file.c 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include <linux/uio.h>
  24. #include <linux/uuid.h>
  25. #include <linux/file.h>
  26. #include "f2fs.h"
  27. #include "node.h"
  28. #include "segment.h"
  29. #include "xattr.h"
  30. #include "acl.h"
  31. #include "gc.h"
  32. #include "trace.h"
  33. #include <trace/events/f2fs.h>
  34. static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
  35. {
  36. struct inode *inode = file_inode(vmf->vma->vm_file);
  37. vm_fault_t ret;
  38. down_read(&F2FS_I(inode)->i_mmap_sem);
  39. ret = filemap_fault(vmf);
  40. up_read(&F2FS_I(inode)->i_mmap_sem);
  41. return ret;
  42. }
  43. static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
  44. {
  45. struct page *page = vmf->page;
  46. struct inode *inode = file_inode(vmf->vma->vm_file);
  47. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  48. struct dnode_of_data dn;
  49. int err;
  50. if (unlikely(f2fs_cp_error(sbi))) {
  51. err = -EIO;
  52. goto err;
  53. }
  54. sb_start_pagefault(inode->i_sb);
  55. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  56. /* block allocation */
  57. f2fs_lock_op(sbi);
  58. set_new_dnode(&dn, inode, NULL, NULL, 0);
  59. err = f2fs_reserve_block(&dn, page->index);
  60. if (err) {
  61. f2fs_unlock_op(sbi);
  62. goto out;
  63. }
  64. f2fs_put_dnode(&dn);
  65. f2fs_unlock_op(sbi);
  66. f2fs_balance_fs(sbi, dn.node_changed);
  67. file_update_time(vmf->vma->vm_file);
  68. down_read(&F2FS_I(inode)->i_mmap_sem);
  69. lock_page(page);
  70. if (unlikely(page->mapping != inode->i_mapping ||
  71. page_offset(page) > i_size_read(inode) ||
  72. !PageUptodate(page))) {
  73. unlock_page(page);
  74. err = -EFAULT;
  75. goto out_sem;
  76. }
  77. /*
  78. * check to see if the page is mapped already (no holes)
  79. */
  80. if (PageMappedToDisk(page))
  81. goto mapped;
  82. /* page is wholly or partially inside EOF */
  83. if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
  84. i_size_read(inode)) {
  85. loff_t offset;
  86. offset = i_size_read(inode) & ~PAGE_MASK;
  87. zero_user_segment(page, offset, PAGE_SIZE);
  88. }
  89. set_page_dirty(page);
  90. if (!PageUptodate(page))
  91. SetPageUptodate(page);
  92. f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
  93. trace_f2fs_vm_page_mkwrite(page, DATA);
  94. mapped:
  95. /* fill the page */
  96. f2fs_wait_on_page_writeback(page, DATA, false);
  97. /* wait for GCed page writeback via META_MAPPING */
  98. if (f2fs_post_read_required(inode))
  99. f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
  100. out_sem:
  101. up_read(&F2FS_I(inode)->i_mmap_sem);
  102. out:
  103. sb_end_pagefault(inode->i_sb);
  104. f2fs_update_time(sbi, REQ_TIME);
  105. err:
  106. return block_page_mkwrite_return(err);
  107. }
  108. static const struct vm_operations_struct f2fs_file_vm_ops = {
  109. .fault = f2fs_filemap_fault,
  110. .map_pages = filemap_map_pages,
  111. .page_mkwrite = f2fs_vm_page_mkwrite,
  112. };
  113. static int get_parent_ino(struct inode *inode, nid_t *pino)
  114. {
  115. struct dentry *dentry;
  116. inode = igrab(inode);
  117. dentry = d_find_any_alias(inode);
  118. iput(inode);
  119. if (!dentry)
  120. return 0;
  121. *pino = parent_ino(dentry);
  122. dput(dentry);
  123. return 1;
  124. }
  125. static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
  126. {
  127. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  128. enum cp_reason_type cp_reason = CP_NO_NEEDED;
  129. if (!S_ISREG(inode->i_mode))
  130. cp_reason = CP_NON_REGULAR;
  131. else if (inode->i_nlink != 1)
  132. cp_reason = CP_HARDLINK;
  133. else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
  134. cp_reason = CP_SB_NEED_CP;
  135. else if (file_wrong_pino(inode))
  136. cp_reason = CP_WRONG_PINO;
  137. else if (!f2fs_space_for_roll_forward(sbi))
  138. cp_reason = CP_NO_SPC_ROLL;
  139. else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  140. cp_reason = CP_NODE_NEED_CP;
  141. else if (test_opt(sbi, FASTBOOT))
  142. cp_reason = CP_FASTBOOT_MODE;
  143. else if (F2FS_OPTION(sbi).active_logs == 2)
  144. cp_reason = CP_SPEC_LOG_NUM;
  145. else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
  146. f2fs_need_dentry_mark(sbi, inode->i_ino) &&
  147. f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
  148. TRANS_DIR_INO))
  149. cp_reason = CP_RECOVER_DIR;
  150. return cp_reason;
  151. }
  152. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  153. {
  154. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  155. bool ret = false;
  156. /* But we need to avoid that there are some inode updates */
  157. if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
  158. ret = true;
  159. f2fs_put_page(i, 0);
  160. return ret;
  161. }
  162. static void try_to_fix_pino(struct inode *inode)
  163. {
  164. struct f2fs_inode_info *fi = F2FS_I(inode);
  165. nid_t pino;
  166. down_write(&fi->i_sem);
  167. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  168. get_parent_ino(inode, &pino)) {
  169. f2fs_i_pino_write(inode, pino);
  170. file_got_pino(inode);
  171. }
  172. up_write(&fi->i_sem);
  173. }
  174. static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
  175. int datasync, bool atomic)
  176. {
  177. struct inode *inode = file->f_mapping->host;
  178. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  179. nid_t ino = inode->i_ino;
  180. int ret = 0;
  181. enum cp_reason_type cp_reason = 0;
  182. struct writeback_control wbc = {
  183. .sync_mode = WB_SYNC_ALL,
  184. .nr_to_write = LONG_MAX,
  185. .for_reclaim = 0,
  186. };
  187. if (unlikely(f2fs_readonly(inode->i_sb)))
  188. return 0;
  189. trace_f2fs_sync_file_enter(inode);
  190. /* if fdatasync is triggered, let's do in-place-update */
  191. if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  192. set_inode_flag(inode, FI_NEED_IPU);
  193. ret = file_write_and_wait_range(file, start, end);
  194. clear_inode_flag(inode, FI_NEED_IPU);
  195. if (ret) {
  196. trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
  197. return ret;
  198. }
  199. /* if the inode is dirty, let's recover all the time */
  200. if (!f2fs_skip_inode_update(inode, datasync)) {
  201. f2fs_write_inode(inode, NULL);
  202. goto go_write;
  203. }
  204. /*
  205. * if there is no written data, don't waste time to write recovery info.
  206. */
  207. if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
  208. !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
  209. /* it may call write_inode just prior to fsync */
  210. if (need_inode_page_update(sbi, ino))
  211. goto go_write;
  212. if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
  213. f2fs_exist_written_data(sbi, ino, UPDATE_INO))
  214. goto flush_out;
  215. goto out;
  216. }
  217. go_write:
  218. /*
  219. * Both of fdatasync() and fsync() are able to be recovered from
  220. * sudden-power-off.
  221. */
  222. down_read(&F2FS_I(inode)->i_sem);
  223. cp_reason = need_do_checkpoint(inode);
  224. up_read(&F2FS_I(inode)->i_sem);
  225. if (cp_reason) {
  226. /* all the dirty node pages should be flushed for POR */
  227. ret = f2fs_sync_fs(inode->i_sb, 1);
  228. /*
  229. * We've secured consistency through sync_fs. Following pino
  230. * will be used only for fsynced inodes after checkpoint.
  231. */
  232. try_to_fix_pino(inode);
  233. clear_inode_flag(inode, FI_APPEND_WRITE);
  234. clear_inode_flag(inode, FI_UPDATE_WRITE);
  235. goto out;
  236. }
  237. sync_nodes:
  238. atomic_inc(&sbi->wb_sync_req[NODE]);
  239. ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic);
  240. atomic_dec(&sbi->wb_sync_req[NODE]);
  241. if (ret)
  242. goto out;
  243. /* if cp_error was enabled, we should avoid infinite loop */
  244. if (unlikely(f2fs_cp_error(sbi))) {
  245. ret = -EIO;
  246. goto out;
  247. }
  248. if (f2fs_need_inode_block_update(sbi, ino)) {
  249. f2fs_mark_inode_dirty_sync(inode, true);
  250. f2fs_write_inode(inode, NULL);
  251. goto sync_nodes;
  252. }
  253. /*
  254. * If it's atomic_write, it's just fine to keep write ordering. So
  255. * here we don't need to wait for node write completion, since we use
  256. * node chain which serializes node blocks. If one of node writes are
  257. * reordered, we can see simply broken chain, resulting in stopping
  258. * roll-forward recovery. It means we'll recover all or none node blocks
  259. * given fsync mark.
  260. */
  261. if (!atomic) {
  262. ret = f2fs_wait_on_node_pages_writeback(sbi, ino);
  263. if (ret)
  264. goto out;
  265. }
  266. /* once recovery info is written, don't need to tack this */
  267. f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
  268. clear_inode_flag(inode, FI_APPEND_WRITE);
  269. flush_out:
  270. if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
  271. ret = f2fs_issue_flush(sbi, inode->i_ino);
  272. if (!ret) {
  273. f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
  274. clear_inode_flag(inode, FI_UPDATE_WRITE);
  275. f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
  276. }
  277. f2fs_update_time(sbi, REQ_TIME);
  278. out:
  279. trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
  280. f2fs_trace_ios(NULL, 1);
  281. return ret;
  282. }
  283. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  284. {
  285. if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
  286. return -EIO;
  287. return f2fs_do_sync_file(file, start, end, datasync, false);
  288. }
  289. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  290. pgoff_t pgofs, int whence)
  291. {
  292. struct page *page;
  293. int nr_pages;
  294. if (whence != SEEK_DATA)
  295. return 0;
  296. /* find first dirty page index */
  297. nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
  298. 1, &page);
  299. if (!nr_pages)
  300. return ULONG_MAX;
  301. pgofs = page->index;
  302. put_page(page);
  303. return pgofs;
  304. }
  305. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  306. int whence)
  307. {
  308. switch (whence) {
  309. case SEEK_DATA:
  310. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  311. is_valid_blkaddr(blkaddr))
  312. return true;
  313. break;
  314. case SEEK_HOLE:
  315. if (blkaddr == NULL_ADDR)
  316. return true;
  317. break;
  318. }
  319. return false;
  320. }
  321. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  322. {
  323. struct inode *inode = file->f_mapping->host;
  324. loff_t maxbytes = inode->i_sb->s_maxbytes;
  325. struct dnode_of_data dn;
  326. pgoff_t pgofs, end_offset, dirty;
  327. loff_t data_ofs = offset;
  328. loff_t isize;
  329. int err = 0;
  330. inode_lock(inode);
  331. isize = i_size_read(inode);
  332. if (offset >= isize)
  333. goto fail;
  334. /* handle inline data case */
  335. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  336. if (whence == SEEK_HOLE)
  337. data_ofs = isize;
  338. goto found;
  339. }
  340. pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
  341. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  342. for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  343. set_new_dnode(&dn, inode, NULL, NULL, 0);
  344. err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
  345. if (err && err != -ENOENT) {
  346. goto fail;
  347. } else if (err == -ENOENT) {
  348. /* direct node does not exists */
  349. if (whence == SEEK_DATA) {
  350. pgofs = f2fs_get_next_page_offset(&dn, pgofs);
  351. continue;
  352. } else {
  353. goto found;
  354. }
  355. }
  356. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  357. /* find data/hole in dnode block */
  358. for (; dn.ofs_in_node < end_offset;
  359. dn.ofs_in_node++, pgofs++,
  360. data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  361. block_t blkaddr;
  362. blkaddr = datablock_addr(dn.inode,
  363. dn.node_page, dn.ofs_in_node);
  364. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  365. f2fs_put_dnode(&dn);
  366. goto found;
  367. }
  368. }
  369. f2fs_put_dnode(&dn);
  370. }
  371. if (whence == SEEK_DATA)
  372. goto fail;
  373. found:
  374. if (whence == SEEK_HOLE && data_ofs > isize)
  375. data_ofs = isize;
  376. inode_unlock(inode);
  377. return vfs_setpos(file, data_ofs, maxbytes);
  378. fail:
  379. inode_unlock(inode);
  380. return -ENXIO;
  381. }
  382. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  383. {
  384. struct inode *inode = file->f_mapping->host;
  385. loff_t maxbytes = inode->i_sb->s_maxbytes;
  386. switch (whence) {
  387. case SEEK_SET:
  388. case SEEK_CUR:
  389. case SEEK_END:
  390. return generic_file_llseek_size(file, offset, whence,
  391. maxbytes, i_size_read(inode));
  392. case SEEK_DATA:
  393. case SEEK_HOLE:
  394. if (offset < 0)
  395. return -ENXIO;
  396. return f2fs_seek_block(file, offset, whence);
  397. }
  398. return -EINVAL;
  399. }
  400. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  401. {
  402. struct inode *inode = file_inode(file);
  403. int err;
  404. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  405. return -EIO;
  406. /* we don't need to use inline_data strictly */
  407. err = f2fs_convert_inline_inode(inode);
  408. if (err)
  409. return err;
  410. file_accessed(file);
  411. vma->vm_ops = &f2fs_file_vm_ops;
  412. return 0;
  413. }
  414. static int f2fs_file_open(struct inode *inode, struct file *filp)
  415. {
  416. int err = fscrypt_file_open(inode, filp);
  417. if (err)
  418. return err;
  419. filp->f_mode |= FMODE_NOWAIT;
  420. return dquot_file_open(inode, filp);
  421. }
  422. void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  423. {
  424. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  425. struct f2fs_node *raw_node;
  426. int nr_free = 0, ofs = dn->ofs_in_node, len = count;
  427. __le32 *addr;
  428. int base = 0;
  429. if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
  430. base = get_extra_isize(dn->inode);
  431. raw_node = F2FS_NODE(dn->node_page);
  432. addr = blkaddr_in_node(raw_node) + base + ofs;
  433. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  434. block_t blkaddr = le32_to_cpu(*addr);
  435. if (blkaddr == NULL_ADDR)
  436. continue;
  437. dn->data_blkaddr = NULL_ADDR;
  438. f2fs_set_data_blkaddr(dn);
  439. f2fs_invalidate_blocks(sbi, blkaddr);
  440. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  441. clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
  442. nr_free++;
  443. }
  444. if (nr_free) {
  445. pgoff_t fofs;
  446. /*
  447. * once we invalidate valid blkaddr in range [ofs, ofs + count],
  448. * we will invalidate all blkaddr in the whole range.
  449. */
  450. fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
  451. dn->inode) + ofs;
  452. f2fs_update_extent_cache_range(dn, fofs, 0, len);
  453. dec_valid_block_count(sbi, dn->inode, nr_free);
  454. }
  455. dn->ofs_in_node = ofs;
  456. f2fs_update_time(sbi, REQ_TIME);
  457. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  458. dn->ofs_in_node, nr_free);
  459. }
  460. void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
  461. {
  462. f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  463. }
  464. static int truncate_partial_data_page(struct inode *inode, u64 from,
  465. bool cache_only)
  466. {
  467. loff_t offset = from & (PAGE_SIZE - 1);
  468. pgoff_t index = from >> PAGE_SHIFT;
  469. struct address_space *mapping = inode->i_mapping;
  470. struct page *page;
  471. if (!offset && !cache_only)
  472. return 0;
  473. if (cache_only) {
  474. page = find_lock_page(mapping, index);
  475. if (page && PageUptodate(page))
  476. goto truncate_out;
  477. f2fs_put_page(page, 1);
  478. return 0;
  479. }
  480. page = f2fs_get_lock_data_page(inode, index, true);
  481. if (IS_ERR(page))
  482. return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
  483. truncate_out:
  484. f2fs_wait_on_page_writeback(page, DATA, true);
  485. zero_user(page, offset, PAGE_SIZE - offset);
  486. /* An encrypted inode should have a key and truncate the last page. */
  487. f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
  488. if (!cache_only)
  489. set_page_dirty(page);
  490. f2fs_put_page(page, 1);
  491. return 0;
  492. }
  493. int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
  494. {
  495. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  496. struct dnode_of_data dn;
  497. pgoff_t free_from;
  498. int count = 0, err = 0;
  499. struct page *ipage;
  500. bool truncate_page = false;
  501. trace_f2fs_truncate_blocks_enter(inode, from);
  502. free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
  503. if (free_from >= sbi->max_file_blocks)
  504. goto free_partial;
  505. if (lock)
  506. f2fs_lock_op(sbi);
  507. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  508. if (IS_ERR(ipage)) {
  509. err = PTR_ERR(ipage);
  510. goto out;
  511. }
  512. if (f2fs_has_inline_data(inode)) {
  513. f2fs_truncate_inline_inode(inode, ipage, from);
  514. f2fs_put_page(ipage, 1);
  515. truncate_page = true;
  516. goto out;
  517. }
  518. set_new_dnode(&dn, inode, ipage, NULL, 0);
  519. err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
  520. if (err) {
  521. if (err == -ENOENT)
  522. goto free_next;
  523. goto out;
  524. }
  525. count = ADDRS_PER_PAGE(dn.node_page, inode);
  526. count -= dn.ofs_in_node;
  527. f2fs_bug_on(sbi, count < 0);
  528. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  529. f2fs_truncate_data_blocks_range(&dn, count);
  530. free_from += count;
  531. }
  532. f2fs_put_dnode(&dn);
  533. free_next:
  534. err = f2fs_truncate_inode_blocks(inode, free_from);
  535. out:
  536. if (lock)
  537. f2fs_unlock_op(sbi);
  538. free_partial:
  539. /* lastly zero out the first data page */
  540. if (!err)
  541. err = truncate_partial_data_page(inode, from, truncate_page);
  542. trace_f2fs_truncate_blocks_exit(inode, err);
  543. return err;
  544. }
  545. int f2fs_truncate(struct inode *inode)
  546. {
  547. int err;
  548. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  549. return -EIO;
  550. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  551. S_ISLNK(inode->i_mode)))
  552. return 0;
  553. trace_f2fs_truncate(inode);
  554. #ifdef CONFIG_F2FS_FAULT_INJECTION
  555. if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
  556. f2fs_show_injection_info(FAULT_TRUNCATE);
  557. return -EIO;
  558. }
  559. #endif
  560. /* we should check inline_data size */
  561. if (!f2fs_may_inline_data(inode)) {
  562. err = f2fs_convert_inline_inode(inode);
  563. if (err)
  564. return err;
  565. }
  566. err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
  567. if (err)
  568. return err;
  569. inode->i_mtime = inode->i_ctime = current_time(inode);
  570. f2fs_mark_inode_dirty_sync(inode, false);
  571. return 0;
  572. }
  573. int f2fs_getattr(const struct path *path, struct kstat *stat,
  574. u32 request_mask, unsigned int query_flags)
  575. {
  576. struct inode *inode = d_inode(path->dentry);
  577. struct f2fs_inode_info *fi = F2FS_I(inode);
  578. struct f2fs_inode *ri;
  579. unsigned int flags;
  580. if (f2fs_has_extra_attr(inode) &&
  581. f2fs_sb_has_inode_crtime(inode->i_sb) &&
  582. F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
  583. stat->result_mask |= STATX_BTIME;
  584. stat->btime.tv_sec = fi->i_crtime.tv_sec;
  585. stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
  586. }
  587. flags = fi->i_flags & F2FS_FL_USER_VISIBLE;
  588. if (flags & F2FS_APPEND_FL)
  589. stat->attributes |= STATX_ATTR_APPEND;
  590. if (flags & F2FS_COMPR_FL)
  591. stat->attributes |= STATX_ATTR_COMPRESSED;
  592. if (f2fs_encrypted_inode(inode))
  593. stat->attributes |= STATX_ATTR_ENCRYPTED;
  594. if (flags & F2FS_IMMUTABLE_FL)
  595. stat->attributes |= STATX_ATTR_IMMUTABLE;
  596. if (flags & F2FS_NODUMP_FL)
  597. stat->attributes |= STATX_ATTR_NODUMP;
  598. stat->attributes_mask |= (STATX_ATTR_APPEND |
  599. STATX_ATTR_COMPRESSED |
  600. STATX_ATTR_ENCRYPTED |
  601. STATX_ATTR_IMMUTABLE |
  602. STATX_ATTR_NODUMP);
  603. generic_fillattr(inode, stat);
  604. /* we need to show initial sectors used for inline_data/dentries */
  605. if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
  606. f2fs_has_inline_dentry(inode))
  607. stat->blocks += (stat->size + 511) >> 9;
  608. return 0;
  609. }
  610. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  611. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  612. {
  613. unsigned int ia_valid = attr->ia_valid;
  614. if (ia_valid & ATTR_UID)
  615. inode->i_uid = attr->ia_uid;
  616. if (ia_valid & ATTR_GID)
  617. inode->i_gid = attr->ia_gid;
  618. if (ia_valid & ATTR_ATIME)
  619. inode->i_atime = timespec_trunc(attr->ia_atime,
  620. inode->i_sb->s_time_gran);
  621. if (ia_valid & ATTR_MTIME)
  622. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  623. inode->i_sb->s_time_gran);
  624. if (ia_valid & ATTR_CTIME)
  625. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  626. inode->i_sb->s_time_gran);
  627. if (ia_valid & ATTR_MODE) {
  628. umode_t mode = attr->ia_mode;
  629. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  630. mode &= ~S_ISGID;
  631. set_acl_inode(inode, mode);
  632. }
  633. }
  634. #else
  635. #define __setattr_copy setattr_copy
  636. #endif
  637. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  638. {
  639. struct inode *inode = d_inode(dentry);
  640. int err;
  641. bool size_changed = false;
  642. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  643. return -EIO;
  644. err = setattr_prepare(dentry, attr);
  645. if (err)
  646. return err;
  647. err = fscrypt_prepare_setattr(dentry, attr);
  648. if (err)
  649. return err;
  650. if (is_quota_modification(inode, attr)) {
  651. err = dquot_initialize(inode);
  652. if (err)
  653. return err;
  654. }
  655. if ((attr->ia_valid & ATTR_UID &&
  656. !uid_eq(attr->ia_uid, inode->i_uid)) ||
  657. (attr->ia_valid & ATTR_GID &&
  658. !gid_eq(attr->ia_gid, inode->i_gid))) {
  659. err = dquot_transfer(inode, attr);
  660. if (err)
  661. return err;
  662. }
  663. if (attr->ia_valid & ATTR_SIZE) {
  664. if (attr->ia_size <= i_size_read(inode)) {
  665. down_write(&F2FS_I(inode)->i_mmap_sem);
  666. truncate_setsize(inode, attr->ia_size);
  667. err = f2fs_truncate(inode);
  668. up_write(&F2FS_I(inode)->i_mmap_sem);
  669. if (err)
  670. return err;
  671. } else {
  672. /*
  673. * do not trim all blocks after i_size if target size is
  674. * larger than i_size.
  675. */
  676. down_write(&F2FS_I(inode)->i_mmap_sem);
  677. truncate_setsize(inode, attr->ia_size);
  678. up_write(&F2FS_I(inode)->i_mmap_sem);
  679. /* should convert inline inode here */
  680. if (!f2fs_may_inline_data(inode)) {
  681. err = f2fs_convert_inline_inode(inode);
  682. if (err)
  683. return err;
  684. }
  685. inode->i_mtime = inode->i_ctime = current_time(inode);
  686. }
  687. down_write(&F2FS_I(inode)->i_sem);
  688. F2FS_I(inode)->last_disk_size = i_size_read(inode);
  689. up_write(&F2FS_I(inode)->i_sem);
  690. size_changed = true;
  691. }
  692. __setattr_copy(inode, attr);
  693. if (attr->ia_valid & ATTR_MODE) {
  694. err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
  695. if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
  696. inode->i_mode = F2FS_I(inode)->i_acl_mode;
  697. clear_inode_flag(inode, FI_ACL_MODE);
  698. }
  699. }
  700. /* file size may changed here */
  701. f2fs_mark_inode_dirty_sync(inode, size_changed);
  702. /* inode change will produce dirty node pages flushed by checkpoint */
  703. f2fs_balance_fs(F2FS_I_SB(inode), true);
  704. return err;
  705. }
  706. const struct inode_operations f2fs_file_inode_operations = {
  707. .getattr = f2fs_getattr,
  708. .setattr = f2fs_setattr,
  709. .get_acl = f2fs_get_acl,
  710. .set_acl = f2fs_set_acl,
  711. #ifdef CONFIG_F2FS_FS_XATTR
  712. .listxattr = f2fs_listxattr,
  713. #endif
  714. .fiemap = f2fs_fiemap,
  715. };
  716. static int fill_zero(struct inode *inode, pgoff_t index,
  717. loff_t start, loff_t len)
  718. {
  719. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  720. struct page *page;
  721. if (!len)
  722. return 0;
  723. f2fs_balance_fs(sbi, true);
  724. f2fs_lock_op(sbi);
  725. page = f2fs_get_new_data_page(inode, NULL, index, false);
  726. f2fs_unlock_op(sbi);
  727. if (IS_ERR(page))
  728. return PTR_ERR(page);
  729. f2fs_wait_on_page_writeback(page, DATA, true);
  730. zero_user(page, start, len);
  731. set_page_dirty(page);
  732. f2fs_put_page(page, 1);
  733. return 0;
  734. }
  735. int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  736. {
  737. int err;
  738. while (pg_start < pg_end) {
  739. struct dnode_of_data dn;
  740. pgoff_t end_offset, count;
  741. set_new_dnode(&dn, inode, NULL, NULL, 0);
  742. err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
  743. if (err) {
  744. if (err == -ENOENT) {
  745. pg_start = f2fs_get_next_page_offset(&dn,
  746. pg_start);
  747. continue;
  748. }
  749. return err;
  750. }
  751. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  752. count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
  753. f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
  754. f2fs_truncate_data_blocks_range(&dn, count);
  755. f2fs_put_dnode(&dn);
  756. pg_start += count;
  757. }
  758. return 0;
  759. }
  760. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  761. {
  762. pgoff_t pg_start, pg_end;
  763. loff_t off_start, off_end;
  764. int ret;
  765. ret = f2fs_convert_inline_inode(inode);
  766. if (ret)
  767. return ret;
  768. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  769. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  770. off_start = offset & (PAGE_SIZE - 1);
  771. off_end = (offset + len) & (PAGE_SIZE - 1);
  772. if (pg_start == pg_end) {
  773. ret = fill_zero(inode, pg_start, off_start,
  774. off_end - off_start);
  775. if (ret)
  776. return ret;
  777. } else {
  778. if (off_start) {
  779. ret = fill_zero(inode, pg_start++, off_start,
  780. PAGE_SIZE - off_start);
  781. if (ret)
  782. return ret;
  783. }
  784. if (off_end) {
  785. ret = fill_zero(inode, pg_end, 0, off_end);
  786. if (ret)
  787. return ret;
  788. }
  789. if (pg_start < pg_end) {
  790. struct address_space *mapping = inode->i_mapping;
  791. loff_t blk_start, blk_end;
  792. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  793. f2fs_balance_fs(sbi, true);
  794. blk_start = (loff_t)pg_start << PAGE_SHIFT;
  795. blk_end = (loff_t)pg_end << PAGE_SHIFT;
  796. down_write(&F2FS_I(inode)->i_mmap_sem);
  797. truncate_inode_pages_range(mapping, blk_start,
  798. blk_end - 1);
  799. f2fs_lock_op(sbi);
  800. ret = f2fs_truncate_hole(inode, pg_start, pg_end);
  801. f2fs_unlock_op(sbi);
  802. up_write(&F2FS_I(inode)->i_mmap_sem);
  803. }
  804. }
  805. return ret;
  806. }
  807. static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
  808. int *do_replace, pgoff_t off, pgoff_t len)
  809. {
  810. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  811. struct dnode_of_data dn;
  812. int ret, done, i;
  813. next_dnode:
  814. set_new_dnode(&dn, inode, NULL, NULL, 0);
  815. ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
  816. if (ret && ret != -ENOENT) {
  817. return ret;
  818. } else if (ret == -ENOENT) {
  819. if (dn.max_level == 0)
  820. return -ENOENT;
  821. done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
  822. blkaddr += done;
  823. do_replace += done;
  824. goto next;
  825. }
  826. done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
  827. dn.ofs_in_node, len);
  828. for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
  829. *blkaddr = datablock_addr(dn.inode,
  830. dn.node_page, dn.ofs_in_node);
  831. if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
  832. if (test_opt(sbi, LFS)) {
  833. f2fs_put_dnode(&dn);
  834. return -ENOTSUPP;
  835. }
  836. /* do not invalidate this block address */
  837. f2fs_update_data_blkaddr(&dn, NULL_ADDR);
  838. *do_replace = 1;
  839. }
  840. }
  841. f2fs_put_dnode(&dn);
  842. next:
  843. len -= done;
  844. off += done;
  845. if (len)
  846. goto next_dnode;
  847. return 0;
  848. }
  849. static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
  850. int *do_replace, pgoff_t off, int len)
  851. {
  852. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  853. struct dnode_of_data dn;
  854. int ret, i;
  855. for (i = 0; i < len; i++, do_replace++, blkaddr++) {
  856. if (*do_replace == 0)
  857. continue;
  858. set_new_dnode(&dn, inode, NULL, NULL, 0);
  859. ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
  860. if (ret) {
  861. dec_valid_block_count(sbi, inode, 1);
  862. f2fs_invalidate_blocks(sbi, *blkaddr);
  863. } else {
  864. f2fs_update_data_blkaddr(&dn, *blkaddr);
  865. }
  866. f2fs_put_dnode(&dn);
  867. }
  868. return 0;
  869. }
  870. static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
  871. block_t *blkaddr, int *do_replace,
  872. pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
  873. {
  874. struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
  875. pgoff_t i = 0;
  876. int ret;
  877. while (i < len) {
  878. if (blkaddr[i] == NULL_ADDR && !full) {
  879. i++;
  880. continue;
  881. }
  882. if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
  883. struct dnode_of_data dn;
  884. struct node_info ni;
  885. size_t new_size;
  886. pgoff_t ilen;
  887. set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
  888. ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
  889. if (ret)
  890. return ret;
  891. f2fs_get_node_info(sbi, dn.nid, &ni);
  892. ilen = min((pgoff_t)
  893. ADDRS_PER_PAGE(dn.node_page, dst_inode) -
  894. dn.ofs_in_node, len - i);
  895. do {
  896. dn.data_blkaddr = datablock_addr(dn.inode,
  897. dn.node_page, dn.ofs_in_node);
  898. f2fs_truncate_data_blocks_range(&dn, 1);
  899. if (do_replace[i]) {
  900. f2fs_i_blocks_write(src_inode,
  901. 1, false, false);
  902. f2fs_i_blocks_write(dst_inode,
  903. 1, true, false);
  904. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  905. blkaddr[i], ni.version, true, false);
  906. do_replace[i] = 0;
  907. }
  908. dn.ofs_in_node++;
  909. i++;
  910. new_size = (dst + i) << PAGE_SHIFT;
  911. if (dst_inode->i_size < new_size)
  912. f2fs_i_size_write(dst_inode, new_size);
  913. } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
  914. f2fs_put_dnode(&dn);
  915. } else {
  916. struct page *psrc, *pdst;
  917. psrc = f2fs_get_lock_data_page(src_inode,
  918. src + i, true);
  919. if (IS_ERR(psrc))
  920. return PTR_ERR(psrc);
  921. pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
  922. true);
  923. if (IS_ERR(pdst)) {
  924. f2fs_put_page(psrc, 1);
  925. return PTR_ERR(pdst);
  926. }
  927. f2fs_copy_page(psrc, pdst);
  928. set_page_dirty(pdst);
  929. f2fs_put_page(pdst, 1);
  930. f2fs_put_page(psrc, 1);
  931. ret = f2fs_truncate_hole(src_inode,
  932. src + i, src + i + 1);
  933. if (ret)
  934. return ret;
  935. i++;
  936. }
  937. }
  938. return 0;
  939. }
  940. static int __exchange_data_block(struct inode *src_inode,
  941. struct inode *dst_inode, pgoff_t src, pgoff_t dst,
  942. pgoff_t len, bool full)
  943. {
  944. block_t *src_blkaddr;
  945. int *do_replace;
  946. pgoff_t olen;
  947. int ret;
  948. while (len) {
  949. olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
  950. src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
  951. sizeof(block_t) * olen, GFP_KERNEL);
  952. if (!src_blkaddr)
  953. return -ENOMEM;
  954. do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
  955. sizeof(int) * olen, GFP_KERNEL);
  956. if (!do_replace) {
  957. kvfree(src_blkaddr);
  958. return -ENOMEM;
  959. }
  960. ret = __read_out_blkaddrs(src_inode, src_blkaddr,
  961. do_replace, src, olen);
  962. if (ret)
  963. goto roll_back;
  964. ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
  965. do_replace, src, dst, olen, full);
  966. if (ret)
  967. goto roll_back;
  968. src += olen;
  969. dst += olen;
  970. len -= olen;
  971. kvfree(src_blkaddr);
  972. kvfree(do_replace);
  973. }
  974. return 0;
  975. roll_back:
  976. __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
  977. kvfree(src_blkaddr);
  978. kvfree(do_replace);
  979. return ret;
  980. }
  981. static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
  982. {
  983. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  984. pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  985. int ret;
  986. f2fs_balance_fs(sbi, true);
  987. f2fs_lock_op(sbi);
  988. f2fs_drop_extent_tree(inode);
  989. ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
  990. f2fs_unlock_op(sbi);
  991. return ret;
  992. }
  993. static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
  994. {
  995. pgoff_t pg_start, pg_end;
  996. loff_t new_size;
  997. int ret;
  998. if (offset + len >= i_size_read(inode))
  999. return -EINVAL;
  1000. /* collapse range should be aligned to block size of f2fs. */
  1001. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  1002. return -EINVAL;
  1003. ret = f2fs_convert_inline_inode(inode);
  1004. if (ret)
  1005. return ret;
  1006. pg_start = offset >> PAGE_SHIFT;
  1007. pg_end = (offset + len) >> PAGE_SHIFT;
  1008. /* avoid gc operation during block exchange */
  1009. down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1010. down_write(&F2FS_I(inode)->i_mmap_sem);
  1011. /* write out all dirty pages from offset */
  1012. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1013. if (ret)
  1014. goto out_unlock;
  1015. truncate_pagecache(inode, offset);
  1016. ret = f2fs_do_collapse(inode, pg_start, pg_end);
  1017. if (ret)
  1018. goto out_unlock;
  1019. /* write out all moved pages, if possible */
  1020. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1021. truncate_pagecache(inode, offset);
  1022. new_size = i_size_read(inode) - len;
  1023. truncate_pagecache(inode, new_size);
  1024. ret = f2fs_truncate_blocks(inode, new_size, true);
  1025. if (!ret)
  1026. f2fs_i_size_write(inode, new_size);
  1027. out_unlock:
  1028. up_write(&F2FS_I(inode)->i_mmap_sem);
  1029. up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1030. return ret;
  1031. }
  1032. static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
  1033. pgoff_t end)
  1034. {
  1035. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  1036. pgoff_t index = start;
  1037. unsigned int ofs_in_node = dn->ofs_in_node;
  1038. blkcnt_t count = 0;
  1039. int ret;
  1040. for (; index < end; index++, dn->ofs_in_node++) {
  1041. if (datablock_addr(dn->inode, dn->node_page,
  1042. dn->ofs_in_node) == NULL_ADDR)
  1043. count++;
  1044. }
  1045. dn->ofs_in_node = ofs_in_node;
  1046. ret = f2fs_reserve_new_blocks(dn, count);
  1047. if (ret)
  1048. return ret;
  1049. dn->ofs_in_node = ofs_in_node;
  1050. for (index = start; index < end; index++, dn->ofs_in_node++) {
  1051. dn->data_blkaddr = datablock_addr(dn->inode,
  1052. dn->node_page, dn->ofs_in_node);
  1053. /*
  1054. * f2fs_reserve_new_blocks will not guarantee entire block
  1055. * allocation.
  1056. */
  1057. if (dn->data_blkaddr == NULL_ADDR) {
  1058. ret = -ENOSPC;
  1059. break;
  1060. }
  1061. if (dn->data_blkaddr != NEW_ADDR) {
  1062. f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
  1063. dn->data_blkaddr = NEW_ADDR;
  1064. f2fs_set_data_blkaddr(dn);
  1065. }
  1066. }
  1067. f2fs_update_extent_cache_range(dn, start, 0, index - start);
  1068. return ret;
  1069. }
  1070. static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
  1071. int mode)
  1072. {
  1073. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1074. struct address_space *mapping = inode->i_mapping;
  1075. pgoff_t index, pg_start, pg_end;
  1076. loff_t new_size = i_size_read(inode);
  1077. loff_t off_start, off_end;
  1078. int ret = 0;
  1079. ret = inode_newsize_ok(inode, (len + offset));
  1080. if (ret)
  1081. return ret;
  1082. ret = f2fs_convert_inline_inode(inode);
  1083. if (ret)
  1084. return ret;
  1085. down_write(&F2FS_I(inode)->i_mmap_sem);
  1086. ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
  1087. if (ret)
  1088. goto out_sem;
  1089. truncate_pagecache_range(inode, offset, offset + len - 1);
  1090. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  1091. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  1092. off_start = offset & (PAGE_SIZE - 1);
  1093. off_end = (offset + len) & (PAGE_SIZE - 1);
  1094. if (pg_start == pg_end) {
  1095. ret = fill_zero(inode, pg_start, off_start,
  1096. off_end - off_start);
  1097. if (ret)
  1098. goto out_sem;
  1099. new_size = max_t(loff_t, new_size, offset + len);
  1100. } else {
  1101. if (off_start) {
  1102. ret = fill_zero(inode, pg_start++, off_start,
  1103. PAGE_SIZE - off_start);
  1104. if (ret)
  1105. goto out_sem;
  1106. new_size = max_t(loff_t, new_size,
  1107. (loff_t)pg_start << PAGE_SHIFT);
  1108. }
  1109. for (index = pg_start; index < pg_end;) {
  1110. struct dnode_of_data dn;
  1111. unsigned int end_offset;
  1112. pgoff_t end;
  1113. f2fs_lock_op(sbi);
  1114. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1115. ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
  1116. if (ret) {
  1117. f2fs_unlock_op(sbi);
  1118. goto out;
  1119. }
  1120. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  1121. end = min(pg_end, end_offset - dn.ofs_in_node + index);
  1122. ret = f2fs_do_zero_range(&dn, index, end);
  1123. f2fs_put_dnode(&dn);
  1124. f2fs_unlock_op(sbi);
  1125. f2fs_balance_fs(sbi, dn.node_changed);
  1126. if (ret)
  1127. goto out;
  1128. index = end;
  1129. new_size = max_t(loff_t, new_size,
  1130. (loff_t)index << PAGE_SHIFT);
  1131. }
  1132. if (off_end) {
  1133. ret = fill_zero(inode, pg_end, 0, off_end);
  1134. if (ret)
  1135. goto out;
  1136. new_size = max_t(loff_t, new_size, offset + len);
  1137. }
  1138. }
  1139. out:
  1140. if (new_size > i_size_read(inode)) {
  1141. if (mode & FALLOC_FL_KEEP_SIZE)
  1142. file_set_keep_isize(inode);
  1143. else
  1144. f2fs_i_size_write(inode, new_size);
  1145. }
  1146. out_sem:
  1147. up_write(&F2FS_I(inode)->i_mmap_sem);
  1148. return ret;
  1149. }
  1150. static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
  1151. {
  1152. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1153. pgoff_t nr, pg_start, pg_end, delta, idx;
  1154. loff_t new_size;
  1155. int ret = 0;
  1156. new_size = i_size_read(inode) + len;
  1157. ret = inode_newsize_ok(inode, new_size);
  1158. if (ret)
  1159. return ret;
  1160. if (offset >= i_size_read(inode))
  1161. return -EINVAL;
  1162. /* insert range should be aligned to block size of f2fs. */
  1163. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  1164. return -EINVAL;
  1165. ret = f2fs_convert_inline_inode(inode);
  1166. if (ret)
  1167. return ret;
  1168. f2fs_balance_fs(sbi, true);
  1169. /* avoid gc operation during block exchange */
  1170. down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1171. down_write(&F2FS_I(inode)->i_mmap_sem);
  1172. ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
  1173. if (ret)
  1174. goto out;
  1175. /* write out all dirty pages from offset */
  1176. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1177. if (ret)
  1178. goto out;
  1179. truncate_pagecache(inode, offset);
  1180. pg_start = offset >> PAGE_SHIFT;
  1181. pg_end = (offset + len) >> PAGE_SHIFT;
  1182. delta = pg_end - pg_start;
  1183. idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  1184. while (!ret && idx > pg_start) {
  1185. nr = idx - pg_start;
  1186. if (nr > delta)
  1187. nr = delta;
  1188. idx -= nr;
  1189. f2fs_lock_op(sbi);
  1190. f2fs_drop_extent_tree(inode);
  1191. ret = __exchange_data_block(inode, inode, idx,
  1192. idx + delta, nr, false);
  1193. f2fs_unlock_op(sbi);
  1194. }
  1195. /* write out all moved pages, if possible */
  1196. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1197. truncate_pagecache(inode, offset);
  1198. if (!ret)
  1199. f2fs_i_size_write(inode, new_size);
  1200. out:
  1201. up_write(&F2FS_I(inode)->i_mmap_sem);
  1202. up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1203. return ret;
  1204. }
  1205. static int expand_inode_data(struct inode *inode, loff_t offset,
  1206. loff_t len, int mode)
  1207. {
  1208. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1209. struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
  1210. .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE };
  1211. pgoff_t pg_end;
  1212. loff_t new_size = i_size_read(inode);
  1213. loff_t off_end;
  1214. int err;
  1215. err = inode_newsize_ok(inode, (len + offset));
  1216. if (err)
  1217. return err;
  1218. err = f2fs_convert_inline_inode(inode);
  1219. if (err)
  1220. return err;
  1221. f2fs_balance_fs(sbi, true);
  1222. pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
  1223. off_end = (offset + len) & (PAGE_SIZE - 1);
  1224. map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
  1225. map.m_len = pg_end - map.m_lblk;
  1226. if (off_end)
  1227. map.m_len++;
  1228. err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
  1229. if (err) {
  1230. pgoff_t last_off;
  1231. if (!map.m_len)
  1232. return err;
  1233. last_off = map.m_lblk + map.m_len - 1;
  1234. /* update new size to the failed position */
  1235. new_size = (last_off == pg_end) ? offset + len :
  1236. (loff_t)(last_off + 1) << PAGE_SHIFT;
  1237. } else {
  1238. new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
  1239. }
  1240. if (new_size > i_size_read(inode)) {
  1241. if (mode & FALLOC_FL_KEEP_SIZE)
  1242. file_set_keep_isize(inode);
  1243. else
  1244. f2fs_i_size_write(inode, new_size);
  1245. }
  1246. return err;
  1247. }
  1248. static long f2fs_fallocate(struct file *file, int mode,
  1249. loff_t offset, loff_t len)
  1250. {
  1251. struct inode *inode = file_inode(file);
  1252. long ret = 0;
  1253. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  1254. return -EIO;
  1255. /* f2fs only support ->fallocate for regular file */
  1256. if (!S_ISREG(inode->i_mode))
  1257. return -EINVAL;
  1258. if (f2fs_encrypted_inode(inode) &&
  1259. (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
  1260. return -EOPNOTSUPP;
  1261. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  1262. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
  1263. FALLOC_FL_INSERT_RANGE))
  1264. return -EOPNOTSUPP;
  1265. inode_lock(inode);
  1266. if (mode & FALLOC_FL_PUNCH_HOLE) {
  1267. if (offset >= inode->i_size)
  1268. goto out;
  1269. ret = punch_hole(inode, offset, len);
  1270. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  1271. ret = f2fs_collapse_range(inode, offset, len);
  1272. } else if (mode & FALLOC_FL_ZERO_RANGE) {
  1273. ret = f2fs_zero_range(inode, offset, len, mode);
  1274. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  1275. ret = f2fs_insert_range(inode, offset, len);
  1276. } else {
  1277. ret = expand_inode_data(inode, offset, len, mode);
  1278. }
  1279. if (!ret) {
  1280. inode->i_mtime = inode->i_ctime = current_time(inode);
  1281. f2fs_mark_inode_dirty_sync(inode, false);
  1282. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1283. }
  1284. out:
  1285. inode_unlock(inode);
  1286. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  1287. return ret;
  1288. }
  1289. static int f2fs_release_file(struct inode *inode, struct file *filp)
  1290. {
  1291. /*
  1292. * f2fs_relase_file is called at every close calls. So we should
  1293. * not drop any inmemory pages by close called by other process.
  1294. */
  1295. if (!(filp->f_mode & FMODE_WRITE) ||
  1296. atomic_read(&inode->i_writecount) != 1)
  1297. return 0;
  1298. /* some remained atomic pages should discarded */
  1299. if (f2fs_is_atomic_file(inode))
  1300. f2fs_drop_inmem_pages(inode);
  1301. if (f2fs_is_volatile_file(inode)) {
  1302. set_inode_flag(inode, FI_DROP_CACHE);
  1303. filemap_fdatawrite(inode->i_mapping);
  1304. clear_inode_flag(inode, FI_DROP_CACHE);
  1305. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1306. stat_dec_volatile_write(inode);
  1307. }
  1308. return 0;
  1309. }
  1310. static int f2fs_file_flush(struct file *file, fl_owner_t id)
  1311. {
  1312. struct inode *inode = file_inode(file);
  1313. /*
  1314. * If the process doing a transaction is crashed, we should do
  1315. * roll-back. Otherwise, other reader/write can see corrupted database
  1316. * until all the writers close its file. Since this should be done
  1317. * before dropping file lock, it needs to do in ->flush.
  1318. */
  1319. if (f2fs_is_atomic_file(inode) &&
  1320. F2FS_I(inode)->inmem_task == current)
  1321. f2fs_drop_inmem_pages(inode);
  1322. return 0;
  1323. }
  1324. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  1325. {
  1326. struct inode *inode = file_inode(filp);
  1327. struct f2fs_inode_info *fi = F2FS_I(inode);
  1328. unsigned int flags = fi->i_flags;
  1329. if (file_is_encrypt(inode))
  1330. flags |= F2FS_ENCRYPT_FL;
  1331. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
  1332. flags |= F2FS_INLINE_DATA_FL;
  1333. flags &= F2FS_FL_USER_VISIBLE;
  1334. return put_user(flags, (int __user *)arg);
  1335. }
  1336. static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
  1337. {
  1338. struct f2fs_inode_info *fi = F2FS_I(inode);
  1339. unsigned int oldflags;
  1340. /* Is it quota file? Do not allow user to mess with it */
  1341. if (IS_NOQUOTA(inode))
  1342. return -EPERM;
  1343. flags = f2fs_mask_flags(inode->i_mode, flags);
  1344. oldflags = fi->i_flags;
  1345. if ((flags ^ oldflags) & (F2FS_APPEND_FL | F2FS_IMMUTABLE_FL))
  1346. if (!capable(CAP_LINUX_IMMUTABLE))
  1347. return -EPERM;
  1348. flags = flags & F2FS_FL_USER_MODIFIABLE;
  1349. flags |= oldflags & ~F2FS_FL_USER_MODIFIABLE;
  1350. fi->i_flags = flags;
  1351. if (fi->i_flags & F2FS_PROJINHERIT_FL)
  1352. set_inode_flag(inode, FI_PROJ_INHERIT);
  1353. else
  1354. clear_inode_flag(inode, FI_PROJ_INHERIT);
  1355. inode->i_ctime = current_time(inode);
  1356. f2fs_set_inode_flags(inode);
  1357. f2fs_mark_inode_dirty_sync(inode, false);
  1358. return 0;
  1359. }
  1360. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  1361. {
  1362. struct inode *inode = file_inode(filp);
  1363. unsigned int flags;
  1364. int ret;
  1365. if (!inode_owner_or_capable(inode))
  1366. return -EACCES;
  1367. if (get_user(flags, (int __user *)arg))
  1368. return -EFAULT;
  1369. ret = mnt_want_write_file(filp);
  1370. if (ret)
  1371. return ret;
  1372. inode_lock(inode);
  1373. ret = __f2fs_ioc_setflags(inode, flags);
  1374. inode_unlock(inode);
  1375. mnt_drop_write_file(filp);
  1376. return ret;
  1377. }
  1378. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  1379. {
  1380. struct inode *inode = file_inode(filp);
  1381. return put_user(inode->i_generation, (int __user *)arg);
  1382. }
  1383. static int f2fs_ioc_start_atomic_write(struct file *filp)
  1384. {
  1385. struct inode *inode = file_inode(filp);
  1386. int ret;
  1387. if (!inode_owner_or_capable(inode))
  1388. return -EACCES;
  1389. if (!S_ISREG(inode->i_mode))
  1390. return -EINVAL;
  1391. ret = mnt_want_write_file(filp);
  1392. if (ret)
  1393. return ret;
  1394. inode_lock(inode);
  1395. down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1396. if (f2fs_is_atomic_file(inode))
  1397. goto out;
  1398. ret = f2fs_convert_inline_inode(inode);
  1399. if (ret)
  1400. goto out;
  1401. if (!get_dirty_pages(inode))
  1402. goto skip_flush;
  1403. f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
  1404. "Unexpected flush for atomic writes: ino=%lu, npages=%u",
  1405. inode->i_ino, get_dirty_pages(inode));
  1406. ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
  1407. if (ret)
  1408. goto out;
  1409. skip_flush:
  1410. set_inode_flag(inode, FI_ATOMIC_FILE);
  1411. clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
  1412. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1413. F2FS_I(inode)->inmem_task = current;
  1414. stat_inc_atomic_write(inode);
  1415. stat_update_max_atomic_write(inode);
  1416. out:
  1417. up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1418. inode_unlock(inode);
  1419. mnt_drop_write_file(filp);
  1420. return ret;
  1421. }
  1422. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  1423. {
  1424. struct inode *inode = file_inode(filp);
  1425. int ret;
  1426. if (!inode_owner_or_capable(inode))
  1427. return -EACCES;
  1428. ret = mnt_want_write_file(filp);
  1429. if (ret)
  1430. return ret;
  1431. inode_lock(inode);
  1432. down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1433. if (f2fs_is_volatile_file(inode)) {
  1434. ret = -EINVAL;
  1435. goto err_out;
  1436. }
  1437. if (f2fs_is_atomic_file(inode)) {
  1438. ret = f2fs_commit_inmem_pages(inode);
  1439. if (ret)
  1440. goto err_out;
  1441. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1442. if (!ret) {
  1443. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1444. F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
  1445. stat_dec_atomic_write(inode);
  1446. }
  1447. } else {
  1448. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
  1449. }
  1450. err_out:
  1451. if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
  1452. clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
  1453. ret = -EINVAL;
  1454. }
  1455. up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1456. inode_unlock(inode);
  1457. mnt_drop_write_file(filp);
  1458. return ret;
  1459. }
  1460. static int f2fs_ioc_start_volatile_write(struct file *filp)
  1461. {
  1462. struct inode *inode = file_inode(filp);
  1463. int ret;
  1464. if (!inode_owner_or_capable(inode))
  1465. return -EACCES;
  1466. if (!S_ISREG(inode->i_mode))
  1467. return -EINVAL;
  1468. ret = mnt_want_write_file(filp);
  1469. if (ret)
  1470. return ret;
  1471. inode_lock(inode);
  1472. if (f2fs_is_volatile_file(inode))
  1473. goto out;
  1474. ret = f2fs_convert_inline_inode(inode);
  1475. if (ret)
  1476. goto out;
  1477. stat_inc_volatile_write(inode);
  1478. stat_update_max_volatile_write(inode);
  1479. set_inode_flag(inode, FI_VOLATILE_FILE);
  1480. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1481. out:
  1482. inode_unlock(inode);
  1483. mnt_drop_write_file(filp);
  1484. return ret;
  1485. }
  1486. static int f2fs_ioc_release_volatile_write(struct file *filp)
  1487. {
  1488. struct inode *inode = file_inode(filp);
  1489. int ret;
  1490. if (!inode_owner_or_capable(inode))
  1491. return -EACCES;
  1492. ret = mnt_want_write_file(filp);
  1493. if (ret)
  1494. return ret;
  1495. inode_lock(inode);
  1496. if (!f2fs_is_volatile_file(inode))
  1497. goto out;
  1498. if (!f2fs_is_first_block_written(inode)) {
  1499. ret = truncate_partial_data_page(inode, 0, true);
  1500. goto out;
  1501. }
  1502. ret = punch_hole(inode, 0, F2FS_BLKSIZE);
  1503. out:
  1504. inode_unlock(inode);
  1505. mnt_drop_write_file(filp);
  1506. return ret;
  1507. }
  1508. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  1509. {
  1510. struct inode *inode = file_inode(filp);
  1511. int ret;
  1512. if (!inode_owner_or_capable(inode))
  1513. return -EACCES;
  1514. ret = mnt_want_write_file(filp);
  1515. if (ret)
  1516. return ret;
  1517. inode_lock(inode);
  1518. if (f2fs_is_atomic_file(inode))
  1519. f2fs_drop_inmem_pages(inode);
  1520. if (f2fs_is_volatile_file(inode)) {
  1521. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1522. stat_dec_volatile_write(inode);
  1523. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1524. }
  1525. inode_unlock(inode);
  1526. mnt_drop_write_file(filp);
  1527. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1528. return ret;
  1529. }
  1530. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  1531. {
  1532. struct inode *inode = file_inode(filp);
  1533. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1534. struct super_block *sb = sbi->sb;
  1535. __u32 in;
  1536. int ret;
  1537. if (!capable(CAP_SYS_ADMIN))
  1538. return -EPERM;
  1539. if (get_user(in, (__u32 __user *)arg))
  1540. return -EFAULT;
  1541. if (in != F2FS_GOING_DOWN_FULLSYNC) {
  1542. ret = mnt_want_write_file(filp);
  1543. if (ret)
  1544. return ret;
  1545. }
  1546. switch (in) {
  1547. case F2FS_GOING_DOWN_FULLSYNC:
  1548. sb = freeze_bdev(sb->s_bdev);
  1549. if (IS_ERR(sb)) {
  1550. ret = PTR_ERR(sb);
  1551. goto out;
  1552. }
  1553. if (sb) {
  1554. f2fs_stop_checkpoint(sbi, false);
  1555. thaw_bdev(sb->s_bdev, sb);
  1556. }
  1557. break;
  1558. case F2FS_GOING_DOWN_METASYNC:
  1559. /* do checkpoint only */
  1560. ret = f2fs_sync_fs(sb, 1);
  1561. if (ret)
  1562. goto out;
  1563. f2fs_stop_checkpoint(sbi, false);
  1564. break;
  1565. case F2FS_GOING_DOWN_NOSYNC:
  1566. f2fs_stop_checkpoint(sbi, false);
  1567. break;
  1568. case F2FS_GOING_DOWN_METAFLUSH:
  1569. f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
  1570. f2fs_stop_checkpoint(sbi, false);
  1571. break;
  1572. default:
  1573. ret = -EINVAL;
  1574. goto out;
  1575. }
  1576. f2fs_stop_gc_thread(sbi);
  1577. f2fs_stop_discard_thread(sbi);
  1578. f2fs_drop_discard_cmd(sbi);
  1579. clear_opt(sbi, DISCARD);
  1580. f2fs_update_time(sbi, REQ_TIME);
  1581. out:
  1582. if (in != F2FS_GOING_DOWN_FULLSYNC)
  1583. mnt_drop_write_file(filp);
  1584. return ret;
  1585. }
  1586. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  1587. {
  1588. struct inode *inode = file_inode(filp);
  1589. struct super_block *sb = inode->i_sb;
  1590. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1591. struct fstrim_range range;
  1592. int ret;
  1593. if (!capable(CAP_SYS_ADMIN))
  1594. return -EPERM;
  1595. if (!blk_queue_discard(q))
  1596. return -EOPNOTSUPP;
  1597. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  1598. sizeof(range)))
  1599. return -EFAULT;
  1600. ret = mnt_want_write_file(filp);
  1601. if (ret)
  1602. return ret;
  1603. range.minlen = max((unsigned int)range.minlen,
  1604. q->limits.discard_granularity);
  1605. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  1606. mnt_drop_write_file(filp);
  1607. if (ret < 0)
  1608. return ret;
  1609. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  1610. sizeof(range)))
  1611. return -EFAULT;
  1612. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1613. return 0;
  1614. }
  1615. static bool uuid_is_nonzero(__u8 u[16])
  1616. {
  1617. int i;
  1618. for (i = 0; i < 16; i++)
  1619. if (u[i])
  1620. return true;
  1621. return false;
  1622. }
  1623. static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
  1624. {
  1625. struct inode *inode = file_inode(filp);
  1626. if (!f2fs_sb_has_encrypt(inode->i_sb))
  1627. return -EOPNOTSUPP;
  1628. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1629. return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
  1630. }
  1631. static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
  1632. {
  1633. if (!f2fs_sb_has_encrypt(file_inode(filp)->i_sb))
  1634. return -EOPNOTSUPP;
  1635. return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
  1636. }
  1637. static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
  1638. {
  1639. struct inode *inode = file_inode(filp);
  1640. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1641. int err;
  1642. if (!f2fs_sb_has_encrypt(inode->i_sb))
  1643. return -EOPNOTSUPP;
  1644. err = mnt_want_write_file(filp);
  1645. if (err)
  1646. return err;
  1647. down_write(&sbi->sb_lock);
  1648. if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
  1649. goto got_it;
  1650. /* update superblock with uuid */
  1651. generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
  1652. err = f2fs_commit_super(sbi, false);
  1653. if (err) {
  1654. /* undo new data */
  1655. memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
  1656. goto out_err;
  1657. }
  1658. got_it:
  1659. if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
  1660. 16))
  1661. err = -EFAULT;
  1662. out_err:
  1663. up_write(&sbi->sb_lock);
  1664. mnt_drop_write_file(filp);
  1665. return err;
  1666. }
  1667. static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
  1668. {
  1669. struct inode *inode = file_inode(filp);
  1670. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1671. __u32 sync;
  1672. int ret;
  1673. if (!capable(CAP_SYS_ADMIN))
  1674. return -EPERM;
  1675. if (get_user(sync, (__u32 __user *)arg))
  1676. return -EFAULT;
  1677. if (f2fs_readonly(sbi->sb))
  1678. return -EROFS;
  1679. ret = mnt_want_write_file(filp);
  1680. if (ret)
  1681. return ret;
  1682. if (!sync) {
  1683. if (!mutex_trylock(&sbi->gc_mutex)) {
  1684. ret = -EBUSY;
  1685. goto out;
  1686. }
  1687. } else {
  1688. mutex_lock(&sbi->gc_mutex);
  1689. }
  1690. ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
  1691. out:
  1692. mnt_drop_write_file(filp);
  1693. return ret;
  1694. }
  1695. static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
  1696. {
  1697. struct inode *inode = file_inode(filp);
  1698. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1699. struct f2fs_gc_range range;
  1700. u64 end;
  1701. int ret;
  1702. if (!capable(CAP_SYS_ADMIN))
  1703. return -EPERM;
  1704. if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
  1705. sizeof(range)))
  1706. return -EFAULT;
  1707. if (f2fs_readonly(sbi->sb))
  1708. return -EROFS;
  1709. end = range.start + range.len;
  1710. if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) {
  1711. return -EINVAL;
  1712. }
  1713. ret = mnt_want_write_file(filp);
  1714. if (ret)
  1715. return ret;
  1716. do_more:
  1717. if (!range.sync) {
  1718. if (!mutex_trylock(&sbi->gc_mutex)) {
  1719. ret = -EBUSY;
  1720. goto out;
  1721. }
  1722. } else {
  1723. mutex_lock(&sbi->gc_mutex);
  1724. }
  1725. ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
  1726. range.start += sbi->blocks_per_seg;
  1727. if (range.start <= end)
  1728. goto do_more;
  1729. out:
  1730. mnt_drop_write_file(filp);
  1731. return ret;
  1732. }
  1733. static int f2fs_ioc_f2fs_write_checkpoint(struct file *filp, unsigned long arg)
  1734. {
  1735. struct inode *inode = file_inode(filp);
  1736. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1737. int ret;
  1738. if (!capable(CAP_SYS_ADMIN))
  1739. return -EPERM;
  1740. if (f2fs_readonly(sbi->sb))
  1741. return -EROFS;
  1742. ret = mnt_want_write_file(filp);
  1743. if (ret)
  1744. return ret;
  1745. ret = f2fs_sync_fs(sbi->sb, 1);
  1746. mnt_drop_write_file(filp);
  1747. return ret;
  1748. }
  1749. static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
  1750. struct file *filp,
  1751. struct f2fs_defragment *range)
  1752. {
  1753. struct inode *inode = file_inode(filp);
  1754. struct f2fs_map_blocks map = { .m_next_extent = NULL,
  1755. .m_seg_type = NO_CHECK_TYPE };
  1756. struct extent_info ei = {0, 0, 0};
  1757. pgoff_t pg_start, pg_end, next_pgofs;
  1758. unsigned int blk_per_seg = sbi->blocks_per_seg;
  1759. unsigned int total = 0, sec_num;
  1760. block_t blk_end = 0;
  1761. bool fragmented = false;
  1762. int err;
  1763. /* if in-place-update policy is enabled, don't waste time here */
  1764. if (f2fs_should_update_inplace(inode, NULL))
  1765. return -EINVAL;
  1766. pg_start = range->start >> PAGE_SHIFT;
  1767. pg_end = (range->start + range->len) >> PAGE_SHIFT;
  1768. f2fs_balance_fs(sbi, true);
  1769. inode_lock(inode);
  1770. /* writeback all dirty pages in the range */
  1771. err = filemap_write_and_wait_range(inode->i_mapping, range->start,
  1772. range->start + range->len - 1);
  1773. if (err)
  1774. goto out;
  1775. /*
  1776. * lookup mapping info in extent cache, skip defragmenting if physical
  1777. * block addresses are continuous.
  1778. */
  1779. if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
  1780. if (ei.fofs + ei.len >= pg_end)
  1781. goto out;
  1782. }
  1783. map.m_lblk = pg_start;
  1784. map.m_next_pgofs = &next_pgofs;
  1785. /*
  1786. * lookup mapping info in dnode page cache, skip defragmenting if all
  1787. * physical block addresses are continuous even if there are hole(s)
  1788. * in logical blocks.
  1789. */
  1790. while (map.m_lblk < pg_end) {
  1791. map.m_len = pg_end - map.m_lblk;
  1792. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
  1793. if (err)
  1794. goto out;
  1795. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1796. map.m_lblk = next_pgofs;
  1797. continue;
  1798. }
  1799. if (blk_end && blk_end != map.m_pblk)
  1800. fragmented = true;
  1801. /* record total count of block that we're going to move */
  1802. total += map.m_len;
  1803. blk_end = map.m_pblk + map.m_len;
  1804. map.m_lblk += map.m_len;
  1805. }
  1806. if (!fragmented)
  1807. goto out;
  1808. sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
  1809. /*
  1810. * make sure there are enough free section for LFS allocation, this can
  1811. * avoid defragment running in SSR mode when free section are allocated
  1812. * intensively
  1813. */
  1814. if (has_not_enough_free_secs(sbi, 0, sec_num)) {
  1815. err = -EAGAIN;
  1816. goto out;
  1817. }
  1818. map.m_lblk = pg_start;
  1819. map.m_len = pg_end - pg_start;
  1820. total = 0;
  1821. while (map.m_lblk < pg_end) {
  1822. pgoff_t idx;
  1823. int cnt = 0;
  1824. do_map:
  1825. map.m_len = pg_end - map.m_lblk;
  1826. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
  1827. if (err)
  1828. goto clear_out;
  1829. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1830. map.m_lblk = next_pgofs;
  1831. continue;
  1832. }
  1833. set_inode_flag(inode, FI_DO_DEFRAG);
  1834. idx = map.m_lblk;
  1835. while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
  1836. struct page *page;
  1837. page = f2fs_get_lock_data_page(inode, idx, true);
  1838. if (IS_ERR(page)) {
  1839. err = PTR_ERR(page);
  1840. goto clear_out;
  1841. }
  1842. set_page_dirty(page);
  1843. f2fs_put_page(page, 1);
  1844. idx++;
  1845. cnt++;
  1846. total++;
  1847. }
  1848. map.m_lblk = idx;
  1849. if (idx < pg_end && cnt < blk_per_seg)
  1850. goto do_map;
  1851. clear_inode_flag(inode, FI_DO_DEFRAG);
  1852. err = filemap_fdatawrite(inode->i_mapping);
  1853. if (err)
  1854. goto out;
  1855. }
  1856. clear_out:
  1857. clear_inode_flag(inode, FI_DO_DEFRAG);
  1858. out:
  1859. inode_unlock(inode);
  1860. if (!err)
  1861. range->len = (u64)total << PAGE_SHIFT;
  1862. return err;
  1863. }
  1864. static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
  1865. {
  1866. struct inode *inode = file_inode(filp);
  1867. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1868. struct f2fs_defragment range;
  1869. int err;
  1870. if (!capable(CAP_SYS_ADMIN))
  1871. return -EPERM;
  1872. if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
  1873. return -EINVAL;
  1874. if (f2fs_readonly(sbi->sb))
  1875. return -EROFS;
  1876. if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
  1877. sizeof(range)))
  1878. return -EFAULT;
  1879. /* verify alignment of offset & size */
  1880. if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
  1881. return -EINVAL;
  1882. if (unlikely((range.start + range.len) >> PAGE_SHIFT >
  1883. sbi->max_file_blocks))
  1884. return -EINVAL;
  1885. err = mnt_want_write_file(filp);
  1886. if (err)
  1887. return err;
  1888. err = f2fs_defragment_range(sbi, filp, &range);
  1889. mnt_drop_write_file(filp);
  1890. f2fs_update_time(sbi, REQ_TIME);
  1891. if (err < 0)
  1892. return err;
  1893. if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
  1894. sizeof(range)))
  1895. return -EFAULT;
  1896. return 0;
  1897. }
  1898. static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
  1899. struct file *file_out, loff_t pos_out, size_t len)
  1900. {
  1901. struct inode *src = file_inode(file_in);
  1902. struct inode *dst = file_inode(file_out);
  1903. struct f2fs_sb_info *sbi = F2FS_I_SB(src);
  1904. size_t olen = len, dst_max_i_size = 0;
  1905. size_t dst_osize;
  1906. int ret;
  1907. if (file_in->f_path.mnt != file_out->f_path.mnt ||
  1908. src->i_sb != dst->i_sb)
  1909. return -EXDEV;
  1910. if (unlikely(f2fs_readonly(src->i_sb)))
  1911. return -EROFS;
  1912. if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
  1913. return -EINVAL;
  1914. if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
  1915. return -EOPNOTSUPP;
  1916. if (src == dst) {
  1917. if (pos_in == pos_out)
  1918. return 0;
  1919. if (pos_out > pos_in && pos_out < pos_in + len)
  1920. return -EINVAL;
  1921. }
  1922. inode_lock(src);
  1923. down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
  1924. if (src != dst) {
  1925. ret = -EBUSY;
  1926. if (!inode_trylock(dst))
  1927. goto out;
  1928. if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) {
  1929. inode_unlock(dst);
  1930. goto out;
  1931. }
  1932. }
  1933. ret = -EINVAL;
  1934. if (pos_in + len > src->i_size || pos_in + len < pos_in)
  1935. goto out_unlock;
  1936. if (len == 0)
  1937. olen = len = src->i_size - pos_in;
  1938. if (pos_in + len == src->i_size)
  1939. len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
  1940. if (len == 0) {
  1941. ret = 0;
  1942. goto out_unlock;
  1943. }
  1944. dst_osize = dst->i_size;
  1945. if (pos_out + olen > dst->i_size)
  1946. dst_max_i_size = pos_out + olen;
  1947. /* verify the end result is block aligned */
  1948. if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
  1949. !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
  1950. !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
  1951. goto out_unlock;
  1952. ret = f2fs_convert_inline_inode(src);
  1953. if (ret)
  1954. goto out_unlock;
  1955. ret = f2fs_convert_inline_inode(dst);
  1956. if (ret)
  1957. goto out_unlock;
  1958. /* write out all dirty pages from offset */
  1959. ret = filemap_write_and_wait_range(src->i_mapping,
  1960. pos_in, pos_in + len);
  1961. if (ret)
  1962. goto out_unlock;
  1963. ret = filemap_write_and_wait_range(dst->i_mapping,
  1964. pos_out, pos_out + len);
  1965. if (ret)
  1966. goto out_unlock;
  1967. f2fs_balance_fs(sbi, true);
  1968. f2fs_lock_op(sbi);
  1969. ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
  1970. pos_out >> F2FS_BLKSIZE_BITS,
  1971. len >> F2FS_BLKSIZE_BITS, false);
  1972. if (!ret) {
  1973. if (dst_max_i_size)
  1974. f2fs_i_size_write(dst, dst_max_i_size);
  1975. else if (dst_osize != dst->i_size)
  1976. f2fs_i_size_write(dst, dst_osize);
  1977. }
  1978. f2fs_unlock_op(sbi);
  1979. out_unlock:
  1980. if (src != dst) {
  1981. up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
  1982. inode_unlock(dst);
  1983. }
  1984. out:
  1985. up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
  1986. inode_unlock(src);
  1987. return ret;
  1988. }
  1989. static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
  1990. {
  1991. struct f2fs_move_range range;
  1992. struct fd dst;
  1993. int err;
  1994. if (!(filp->f_mode & FMODE_READ) ||
  1995. !(filp->f_mode & FMODE_WRITE))
  1996. return -EBADF;
  1997. if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
  1998. sizeof(range)))
  1999. return -EFAULT;
  2000. dst = fdget(range.dst_fd);
  2001. if (!dst.file)
  2002. return -EBADF;
  2003. if (!(dst.file->f_mode & FMODE_WRITE)) {
  2004. err = -EBADF;
  2005. goto err_out;
  2006. }
  2007. err = mnt_want_write_file(filp);
  2008. if (err)
  2009. goto err_out;
  2010. err = f2fs_move_file_range(filp, range.pos_in, dst.file,
  2011. range.pos_out, range.len);
  2012. mnt_drop_write_file(filp);
  2013. if (err)
  2014. goto err_out;
  2015. if (copy_to_user((struct f2fs_move_range __user *)arg,
  2016. &range, sizeof(range)))
  2017. err = -EFAULT;
  2018. err_out:
  2019. fdput(dst);
  2020. return err;
  2021. }
  2022. static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
  2023. {
  2024. struct inode *inode = file_inode(filp);
  2025. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2026. struct sit_info *sm = SIT_I(sbi);
  2027. unsigned int start_segno = 0, end_segno = 0;
  2028. unsigned int dev_start_segno = 0, dev_end_segno = 0;
  2029. struct f2fs_flush_device range;
  2030. int ret;
  2031. if (!capable(CAP_SYS_ADMIN))
  2032. return -EPERM;
  2033. if (f2fs_readonly(sbi->sb))
  2034. return -EROFS;
  2035. if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
  2036. sizeof(range)))
  2037. return -EFAULT;
  2038. if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
  2039. sbi->segs_per_sec != 1) {
  2040. f2fs_msg(sbi->sb, KERN_WARNING,
  2041. "Can't flush %u in %d for segs_per_sec %u != 1\n",
  2042. range.dev_num, sbi->s_ndevs,
  2043. sbi->segs_per_sec);
  2044. return -EINVAL;
  2045. }
  2046. ret = mnt_want_write_file(filp);
  2047. if (ret)
  2048. return ret;
  2049. if (range.dev_num != 0)
  2050. dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
  2051. dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
  2052. start_segno = sm->last_victim[FLUSH_DEVICE];
  2053. if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
  2054. start_segno = dev_start_segno;
  2055. end_segno = min(start_segno + range.segments, dev_end_segno);
  2056. while (start_segno < end_segno) {
  2057. if (!mutex_trylock(&sbi->gc_mutex)) {
  2058. ret = -EBUSY;
  2059. goto out;
  2060. }
  2061. sm->last_victim[GC_CB] = end_segno + 1;
  2062. sm->last_victim[GC_GREEDY] = end_segno + 1;
  2063. sm->last_victim[ALLOC_NEXT] = end_segno + 1;
  2064. ret = f2fs_gc(sbi, true, true, start_segno);
  2065. if (ret == -EAGAIN)
  2066. ret = 0;
  2067. else if (ret < 0)
  2068. break;
  2069. start_segno++;
  2070. }
  2071. out:
  2072. mnt_drop_write_file(filp);
  2073. return ret;
  2074. }
  2075. static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
  2076. {
  2077. struct inode *inode = file_inode(filp);
  2078. u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
  2079. /* Must validate to set it with SQLite behavior in Android. */
  2080. sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
  2081. return put_user(sb_feature, (u32 __user *)arg);
  2082. }
  2083. #ifdef CONFIG_QUOTA
  2084. static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
  2085. {
  2086. struct inode *inode = file_inode(filp);
  2087. struct f2fs_inode_info *fi = F2FS_I(inode);
  2088. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2089. struct super_block *sb = sbi->sb;
  2090. struct dquot *transfer_to[MAXQUOTAS] = {};
  2091. struct page *ipage;
  2092. kprojid_t kprojid;
  2093. int err;
  2094. if (!f2fs_sb_has_project_quota(sb)) {
  2095. if (projid != F2FS_DEF_PROJID)
  2096. return -EOPNOTSUPP;
  2097. else
  2098. return 0;
  2099. }
  2100. if (!f2fs_has_extra_attr(inode))
  2101. return -EOPNOTSUPP;
  2102. kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
  2103. if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
  2104. return 0;
  2105. err = mnt_want_write_file(filp);
  2106. if (err)
  2107. return err;
  2108. err = -EPERM;
  2109. inode_lock(inode);
  2110. /* Is it quota file? Do not allow user to mess with it */
  2111. if (IS_NOQUOTA(inode))
  2112. goto out_unlock;
  2113. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  2114. if (IS_ERR(ipage)) {
  2115. err = PTR_ERR(ipage);
  2116. goto out_unlock;
  2117. }
  2118. if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
  2119. i_projid)) {
  2120. err = -EOVERFLOW;
  2121. f2fs_put_page(ipage, 1);
  2122. goto out_unlock;
  2123. }
  2124. f2fs_put_page(ipage, 1);
  2125. err = dquot_initialize(inode);
  2126. if (err)
  2127. goto out_unlock;
  2128. transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
  2129. if (!IS_ERR(transfer_to[PRJQUOTA])) {
  2130. err = __dquot_transfer(inode, transfer_to);
  2131. dqput(transfer_to[PRJQUOTA]);
  2132. if (err)
  2133. goto out_dirty;
  2134. }
  2135. F2FS_I(inode)->i_projid = kprojid;
  2136. inode->i_ctime = current_time(inode);
  2137. out_dirty:
  2138. f2fs_mark_inode_dirty_sync(inode, true);
  2139. out_unlock:
  2140. inode_unlock(inode);
  2141. mnt_drop_write_file(filp);
  2142. return err;
  2143. }
  2144. #else
  2145. static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
  2146. {
  2147. if (projid != F2FS_DEF_PROJID)
  2148. return -EOPNOTSUPP;
  2149. return 0;
  2150. }
  2151. #endif
  2152. /* Transfer internal flags to xflags */
  2153. static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
  2154. {
  2155. __u32 xflags = 0;
  2156. if (iflags & F2FS_SYNC_FL)
  2157. xflags |= FS_XFLAG_SYNC;
  2158. if (iflags & F2FS_IMMUTABLE_FL)
  2159. xflags |= FS_XFLAG_IMMUTABLE;
  2160. if (iflags & F2FS_APPEND_FL)
  2161. xflags |= FS_XFLAG_APPEND;
  2162. if (iflags & F2FS_NODUMP_FL)
  2163. xflags |= FS_XFLAG_NODUMP;
  2164. if (iflags & F2FS_NOATIME_FL)
  2165. xflags |= FS_XFLAG_NOATIME;
  2166. if (iflags & F2FS_PROJINHERIT_FL)
  2167. xflags |= FS_XFLAG_PROJINHERIT;
  2168. return xflags;
  2169. }
  2170. #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
  2171. FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
  2172. FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
  2173. /* Transfer xflags flags to internal */
  2174. static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
  2175. {
  2176. unsigned long iflags = 0;
  2177. if (xflags & FS_XFLAG_SYNC)
  2178. iflags |= F2FS_SYNC_FL;
  2179. if (xflags & FS_XFLAG_IMMUTABLE)
  2180. iflags |= F2FS_IMMUTABLE_FL;
  2181. if (xflags & FS_XFLAG_APPEND)
  2182. iflags |= F2FS_APPEND_FL;
  2183. if (xflags & FS_XFLAG_NODUMP)
  2184. iflags |= F2FS_NODUMP_FL;
  2185. if (xflags & FS_XFLAG_NOATIME)
  2186. iflags |= F2FS_NOATIME_FL;
  2187. if (xflags & FS_XFLAG_PROJINHERIT)
  2188. iflags |= F2FS_PROJINHERIT_FL;
  2189. return iflags;
  2190. }
  2191. static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
  2192. {
  2193. struct inode *inode = file_inode(filp);
  2194. struct f2fs_inode_info *fi = F2FS_I(inode);
  2195. struct fsxattr fa;
  2196. memset(&fa, 0, sizeof(struct fsxattr));
  2197. fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
  2198. F2FS_FL_USER_VISIBLE);
  2199. if (f2fs_sb_has_project_quota(inode->i_sb))
  2200. fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
  2201. fi->i_projid);
  2202. if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
  2203. return -EFAULT;
  2204. return 0;
  2205. }
  2206. static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
  2207. {
  2208. struct inode *inode = file_inode(filp);
  2209. struct f2fs_inode_info *fi = F2FS_I(inode);
  2210. struct fsxattr fa;
  2211. unsigned int flags;
  2212. int err;
  2213. if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
  2214. return -EFAULT;
  2215. /* Make sure caller has proper permission */
  2216. if (!inode_owner_or_capable(inode))
  2217. return -EACCES;
  2218. if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
  2219. return -EOPNOTSUPP;
  2220. flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
  2221. if (f2fs_mask_flags(inode->i_mode, flags) != flags)
  2222. return -EOPNOTSUPP;
  2223. err = mnt_want_write_file(filp);
  2224. if (err)
  2225. return err;
  2226. inode_lock(inode);
  2227. flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
  2228. (flags & F2FS_FL_XFLAG_VISIBLE);
  2229. err = __f2fs_ioc_setflags(inode, flags);
  2230. inode_unlock(inode);
  2231. mnt_drop_write_file(filp);
  2232. if (err)
  2233. return err;
  2234. err = f2fs_ioc_setproject(filp, fa.fsx_projid);
  2235. if (err)
  2236. return err;
  2237. return 0;
  2238. }
  2239. int f2fs_pin_file_control(struct inode *inode, bool inc)
  2240. {
  2241. struct f2fs_inode_info *fi = F2FS_I(inode);
  2242. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2243. /* Use i_gc_failures for normal file as a risk signal. */
  2244. if (inc)
  2245. f2fs_i_gc_failures_write(inode,
  2246. fi->i_gc_failures[GC_FAILURE_PIN] + 1);
  2247. if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
  2248. f2fs_msg(sbi->sb, KERN_WARNING,
  2249. "%s: Enable GC = ino %lx after %x GC trials\n",
  2250. __func__, inode->i_ino,
  2251. fi->i_gc_failures[GC_FAILURE_PIN]);
  2252. clear_inode_flag(inode, FI_PIN_FILE);
  2253. return -EAGAIN;
  2254. }
  2255. return 0;
  2256. }
  2257. static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
  2258. {
  2259. struct inode *inode = file_inode(filp);
  2260. __u32 pin;
  2261. int ret = 0;
  2262. if (!inode_owner_or_capable(inode))
  2263. return -EACCES;
  2264. if (get_user(pin, (__u32 __user *)arg))
  2265. return -EFAULT;
  2266. if (!S_ISREG(inode->i_mode))
  2267. return -EINVAL;
  2268. if (f2fs_readonly(F2FS_I_SB(inode)->sb))
  2269. return -EROFS;
  2270. ret = mnt_want_write_file(filp);
  2271. if (ret)
  2272. return ret;
  2273. inode_lock(inode);
  2274. if (f2fs_should_update_outplace(inode, NULL)) {
  2275. ret = -EINVAL;
  2276. goto out;
  2277. }
  2278. if (!pin) {
  2279. clear_inode_flag(inode, FI_PIN_FILE);
  2280. F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = 1;
  2281. goto done;
  2282. }
  2283. if (f2fs_pin_file_control(inode, false)) {
  2284. ret = -EAGAIN;
  2285. goto out;
  2286. }
  2287. ret = f2fs_convert_inline_inode(inode);
  2288. if (ret)
  2289. goto out;
  2290. set_inode_flag(inode, FI_PIN_FILE);
  2291. ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
  2292. done:
  2293. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  2294. out:
  2295. inode_unlock(inode);
  2296. mnt_drop_write_file(filp);
  2297. return ret;
  2298. }
  2299. static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
  2300. {
  2301. struct inode *inode = file_inode(filp);
  2302. __u32 pin = 0;
  2303. if (is_inode_flag_set(inode, FI_PIN_FILE))
  2304. pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
  2305. return put_user(pin, (u32 __user *)arg);
  2306. }
  2307. int f2fs_precache_extents(struct inode *inode)
  2308. {
  2309. struct f2fs_inode_info *fi = F2FS_I(inode);
  2310. struct f2fs_map_blocks map;
  2311. pgoff_t m_next_extent;
  2312. loff_t end;
  2313. int err;
  2314. if (is_inode_flag_set(inode, FI_NO_EXTENT))
  2315. return -EOPNOTSUPP;
  2316. map.m_lblk = 0;
  2317. map.m_next_pgofs = NULL;
  2318. map.m_next_extent = &m_next_extent;
  2319. map.m_seg_type = NO_CHECK_TYPE;
  2320. end = F2FS_I_SB(inode)->max_file_blocks;
  2321. while (map.m_lblk < end) {
  2322. map.m_len = end - map.m_lblk;
  2323. down_write(&fi->i_gc_rwsem[WRITE]);
  2324. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
  2325. up_write(&fi->i_gc_rwsem[WRITE]);
  2326. if (err)
  2327. return err;
  2328. map.m_lblk = m_next_extent;
  2329. }
  2330. return err;
  2331. }
  2332. static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
  2333. {
  2334. return f2fs_precache_extents(file_inode(filp));
  2335. }
  2336. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  2337. {
  2338. if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
  2339. return -EIO;
  2340. switch (cmd) {
  2341. case F2FS_IOC_GETFLAGS:
  2342. return f2fs_ioc_getflags(filp, arg);
  2343. case F2FS_IOC_SETFLAGS:
  2344. return f2fs_ioc_setflags(filp, arg);
  2345. case F2FS_IOC_GETVERSION:
  2346. return f2fs_ioc_getversion(filp, arg);
  2347. case F2FS_IOC_START_ATOMIC_WRITE:
  2348. return f2fs_ioc_start_atomic_write(filp);
  2349. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  2350. return f2fs_ioc_commit_atomic_write(filp);
  2351. case F2FS_IOC_START_VOLATILE_WRITE:
  2352. return f2fs_ioc_start_volatile_write(filp);
  2353. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  2354. return f2fs_ioc_release_volatile_write(filp);
  2355. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  2356. return f2fs_ioc_abort_volatile_write(filp);
  2357. case F2FS_IOC_SHUTDOWN:
  2358. return f2fs_ioc_shutdown(filp, arg);
  2359. case FITRIM:
  2360. return f2fs_ioc_fitrim(filp, arg);
  2361. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  2362. return f2fs_ioc_set_encryption_policy(filp, arg);
  2363. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  2364. return f2fs_ioc_get_encryption_policy(filp, arg);
  2365. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  2366. return f2fs_ioc_get_encryption_pwsalt(filp, arg);
  2367. case F2FS_IOC_GARBAGE_COLLECT:
  2368. return f2fs_ioc_gc(filp, arg);
  2369. case F2FS_IOC_GARBAGE_COLLECT_RANGE:
  2370. return f2fs_ioc_gc_range(filp, arg);
  2371. case F2FS_IOC_WRITE_CHECKPOINT:
  2372. return f2fs_ioc_f2fs_write_checkpoint(filp, arg);
  2373. case F2FS_IOC_DEFRAGMENT:
  2374. return f2fs_ioc_defragment(filp, arg);
  2375. case F2FS_IOC_MOVE_RANGE:
  2376. return f2fs_ioc_move_range(filp, arg);
  2377. case F2FS_IOC_FLUSH_DEVICE:
  2378. return f2fs_ioc_flush_device(filp, arg);
  2379. case F2FS_IOC_GET_FEATURES:
  2380. return f2fs_ioc_get_features(filp, arg);
  2381. case F2FS_IOC_FSGETXATTR:
  2382. return f2fs_ioc_fsgetxattr(filp, arg);
  2383. case F2FS_IOC_FSSETXATTR:
  2384. return f2fs_ioc_fssetxattr(filp, arg);
  2385. case F2FS_IOC_GET_PIN_FILE:
  2386. return f2fs_ioc_get_pin_file(filp, arg);
  2387. case F2FS_IOC_SET_PIN_FILE:
  2388. return f2fs_ioc_set_pin_file(filp, arg);
  2389. case F2FS_IOC_PRECACHE_EXTENTS:
  2390. return f2fs_ioc_precache_extents(filp, arg);
  2391. default:
  2392. return -ENOTTY;
  2393. }
  2394. }
  2395. static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  2396. {
  2397. struct file *file = iocb->ki_filp;
  2398. struct inode *inode = file_inode(file);
  2399. ssize_t ret;
  2400. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  2401. return -EIO;
  2402. if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
  2403. return -EINVAL;
  2404. if (!inode_trylock(inode)) {
  2405. if (iocb->ki_flags & IOCB_NOWAIT)
  2406. return -EAGAIN;
  2407. inode_lock(inode);
  2408. }
  2409. ret = generic_write_checks(iocb, from);
  2410. if (ret > 0) {
  2411. bool preallocated = false;
  2412. size_t target_size = 0;
  2413. int err;
  2414. if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
  2415. set_inode_flag(inode, FI_NO_PREALLOC);
  2416. if ((iocb->ki_flags & IOCB_NOWAIT) &&
  2417. (iocb->ki_flags & IOCB_DIRECT)) {
  2418. if (!f2fs_overwrite_io(inode, iocb->ki_pos,
  2419. iov_iter_count(from)) ||
  2420. f2fs_has_inline_data(inode) ||
  2421. f2fs_force_buffered_io(inode, WRITE)) {
  2422. clear_inode_flag(inode,
  2423. FI_NO_PREALLOC);
  2424. inode_unlock(inode);
  2425. return -EAGAIN;
  2426. }
  2427. } else {
  2428. preallocated = true;
  2429. target_size = iocb->ki_pos + iov_iter_count(from);
  2430. err = f2fs_preallocate_blocks(iocb, from);
  2431. if (err) {
  2432. clear_inode_flag(inode, FI_NO_PREALLOC);
  2433. inode_unlock(inode);
  2434. return err;
  2435. }
  2436. }
  2437. ret = __generic_file_write_iter(iocb, from);
  2438. clear_inode_flag(inode, FI_NO_PREALLOC);
  2439. /* if we couldn't write data, we should deallocate blocks. */
  2440. if (preallocated && i_size_read(inode) < target_size)
  2441. f2fs_truncate(inode);
  2442. if (ret > 0)
  2443. f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
  2444. }
  2445. inode_unlock(inode);
  2446. if (ret > 0)
  2447. ret = generic_write_sync(iocb, ret);
  2448. return ret;
  2449. }
  2450. #ifdef CONFIG_COMPAT
  2451. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  2452. {
  2453. switch (cmd) {
  2454. case F2FS_IOC32_GETFLAGS:
  2455. cmd = F2FS_IOC_GETFLAGS;
  2456. break;
  2457. case F2FS_IOC32_SETFLAGS:
  2458. cmd = F2FS_IOC_SETFLAGS;
  2459. break;
  2460. case F2FS_IOC32_GETVERSION:
  2461. cmd = F2FS_IOC_GETVERSION;
  2462. break;
  2463. case F2FS_IOC_START_ATOMIC_WRITE:
  2464. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  2465. case F2FS_IOC_START_VOLATILE_WRITE:
  2466. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  2467. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  2468. case F2FS_IOC_SHUTDOWN:
  2469. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  2470. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  2471. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  2472. case F2FS_IOC_GARBAGE_COLLECT:
  2473. case F2FS_IOC_GARBAGE_COLLECT_RANGE:
  2474. case F2FS_IOC_WRITE_CHECKPOINT:
  2475. case F2FS_IOC_DEFRAGMENT:
  2476. case F2FS_IOC_MOVE_RANGE:
  2477. case F2FS_IOC_FLUSH_DEVICE:
  2478. case F2FS_IOC_GET_FEATURES:
  2479. case F2FS_IOC_FSGETXATTR:
  2480. case F2FS_IOC_FSSETXATTR:
  2481. case F2FS_IOC_GET_PIN_FILE:
  2482. case F2FS_IOC_SET_PIN_FILE:
  2483. case F2FS_IOC_PRECACHE_EXTENTS:
  2484. break;
  2485. default:
  2486. return -ENOIOCTLCMD;
  2487. }
  2488. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  2489. }
  2490. #endif
  2491. const struct file_operations f2fs_file_operations = {
  2492. .llseek = f2fs_llseek,
  2493. .read_iter = generic_file_read_iter,
  2494. .write_iter = f2fs_file_write_iter,
  2495. .open = f2fs_file_open,
  2496. .release = f2fs_release_file,
  2497. .mmap = f2fs_file_mmap,
  2498. .flush = f2fs_file_flush,
  2499. .fsync = f2fs_sync_file,
  2500. .fallocate = f2fs_fallocate,
  2501. .unlocked_ioctl = f2fs_ioctl,
  2502. #ifdef CONFIG_COMPAT
  2503. .compat_ioctl = f2fs_compat_ioctl,
  2504. #endif
  2505. .splice_read = generic_file_splice_read,
  2506. .splice_write = iter_file_splice_write,
  2507. };