mtk_nand.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585
  1. /*
  2. * MTK NAND Flash controller driver.
  3. * Copyright (C) 2016 MediaTek Inc.
  4. * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
  5. * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. */
  16. #include <linux/platform_device.h>
  17. #include <linux/dma-mapping.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/delay.h>
  20. #include <linux/clk.h>
  21. #include <linux/mtd/rawnand.h>
  22. #include <linux/mtd/mtd.h>
  23. #include <linux/module.h>
  24. #include <linux/iopoll.h>
  25. #include <linux/of.h>
  26. #include <linux/of_device.h>
  27. #include "mtk_ecc.h"
  28. /* NAND controller register definition */
  29. #define NFI_CNFG (0x00)
  30. #define CNFG_AHB BIT(0)
  31. #define CNFG_READ_EN BIT(1)
  32. #define CNFG_DMA_BURST_EN BIT(2)
  33. #define CNFG_BYTE_RW BIT(6)
  34. #define CNFG_HW_ECC_EN BIT(8)
  35. #define CNFG_AUTO_FMT_EN BIT(9)
  36. #define CNFG_OP_CUST (6 << 12)
  37. #define NFI_PAGEFMT (0x04)
  38. #define PAGEFMT_FDM_ECC_SHIFT (12)
  39. #define PAGEFMT_FDM_SHIFT (8)
  40. #define PAGEFMT_SEC_SEL_512 BIT(2)
  41. #define PAGEFMT_512_2K (0)
  42. #define PAGEFMT_2K_4K (1)
  43. #define PAGEFMT_4K_8K (2)
  44. #define PAGEFMT_8K_16K (3)
  45. /* NFI control */
  46. #define NFI_CON (0x08)
  47. #define CON_FIFO_FLUSH BIT(0)
  48. #define CON_NFI_RST BIT(1)
  49. #define CON_BRD BIT(8) /* burst read */
  50. #define CON_BWR BIT(9) /* burst write */
  51. #define CON_SEC_SHIFT (12)
  52. /* Timming control register */
  53. #define NFI_ACCCON (0x0C)
  54. #define NFI_INTR_EN (0x10)
  55. #define INTR_AHB_DONE_EN BIT(6)
  56. #define NFI_INTR_STA (0x14)
  57. #define NFI_CMD (0x20)
  58. #define NFI_ADDRNOB (0x30)
  59. #define NFI_COLADDR (0x34)
  60. #define NFI_ROWADDR (0x38)
  61. #define NFI_STRDATA (0x40)
  62. #define STAR_EN (1)
  63. #define STAR_DE (0)
  64. #define NFI_CNRNB (0x44)
  65. #define NFI_DATAW (0x50)
  66. #define NFI_DATAR (0x54)
  67. #define NFI_PIO_DIRDY (0x58)
  68. #define PIO_DI_RDY (0x01)
  69. #define NFI_STA (0x60)
  70. #define STA_CMD BIT(0)
  71. #define STA_ADDR BIT(1)
  72. #define STA_BUSY BIT(8)
  73. #define STA_EMP_PAGE BIT(12)
  74. #define NFI_FSM_CUSTDATA (0xe << 16)
  75. #define NFI_FSM_MASK (0xf << 16)
  76. #define NFI_ADDRCNTR (0x70)
  77. #define CNTR_MASK GENMASK(16, 12)
  78. #define ADDRCNTR_SEC_SHIFT (12)
  79. #define ADDRCNTR_SEC(val) \
  80. (((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
  81. #define NFI_STRADDR (0x80)
  82. #define NFI_BYTELEN (0x84)
  83. #define NFI_CSEL (0x90)
  84. #define NFI_FDML(x) (0xA0 + (x) * sizeof(u32) * 2)
  85. #define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2)
  86. #define NFI_FDM_MAX_SIZE (8)
  87. #define NFI_FDM_MIN_SIZE (1)
  88. #define NFI_MASTER_STA (0x224)
  89. #define MASTER_STA_MASK (0x0FFF)
  90. #define NFI_EMPTY_THRESH (0x23C)
  91. #define MTK_NAME "mtk-nand"
  92. #define KB(x) ((x) * 1024UL)
  93. #define MB(x) (KB(x) * 1024UL)
  94. #define MTK_TIMEOUT (500000)
  95. #define MTK_RESET_TIMEOUT (1000000)
  96. #define MTK_MAX_SECTOR (16)
  97. #define MTK_NAND_MAX_NSELS (2)
  98. #define MTK_NFC_MIN_SPARE (16)
  99. #define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
  100. ((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \
  101. (tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt))
  102. struct mtk_nfc_caps {
  103. const u8 *spare_size;
  104. u8 num_spare_size;
  105. u8 pageformat_spare_shift;
  106. u8 nfi_clk_div;
  107. };
  108. struct mtk_nfc_bad_mark_ctl {
  109. void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
  110. u32 sec;
  111. u32 pos;
  112. };
  113. /*
  114. * FDM: region used to store free OOB data
  115. */
  116. struct mtk_nfc_fdm {
  117. u32 reg_size;
  118. u32 ecc_size;
  119. };
  120. struct mtk_nfc_nand_chip {
  121. struct list_head node;
  122. struct nand_chip nand;
  123. struct mtk_nfc_bad_mark_ctl bad_mark;
  124. struct mtk_nfc_fdm fdm;
  125. u32 spare_per_sector;
  126. int nsels;
  127. u8 sels[0];
  128. /* nothing after this field */
  129. };
  130. struct mtk_nfc_clk {
  131. struct clk *nfi_clk;
  132. struct clk *pad_clk;
  133. };
  134. struct mtk_nfc {
  135. struct nand_hw_control controller;
  136. struct mtk_ecc_config ecc_cfg;
  137. struct mtk_nfc_clk clk;
  138. struct mtk_ecc *ecc;
  139. struct device *dev;
  140. const struct mtk_nfc_caps *caps;
  141. void __iomem *regs;
  142. struct completion done;
  143. struct list_head chips;
  144. u8 *buffer;
  145. };
  146. /*
  147. * supported spare size of each IP.
  148. * order should be the same with the spare size bitfiled defination of
  149. * register NFI_PAGEFMT.
  150. */
  151. static const u8 spare_size_mt2701[] = {
  152. 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 63, 64
  153. };
  154. static const u8 spare_size_mt2712[] = {
  155. 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
  156. 74
  157. };
  158. static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
  159. {
  160. return container_of(nand, struct mtk_nfc_nand_chip, nand);
  161. }
  162. static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
  163. {
  164. return (u8 *)p + i * chip->ecc.size;
  165. }
  166. static inline u8 *oob_ptr(struct nand_chip *chip, int i)
  167. {
  168. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  169. u8 *poi;
  170. /* map the sector's FDM data to free oob:
  171. * the beginning of the oob area stores the FDM data of bad mark sectors
  172. */
  173. if (i < mtk_nand->bad_mark.sec)
  174. poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
  175. else if (i == mtk_nand->bad_mark.sec)
  176. poi = chip->oob_poi;
  177. else
  178. poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
  179. return poi;
  180. }
  181. static inline int mtk_data_len(struct nand_chip *chip)
  182. {
  183. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  184. return chip->ecc.size + mtk_nand->spare_per_sector;
  185. }
  186. static inline u8 *mtk_data_ptr(struct nand_chip *chip, int i)
  187. {
  188. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  189. return nfc->buffer + i * mtk_data_len(chip);
  190. }
  191. static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
  192. {
  193. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  194. return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
  195. }
  196. static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
  197. {
  198. writel(val, nfc->regs + reg);
  199. }
  200. static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
  201. {
  202. writew(val, nfc->regs + reg);
  203. }
  204. static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
  205. {
  206. writeb(val, nfc->regs + reg);
  207. }
  208. static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
  209. {
  210. return readl_relaxed(nfc->regs + reg);
  211. }
  212. static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
  213. {
  214. return readw_relaxed(nfc->regs + reg);
  215. }
  216. static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
  217. {
  218. return readb_relaxed(nfc->regs + reg);
  219. }
  220. static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
  221. {
  222. struct device *dev = nfc->dev;
  223. u32 val;
  224. int ret;
  225. /* reset all registers and force the NFI master to terminate */
  226. nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
  227. /* wait for the master to finish the last transaction */
  228. ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
  229. !(val & MASTER_STA_MASK), 50,
  230. MTK_RESET_TIMEOUT);
  231. if (ret)
  232. dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
  233. NFI_MASTER_STA, val);
  234. /* ensure any status register affected by the NFI master is reset */
  235. nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
  236. nfi_writew(nfc, STAR_DE, NFI_STRDATA);
  237. }
  238. static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
  239. {
  240. struct device *dev = nfc->dev;
  241. u32 val;
  242. int ret;
  243. nfi_writel(nfc, command, NFI_CMD);
  244. ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
  245. !(val & STA_CMD), 10, MTK_TIMEOUT);
  246. if (ret) {
  247. dev_warn(dev, "nfi core timed out entering command mode\n");
  248. return -EIO;
  249. }
  250. return 0;
  251. }
  252. static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
  253. {
  254. struct device *dev = nfc->dev;
  255. u32 val;
  256. int ret;
  257. nfi_writel(nfc, addr, NFI_COLADDR);
  258. nfi_writel(nfc, 0, NFI_ROWADDR);
  259. nfi_writew(nfc, 1, NFI_ADDRNOB);
  260. ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
  261. !(val & STA_ADDR), 10, MTK_TIMEOUT);
  262. if (ret) {
  263. dev_warn(dev, "nfi core timed out entering address mode\n");
  264. return -EIO;
  265. }
  266. return 0;
  267. }
  268. static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
  269. {
  270. struct nand_chip *chip = mtd_to_nand(mtd);
  271. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  272. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  273. u32 fmt, spare, i;
  274. if (!mtd->writesize)
  275. return 0;
  276. spare = mtk_nand->spare_per_sector;
  277. switch (mtd->writesize) {
  278. case 512:
  279. fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
  280. break;
  281. case KB(2):
  282. if (chip->ecc.size == 512)
  283. fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
  284. else
  285. fmt = PAGEFMT_512_2K;
  286. break;
  287. case KB(4):
  288. if (chip->ecc.size == 512)
  289. fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
  290. else
  291. fmt = PAGEFMT_2K_4K;
  292. break;
  293. case KB(8):
  294. if (chip->ecc.size == 512)
  295. fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
  296. else
  297. fmt = PAGEFMT_4K_8K;
  298. break;
  299. case KB(16):
  300. fmt = PAGEFMT_8K_16K;
  301. break;
  302. default:
  303. dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
  304. return -EINVAL;
  305. }
  306. /*
  307. * the hardware will double the value for this eccsize, so we need to
  308. * halve it
  309. */
  310. if (chip->ecc.size == 1024)
  311. spare >>= 1;
  312. for (i = 0; i < nfc->caps->num_spare_size; i++) {
  313. if (nfc->caps->spare_size[i] == spare)
  314. break;
  315. }
  316. if (i == nfc->caps->num_spare_size) {
  317. dev_err(nfc->dev, "invalid spare size %d\n", spare);
  318. return -EINVAL;
  319. }
  320. fmt |= i << nfc->caps->pageformat_spare_shift;
  321. fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
  322. fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
  323. nfi_writel(nfc, fmt, NFI_PAGEFMT);
  324. nfc->ecc_cfg.strength = chip->ecc.strength;
  325. nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
  326. return 0;
  327. }
  328. static void mtk_nfc_select_chip(struct mtd_info *mtd, int chip)
  329. {
  330. struct nand_chip *nand = mtd_to_nand(mtd);
  331. struct mtk_nfc *nfc = nand_get_controller_data(nand);
  332. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
  333. if (chip < 0)
  334. return;
  335. mtk_nfc_hw_runtime_config(mtd);
  336. nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL);
  337. }
  338. static int mtk_nfc_dev_ready(struct mtd_info *mtd)
  339. {
  340. struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
  341. if (nfi_readl(nfc, NFI_STA) & STA_BUSY)
  342. return 0;
  343. return 1;
  344. }
  345. static void mtk_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
  346. {
  347. struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
  348. if (ctrl & NAND_ALE) {
  349. mtk_nfc_send_address(nfc, dat);
  350. } else if (ctrl & NAND_CLE) {
  351. mtk_nfc_hw_reset(nfc);
  352. nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
  353. mtk_nfc_send_command(nfc, dat);
  354. }
  355. }
  356. static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
  357. {
  358. int rc;
  359. u8 val;
  360. rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
  361. val & PIO_DI_RDY, 10, MTK_TIMEOUT);
  362. if (rc < 0)
  363. dev_err(nfc->dev, "data not ready\n");
  364. }
  365. static inline u8 mtk_nfc_read_byte(struct mtd_info *mtd)
  366. {
  367. struct nand_chip *chip = mtd_to_nand(mtd);
  368. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  369. u32 reg;
  370. /* after each byte read, the NFI_STA reg is reset by the hardware */
  371. reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
  372. if (reg != NFI_FSM_CUSTDATA) {
  373. reg = nfi_readw(nfc, NFI_CNFG);
  374. reg |= CNFG_BYTE_RW | CNFG_READ_EN;
  375. nfi_writew(nfc, reg, NFI_CNFG);
  376. /*
  377. * set to max sector to allow the HW to continue reading over
  378. * unaligned accesses
  379. */
  380. reg = (MTK_MAX_SECTOR << CON_SEC_SHIFT) | CON_BRD;
  381. nfi_writel(nfc, reg, NFI_CON);
  382. /* trigger to fetch data */
  383. nfi_writew(nfc, STAR_EN, NFI_STRDATA);
  384. }
  385. mtk_nfc_wait_ioready(nfc);
  386. return nfi_readb(nfc, NFI_DATAR);
  387. }
  388. static void mtk_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
  389. {
  390. int i;
  391. for (i = 0; i < len; i++)
  392. buf[i] = mtk_nfc_read_byte(mtd);
  393. }
  394. static void mtk_nfc_write_byte(struct mtd_info *mtd, u8 byte)
  395. {
  396. struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
  397. u32 reg;
  398. reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
  399. if (reg != NFI_FSM_CUSTDATA) {
  400. reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
  401. nfi_writew(nfc, reg, NFI_CNFG);
  402. reg = MTK_MAX_SECTOR << CON_SEC_SHIFT | CON_BWR;
  403. nfi_writel(nfc, reg, NFI_CON);
  404. nfi_writew(nfc, STAR_EN, NFI_STRDATA);
  405. }
  406. mtk_nfc_wait_ioready(nfc);
  407. nfi_writeb(nfc, byte, NFI_DATAW);
  408. }
  409. static void mtk_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
  410. {
  411. int i;
  412. for (i = 0; i < len; i++)
  413. mtk_nfc_write_byte(mtd, buf[i]);
  414. }
  415. static int mtk_nfc_setup_data_interface(struct mtd_info *mtd, int csline,
  416. const struct nand_data_interface *conf)
  417. {
  418. struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
  419. const struct nand_sdr_timings *timings;
  420. u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt;
  421. timings = nand_get_sdr_timings(conf);
  422. if (IS_ERR(timings))
  423. return -ENOTSUPP;
  424. if (csline == NAND_DATA_IFACE_CHECK_ONLY)
  425. return 0;
  426. rate = clk_get_rate(nfc->clk.nfi_clk);
  427. /* There is a frequency divider in some IPs */
  428. rate /= nfc->caps->nfi_clk_div;
  429. /* turn clock rate into KHZ */
  430. rate /= 1000;
  431. tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
  432. tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
  433. tpoecs &= 0xf;
  434. tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
  435. tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
  436. tprecs &= 0x3f;
  437. /* sdr interface has no tCR which means CE# low to RE# low */
  438. tc2r = 0;
  439. tw2r = timings->tWHR_min / 1000;
  440. tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
  441. tw2r = DIV_ROUND_UP(tw2r - 1, 2);
  442. tw2r &= 0xf;
  443. twh = max(timings->tREH_min, timings->tWH_min) / 1000;
  444. twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
  445. twh &= 0xf;
  446. twst = timings->tWP_min / 1000;
  447. twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
  448. twst &= 0xf;
  449. trlt = max(timings->tREA_max, timings->tRP_min) / 1000;
  450. trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
  451. trlt &= 0xf;
  452. /*
  453. * ACCON: access timing control register
  454. * -------------------------------------
  455. * 31:28: tpoecs, minimum required time for CS post pulling down after
  456. * accessing the device
  457. * 27:22: tprecs, minimum required time for CS pre pulling down before
  458. * accessing the device
  459. * 21:16: tc2r, minimum required time from NCEB low to NREB low
  460. * 15:12: tw2r, minimum required time from NWEB high to NREB low.
  461. * 11:08: twh, write enable hold time
  462. * 07:04: twst, write wait states
  463. * 03:00: trlt, read wait states
  464. */
  465. trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
  466. nfi_writel(nfc, trlt, NFI_ACCCON);
  467. return 0;
  468. }
  469. static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
  470. {
  471. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  472. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  473. int size = chip->ecc.size + mtk_nand->fdm.reg_size;
  474. nfc->ecc_cfg.mode = ECC_DMA_MODE;
  475. nfc->ecc_cfg.op = ECC_ENCODE;
  476. return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
  477. }
  478. static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
  479. {
  480. /* nop */
  481. }
  482. static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
  483. {
  484. struct nand_chip *chip = mtd_to_nand(mtd);
  485. struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
  486. u32 bad_pos = nand->bad_mark.pos;
  487. if (raw)
  488. bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
  489. else
  490. bad_pos += nand->bad_mark.sec * chip->ecc.size;
  491. swap(chip->oob_poi[0], buf[bad_pos]);
  492. }
  493. static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
  494. u32 len, const u8 *buf)
  495. {
  496. struct nand_chip *chip = mtd_to_nand(mtd);
  497. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  498. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  499. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  500. u32 start, end;
  501. int i, ret;
  502. start = offset / chip->ecc.size;
  503. end = DIV_ROUND_UP(offset + len, chip->ecc.size);
  504. memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
  505. for (i = 0; i < chip->ecc.steps; i++) {
  506. memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
  507. chip->ecc.size);
  508. if (start > i || i >= end)
  509. continue;
  510. if (i == mtk_nand->bad_mark.sec)
  511. mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
  512. memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
  513. /* program the CRC back to the OOB */
  514. ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
  515. if (ret < 0)
  516. return ret;
  517. }
  518. return 0;
  519. }
  520. static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
  521. {
  522. struct nand_chip *chip = mtd_to_nand(mtd);
  523. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  524. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  525. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  526. u32 i;
  527. memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
  528. for (i = 0; i < chip->ecc.steps; i++) {
  529. if (buf)
  530. memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
  531. chip->ecc.size);
  532. if (i == mtk_nand->bad_mark.sec)
  533. mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
  534. memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
  535. }
  536. }
  537. static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
  538. u32 sectors)
  539. {
  540. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  541. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  542. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  543. u32 vall, valm;
  544. u8 *oobptr;
  545. int i, j;
  546. for (i = 0; i < sectors; i++) {
  547. oobptr = oob_ptr(chip, start + i);
  548. vall = nfi_readl(nfc, NFI_FDML(i));
  549. valm = nfi_readl(nfc, NFI_FDMM(i));
  550. for (j = 0; j < fdm->reg_size; j++)
  551. oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
  552. }
  553. }
  554. static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
  555. {
  556. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  557. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  558. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  559. u32 vall, valm;
  560. u8 *oobptr;
  561. int i, j;
  562. for (i = 0; i < chip->ecc.steps; i++) {
  563. oobptr = oob_ptr(chip, i);
  564. vall = 0;
  565. valm = 0;
  566. for (j = 0; j < 8; j++) {
  567. if (j < 4)
  568. vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
  569. << (j * 8);
  570. else
  571. valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
  572. << ((j - 4) * 8);
  573. }
  574. nfi_writel(nfc, vall, NFI_FDML(i));
  575. nfi_writel(nfc, valm, NFI_FDMM(i));
  576. }
  577. }
  578. static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
  579. const u8 *buf, int page, int len)
  580. {
  581. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  582. struct device *dev = nfc->dev;
  583. dma_addr_t addr;
  584. u32 reg;
  585. int ret;
  586. addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
  587. ret = dma_mapping_error(nfc->dev, addr);
  588. if (ret) {
  589. dev_err(nfc->dev, "dma mapping error\n");
  590. return -EINVAL;
  591. }
  592. reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
  593. nfi_writew(nfc, reg, NFI_CNFG);
  594. nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
  595. nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
  596. nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
  597. init_completion(&nfc->done);
  598. reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
  599. nfi_writel(nfc, reg, NFI_CON);
  600. nfi_writew(nfc, STAR_EN, NFI_STRDATA);
  601. ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
  602. if (!ret) {
  603. dev_err(dev, "program ahb done timeout\n");
  604. nfi_writew(nfc, 0, NFI_INTR_EN);
  605. ret = -ETIMEDOUT;
  606. goto timeout;
  607. }
  608. ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
  609. ADDRCNTR_SEC(reg) >= chip->ecc.steps,
  610. 10, MTK_TIMEOUT);
  611. if (ret)
  612. dev_err(dev, "hwecc write timeout\n");
  613. timeout:
  614. dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
  615. nfi_writel(nfc, 0, NFI_CON);
  616. return ret;
  617. }
  618. static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
  619. const u8 *buf, int page, int raw)
  620. {
  621. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  622. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  623. size_t len;
  624. const u8 *bufpoi;
  625. u32 reg;
  626. int ret;
  627. if (!raw) {
  628. /* OOB => FDM: from register, ECC: from HW */
  629. reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
  630. nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
  631. nfc->ecc_cfg.op = ECC_ENCODE;
  632. nfc->ecc_cfg.mode = ECC_NFI_MODE;
  633. ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
  634. if (ret) {
  635. /* clear NFI config */
  636. reg = nfi_readw(nfc, NFI_CNFG);
  637. reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
  638. nfi_writew(nfc, reg, NFI_CNFG);
  639. return ret;
  640. }
  641. memcpy(nfc->buffer, buf, mtd->writesize);
  642. mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
  643. bufpoi = nfc->buffer;
  644. /* write OOB into the FDM registers (OOB area in MTK NAND) */
  645. mtk_nfc_write_fdm(chip);
  646. } else {
  647. bufpoi = buf;
  648. }
  649. len = mtd->writesize + (raw ? mtd->oobsize : 0);
  650. ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
  651. if (!raw)
  652. mtk_ecc_disable(nfc->ecc);
  653. return ret;
  654. }
  655. static int mtk_nfc_write_page_hwecc(struct mtd_info *mtd,
  656. struct nand_chip *chip, const u8 *buf,
  657. int oob_on, int page)
  658. {
  659. return mtk_nfc_write_page(mtd, chip, buf, page, 0);
  660. }
  661. static int mtk_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
  662. const u8 *buf, int oob_on, int pg)
  663. {
  664. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  665. mtk_nfc_format_page(mtd, buf);
  666. return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
  667. }
  668. static int mtk_nfc_write_subpage_hwecc(struct mtd_info *mtd,
  669. struct nand_chip *chip, u32 offset,
  670. u32 data_len, const u8 *buf,
  671. int oob_on, int page)
  672. {
  673. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  674. int ret;
  675. ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
  676. if (ret < 0)
  677. return ret;
  678. /* use the data in the private buffer (now with FDM and CRC) */
  679. return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
  680. }
  681. static int mtk_nfc_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
  682. int page)
  683. {
  684. int ret;
  685. chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
  686. ret = mtk_nfc_write_page_raw(mtd, chip, NULL, 1, page);
  687. if (ret < 0)
  688. return -EIO;
  689. chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
  690. ret = chip->waitfunc(mtd, chip);
  691. return ret & NAND_STATUS_FAIL ? -EIO : 0;
  692. }
  693. static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors)
  694. {
  695. struct nand_chip *chip = mtd_to_nand(mtd);
  696. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  697. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  698. struct mtk_ecc_stats stats;
  699. int rc, i;
  700. rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
  701. if (rc) {
  702. memset(buf, 0xff, sectors * chip->ecc.size);
  703. for (i = 0; i < sectors; i++)
  704. memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size);
  705. return 0;
  706. }
  707. mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
  708. mtd->ecc_stats.corrected += stats.corrected;
  709. mtd->ecc_stats.failed += stats.failed;
  710. return stats.bitflips;
  711. }
  712. static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
  713. u32 data_offs, u32 readlen,
  714. u8 *bufpoi, int page, int raw)
  715. {
  716. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  717. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  718. u32 spare = mtk_nand->spare_per_sector;
  719. u32 column, sectors, start, end, reg;
  720. dma_addr_t addr;
  721. int bitflips;
  722. size_t len;
  723. u8 *buf;
  724. int rc;
  725. start = data_offs / chip->ecc.size;
  726. end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
  727. sectors = end - start;
  728. column = start * (chip->ecc.size + spare);
  729. len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
  730. buf = bufpoi + start * chip->ecc.size;
  731. if (column != 0)
  732. chip->cmdfunc(mtd, NAND_CMD_RNDOUT, column, -1);
  733. addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
  734. rc = dma_mapping_error(nfc->dev, addr);
  735. if (rc) {
  736. dev_err(nfc->dev, "dma mapping error\n");
  737. return -EINVAL;
  738. }
  739. reg = nfi_readw(nfc, NFI_CNFG);
  740. reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
  741. if (!raw) {
  742. reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
  743. nfi_writew(nfc, reg, NFI_CNFG);
  744. nfc->ecc_cfg.mode = ECC_NFI_MODE;
  745. nfc->ecc_cfg.sectors = sectors;
  746. nfc->ecc_cfg.op = ECC_DECODE;
  747. rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
  748. if (rc) {
  749. dev_err(nfc->dev, "ecc enable\n");
  750. /* clear NFI_CNFG */
  751. reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
  752. CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
  753. nfi_writew(nfc, reg, NFI_CNFG);
  754. dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
  755. return rc;
  756. }
  757. } else {
  758. nfi_writew(nfc, reg, NFI_CNFG);
  759. }
  760. nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
  761. nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
  762. nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
  763. init_completion(&nfc->done);
  764. reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
  765. nfi_writel(nfc, reg, NFI_CON);
  766. nfi_writew(nfc, STAR_EN, NFI_STRDATA);
  767. rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
  768. if (!rc)
  769. dev_warn(nfc->dev, "read ahb/dma done timeout\n");
  770. rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
  771. ADDRCNTR_SEC(reg) >= sectors, 10,
  772. MTK_TIMEOUT);
  773. if (rc < 0) {
  774. dev_err(nfc->dev, "subpage done timeout\n");
  775. bitflips = -EIO;
  776. } else {
  777. bitflips = 0;
  778. if (!raw) {
  779. rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
  780. bitflips = rc < 0 ? -ETIMEDOUT :
  781. mtk_nfc_update_ecc_stats(mtd, buf, sectors);
  782. mtk_nfc_read_fdm(chip, start, sectors);
  783. }
  784. }
  785. dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
  786. if (raw)
  787. goto done;
  788. mtk_ecc_disable(nfc->ecc);
  789. if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
  790. mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
  791. done:
  792. nfi_writel(nfc, 0, NFI_CON);
  793. return bitflips;
  794. }
  795. static int mtk_nfc_read_subpage_hwecc(struct mtd_info *mtd,
  796. struct nand_chip *chip, u32 off,
  797. u32 len, u8 *p, int pg)
  798. {
  799. return mtk_nfc_read_subpage(mtd, chip, off, len, p, pg, 0);
  800. }
  801. static int mtk_nfc_read_page_hwecc(struct mtd_info *mtd,
  802. struct nand_chip *chip, u8 *p,
  803. int oob_on, int pg)
  804. {
  805. return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
  806. }
  807. static int mtk_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
  808. u8 *buf, int oob_on, int page)
  809. {
  810. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  811. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  812. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  813. int i, ret;
  814. memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
  815. ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
  816. page, 1);
  817. if (ret < 0)
  818. return ret;
  819. for (i = 0; i < chip->ecc.steps; i++) {
  820. memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
  821. if (i == mtk_nand->bad_mark.sec)
  822. mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
  823. if (buf)
  824. memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
  825. chip->ecc.size);
  826. }
  827. return ret;
  828. }
  829. static int mtk_nfc_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
  830. int page)
  831. {
  832. chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
  833. return mtk_nfc_read_page_raw(mtd, chip, NULL, 1, page);
  834. }
  835. static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
  836. {
  837. /*
  838. * CNRNB: nand ready/busy register
  839. * -------------------------------
  840. * 7:4: timeout register for polling the NAND busy/ready signal
  841. * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles.
  842. */
  843. nfi_writew(nfc, 0xf1, NFI_CNRNB);
  844. nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
  845. mtk_nfc_hw_reset(nfc);
  846. nfi_readl(nfc, NFI_INTR_STA);
  847. nfi_writel(nfc, 0, NFI_INTR_EN);
  848. }
  849. static irqreturn_t mtk_nfc_irq(int irq, void *id)
  850. {
  851. struct mtk_nfc *nfc = id;
  852. u16 sta, ien;
  853. sta = nfi_readw(nfc, NFI_INTR_STA);
  854. ien = nfi_readw(nfc, NFI_INTR_EN);
  855. if (!(sta & ien))
  856. return IRQ_NONE;
  857. nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
  858. complete(&nfc->done);
  859. return IRQ_HANDLED;
  860. }
  861. static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
  862. {
  863. int ret;
  864. ret = clk_prepare_enable(clk->nfi_clk);
  865. if (ret) {
  866. dev_err(dev, "failed to enable nfi clk\n");
  867. return ret;
  868. }
  869. ret = clk_prepare_enable(clk->pad_clk);
  870. if (ret) {
  871. dev_err(dev, "failed to enable pad clk\n");
  872. clk_disable_unprepare(clk->nfi_clk);
  873. return ret;
  874. }
  875. return 0;
  876. }
  877. static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
  878. {
  879. clk_disable_unprepare(clk->nfi_clk);
  880. clk_disable_unprepare(clk->pad_clk);
  881. }
  882. static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
  883. struct mtd_oob_region *oob_region)
  884. {
  885. struct nand_chip *chip = mtd_to_nand(mtd);
  886. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  887. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  888. u32 eccsteps;
  889. eccsteps = mtd->writesize / chip->ecc.size;
  890. if (section >= eccsteps)
  891. return -ERANGE;
  892. oob_region->length = fdm->reg_size - fdm->ecc_size;
  893. oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
  894. return 0;
  895. }
  896. static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
  897. struct mtd_oob_region *oob_region)
  898. {
  899. struct nand_chip *chip = mtd_to_nand(mtd);
  900. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  901. u32 eccsteps;
  902. if (section)
  903. return -ERANGE;
  904. eccsteps = mtd->writesize / chip->ecc.size;
  905. oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
  906. oob_region->length = mtd->oobsize - oob_region->offset;
  907. return 0;
  908. }
  909. static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
  910. .free = mtk_nfc_ooblayout_free,
  911. .ecc = mtk_nfc_ooblayout_ecc,
  912. };
  913. static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
  914. {
  915. struct nand_chip *nand = mtd_to_nand(mtd);
  916. struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
  917. u32 ecc_bytes;
  918. ecc_bytes = DIV_ROUND_UP(nand->ecc.strength * ECC_PARITY_BITS, 8);
  919. fdm->reg_size = chip->spare_per_sector - ecc_bytes;
  920. if (fdm->reg_size > NFI_FDM_MAX_SIZE)
  921. fdm->reg_size = NFI_FDM_MAX_SIZE;
  922. /* bad block mark storage */
  923. fdm->ecc_size = 1;
  924. }
  925. static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
  926. struct mtd_info *mtd)
  927. {
  928. struct nand_chip *nand = mtd_to_nand(mtd);
  929. if (mtd->writesize == 512) {
  930. bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
  931. } else {
  932. bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
  933. bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
  934. bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
  935. }
  936. }
  937. static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
  938. {
  939. struct nand_chip *nand = mtd_to_nand(mtd);
  940. struct mtk_nfc *nfc = nand_get_controller_data(nand);
  941. const u8 *spare = nfc->caps->spare_size;
  942. u32 eccsteps, i, closest_spare = 0;
  943. eccsteps = mtd->writesize / nand->ecc.size;
  944. *sps = mtd->oobsize / eccsteps;
  945. if (nand->ecc.size == 1024)
  946. *sps >>= 1;
  947. if (*sps < MTK_NFC_MIN_SPARE)
  948. return -EINVAL;
  949. for (i = 0; i < nfc->caps->num_spare_size; i++) {
  950. if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
  951. closest_spare = i;
  952. if (*sps == spare[i])
  953. break;
  954. }
  955. }
  956. *sps = spare[closest_spare];
  957. if (nand->ecc.size == 1024)
  958. *sps <<= 1;
  959. return 0;
  960. }
  961. static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
  962. {
  963. struct nand_chip *nand = mtd_to_nand(mtd);
  964. struct mtk_nfc *nfc = nand_get_controller_data(nand);
  965. u32 spare;
  966. int free, ret;
  967. /* support only ecc hw mode */
  968. if (nand->ecc.mode != NAND_ECC_HW) {
  969. dev_err(dev, "ecc.mode not supported\n");
  970. return -EINVAL;
  971. }
  972. /* if optional dt settings not present */
  973. if (!nand->ecc.size || !nand->ecc.strength) {
  974. /* use datasheet requirements */
  975. nand->ecc.strength = nand->ecc_strength_ds;
  976. nand->ecc.size = nand->ecc_step_ds;
  977. /*
  978. * align eccstrength and eccsize
  979. * this controller only supports 512 and 1024 sizes
  980. */
  981. if (nand->ecc.size < 1024) {
  982. if (mtd->writesize > 512) {
  983. nand->ecc.size = 1024;
  984. nand->ecc.strength <<= 1;
  985. } else {
  986. nand->ecc.size = 512;
  987. }
  988. } else {
  989. nand->ecc.size = 1024;
  990. }
  991. ret = mtk_nfc_set_spare_per_sector(&spare, mtd);
  992. if (ret)
  993. return ret;
  994. /* calculate oob bytes except ecc parity data */
  995. free = ((nand->ecc.strength * ECC_PARITY_BITS) + 7) >> 3;
  996. free = spare - free;
  997. /*
  998. * enhance ecc strength if oob left is bigger than max FDM size
  999. * or reduce ecc strength if oob size is not enough for ecc
  1000. * parity data.
  1001. */
  1002. if (free > NFI_FDM_MAX_SIZE) {
  1003. spare -= NFI_FDM_MAX_SIZE;
  1004. nand->ecc.strength = (spare << 3) / ECC_PARITY_BITS;
  1005. } else if (free < 0) {
  1006. spare -= NFI_FDM_MIN_SIZE;
  1007. nand->ecc.strength = (spare << 3) / ECC_PARITY_BITS;
  1008. }
  1009. }
  1010. mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength);
  1011. dev_info(dev, "eccsize %d eccstrength %d\n",
  1012. nand->ecc.size, nand->ecc.strength);
  1013. return 0;
  1014. }
  1015. static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
  1016. struct device_node *np)
  1017. {
  1018. struct mtk_nfc_nand_chip *chip;
  1019. struct nand_chip *nand;
  1020. struct mtd_info *mtd;
  1021. int nsels, len;
  1022. u32 tmp;
  1023. int ret;
  1024. int i;
  1025. if (!of_get_property(np, "reg", &nsels))
  1026. return -ENODEV;
  1027. nsels /= sizeof(u32);
  1028. if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
  1029. dev_err(dev, "invalid reg property size %d\n", nsels);
  1030. return -EINVAL;
  1031. }
  1032. chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
  1033. GFP_KERNEL);
  1034. if (!chip)
  1035. return -ENOMEM;
  1036. chip->nsels = nsels;
  1037. for (i = 0; i < nsels; i++) {
  1038. ret = of_property_read_u32_index(np, "reg", i, &tmp);
  1039. if (ret) {
  1040. dev_err(dev, "reg property failure : %d\n", ret);
  1041. return ret;
  1042. }
  1043. chip->sels[i] = tmp;
  1044. }
  1045. nand = &chip->nand;
  1046. nand->controller = &nfc->controller;
  1047. nand_set_flash_node(nand, np);
  1048. nand_set_controller_data(nand, nfc);
  1049. nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
  1050. nand->dev_ready = mtk_nfc_dev_ready;
  1051. nand->select_chip = mtk_nfc_select_chip;
  1052. nand->write_byte = mtk_nfc_write_byte;
  1053. nand->write_buf = mtk_nfc_write_buf;
  1054. nand->read_byte = mtk_nfc_read_byte;
  1055. nand->read_buf = mtk_nfc_read_buf;
  1056. nand->cmd_ctrl = mtk_nfc_cmd_ctrl;
  1057. nand->setup_data_interface = mtk_nfc_setup_data_interface;
  1058. /* set default mode in case dt entry is missing */
  1059. nand->ecc.mode = NAND_ECC_HW;
  1060. nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
  1061. nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
  1062. nand->ecc.write_page = mtk_nfc_write_page_hwecc;
  1063. nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
  1064. nand->ecc.write_oob = mtk_nfc_write_oob_std;
  1065. nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
  1066. nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
  1067. nand->ecc.read_page = mtk_nfc_read_page_hwecc;
  1068. nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
  1069. nand->ecc.read_oob = mtk_nfc_read_oob_std;
  1070. mtd = nand_to_mtd(nand);
  1071. mtd->owner = THIS_MODULE;
  1072. mtd->dev.parent = dev;
  1073. mtd->name = MTK_NAME;
  1074. mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
  1075. mtk_nfc_hw_init(nfc);
  1076. ret = nand_scan_ident(mtd, nsels, NULL);
  1077. if (ret)
  1078. return ret;
  1079. /* store bbt magic in page, cause OOB is not protected */
  1080. if (nand->bbt_options & NAND_BBT_USE_FLASH)
  1081. nand->bbt_options |= NAND_BBT_NO_OOB;
  1082. ret = mtk_nfc_ecc_init(dev, mtd);
  1083. if (ret)
  1084. return -EINVAL;
  1085. if (nand->options & NAND_BUSWIDTH_16) {
  1086. dev_err(dev, "16bits buswidth not supported");
  1087. return -EINVAL;
  1088. }
  1089. ret = mtk_nfc_set_spare_per_sector(&chip->spare_per_sector, mtd);
  1090. if (ret)
  1091. return ret;
  1092. mtk_nfc_set_fdm(&chip->fdm, mtd);
  1093. mtk_nfc_set_bad_mark_ctl(&chip->bad_mark, mtd);
  1094. len = mtd->writesize + mtd->oobsize;
  1095. nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
  1096. if (!nfc->buffer)
  1097. return -ENOMEM;
  1098. ret = nand_scan_tail(mtd);
  1099. if (ret)
  1100. return ret;
  1101. ret = mtd_device_parse_register(mtd, NULL, NULL, NULL, 0);
  1102. if (ret) {
  1103. dev_err(dev, "mtd parse partition error\n");
  1104. nand_release(mtd);
  1105. return ret;
  1106. }
  1107. list_add_tail(&chip->node, &nfc->chips);
  1108. return 0;
  1109. }
  1110. static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
  1111. {
  1112. struct device_node *np = dev->of_node;
  1113. struct device_node *nand_np;
  1114. int ret;
  1115. for_each_child_of_node(np, nand_np) {
  1116. ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
  1117. if (ret) {
  1118. of_node_put(nand_np);
  1119. return ret;
  1120. }
  1121. }
  1122. return 0;
  1123. }
  1124. static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = {
  1125. .spare_size = spare_size_mt2701,
  1126. .num_spare_size = 16,
  1127. .pageformat_spare_shift = 4,
  1128. .nfi_clk_div = 1,
  1129. };
  1130. static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
  1131. .spare_size = spare_size_mt2712,
  1132. .num_spare_size = 19,
  1133. .pageformat_spare_shift = 16,
  1134. .nfi_clk_div = 2,
  1135. };
  1136. static const struct of_device_id mtk_nfc_id_table[] = {
  1137. {
  1138. .compatible = "mediatek,mt2701-nfc",
  1139. .data = &mtk_nfc_caps_mt2701,
  1140. }, {
  1141. .compatible = "mediatek,mt2712-nfc",
  1142. .data = &mtk_nfc_caps_mt2712,
  1143. },
  1144. {}
  1145. };
  1146. MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
  1147. static int mtk_nfc_probe(struct platform_device *pdev)
  1148. {
  1149. struct device *dev = &pdev->dev;
  1150. struct device_node *np = dev->of_node;
  1151. struct mtk_nfc *nfc;
  1152. struct resource *res;
  1153. const struct of_device_id *of_nfc_id = NULL;
  1154. int ret, irq;
  1155. nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
  1156. if (!nfc)
  1157. return -ENOMEM;
  1158. spin_lock_init(&nfc->controller.lock);
  1159. init_waitqueue_head(&nfc->controller.wq);
  1160. INIT_LIST_HEAD(&nfc->chips);
  1161. /* probe defer if not ready */
  1162. nfc->ecc = of_mtk_ecc_get(np);
  1163. if (IS_ERR(nfc->ecc))
  1164. return PTR_ERR(nfc->ecc);
  1165. else if (!nfc->ecc)
  1166. return -ENODEV;
  1167. nfc->dev = dev;
  1168. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1169. nfc->regs = devm_ioremap_resource(dev, res);
  1170. if (IS_ERR(nfc->regs)) {
  1171. ret = PTR_ERR(nfc->regs);
  1172. goto release_ecc;
  1173. }
  1174. nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
  1175. if (IS_ERR(nfc->clk.nfi_clk)) {
  1176. dev_err(dev, "no clk\n");
  1177. ret = PTR_ERR(nfc->clk.nfi_clk);
  1178. goto release_ecc;
  1179. }
  1180. nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk");
  1181. if (IS_ERR(nfc->clk.pad_clk)) {
  1182. dev_err(dev, "no pad clk\n");
  1183. ret = PTR_ERR(nfc->clk.pad_clk);
  1184. goto release_ecc;
  1185. }
  1186. ret = mtk_nfc_enable_clk(dev, &nfc->clk);
  1187. if (ret)
  1188. goto release_ecc;
  1189. irq = platform_get_irq(pdev, 0);
  1190. if (irq < 0) {
  1191. dev_err(dev, "no nfi irq resource\n");
  1192. ret = -EINVAL;
  1193. goto clk_disable;
  1194. }
  1195. ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
  1196. if (ret) {
  1197. dev_err(dev, "failed to request nfi irq\n");
  1198. goto clk_disable;
  1199. }
  1200. ret = dma_set_mask(dev, DMA_BIT_MASK(32));
  1201. if (ret) {
  1202. dev_err(dev, "failed to set dma mask\n");
  1203. goto clk_disable;
  1204. }
  1205. of_nfc_id = of_match_device(mtk_nfc_id_table, &pdev->dev);
  1206. if (!of_nfc_id) {
  1207. ret = -ENODEV;
  1208. goto clk_disable;
  1209. }
  1210. nfc->caps = of_nfc_id->data;
  1211. platform_set_drvdata(pdev, nfc);
  1212. ret = mtk_nfc_nand_chips_init(dev, nfc);
  1213. if (ret) {
  1214. dev_err(dev, "failed to init nand chips\n");
  1215. goto clk_disable;
  1216. }
  1217. return 0;
  1218. clk_disable:
  1219. mtk_nfc_disable_clk(&nfc->clk);
  1220. release_ecc:
  1221. mtk_ecc_release(nfc->ecc);
  1222. return ret;
  1223. }
  1224. static int mtk_nfc_remove(struct platform_device *pdev)
  1225. {
  1226. struct mtk_nfc *nfc = platform_get_drvdata(pdev);
  1227. struct mtk_nfc_nand_chip *chip;
  1228. while (!list_empty(&nfc->chips)) {
  1229. chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip,
  1230. node);
  1231. nand_release(nand_to_mtd(&chip->nand));
  1232. list_del(&chip->node);
  1233. }
  1234. mtk_ecc_release(nfc->ecc);
  1235. mtk_nfc_disable_clk(&nfc->clk);
  1236. return 0;
  1237. }
  1238. #ifdef CONFIG_PM_SLEEP
  1239. static int mtk_nfc_suspend(struct device *dev)
  1240. {
  1241. struct mtk_nfc *nfc = dev_get_drvdata(dev);
  1242. mtk_nfc_disable_clk(&nfc->clk);
  1243. return 0;
  1244. }
  1245. static int mtk_nfc_resume(struct device *dev)
  1246. {
  1247. struct mtk_nfc *nfc = dev_get_drvdata(dev);
  1248. struct mtk_nfc_nand_chip *chip;
  1249. struct nand_chip *nand;
  1250. struct mtd_info *mtd;
  1251. int ret;
  1252. u32 i;
  1253. udelay(200);
  1254. ret = mtk_nfc_enable_clk(dev, &nfc->clk);
  1255. if (ret)
  1256. return ret;
  1257. /* reset NAND chip if VCC was powered off */
  1258. list_for_each_entry(chip, &nfc->chips, node) {
  1259. nand = &chip->nand;
  1260. mtd = nand_to_mtd(nand);
  1261. for (i = 0; i < chip->nsels; i++) {
  1262. nand->select_chip(mtd, i);
  1263. nand->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
  1264. }
  1265. }
  1266. return 0;
  1267. }
  1268. static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
  1269. #endif
  1270. static struct platform_driver mtk_nfc_driver = {
  1271. .probe = mtk_nfc_probe,
  1272. .remove = mtk_nfc_remove,
  1273. .driver = {
  1274. .name = MTK_NAME,
  1275. .of_match_table = mtk_nfc_id_table,
  1276. #ifdef CONFIG_PM_SLEEP
  1277. .pm = &mtk_nfc_pm_ops,
  1278. #endif
  1279. },
  1280. };
  1281. module_platform_driver(mtk_nfc_driver);
  1282. MODULE_LICENSE("GPL");
  1283. MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
  1284. MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");