_to_target(&flow_keys, flow_dissector,
  676. target_container);
  677. key_control->thoff = min_t(u16, key_control->thoff, skb->len);
  678. rcu_read_unlock();
  679. return result == BPF_OK;
  680. }
  681. rcu_read_unlock();
  682. if (dissector_uses_key(flow_dissector,
  683. FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
  684. struct ethhdr *eth = eth_hdr(skb);
  685. struct flow_dissector_key_eth_addrs *key_eth_addrs;
  686. key_eth_addrs = skb_flow_dissector_target(flow_dissector,
  687. FLOW_DISSECTOR_KEY_ETH_ADDRS,
  688. target_container);
  689. memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
  690. }
  691. proto_again:
  692. fdret = FLOW_DISSECT_RET_CONTINUE;
  693. switch (proto) {
  694. case htons(ETH_P_IP): {
  695. const struct iphdr *iph;
  696. struct iphdr _iph;
  697. iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
  698. if (!iph || iph->ihl < 5) {
  699. fdret = FLOW_DISSECT_RET_OUT_BAD;
  700. break;
  701. }
  702. nhoff += iph->ihl * 4;
  703. ip_proto = iph->protocol;
  704. if (dissector_uses_key(flow_dissector,
  705. FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
  706. key_addrs = skb_flow_dissector_target(flow_dissector,
  707. FLOW_DISSECTOR_KEY_IPV4_ADDRS,
  708. target_container);
  709. memcpy(&key_addrs->v4addrs, &iph->saddr,
  710. sizeof(key_addrs->v4addrs));
  711. key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  712. }
  713. if (ip_is_fragment(iph)) {
  714. key_control->flags |= FLOW_DIS_IS_FRAGMENT;
  715. if (iph->frag_off & htons(IP_OFFSET)) {
  716. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  717. break;
  718. } else {
  719. key_control->flags |= FLOW_DIS_FIRST_FRAG;
  720. if (!(flags &
  721. FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
  722. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  723. break;
  724. }
  725. }
  726. }
  727. __skb_flow_dissect_ipv4(skb, flow_dissector,
  728. target_container, data, iph);
  729. if (flags & FLOW_DISSECTOR_F_STOP_AT_L3) {
  730. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  731. break;
  732. }
  733. break;
  734. }
  735. case htons(ETH_P_IPV6): {
  736. const struct ipv6hdr *iph;
  737. struct ipv6hdr _iph;
  738. iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
  739. if (!iph) {
  740. fdret = FLOW_DISSECT_RET_OUT_BAD;
  741. break;
  742. }
  743. ip_proto = iph->nexthdr;
  744. nhoff += sizeof(struct ipv6hdr);
  745. if (dissector_uses_key(flow_dissector,
  746. FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
  747. key_addrs = skb_flow_dissector_target(flow_dissector,
  748. FLOW_DISSECTOR_KEY_IPV6_ADDRS,
  749. target_container);
  750. memcpy(&key_addrs->v6addrs, &iph->saddr,
  751. sizeof(key_addrs->v6addrs));
  752. key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  753. }
  754. if ((dissector_uses_key(flow_dissector,
  755. FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
  756. (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
  757. ip6_flowlabel(iph)) {
  758. __be32 flow_label = ip6_flowlabel(iph);
  759. if (dissector_uses_key(flow_dissector,
  760. FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
  761. key_tags = skb_flow_dissector_target(flow_dissector,
  762. FLOW_DISSECTOR_KEY_FLOW_LABEL,
  763. target_container);
  764. key_tags->flow_label = ntohl(flow_label);
  765. }
  766. if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
  767. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  768. break;
  769. }
  770. }
  771. __skb_flow_dissect_ipv6(skb, flow_dissector,
  772. target_container, data, iph);
  773. if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
  774. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  775. break;
  776. }
  777. case htons(ETH_P_8021AD):
  778. case htons(ETH_P_8021Q): {
  779. const struct vlan_hdr *vlan = NULL;
  780. struct vlan_hdr _vlan;
  781. __be16 saved_vlan_tpid = proto;
  782. if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
  783. skb && skb_vlan_tag_present(skb)) {
  784. proto = skb->protocol;
  785. } else {
  786. vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
  787. data, hlen, &_vlan);
  788. if (!vlan) {
  789. fdret = FLOW_DISSECT_RET_OUT_BAD;
  790. break;
  791. }
  792. proto = vlan->h_vlan_encapsulated_proto;
  793. nhoff += sizeof(*vlan);
  794. }
  795. if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
  796. dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
  797. } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
  798. dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
  799. } else {
  800. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  801. break;
  802. }
  803. if (dissector_uses_key(flow_dissector, dissector_vlan)) {
  804. key_vlan = skb_flow_dissector_target(flow_dissector,
  805. dissector_vlan,
  806. target_container);
  807. if (!vlan) {
  808. key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
  809. key_vlan->vlan_priority =
  810. (skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
  811. } else {
  812. key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
  813. VLAN_VID_MASK;
  814. key_vlan->vlan_priority =
  815. (ntohs(vlan->h_vlan_TCI) &
  816. VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
  817. }
  818. key_vlan->vlan_tpid = saved_vlan_tpid;
  819. }
  820. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  821. break;
  822. }
  823. case htons(ETH_P_PPP_SES): {
  824. struct {
  825. struct pppoe_hdr hdr;
  826. __be16 proto;
  827. } *hdr, _hdr;
  828. hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
  829. if (!hdr) {
  830. fdret = FLOW_DISSECT_RET_OUT_BAD;
  831. break;
  832. }
  833. proto = hdr->proto;
  834. nhoff += PPPOE_SES_HLEN;
  835. switch (proto) {
  836. case htons(PPP_IP):
  837. proto = htons(ETH_P_IP);
  838. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  839. break;
  840. case htons(PPP_IPV6):
  841. proto = htons(ETH_P_IPV6);
  842. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  843. break;
  844. default:
  845. fdret = FLOW_DISSECT_RET_OUT_BAD;
  846. break;
  847. }
  848. break;
  849. }
  850. case htons(ETH_P_TIPC): {
  851. struct tipc_basic_hdr *hdr, _hdr;
  852. hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
  853. data, hlen, &_hdr);
  854. if (!hdr) {
  855. fdret = FLOW_DISSECT_RET_OUT_BAD;
  856. break;
  857. }
  858. if (dissector_uses_key(flow_dissector,
  859. FLOW_DISSECTOR_KEY_TIPC)) {
  860. key_addrs = skb_flow_dissector_target(flow_dissector,
  861. FLOW_DISSECTOR_KEY_TIPC,
  862. target_container);
  863. key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
  864. key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
  865. }
  866. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  867. break;
  868. }
  869. case htons(ETH_P_MPLS_UC):
  870. case htons(ETH_P_MPLS_MC):
  871. fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
  872. target_container, data,
  873. nhoff, hlen);
  874. break;
  875. case htons(ETH_P_FCOE):
  876. if ((hlen - nhoff) < FCOE_HEADER_LEN) {
  877. fdret = FLOW_DISSECT_RET_OUT_BAD;
  878. break;
  879. }
  880. nhoff += FCOE_HEADER_LEN;
  881. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  882. break;
  883. case htons(ETH_P_ARP):
  884. case htons(ETH_P_RARP):
  885. fdret = __skb_flow_dissect_arp(skb, flow_dissector,
  886. target_container, data,
  887. nhoff, hlen);
  888. break;
  889. case htons(ETH_P_BATMAN):
  890. fdret = __skb_flow_dissect_batadv(skb, key_control, data,
  891. &proto, &nhoff, hlen, flags);
  892. break;
  893. default:
  894. fdret = FLOW_DISSECT_RET_OUT_BAD;
  895. break;
  896. }
  897. /* Process result of proto processing */
  898. switch (fdret) {
  899. case FLOW_DISSECT_RET_OUT_GOOD:
  900. goto out_good;
  901. case FLOW_DISSECT_RET_PROTO_AGAIN:
  902. if (skb_flow_dissect_allowed(&num_hdrs))
  903. goto proto_again;
  904. goto out_good;
  905. case FLOW_DISSECT_RET_CONTINUE:
  906. case FLOW_DISSECT_RET_IPPROTO_AGAIN:
  907. break;
  908. case FLOW_DISSECT_RET_OUT_BAD:
  909. default:
  910. goto out_bad;
  911. }
  912. ip_proto_again:
  913. fdret = FLOW_DISSECT_RET_CONTINUE;
  914. switch (ip_proto) {
  915. case IPPROTO_GRE:
  916. fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
  917. target_container, data,
  918. &proto, &nhoff, &hlen, flags);
  919. break;
  920. case NEXTHDR_HOP:
  921. case NEXTHDR_ROUTING:
  922. case NEXTHDR_DEST: {
  923. u8 _opthdr[2], *opthdr;
  924. if (proto != htons(ETH_P_IPV6))
  925. break;
  926. opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
  927. data, hlen, &_opthdr);
  928. if (!opthdr) {
  929. fdret = FLOW_DISSECT_RET_OUT_BAD;
  930. break;
  931. }
  932. ip_proto = opthdr[0];
  933. nhoff += (opthdr[1] + 1) << 3;
  934. fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
  935. break;
  936. }
  937. case NEXTHDR_FRAGMENT: {
  938. struct frag_hdr _fh, *fh;
  939. if (proto != htons(ETH_P_IPV6))
  940. break;
  941. fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
  942. data, hlen, &_fh);
  943. if (!fh) {
  944. fdret = FLOW_DISSECT_RET_OUT_BAD;
  945. break;
  946. }
  947. key_control->flags |= FLOW_DIS_IS_FRAGMENT;
  948. nhoff += sizeof(_fh);
  949. ip_proto = fh->nexthdr;
  950. if (!(fh->frag_off & htons(IP6_OFFSET))) {
  951. key_control->flags |= FLOW_DIS_FIRST_FRAG;
  952. if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
  953. fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
  954. break;
  955. }
  956. }
  957. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  958. break;
  959. }
  960. case IPPROTO_IPIP:
  961. proto = htons(ETH_P_IP);
  962. key_control->flags |= FLOW_DIS_ENCAPSULATION;
  963. if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
  964. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  965. break;
  966. }
  967. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  968. break;
  969. case IPPROTO_IPV6:
  970. proto = htons(ETH_P_IPV6);
  971. key_control->flags |= FLOW_DIS_ENCAPSULATION;
  972. if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
  973. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  974. break;
  975. }
  976. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  977. break;
  978. case IPPROTO_MPLS:
  979. proto = htons(ETH_P_MPLS_UC);
  980. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  981. break;
  982. case IPPROTO_TCP:
  983. __skb_flow_dissect_tcp(skb, flow_dissector, target_container,
  984. data, nhoff, hlen);
  985. break;
  986. default:
  987. break;
  988. }
  989. if (dissector_uses_key(flow_dissector,
  990. FLOW_DISSECTOR_KEY_PORTS)) {
  991. key_ports = skb_flow_dissector_target(flow_dissector,
  992. FLOW_DISSECTOR_KEY_PORTS,
  993. target_container);
  994. key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
  995. data, hlen);
  996. }
  997. if (dissector_uses_key(flow_dissector,
  998. FLOW_DISSECTOR_KEY_ICMP)) {
  999. key_icmp = skb_flow_dissector_target(flow_dissector,
  1000. FLOW_DISSECTOR_KEY_ICMP,
  1001. target_container);
  1002. key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
  1003. }
  1004. /* Process result of IP proto processing */
  1005. switch (fdret) {
  1006. case FLOW_DISSECT_RET_PROTO_AGAIN:
  1007. if (skb_flow_dissect_allowed(&num_hdrs))
  1008. goto proto_again;
  1009. break;
  1010. case FLOW_DISSECT_RET_IPPROTO_AGAIN:
  1011. if (skb_flow_dissect_allowed(&num_hdrs))
  1012. goto ip_proto_again;
  1013. break;
  1014. case FLOW_DISSECT_RET_OUT_GOOD:
  1015. case FLOW_DISSECT_RET_CONTINUE:
  1016. break;
  1017. case FLOW_DISSECT_RET_OUT_BAD:
  1018. default:
  1019. goto out_bad;
  1020. }
  1021. out_good:
  1022. ret = true;
  1023. out:
  1024. key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
  1025. key_basic->n_proto = proto;
  1026. key_basic->ip_proto = ip_proto;
  1027. return ret;
  1028. out_bad:
  1029. ret = false;
  1030. goto out;
  1031. }
  1032. EXPORT_SYMBOL(__skb_flow_dissect);
  1033. static u32 hashrnd __read_mostly;
  1034. static __always_inline void __flow_hash_secret_init(void)
  1035. {
  1036. net_get_random_once(&hashrnd, sizeof(hashrnd));
  1037. }
  1038. static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
  1039. u32 keyval)
  1040. {
  1041. return jhash2(words, length, keyval);
  1042. }
  1043. static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
  1044. {
  1045. const void *p = flow;
  1046. BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
  1047. return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
  1048. }
  1049. static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
  1050. {
  1051. size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
  1052. BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
  1053. BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
  1054. sizeof(*flow) - sizeof(flow->addrs));
  1055. switch (flow->control.addr_type) {
  1056. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  1057. diff -= sizeof(flow->addrs.v4addrs);
  1058. break;
  1059. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  1060. diff -= sizeof(flow->addrs.v6addrs);
  1061. break;
  1062. case FLOW_DISSECTOR_KEY_TIPC:
  1063. diff -= sizeof(flow->addrs.tipckey);
  1064. break;
  1065. }
  1066. return (sizeof(*flow) - diff) / sizeof(u32);
  1067. }
  1068. __be32 flow_get_u32_src(const struct flow_keys *flow)
  1069. {
  1070. switch (flow->control.addr_type) {
  1071. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  1072. return flow->addrs.v4addrs.src;
  1073. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  1074. return (__force __be32)ipv6_addr_hash(
  1075. &flow->addrs.v6addrs.src);
  1076. case FLOW_DISSECTOR_KEY_TIPC:
  1077. return flow->addrs.tipckey.key;
  1078. default:
  1079. return 0;
  1080. }
  1081. }
  1082. EXPORT_SYMBOL(flow_get_u32_src);
  1083. __be32 flow_get_u32_dst(const struct flow_keys *flow)
  1084. {
  1085. switch (flow->control.addr_type) {
  1086. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  1087. return flow->addrs.v4addrs.dst;
  1088. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  1089. return (__force __be32)ipv6_addr_hash(
  1090. &flow->addrs.v6addrs.dst);
  1091. default:
  1092. return 0;
  1093. }
  1094. }
  1095. EXPORT_SYMBOL(flow_get_u32_dst);
  1096. static inline void __flow_hash_consistentify(struct flow_keys *keys)
  1097. {
  1098. int addr_diff, i;
  1099. switch (keys->control.addr_type) {
  1100. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  1101. addr_diff = (__force u32)keys->addrs.v4addrs.dst -
  1102. (__force u32)keys->addrs.v4addrs.src;
  1103. if ((addr_diff < 0) ||
  1104. (addr_diff == 0 &&
  1105. ((__force u16)keys->ports.dst <
  1106. (__force u16)keys->ports.src))) {
  1107. swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
  1108. swap(keys->ports.src, keys->ports.dst);
  1109. }
  1110. break;
  1111. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  1112. addr_diff = memcmp(&keys->addrs.v6addrs.dst,
  1113. &keys->addrs.v6addrs.src,
  1114. sizeof(keys->addrs.v6addrs.dst));
  1115. if ((addr_diff < 0) ||
  1116. (addr_diff == 0 &&
  1117. ((__force u16)keys->ports.dst <
  1118. (__force u16)keys->ports.src))) {
  1119. for (i = 0; i < 4; i++)
  1120. swap(keys->addrs.v6addrs.src.s6_addr32[i],
  1121. keys->addrs.v6addrs.dst.s6_addr32[i]);
  1122. swap(keys->ports.src, keys->ports.dst);
  1123. }
  1124. break;
  1125. }
  1126. }
  1127. static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
  1128. {
  1129. u32 hash;
  1130. __flow_hash_consistentify(keys);
  1131. hash = __flow_hash_words(flow_keys_hash_start(keys),
  1132. flow_keys_hash_length(keys), keyval);
  1133. if (!hash)
  1134. hash = 1;
  1135. return hash;
  1136. }
  1137. u32 flow_hash_from_keys(struct flow_keys *keys)
  1138. {
  1139. __flow_hash_secret_init();
  1140. return __flow_hash_from_keys(keys, hashrnd);
  1141. }
  1142. EXPORT_SYMBOL(flow_hash_from_keys);
  1143. static inline u32 ___skb_get_hash(const struct sk_buff *skb,
  1144. struct flow_keys *keys, u32 keyval)
  1145. {
  1146. skb_flow_dissect_flow_keys(skb, keys,
  1147. FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
  1148. return __flow_hash_from_keys(keys, keyval);
  1149. }
  1150. struct _flow_keys_digest_data {
  1151. __be16 n_proto;
  1152. u8 ip_proto;
  1153. u8 padding;
  1154. __be32 ports;
  1155. __be32 src;
  1156. __be32 dst;
  1157. };
  1158. void make_flow_keys_digest(struct flow_keys_digest *digest,
  1159. const struct flow_keys *flow)
  1160. {
  1161. struct _flow_keys_digest_data *data =
  1162. (struct _flow_keys_digest_data *)digest;
  1163. BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
  1164. memset(digest, 0, sizeof(*digest));
  1165. data->n_proto = flow->basic.n_proto;
  1166. data->ip_proto = flow->basic.ip_proto;
  1167. data->ports = flow->ports.ports;
  1168. data->src = flow->addrs.v4addrs.src;
  1169. data->dst = flow->addrs.v4addrs.dst;
  1170. }
  1171. EXPORT_SYMBOL(make_flow_keys_digest);
  1172. static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
  1173. u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
  1174. {
  1175. struct flow_keys keys;
  1176. __flow_hash_secret_init();
  1177. memset(&keys, 0, sizeof(keys));
  1178. __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
  1179. NULL, 0, 0, 0,
  1180. FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
  1181. return __flow_hash_from_keys(&keys, hashrnd);
  1182. }
  1183. EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
  1184. /**
  1185. * __skb_get_hash: calculate a flow hash
  1186. * @skb: sk_buff to calculate flow hash from
  1187. *
  1188. * This function calculates a flow hash based on src/dst addresses
  1189. * and src/dst port numbers. Sets hash in skb to non-zero hash value
  1190. * on success, zero indicates no valid hash. Also, sets l4_hash in skb
  1191. * if hash is a canonical 4-tuple hash over transport ports.
  1192. */
  1193. void __skb_get_hash(struct sk_buff *skb)
  1194. {
  1195. struct flow_keys keys;
  1196. u32 hash;
  1197. __flow_hash_secret_init();
  1198. hash = ___skb_get_hash(skb, &keys, hashrnd);
  1199. __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
  1200. }
  1201. EXPORT_SYMBOL(__skb_get_hash);
  1202. __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
  1203. {
  1204. struct flow_keys keys;
  1205. return ___skb_get_hash(skb, &keys, perturb);
  1206. }
  1207. EXPORT_SYMBOL(skb_get_hash_perturb);
  1208. u32 __skb_get_poff(const struct sk_buff *skb, void *data,
  1209. const struct flow_keys_basic *keys, int hlen)
  1210. {
  1211. u32 poff = keys->control.thoff;
  1212. /* skip L4 headers for fragments after the first */
  1213. if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
  1214. !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
  1215. return poff;
  1216. switch (keys->basic.ip_proto) {
  1217. case IPPROTO_TCP: {
  1218. /* access doff as u8 to avoid unaligned access */
  1219. const u8 *doff;
  1220. u8 _doff;
  1221. doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
  1222. data, hlen, &_doff);
  1223. if (!doff)
  1224. return poff;
  1225. poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
  1226. break;
  1227. }
  1228. case IPPROTO_UDP:
  1229. case IPPROTO_UDPLITE:
  1230. poff += sizeof(struct udphdr);
  1231. break;
  1232. /* For the rest, we do not really care about header
  1233. * extensions at this point for now.
  1234. */
  1235. case IPPROTO_ICMP:
  1236. poff += sizeof(struct icmphdr);
  1237. break;
  1238. case IPPROTO_ICMPV6:
  1239. poff += sizeof(struct icmp6hdr);
  1240. break;
  1241. case IPPROTO_IGMP:
  1242. poff += sizeof(struct igmphdr);
  1243. break;
  1244. case IPPROTO_DCCP:
  1245. poff += sizeof(struct dccp_hdr);
  1246. break;
  1247. case IPPROTO_SCTP:
  1248. poff += sizeof(struct sctphdr);
  1249. break;
  1250. }
  1251. return poff;
  1252. }
  1253. /**
  1254. * skb_get_poff - get the offset to the payload
  1255. * @skb: sk_buff to get the payload offset from
  1256. *
  1257. * The function will get the offset to the payload as far as it could
  1258. * be dissected. The main user is currently BPF, so that we can dynamically
  1259. * truncate packets without needing to push actual payload to the user
  1260. * space and can analyze headers only, instead.
  1261. */
  1262. u32 skb_get_poff(const struct sk_buff *skb)
  1263. {
  1264. struct flow_keys_basic keys;
  1265. if (!skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
  1266. return 0;
  1267. return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
  1268. }
  1269. __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
  1270. {
  1271. memset(keys, 0, sizeof(*keys));
  1272. memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
  1273. sizeof(keys->addrs.v6addrs.src));
  1274. memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
  1275. sizeof(keys->addrs.v6addrs.dst));
  1276. keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  1277. keys->ports.src = fl6->fl6_sport;
  1278. keys->ports.dst = fl6->fl6_dport;
  1279. keys->keyid.keyid = fl6->fl6_gre_key;
  1280. keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
  1281. keys->basic.ip_proto = fl6->flowi6_proto;
  1282. return flow_hash_from_keys(keys);
  1283. }
  1284. EXPORT_SYMBOL(__get_hash_from_flowi6);
  1285. static const struct flow_dissector_key flow_keys_dissector_keys[] = {
  1286. {
  1287. .key_id = FLOW_DISSECTOR_KEY_CONTROL,
  1288. .offset = offsetof(struct flow_keys, control),
  1289. },
  1290. {
  1291. .key_id = FLOW_DISSECTOR_KEY_BASIC,
  1292. .offset = offsetof(struct flow_keys, basic),
  1293. },
  1294. {
  1295. .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
  1296. .offset = offsetof(struct flow_keys, addrs.v4addrs),
  1297. },
  1298. {
  1299. .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
  1300. .offset = offsetof(struct flow_keys, addrs.v6addrs),
  1301. },
  1302. {
  1303. .key_id = FLOW_DISSECTOR_KEY_TIPC,
  1304. .offset = offsetof(struct flow_keys, addrs.tipckey),
  1305. },
  1306. {
  1307. .key_id = FLOW_DISSECTOR_KEY_PORTS,
  1308. .offset = offsetof(struct flow_keys, ports),
  1309. },
  1310. {
  1311. .key_id = FLOW_DISSECTOR_KEY_VLAN,
  1312. .offset = offsetof(struct flow_keys, vlan),
  1313. },
  1314. {
  1315. .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
  1316. .offset = offsetof(struct flow_keys, tags),
  1317. },
  1318. {
  1319. .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
  1320. .offset = offsetof(struct flow_keys, keyid),
  1321. },
  1322. };
  1323. static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
  1324. {
  1325. .key_id = FLOW_DISSECTOR_KEY_CONTROL,
  1326. .offset = offsetof(struct flow_keys, control),
  1327. },
  1328. {
  1329. .key_id = FLOW_DISSECTOR_KEY_BASIC,
  1330. .offset = offsetof(struct flow_keys, basic),
  1331. },
  1332. {
  1333. .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
  1334. .offset = offsetof(struct flow_keys, addrs.v4addrs),
  1335. },
  1336. {
  1337. .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
  1338. .offset = offsetof(struct flow_keys, addrs.v6addrs),
  1339. },
  1340. {
  1341. .key_id = FLOW_DISSECTOR_KEY_PORTS,
  1342. .offset = offsetof(struct flow_keys, ports),
  1343. },
  1344. };
  1345. static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
  1346. {
  1347. .key_id = FLOW_DISSECTOR_KEY_CONTROL,
  1348. .offset = offsetof(struct flow_keys, control),
  1349. },
  1350. {
  1351. .key_id = FLOW_DISSECTOR_KEY_BASIC,
  1352. .offset = offsetof(struct flow_keys, basic),
  1353. },
  1354. };
  1355. struct flow_dissector flow_keys_dissector __read_mostly;
  1356. EXPORT_SYMBOL(flow_keys_dissector);
  1357. struct flow_dissector flow_keys_basic_dissector __read_mostly;
  1358. EXPORT_SYMBOL(flow_keys_basic_dissector);
  1359. static int __init init_default_flow_dissectors(void)
  1360. {
  1361. skb_flow_dissector_init(&flow_keys_dissector,
  1362. flow_keys_dissector_keys,
  1363. ARRAY_SIZE(flow_keys_dissector_keys));
  1364. skb_flow_dissector_init(&flow_keys_dissector_symmetric,
  1365. flow_keys_dissector_symmetric_keys,
  1366. ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
  1367. skb_flow_dissector_init(&flow_keys_basic_dissector,
  1368. flow_keys_basic_dissector_keys,
  1369. ARRAY_SIZE(flow_keys_basic_dissector_keys));
  1370. return 0;
  1371. }
  1372. core_initcall(init_default_flow_dissectors);