page_alloc.c 208 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/kasan.h>
  28. #include <linux/module.h>
  29. #include <linux/suspend.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/blkdev.h>
  32. #include <linux/slab.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/oom.h>
  35. #include <linux/notifier.h>
  36. #include <linux/topology.h>
  37. #include <linux/sysctl.h>
  38. #include <linux/cpu.h>
  39. #include <linux/cpuset.h>
  40. #include <linux/memory_hotplug.h>
  41. #include <linux/nodemask.h>
  42. #include <linux/vmalloc.h>
  43. #include <linux/vmstat.h>
  44. #include <linux/mempolicy.h>
  45. #include <linux/memremap.h>
  46. #include <linux/stop_machine.h>
  47. #include <linux/sort.h>
  48. #include <linux/pfn.h>
  49. #include <linux/backing-dev.h>
  50. #include <linux/fault-inject.h>
  51. #include <linux/page-isolation.h>
  52. #include <linux/page_ext.h>
  53. #include <linux/debugobjects.h>
  54. #include <linux/kmemleak.h>
  55. #include <linux/compaction.h>
  56. #include <trace/events/kmem.h>
  57. #include <trace/events/oom.h>
  58. #include <linux/prefetch.h>
  59. #include <linux/mm_inline.h>
  60. #include <linux/migrate.h>
  61. #include <linux/hugetlb.h>
  62. #include <linux/sched/rt.h>
  63. #include <linux/sched/mm.h>
  64. #include <linux/page_owner.h>
  65. #include <linux/kthread.h>
  66. #include <linux/memcontrol.h>
  67. #include <asm/sections.h>
  68. #include <asm/tlbflush.h>
  69. #include <asm/div64.h>
  70. #include "internal.h"
  71. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  72. static DEFINE_MUTEX(pcp_batch_high_lock);
  73. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  74. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  75. DEFINE_PER_CPU(int, numa_node);
  76. EXPORT_PER_CPU_SYMBOL(numa_node);
  77. #endif
  78. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  79. /*
  80. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  81. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  82. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  83. * defined in <linux/topology.h>.
  84. */
  85. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  86. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  87. int _node_numa_mem_[MAX_NUMNODES];
  88. #endif
  89. /* work_structs for global per-cpu drains */
  90. DEFINE_MUTEX(pcpu_drain_mutex);
  91. DEFINE_PER_CPU(struct work_struct, pcpu_drain);
  92. #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
  93. volatile unsigned long latent_entropy __latent_entropy;
  94. EXPORT_SYMBOL(latent_entropy);
  95. #endif
  96. /*
  97. * Array of node states.
  98. */
  99. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  100. [N_POSSIBLE] = NODE_MASK_ALL,
  101. [N_ONLINE] = { { [0] = 1UL } },
  102. #ifndef CONFIG_NUMA
  103. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  104. #ifdef CONFIG_HIGHMEM
  105. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  106. #endif
  107. #ifdef CONFIG_MOVABLE_NODE
  108. [N_MEMORY] = { { [0] = 1UL } },
  109. #endif
  110. [N_CPU] = { { [0] = 1UL } },
  111. #endif /* NUMA */
  112. };
  113. EXPORT_SYMBOL(node_states);
  114. /* Protect totalram_pages and zone->managed_pages */
  115. static DEFINE_SPINLOCK(managed_page_count_lock);
  116. unsigned long totalram_pages __read_mostly;
  117. unsigned long totalreserve_pages __read_mostly;
  118. unsigned long totalcma_pages __read_mostly;
  119. int percpu_pagelist_fraction;
  120. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  121. /*
  122. * A cached value of the page's pageblock's migratetype, used when the page is
  123. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  124. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  125. * Also the migratetype set in the page does not necessarily match the pcplist
  126. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  127. * other index - this ensures that it will be put on the correct CMA freelist.
  128. */
  129. static inline int get_pcppage_migratetype(struct page *page)
  130. {
  131. return page->index;
  132. }
  133. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  134. {
  135. page->index = migratetype;
  136. }
  137. #ifdef CONFIG_PM_SLEEP
  138. /*
  139. * The following functions are used by the suspend/hibernate code to temporarily
  140. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  141. * while devices are suspended. To avoid races with the suspend/hibernate code,
  142. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  143. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  144. * guaranteed not to run in parallel with that modification).
  145. */
  146. static gfp_t saved_gfp_mask;
  147. void pm_restore_gfp_mask(void)
  148. {
  149. WARN_ON(!mutex_is_locked(&pm_mutex));
  150. if (saved_gfp_mask) {
  151. gfp_allowed_mask = saved_gfp_mask;
  152. saved_gfp_mask = 0;
  153. }
  154. }
  155. void pm_restrict_gfp_mask(void)
  156. {
  157. WARN_ON(!mutex_is_locked(&pm_mutex));
  158. WARN_ON(saved_gfp_mask);
  159. saved_gfp_mask = gfp_allowed_mask;
  160. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  161. }
  162. bool pm_suspended_storage(void)
  163. {
  164. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  165. return false;
  166. return true;
  167. }
  168. #endif /* CONFIG_PM_SLEEP */
  169. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  170. unsigned int pageblock_order __read_mostly;
  171. #endif
  172. static void __free_pages_ok(struct page *page, unsigned int order);
  173. /*
  174. * results with 256, 32 in the lowmem_reserve sysctl:
  175. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  176. * 1G machine -> (16M dma, 784M normal, 224M high)
  177. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  178. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  179. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  180. *
  181. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  182. * don't need any ZONE_NORMAL reservation
  183. */
  184. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  185. #ifdef CONFIG_ZONE_DMA
  186. 256,
  187. #endif
  188. #ifdef CONFIG_ZONE_DMA32
  189. 256,
  190. #endif
  191. #ifdef CONFIG_HIGHMEM
  192. 32,
  193. #endif
  194. 32,
  195. };
  196. EXPORT_SYMBOL(totalram_pages);
  197. static char * const zone_names[MAX_NR_ZONES] = {
  198. #ifdef CONFIG_ZONE_DMA
  199. "DMA",
  200. #endif
  201. #ifdef CONFIG_ZONE_DMA32
  202. "DMA32",
  203. #endif
  204. "Normal",
  205. #ifdef CONFIG_HIGHMEM
  206. "HighMem",
  207. #endif
  208. "Movable",
  209. #ifdef CONFIG_ZONE_DEVICE
  210. "Device",
  211. #endif
  212. };
  213. char * const migratetype_names[MIGRATE_TYPES] = {
  214. "Unmovable",
  215. "Movable",
  216. "Reclaimable",
  217. "HighAtomic",
  218. #ifdef CONFIG_CMA
  219. "CMA",
  220. #endif
  221. #ifdef CONFIG_MEMORY_ISOLATION
  222. "Isolate",
  223. #endif
  224. };
  225. compound_page_dtor * const compound_page_dtors[] = {
  226. NULL,
  227. free_compound_page,
  228. #ifdef CONFIG_HUGETLB_PAGE
  229. free_huge_page,
  230. #endif
  231. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  232. free_transhuge_page,
  233. #endif
  234. };
  235. int min_free_kbytes = 1024;
  236. int user_min_free_kbytes = -1;
  237. int watermark_scale_factor = 10;
  238. static unsigned long __meminitdata nr_kernel_pages;
  239. static unsigned long __meminitdata nr_all_pages;
  240. static unsigned long __meminitdata dma_reserve;
  241. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  242. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  243. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  244. static unsigned long __initdata required_kernelcore;
  245. static unsigned long __initdata required_movablecore;
  246. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  247. static bool mirrored_kernelcore;
  248. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  249. int movable_zone;
  250. EXPORT_SYMBOL(movable_zone);
  251. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  252. #if MAX_NUMNODES > 1
  253. int nr_node_ids __read_mostly = MAX_NUMNODES;
  254. int nr_online_nodes __read_mostly = 1;
  255. EXPORT_SYMBOL(nr_node_ids);
  256. EXPORT_SYMBOL(nr_online_nodes);
  257. #endif
  258. int page_group_by_mobility_disabled __read_mostly;
  259. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  260. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  261. {
  262. pgdat->first_deferred_pfn = ULONG_MAX;
  263. }
  264. /* Returns true if the struct page for the pfn is uninitialised */
  265. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  266. {
  267. int nid = early_pfn_to_nid(pfn);
  268. if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
  269. return true;
  270. return false;
  271. }
  272. /*
  273. * Returns false when the remaining initialisation should be deferred until
  274. * later in the boot cycle when it can be parallelised.
  275. */
  276. static inline bool update_defer_init(pg_data_t *pgdat,
  277. unsigned long pfn, unsigned long zone_end,
  278. unsigned long *nr_initialised)
  279. {
  280. unsigned long max_initialise;
  281. /* Always populate low zones for address-contrained allocations */
  282. if (zone_end < pgdat_end_pfn(pgdat))
  283. return true;
  284. /*
  285. * Initialise at least 2G of a node but also take into account that
  286. * two large system hashes that can take up 1GB for 0.25TB/node.
  287. */
  288. max_initialise = max(2UL << (30 - PAGE_SHIFT),
  289. (pgdat->node_spanned_pages >> 8));
  290. (*nr_initialised)++;
  291. if ((*nr_initialised > max_initialise) &&
  292. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  293. pgdat->first_deferred_pfn = pfn;
  294. return false;
  295. }
  296. return true;
  297. }
  298. #else
  299. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  300. {
  301. }
  302. static inline bool early_page_uninitialised(unsigned long pfn)
  303. {
  304. return false;
  305. }
  306. static inline bool update_defer_init(pg_data_t *pgdat,
  307. unsigned long pfn, unsigned long zone_end,
  308. unsigned long *nr_initialised)
  309. {
  310. return true;
  311. }
  312. #endif
  313. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  314. static inline unsigned long *get_pageblock_bitmap(struct page *page,
  315. unsigned long pfn)
  316. {
  317. #ifdef CONFIG_SPARSEMEM
  318. return __pfn_to_section(pfn)->pageblock_flags;
  319. #else
  320. return page_zone(page)->pageblock_flags;
  321. #endif /* CONFIG_SPARSEMEM */
  322. }
  323. static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
  324. {
  325. #ifdef CONFIG_SPARSEMEM
  326. pfn &= (PAGES_PER_SECTION-1);
  327. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  328. #else
  329. pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
  330. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  331. #endif /* CONFIG_SPARSEMEM */
  332. }
  333. /**
  334. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  335. * @page: The page within the block of interest
  336. * @pfn: The target page frame number
  337. * @end_bitidx: The last bit of interest to retrieve
  338. * @mask: mask of bits that the caller is interested in
  339. *
  340. * Return: pageblock_bits flags
  341. */
  342. static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
  343. unsigned long pfn,
  344. unsigned long end_bitidx,
  345. unsigned long mask)
  346. {
  347. unsigned long *bitmap;
  348. unsigned long bitidx, word_bitidx;
  349. unsigned long word;
  350. bitmap = get_pageblock_bitmap(page, pfn);
  351. bitidx = pfn_to_bitidx(page, pfn);
  352. word_bitidx = bitidx / BITS_PER_LONG;
  353. bitidx &= (BITS_PER_LONG-1);
  354. word = bitmap[word_bitidx];
  355. bitidx += end_bitidx;
  356. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  357. }
  358. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  359. unsigned long end_bitidx,
  360. unsigned long mask)
  361. {
  362. return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
  363. }
  364. static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
  365. {
  366. return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
  367. }
  368. /**
  369. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  370. * @page: The page within the block of interest
  371. * @flags: The flags to set
  372. * @pfn: The target page frame number
  373. * @end_bitidx: The last bit of interest
  374. * @mask: mask of bits that the caller is interested in
  375. */
  376. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  377. unsigned long pfn,
  378. unsigned long end_bitidx,
  379. unsigned long mask)
  380. {
  381. unsigned long *bitmap;
  382. unsigned long bitidx, word_bitidx;
  383. unsigned long old_word, word;
  384. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  385. bitmap = get_pageblock_bitmap(page, pfn);
  386. bitidx = pfn_to_bitidx(page, pfn);
  387. word_bitidx = bitidx / BITS_PER_LONG;
  388. bitidx &= (BITS_PER_LONG-1);
  389. VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
  390. bitidx += end_bitidx;
  391. mask <<= (BITS_PER_LONG - bitidx - 1);
  392. flags <<= (BITS_PER_LONG - bitidx - 1);
  393. word = READ_ONCE(bitmap[word_bitidx]);
  394. for (;;) {
  395. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  396. if (word == old_word)
  397. break;
  398. word = old_word;
  399. }
  400. }
  401. void set_pageblock_migratetype(struct page *page, int migratetype)
  402. {
  403. if (unlikely(page_group_by_mobility_disabled &&
  404. migratetype < MIGRATE_PCPTYPES))
  405. migratetype = MIGRATE_UNMOVABLE;
  406. set_pageblock_flags_group(page, (unsigned long)migratetype,
  407. PB_migrate, PB_migrate_end);
  408. }
  409. #ifdef CONFIG_DEBUG_VM
  410. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  411. {
  412. int ret = 0;
  413. unsigned seq;
  414. unsigned long pfn = page_to_pfn(page);
  415. unsigned long sp, start_pfn;
  416. do {
  417. seq = zone_span_seqbegin(zone);
  418. start_pfn = zone->zone_start_pfn;
  419. sp = zone->spanned_pages;
  420. if (!zone_spans_pfn(zone, pfn))
  421. ret = 1;
  422. } while (zone_span_seqretry(zone, seq));
  423. if (ret)
  424. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  425. pfn, zone_to_nid(zone), zone->name,
  426. start_pfn, start_pfn + sp);
  427. return ret;
  428. }
  429. static int page_is_consistent(struct zone *zone, struct page *page)
  430. {
  431. if (!pfn_valid_within(page_to_pfn(page)))
  432. return 0;
  433. if (zone != page_zone(page))
  434. return 0;
  435. return 1;
  436. }
  437. /*
  438. * Temporary debugging check for pages not lying within a given zone.
  439. */
  440. static int bad_range(struct zone *zone, struct page *page)
  441. {
  442. if (page_outside_zone_boundaries(zone, page))
  443. return 1;
  444. if (!page_is_consistent(zone, page))
  445. return 1;
  446. return 0;
  447. }
  448. #else
  449. static inline int bad_range(struct zone *zone, struct page *page)
  450. {
  451. return 0;
  452. }
  453. #endif
  454. static void bad_page(struct page *page, const char *reason,
  455. unsigned long bad_flags)
  456. {
  457. static unsigned long resume;
  458. static unsigned long nr_shown;
  459. static unsigned long nr_unshown;
  460. /*
  461. * Allow a burst of 60 reports, then keep quiet for that minute;
  462. * or allow a steady drip of one report per second.
  463. */
  464. if (nr_shown == 60) {
  465. if (time_before(jiffies, resume)) {
  466. nr_unshown++;
  467. goto out;
  468. }
  469. if (nr_unshown) {
  470. pr_alert(
  471. "BUG: Bad page state: %lu messages suppressed\n",
  472. nr_unshown);
  473. nr_unshown = 0;
  474. }
  475. nr_shown = 0;
  476. }
  477. if (nr_shown++ == 0)
  478. resume = jiffies + 60 * HZ;
  479. pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
  480. current->comm, page_to_pfn(page));
  481. __dump_page(page, reason);
  482. bad_flags &= page->flags;
  483. if (bad_flags)
  484. pr_alert("bad because of flags: %#lx(%pGp)\n",
  485. bad_flags, &bad_flags);
  486. dump_page_owner(page);
  487. print_modules();
  488. dump_stack();
  489. out:
  490. /* Leave bad fields for debug, except PageBuddy could make trouble */
  491. page_mapcount_reset(page); /* remove PageBuddy */
  492. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  493. }
  494. /*
  495. * Higher-order pages are called "compound pages". They are structured thusly:
  496. *
  497. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  498. *
  499. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  500. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  501. *
  502. * The first tail page's ->compound_dtor holds the offset in array of compound
  503. * page destructors. See compound_page_dtors.
  504. *
  505. * The first tail page's ->compound_order holds the order of allocation.
  506. * This usage means that zero-order pages may not be compound.
  507. */
  508. void free_compound_page(struct page *page)
  509. {
  510. __free_pages_ok(page, compound_order(page));
  511. }
  512. void prep_compound_page(struct page *page, unsigned int order)
  513. {
  514. int i;
  515. int nr_pages = 1 << order;
  516. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  517. set_compound_order(page, order);
  518. __SetPageHead(page);
  519. for (i = 1; i < nr_pages; i++) {
  520. struct page *p = page + i;
  521. set_page_count(p, 0);
  522. p->mapping = TAIL_MAPPING;
  523. set_compound_head(p, page);
  524. }
  525. atomic_set(compound_mapcount_ptr(page), -1);
  526. }
  527. #ifdef CONFIG_DEBUG_PAGEALLOC
  528. unsigned int _debug_guardpage_minorder;
  529. bool _debug_pagealloc_enabled __read_mostly
  530. = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
  531. EXPORT_SYMBOL(_debug_pagealloc_enabled);
  532. bool _debug_guardpage_enabled __read_mostly;
  533. static int __init early_debug_pagealloc(char *buf)
  534. {
  535. if (!buf)
  536. return -EINVAL;
  537. return kstrtobool(buf, &_debug_pagealloc_enabled);
  538. }
  539. early_param("debug_pagealloc", early_debug_pagealloc);
  540. static bool need_debug_guardpage(void)
  541. {
  542. /* If we don't use debug_pagealloc, we don't need guard page */
  543. if (!debug_pagealloc_enabled())
  544. return false;
  545. if (!debug_guardpage_minorder())
  546. return false;
  547. return true;
  548. }
  549. static void init_debug_guardpage(void)
  550. {
  551. if (!debug_pagealloc_enabled())
  552. return;
  553. if (!debug_guardpage_minorder())
  554. return;
  555. _debug_guardpage_enabled = true;
  556. }
  557. struct page_ext_operations debug_guardpage_ops = {
  558. .need = need_debug_guardpage,
  559. .init = init_debug_guardpage,
  560. };
  561. static int __init debug_guardpage_minorder_setup(char *buf)
  562. {
  563. unsigned long res;
  564. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  565. pr_err("Bad debug_guardpage_minorder value\n");
  566. return 0;
  567. }
  568. _debug_guardpage_minorder = res;
  569. pr_info("Setting debug_guardpage_minorder to %lu\n", res);
  570. return 0;
  571. }
  572. early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
  573. static inline bool set_page_guard(struct zone *zone, struct page *page,
  574. unsigned int order, int migratetype)
  575. {
  576. struct page_ext *page_ext;
  577. if (!debug_guardpage_enabled())
  578. return false;
  579. if (order >= debug_guardpage_minorder())
  580. return false;
  581. page_ext = lookup_page_ext(page);
  582. if (unlikely(!page_ext))
  583. return false;
  584. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  585. INIT_LIST_HEAD(&page->lru);
  586. set_page_private(page, order);
  587. /* Guard pages are not available for any usage */
  588. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  589. return true;
  590. }
  591. static inline void clear_page_guard(struct zone *zone, struct page *page,
  592. unsigned int order, int migratetype)
  593. {
  594. struct page_ext *page_ext;
  595. if (!debug_guardpage_enabled())
  596. return;
  597. page_ext = lookup_page_ext(page);
  598. if (unlikely(!page_ext))
  599. return;
  600. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  601. set_page_private(page, 0);
  602. if (!is_migrate_isolate(migratetype))
  603. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  604. }
  605. #else
  606. struct page_ext_operations debug_guardpage_ops;
  607. static inline bool set_page_guard(struct zone *zone, struct page *page,
  608. unsigned int order, int migratetype) { return false; }
  609. static inline void clear_page_guard(struct zone *zone, struct page *page,
  610. unsigned int order, int migratetype) {}
  611. #endif
  612. static inline void set_page_order(struct page *page, unsigned int order)
  613. {
  614. set_page_private(page, order);
  615. __SetPageBuddy(page);
  616. }
  617. static inline void rmv_page_order(struct page *page)
  618. {
  619. __ClearPageBuddy(page);
  620. set_page_private(page, 0);
  621. }
  622. /*
  623. * This function checks whether a page is free && is the buddy
  624. * we can do coalesce a page and its buddy if
  625. * (a) the buddy is not in a hole (check before calling!) &&
  626. * (b) the buddy is in the buddy system &&
  627. * (c) a page and its buddy have the same order &&
  628. * (d) a page and its buddy are in the same zone.
  629. *
  630. * For recording whether a page is in the buddy system, we set ->_mapcount
  631. * PAGE_BUDDY_MAPCOUNT_VALUE.
  632. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  633. * serialized by zone->lock.
  634. *
  635. * For recording page's order, we use page_private(page).
  636. */
  637. static inline int page_is_buddy(struct page *page, struct page *buddy,
  638. unsigned int order)
  639. {
  640. if (page_is_guard(buddy) && page_order(buddy) == order) {
  641. if (page_zone_id(page) != page_zone_id(buddy))
  642. return 0;
  643. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  644. return 1;
  645. }
  646. if (PageBuddy(buddy) && page_order(buddy) == order) {
  647. /*
  648. * zone check is done late to avoid uselessly
  649. * calculating zone/node ids for pages that could
  650. * never merge.
  651. */
  652. if (page_zone_id(page) != page_zone_id(buddy))
  653. return 0;
  654. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  655. return 1;
  656. }
  657. return 0;
  658. }
  659. /*
  660. * Freeing function for a buddy system allocator.
  661. *
  662. * The concept of a buddy system is to maintain direct-mapped table
  663. * (containing bit values) for memory blocks of various "orders".
  664. * The bottom level table contains the map for the smallest allocatable
  665. * units of memory (here, pages), and each level above it describes
  666. * pairs of units from the levels below, hence, "buddies".
  667. * At a high level, all that happens here is marking the table entry
  668. * at the bottom level available, and propagating the changes upward
  669. * as necessary, plus some accounting needed to play nicely with other
  670. * parts of the VM system.
  671. * At each level, we keep a list of pages, which are heads of continuous
  672. * free pages of length of (1 << order) and marked with _mapcount
  673. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  674. * field.
  675. * So when we are allocating or freeing one, we can derive the state of the
  676. * other. That is, if we allocate a small block, and both were
  677. * free, the remainder of the region must be split into blocks.
  678. * If a block is freed, and its buddy is also free, then this
  679. * triggers coalescing into a block of larger size.
  680. *
  681. * -- nyc
  682. */
  683. static inline void __free_one_page(struct page *page,
  684. unsigned long pfn,
  685. struct zone *zone, unsigned int order,
  686. int migratetype)
  687. {
  688. unsigned long combined_pfn;
  689. unsigned long uninitialized_var(buddy_pfn);
  690. struct page *buddy;
  691. unsigned int max_order;
  692. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  693. VM_BUG_ON(!zone_is_initialized(zone));
  694. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  695. VM_BUG_ON(migratetype == -1);
  696. if (likely(!is_migrate_isolate(migratetype)))
  697. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  698. VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
  699. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  700. continue_merging:
  701. while (order < max_order - 1) {
  702. buddy_pfn = __find_buddy_pfn(pfn, order);
  703. buddy = page + (buddy_pfn - pfn);
  704. if (!pfn_valid_within(buddy_pfn))
  705. goto done_merging;
  706. if (!page_is_buddy(page, buddy, order))
  707. goto done_merging;
  708. /*
  709. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  710. * merge with it and move up one order.
  711. */
  712. if (page_is_guard(buddy)) {
  713. clear_page_guard(zone, buddy, order, migratetype);
  714. } else {
  715. list_del(&buddy->lru);
  716. zone->free_area[order].nr_free--;
  717. rmv_page_order(buddy);
  718. }
  719. combined_pfn = buddy_pfn & pfn;
  720. page = page + (combined_pfn - pfn);
  721. pfn = combined_pfn;
  722. order++;
  723. }
  724. if (max_order < MAX_ORDER) {
  725. /* If we are here, it means order is >= pageblock_order.
  726. * We want to prevent merge between freepages on isolate
  727. * pageblock and normal pageblock. Without this, pageblock
  728. * isolation could cause incorrect freepage or CMA accounting.
  729. *
  730. * We don't want to hit this code for the more frequent
  731. * low-order merging.
  732. */
  733. if (unlikely(has_isolate_pageblock(zone))) {
  734. int buddy_mt;
  735. buddy_pfn = __find_buddy_pfn(pfn, order);
  736. buddy = page + (buddy_pfn - pfn);
  737. buddy_mt = get_pageblock_migratetype(buddy);
  738. if (migratetype != buddy_mt
  739. && (is_migrate_isolate(migratetype) ||
  740. is_migrate_isolate(buddy_mt)))
  741. goto done_merging;
  742. }
  743. max_order++;
  744. goto continue_merging;
  745. }
  746. done_merging:
  747. set_page_order(page, order);
  748. /*
  749. * If this is not the largest possible page, check if the buddy
  750. * of the next-highest order is free. If it is, it's possible
  751. * that pages are being freed that will coalesce soon. In case,
  752. * that is happening, add the free page to the tail of the list
  753. * so it's less likely to be used soon and more likely to be merged
  754. * as a higher order page
  755. */
  756. if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
  757. struct page *higher_page, *higher_buddy;
  758. combined_pfn = buddy_pfn & pfn;
  759. higher_page = page + (combined_pfn - pfn);
  760. buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
  761. higher_buddy = higher_page + (buddy_pfn - combined_pfn);
  762. if (pfn_valid_within(buddy_pfn) &&
  763. page_is_buddy(higher_page, higher_buddy, order + 1)) {
  764. list_add_tail(&page->lru,
  765. &zone->free_area[order].free_list[migratetype]);
  766. goto out;
  767. }
  768. }
  769. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  770. out:
  771. zone->free_area[order].nr_free++;
  772. }
  773. /*
  774. * A bad page could be due to a number of fields. Instead of multiple branches,
  775. * try and check multiple fields with one check. The caller must do a detailed
  776. * check if necessary.
  777. */
  778. static inline bool page_expected_state(struct page *page,
  779. unsigned long check_flags)
  780. {
  781. if (unlikely(atomic_read(&page->_mapcount) != -1))
  782. return false;
  783. if (unlikely((unsigned long)page->mapping |
  784. page_ref_count(page) |
  785. #ifdef CONFIG_MEMCG
  786. (unsigned long)page->mem_cgroup |
  787. #endif
  788. (page->flags & check_flags)))
  789. return false;
  790. return true;
  791. }
  792. static void free_pages_check_bad(struct page *page)
  793. {
  794. const char *bad_reason;
  795. unsigned long bad_flags;
  796. bad_reason = NULL;
  797. bad_flags = 0;
  798. if (unlikely(atomic_read(&page->_mapcount) != -1))
  799. bad_reason = "nonzero mapcount";
  800. if (unlikely(page->mapping != NULL))
  801. bad_reason = "non-NULL mapping";
  802. if (unlikely(page_ref_count(page) != 0))
  803. bad_reason = "nonzero _refcount";
  804. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  805. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  806. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  807. }
  808. #ifdef CONFIG_MEMCG
  809. if (unlikely(page->mem_cgroup))
  810. bad_reason = "page still charged to cgroup";
  811. #endif
  812. bad_page(page, bad_reason, bad_flags);
  813. }
  814. static inline int free_pages_check(struct page *page)
  815. {
  816. if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
  817. return 0;
  818. /* Something has gone sideways, find it */
  819. free_pages_check_bad(page);
  820. return 1;
  821. }
  822. static int free_tail_pages_check(struct page *head_page, struct page *page)
  823. {
  824. int ret = 1;
  825. /*
  826. * We rely page->lru.next never has bit 0 set, unless the page
  827. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  828. */
  829. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  830. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  831. ret = 0;
  832. goto out;
  833. }
  834. switch (page - head_page) {
  835. case 1:
  836. /* the first tail page: ->mapping is compound_mapcount() */
  837. if (unlikely(compound_mapcount(page))) {
  838. bad_page(page, "nonzero compound_mapcount", 0);
  839. goto out;
  840. }
  841. break;
  842. case 2:
  843. /*
  844. * the second tail page: ->mapping is
  845. * page_deferred_list().next -- ignore value.
  846. */
  847. break;
  848. default:
  849. if (page->mapping != TAIL_MAPPING) {
  850. bad_page(page, "corrupted mapping in tail page", 0);
  851. goto out;
  852. }
  853. break;
  854. }
  855. if (unlikely(!PageTail(page))) {
  856. bad_page(page, "PageTail not set", 0);
  857. goto out;
  858. }
  859. if (unlikely(compound_head(page) != head_page)) {
  860. bad_page(page, "compound_head not consistent", 0);
  861. goto out;
  862. }
  863. ret = 0;
  864. out:
  865. page->mapping = NULL;
  866. clear_compound_head(page);
  867. return ret;
  868. }
  869. static __always_inline bool free_pages_prepare(struct page *page,
  870. unsigned int order, bool check_free)
  871. {
  872. int bad = 0;
  873. VM_BUG_ON_PAGE(PageTail(page), page);
  874. trace_mm_page_free(page, order);
  875. kmemcheck_free_shadow(page, order);
  876. /*
  877. * Check tail pages before head page information is cleared to
  878. * avoid checking PageCompound for order-0 pages.
  879. */
  880. if (unlikely(order)) {
  881. bool compound = PageCompound(page);
  882. int i;
  883. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  884. if (compound)
  885. ClearPageDoubleMap(page);
  886. for (i = 1; i < (1 << order); i++) {
  887. if (compound)
  888. bad += free_tail_pages_check(page, page + i);
  889. if (unlikely(free_pages_check(page + i))) {
  890. bad++;
  891. continue;
  892. }
  893. (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  894. }
  895. }
  896. if (PageMappingFlags(page))
  897. page->mapping = NULL;
  898. if (memcg_kmem_enabled() && PageKmemcg(page))
  899. memcg_kmem_uncharge(page, order);
  900. if (check_free)
  901. bad += free_pages_check(page);
  902. if (bad)
  903. return false;
  904. page_cpupid_reset_last(page);
  905. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  906. reset_page_owner(page, order);
  907. if (!PageHighMem(page)) {
  908. debug_check_no_locks_freed(page_address(page),
  909. PAGE_SIZE << order);
  910. debug_check_no_obj_freed(page_address(page),
  911. PAGE_SIZE << order);
  912. }
  913. arch_free_page(page, order);
  914. kernel_poison_pages(page, 1 << order, 0);
  915. kernel_map_pages(page, 1 << order, 0);
  916. kasan_free_pages(page, order);
  917. return true;
  918. }
  919. #ifdef CONFIG_DEBUG_VM
  920. static inline bool free_pcp_prepare(struct page *page)
  921. {
  922. return free_pages_prepare(page, 0, true);
  923. }
  924. static inline bool bulkfree_pcp_prepare(struct page *page)
  925. {
  926. return false;
  927. }
  928. #else
  929. static bool free_pcp_prepare(struct page *page)
  930. {
  931. return free_pages_prepare(page, 0, false);
  932. }
  933. static bool bulkfree_pcp_prepare(struct page *page)
  934. {
  935. return free_pages_check(page);
  936. }
  937. #endif /* CONFIG_DEBUG_VM */
  938. /*
  939. * Frees a number of pages from the PCP lists
  940. * Assumes all pages on list are in same zone, and of same order.
  941. * count is the number of pages to free.
  942. *
  943. * If the zone was previously in an "all pages pinned" state then look to
  944. * see if this freeing clears that state.
  945. *
  946. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  947. * pinned" detection logic.
  948. */
  949. static void free_pcppages_bulk(struct zone *zone, int count,
  950. struct per_cpu_pages *pcp)
  951. {
  952. int migratetype = 0;
  953. int batch_free = 0;
  954. unsigned long nr_scanned;
  955. bool isolated_pageblocks;
  956. spin_lock(&zone->lock);
  957. isolated_pageblocks = has_isolate_pageblock(zone);
  958. nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
  959. if (nr_scanned)
  960. __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
  961. while (count) {
  962. struct page *page;
  963. struct list_head *list;
  964. /*
  965. * Remove pages from lists in a round-robin fashion. A
  966. * batch_free count is maintained that is incremented when an
  967. * empty list is encountered. This is so more pages are freed
  968. * off fuller lists instead of spinning excessively around empty
  969. * lists
  970. */
  971. do {
  972. batch_free++;
  973. if (++migratetype == MIGRATE_PCPTYPES)
  974. migratetype = 0;
  975. list = &pcp->lists[migratetype];
  976. } while (list_empty(list));
  977. /* This is the only non-empty list. Free them all. */
  978. if (batch_free == MIGRATE_PCPTYPES)
  979. batch_free = count;
  980. do {
  981. int mt; /* migratetype of the to-be-freed page */
  982. page = list_last_entry(list, struct page, lru);
  983. /* must delete as __free_one_page list manipulates */
  984. list_del(&page->lru);
  985. mt = get_pcppage_migratetype(page);
  986. /* MIGRATE_ISOLATE page should not go to pcplists */
  987. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  988. /* Pageblock could have been isolated meanwhile */
  989. if (unlikely(isolated_pageblocks))
  990. mt = get_pageblock_migratetype(page);
  991. if (bulkfree_pcp_prepare(page))
  992. continue;
  993. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  994. trace_mm_page_pcpu_drain(page, 0, mt);
  995. } while (--count && --batch_free && !list_empty(list));
  996. }
  997. spin_unlock(&zone->lock);
  998. }
  999. static void free_one_page(struct zone *zone,
  1000. struct page *page, unsigned long pfn,
  1001. unsigned int order,
  1002. int migratetype)
  1003. {
  1004. unsigned long nr_scanned;
  1005. spin_lock(&zone->lock);
  1006. nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
  1007. if (nr_scanned)
  1008. __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
  1009. if (unlikely(has_isolate_pageblock(zone) ||
  1010. is_migrate_isolate(migratetype))) {
  1011. migratetype = get_pfnblock_migratetype(page, pfn);
  1012. }
  1013. __free_one_page(page, pfn, zone, order, migratetype);
  1014. spin_unlock(&zone->lock);
  1015. }
  1016. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  1017. unsigned long zone, int nid)
  1018. {
  1019. set_page_links(page, zone, nid, pfn);
  1020. init_page_count(page);
  1021. page_mapcount_reset(page);
  1022. page_cpupid_reset_last(page);
  1023. INIT_LIST_HEAD(&page->lru);
  1024. #ifdef WANT_PAGE_VIRTUAL
  1025. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1026. if (!is_highmem_idx(zone))
  1027. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1028. #endif
  1029. }
  1030. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  1031. int nid)
  1032. {
  1033. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  1034. }
  1035. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1036. static void init_reserved_page(unsigned long pfn)
  1037. {
  1038. pg_data_t *pgdat;
  1039. int nid, zid;
  1040. if (!early_page_uninitialised(pfn))
  1041. return;
  1042. nid = early_pfn_to_nid(pfn);
  1043. pgdat = NODE_DATA(nid);
  1044. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1045. struct zone *zone = &pgdat->node_zones[zid];
  1046. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  1047. break;
  1048. }
  1049. __init_single_pfn(pfn, zid, nid);
  1050. }
  1051. #else
  1052. static inline void init_reserved_page(unsigned long pfn)
  1053. {
  1054. }
  1055. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1056. /*
  1057. * Initialised pages do not have PageReserved set. This function is
  1058. * called for each range allocated by the bootmem allocator and
  1059. * marks the pages PageReserved. The remaining valid pages are later
  1060. * sent to the buddy page allocator.
  1061. */
  1062. void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
  1063. {
  1064. unsigned long start_pfn = PFN_DOWN(start);
  1065. unsigned long end_pfn = PFN_UP(end);
  1066. for (; start_pfn < end_pfn; start_pfn++) {
  1067. if (pfn_valid(start_pfn)) {
  1068. struct page *page = pfn_to_page(start_pfn);
  1069. init_reserved_page(start_pfn);
  1070. /* Avoid false-positive PageTail() */
  1071. INIT_LIST_HEAD(&page->lru);
  1072. SetPageReserved(page);
  1073. }
  1074. }
  1075. }
  1076. static void __free_pages_ok(struct page *page, unsigned int order)
  1077. {
  1078. unsigned long flags;
  1079. int migratetype;
  1080. unsigned long pfn = page_to_pfn(page);
  1081. if (!free_pages_prepare(page, order, true))
  1082. return;
  1083. migratetype = get_pfnblock_migratetype(page, pfn);
  1084. local_irq_save(flags);
  1085. __count_vm_events(PGFREE, 1 << order);
  1086. free_one_page(page_zone(page), page, pfn, order, migratetype);
  1087. local_irq_restore(flags);
  1088. }
  1089. static void __init __free_pages_boot_core(struct page *page, unsigned int order)
  1090. {
  1091. unsigned int nr_pages = 1 << order;
  1092. struct page *p = page;
  1093. unsigned int loop;
  1094. prefetchw(p);
  1095. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  1096. prefetchw(p + 1);
  1097. __ClearPageReserved(p);
  1098. set_page_count(p, 0);
  1099. }
  1100. __ClearPageReserved(p);
  1101. set_page_count(p, 0);
  1102. page_zone(page)->managed_pages += nr_pages;
  1103. set_page_refcounted(page);
  1104. __free_pages(page, order);
  1105. }
  1106. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  1107. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  1108. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  1109. int __meminit early_pfn_to_nid(unsigned long pfn)
  1110. {
  1111. static DEFINE_SPINLOCK(early_pfn_lock);
  1112. int nid;
  1113. spin_lock(&early_pfn_lock);
  1114. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  1115. if (nid < 0)
  1116. nid = first_online_node;
  1117. spin_unlock(&early_pfn_lock);
  1118. return nid;
  1119. }
  1120. #endif
  1121. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1122. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1123. struct mminit_pfnnid_cache *state)
  1124. {
  1125. int nid;
  1126. nid = __early_pfn_to_nid(pfn, state);
  1127. if (nid >= 0 && nid != node)
  1128. return false;
  1129. return true;
  1130. }
  1131. /* Only safe to use early in boot when initialisation is single-threaded */
  1132. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1133. {
  1134. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  1135. }
  1136. #else
  1137. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1138. {
  1139. return true;
  1140. }
  1141. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1142. struct mminit_pfnnid_cache *state)
  1143. {
  1144. return true;
  1145. }
  1146. #endif
  1147. void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
  1148. unsigned int order)
  1149. {
  1150. if (early_page_uninitialised(pfn))
  1151. return;
  1152. return __free_pages_boot_core(page, order);
  1153. }
  1154. /*
  1155. * Check that the whole (or subset of) a pageblock given by the interval of
  1156. * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
  1157. * with the migration of free compaction scanner. The scanners then need to
  1158. * use only pfn_valid_within() check for arches that allow holes within
  1159. * pageblocks.
  1160. *
  1161. * Return struct page pointer of start_pfn, or NULL if checks were not passed.
  1162. *
  1163. * It's possible on some configurations to have a setup like node0 node1 node0
  1164. * i.e. it's possible that all pages within a zones range of pages do not
  1165. * belong to a single zone. We assume that a border between node0 and node1
  1166. * can occur within a single pageblock, but not a node0 node1 node0
  1167. * interleaving within a single pageblock. It is therefore sufficient to check
  1168. * the first and last page of a pageblock and avoid checking each individual
  1169. * page in a pageblock.
  1170. */
  1171. struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
  1172. unsigned long end_pfn, struct zone *zone)
  1173. {
  1174. struct page *start_page;
  1175. struct page *end_page;
  1176. /* end_pfn is one past the range we are checking */
  1177. end_pfn--;
  1178. if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
  1179. return NULL;
  1180. start_page = pfn_to_page(start_pfn);
  1181. if (page_zone(start_page) != zone)
  1182. return NULL;
  1183. end_page = pfn_to_page(end_pfn);
  1184. /* This gives a shorter code than deriving page_zone(end_page) */
  1185. if (page_zone_id(start_page) != page_zone_id(end_page))
  1186. return NULL;
  1187. return start_page;
  1188. }
  1189. void set_zone_contiguous(struct zone *zone)
  1190. {
  1191. unsigned long block_start_pfn = zone->zone_start_pfn;
  1192. unsigned long block_end_pfn;
  1193. block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
  1194. for (; block_start_pfn < zone_end_pfn(zone);
  1195. block_start_pfn = block_end_pfn,
  1196. block_end_pfn += pageblock_nr_pages) {
  1197. block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
  1198. if (!__pageblock_pfn_to_page(block_start_pfn,
  1199. block_end_pfn, zone))
  1200. return;
  1201. }
  1202. /* We confirm that there is no hole */
  1203. zone->contiguous = true;
  1204. }
  1205. void clear_zone_contiguous(struct zone *zone)
  1206. {
  1207. zone->contiguous = false;
  1208. }
  1209. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1210. static void __init deferred_free_range(struct page *page,
  1211. unsigned long pfn, int nr_pages)
  1212. {
  1213. int i;
  1214. if (!page)
  1215. return;
  1216. /* Free a large naturally-aligned chunk if possible */
  1217. if (nr_pages == pageblock_nr_pages &&
  1218. (pfn & (pageblock_nr_pages - 1)) == 0) {
  1219. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1220. __free_pages_boot_core(page, pageblock_order);
  1221. return;
  1222. }
  1223. for (i = 0; i < nr_pages; i++, page++, pfn++) {
  1224. if ((pfn & (pageblock_nr_pages - 1)) == 0)
  1225. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1226. __free_pages_boot_core(page, 0);
  1227. }
  1228. }
  1229. /* Completion tracking for deferred_init_memmap() threads */
  1230. static atomic_t pgdat_init_n_undone __initdata;
  1231. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  1232. static inline void __init pgdat_init_report_one_done(void)
  1233. {
  1234. if (atomic_dec_and_test(&pgdat_init_n_undone))
  1235. complete(&pgdat_init_all_done_comp);
  1236. }
  1237. /* Initialise remaining memory on a node */
  1238. static int __init deferred_init_memmap(void *data)
  1239. {
  1240. pg_data_t *pgdat = data;
  1241. int nid = pgdat->node_id;
  1242. struct mminit_pfnnid_cache nid_init_state = { };
  1243. unsigned long start = jiffies;
  1244. unsigned long nr_pages = 0;
  1245. unsigned long walk_start, walk_end;
  1246. int i, zid;
  1247. struct zone *zone;
  1248. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  1249. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1250. if (first_init_pfn == ULONG_MAX) {
  1251. pgdat_init_report_one_done();
  1252. return 0;
  1253. }
  1254. /* Bind memory initialisation thread to a local node if possible */
  1255. if (!cpumask_empty(cpumask))
  1256. set_cpus_allowed_ptr(current, cpumask);
  1257. /* Sanity check boundaries */
  1258. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  1259. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  1260. pgdat->first_deferred_pfn = ULONG_MAX;
  1261. /* Only the highest zone is deferred so find it */
  1262. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1263. zone = pgdat->node_zones + zid;
  1264. if (first_init_pfn < zone_end_pfn(zone))
  1265. break;
  1266. }
  1267. for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
  1268. unsigned long pfn, end_pfn;
  1269. struct page *page = NULL;
  1270. struct page *free_base_page = NULL;
  1271. unsigned long free_base_pfn = 0;
  1272. int nr_to_free = 0;
  1273. end_pfn = min(walk_end, zone_end_pfn(zone));
  1274. pfn = first_init_pfn;
  1275. if (pfn < walk_start)
  1276. pfn = walk_start;
  1277. if (pfn < zone->zone_start_pfn)
  1278. pfn = zone->zone_start_pfn;
  1279. for (; pfn < end_pfn; pfn++) {
  1280. if (!pfn_valid_within(pfn))
  1281. goto free_range;
  1282. /*
  1283. * Ensure pfn_valid is checked every
  1284. * pageblock_nr_pages for memory holes
  1285. */
  1286. if ((pfn & (pageblock_nr_pages - 1)) == 0) {
  1287. if (!pfn_valid(pfn)) {
  1288. page = NULL;
  1289. goto free_range;
  1290. }
  1291. }
  1292. if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  1293. page = NULL;
  1294. goto free_range;
  1295. }
  1296. /* Minimise pfn page lookups and scheduler checks */
  1297. if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
  1298. page++;
  1299. } else {
  1300. nr_pages += nr_to_free;
  1301. deferred_free_range(free_base_page,
  1302. free_base_pfn, nr_to_free);
  1303. free_base_page = NULL;
  1304. free_base_pfn = nr_to_free = 0;
  1305. page = pfn_to_page(pfn);
  1306. cond_resched();
  1307. }
  1308. if (page->flags) {
  1309. VM_BUG_ON(page_zone(page) != zone);
  1310. goto free_range;
  1311. }
  1312. __init_single_page(page, pfn, zid, nid);
  1313. if (!free_base_page) {
  1314. free_base_page = page;
  1315. free_base_pfn = pfn;
  1316. nr_to_free = 0;
  1317. }
  1318. nr_to_free++;
  1319. /* Where possible, batch up pages for a single free */
  1320. continue;
  1321. free_range:
  1322. /* Free the current block of pages to allocator */
  1323. nr_pages += nr_to_free;
  1324. deferred_free_range(free_base_page, free_base_pfn,
  1325. nr_to_free);
  1326. free_base_page = NULL;
  1327. free_base_pfn = nr_to_free = 0;
  1328. }
  1329. /* Free the last block of pages to allocator */
  1330. nr_pages += nr_to_free;
  1331. deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
  1332. first_init_pfn = max(end_pfn, first_init_pfn);
  1333. }
  1334. /* Sanity check that the next zone really is unpopulated */
  1335. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1336. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1337. jiffies_to_msecs(jiffies - start));
  1338. pgdat_init_report_one_done();
  1339. return 0;
  1340. }
  1341. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1342. void __init page_alloc_init_late(void)
  1343. {
  1344. struct zone *zone;
  1345. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1346. int nid;
  1347. /* There will be num_node_state(N_MEMORY) threads */
  1348. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1349. for_each_node_state(nid, N_MEMORY) {
  1350. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1351. }
  1352. /* Block until all are initialised */
  1353. wait_for_completion(&pgdat_init_all_done_comp);
  1354. /* Reinit limits that are based on free pages after the kernel is up */
  1355. files_maxfiles_init();
  1356. #endif
  1357. for_each_populated_zone(zone)
  1358. set_zone_contiguous(zone);
  1359. }
  1360. #ifdef CONFIG_CMA
  1361. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1362. void __init init_cma_reserved_pageblock(struct page *page)
  1363. {
  1364. unsigned i = pageblock_nr_pages;
  1365. struct page *p = page;
  1366. do {
  1367. __ClearPageReserved(p);
  1368. set_page_count(p, 0);
  1369. } while (++p, --i);
  1370. set_pageblock_migratetype(page, MIGRATE_CMA);
  1371. if (pageblock_order >= MAX_ORDER) {
  1372. i = pageblock_nr_pages;
  1373. p = page;
  1374. do {
  1375. set_page_refcounted(p);
  1376. __free_pages(p, MAX_ORDER - 1);
  1377. p += MAX_ORDER_NR_PAGES;
  1378. } while (i -= MAX_ORDER_NR_PAGES);
  1379. } else {
  1380. set_page_refcounted(page);
  1381. __free_pages(page, pageblock_order);
  1382. }
  1383. adjust_managed_page_count(page, pageblock_nr_pages);
  1384. }
  1385. #endif
  1386. /*
  1387. * The order of subdivision here is critical for the IO subsystem.
  1388. * Please do not alter this order without good reasons and regression
  1389. * testing. Specifically, as large blocks of memory are subdivided,
  1390. * the order in which smaller blocks are delivered depends on the order
  1391. * they're subdivided in this function. This is the primary factor
  1392. * influencing the order in which pages are delivered to the IO
  1393. * subsystem according to empirical testing, and this is also justified
  1394. * by considering the behavior of a buddy system containing a single
  1395. * large block of memory acted on by a series of small allocations.
  1396. * This behavior is a critical factor in sglist merging's success.
  1397. *
  1398. * -- nyc
  1399. */
  1400. static inline void expand(struct zone *zone, struct page *page,
  1401. int low, int high, struct free_area *area,
  1402. int migratetype)
  1403. {
  1404. unsigned long size = 1 << high;
  1405. while (high > low) {
  1406. area--;
  1407. high--;
  1408. size >>= 1;
  1409. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1410. /*
  1411. * Mark as guard pages (or page), that will allow to
  1412. * merge back to allocator when buddy will be freed.
  1413. * Corresponding page table entries will not be touched,
  1414. * pages will stay not present in virtual address space
  1415. */
  1416. if (set_page_guard(zone, &page[size], high, migratetype))
  1417. continue;
  1418. list_add(&page[size].lru, &area->free_list[migratetype]);
  1419. area->nr_free++;
  1420. set_page_order(&page[size], high);
  1421. }
  1422. }
  1423. static void check_new_page_bad(struct page *page)
  1424. {
  1425. const char *bad_reason = NULL;
  1426. unsigned long bad_flags = 0;
  1427. if (unlikely(atomic_read(&page->_mapcount) != -1))
  1428. bad_reason = "nonzero mapcount";
  1429. if (unlikely(page->mapping != NULL))
  1430. bad_reason = "non-NULL mapping";
  1431. if (unlikely(page_ref_count(page) != 0))
  1432. bad_reason = "nonzero _count";
  1433. if (unlikely(page->flags & __PG_HWPOISON)) {
  1434. bad_reason = "HWPoisoned (hardware-corrupted)";
  1435. bad_flags = __PG_HWPOISON;
  1436. /* Don't complain about hwpoisoned pages */
  1437. page_mapcount_reset(page); /* remove PageBuddy */
  1438. return;
  1439. }
  1440. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1441. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1442. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1443. }
  1444. #ifdef CONFIG_MEMCG
  1445. if (unlikely(page->mem_cgroup))
  1446. bad_reason = "page still charged to cgroup";
  1447. #endif
  1448. bad_page(page, bad_reason, bad_flags);
  1449. }
  1450. /*
  1451. * This page is about to be returned from the page allocator
  1452. */
  1453. static inline int check_new_page(struct page *page)
  1454. {
  1455. if (likely(page_expected_state(page,
  1456. PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
  1457. return 0;
  1458. check_new_page_bad(page);
  1459. return 1;
  1460. }
  1461. static inline bool free_pages_prezeroed(bool poisoned)
  1462. {
  1463. return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
  1464. page_poisoning_enabled() && poisoned;
  1465. }
  1466. #ifdef CONFIG_DEBUG_VM
  1467. static bool check_pcp_refill(struct page *page)
  1468. {
  1469. return false;
  1470. }
  1471. static bool check_new_pcp(struct page *page)
  1472. {
  1473. return check_new_page(page);
  1474. }
  1475. #else
  1476. static bool check_pcp_refill(struct page *page)
  1477. {
  1478. return check_new_page(page);
  1479. }
  1480. static bool check_new_pcp(struct page *page)
  1481. {
  1482. return false;
  1483. }
  1484. #endif /* CONFIG_DEBUG_VM */
  1485. static bool check_new_pages(struct page *page, unsigned int order)
  1486. {
  1487. int i;
  1488. for (i = 0; i < (1 << order); i++) {
  1489. struct page *p = page + i;
  1490. if (unlikely(check_new_page(p)))
  1491. return true;
  1492. }
  1493. return false;
  1494. }
  1495. inline void post_alloc_hook(struct page *page, unsigned int order,
  1496. gfp_t gfp_flags)
  1497. {
  1498. set_page_private(page, 0);
  1499. set_page_refcounted(page);
  1500. arch_alloc_page(page, order);
  1501. kernel_map_pages(page, 1 << order, 1);
  1502. kernel_poison_pages(page, 1 << order, 1);
  1503. kasan_alloc_pages(page, order);
  1504. set_page_owner(page, order, gfp_flags);
  1505. }
  1506. static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1507. unsigned int alloc_flags)
  1508. {
  1509. int i;
  1510. bool poisoned = true;
  1511. for (i = 0; i < (1 << order); i++) {
  1512. struct page *p = page + i;
  1513. if (poisoned)
  1514. poisoned &= page_is_poisoned(p);
  1515. }
  1516. post_alloc_hook(page, order, gfp_flags);
  1517. if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
  1518. for (i = 0; i < (1 << order); i++)
  1519. clear_highpage(page + i);
  1520. if (order && (gfp_flags & __GFP_COMP))
  1521. prep_compound_page(page, order);
  1522. /*
  1523. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1524. * allocate the page. The expectation is that the caller is taking
  1525. * steps that will free more memory. The caller should avoid the page
  1526. * being used for !PFMEMALLOC purposes.
  1527. */
  1528. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1529. set_page_pfmemalloc(page);
  1530. else
  1531. clear_page_pfmemalloc(page);
  1532. }
  1533. /*
  1534. * Go through the free lists for the given migratetype and remove
  1535. * the smallest available page from the freelists
  1536. */
  1537. static inline
  1538. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1539. int migratetype)
  1540. {
  1541. unsigned int current_order;
  1542. struct free_area *area;
  1543. struct page *page;
  1544. /* Find a page of the appropriate size in the preferred list */
  1545. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1546. area = &(zone->free_area[current_order]);
  1547. page = list_first_entry_or_null(&area->free_list[migratetype],
  1548. struct page, lru);
  1549. if (!page)
  1550. continue;
  1551. list_del(&page->lru);
  1552. rmv_page_order(page);
  1553. area->nr_free--;
  1554. expand(zone, page, order, current_order, area, migratetype);
  1555. set_pcppage_migratetype(page, migratetype);
  1556. return page;
  1557. }
  1558. return NULL;
  1559. }
  1560. /*
  1561. * This array describes the order lists are fallen back to when
  1562. * the free lists for the desirable migrate type are depleted
  1563. */
  1564. static int fallbacks[MIGRATE_TYPES][4] = {
  1565. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1566. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1567. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1568. #ifdef CONFIG_CMA
  1569. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1570. #endif
  1571. #ifdef CONFIG_MEMORY_ISOLATION
  1572. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1573. #endif
  1574. };
  1575. #ifdef CONFIG_CMA
  1576. static struct page *__rmqueue_cma_fallback(struct zone *zone,
  1577. unsigned int order)
  1578. {
  1579. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1580. }
  1581. #else
  1582. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1583. unsigned int order) { return NULL; }
  1584. #endif
  1585. /*
  1586. * Move the free pages in a range to the free lists of the requested type.
  1587. * Note that start_page and end_pages are not aligned on a pageblock
  1588. * boundary. If alignment is required, use move_freepages_block()
  1589. */
  1590. int move_freepages(struct zone *zone,
  1591. struct page *start_page, struct page *end_page,
  1592. int migratetype)
  1593. {
  1594. struct page *page;
  1595. unsigned int order;
  1596. int pages_moved = 0;
  1597. #ifndef CONFIG_HOLES_IN_ZONE
  1598. /*
  1599. * page_zone is not safe to call in this context when
  1600. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1601. * anyway as we check zone boundaries in move_freepages_block().
  1602. * Remove at a later date when no bug reports exist related to
  1603. * grouping pages by mobility
  1604. */
  1605. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1606. #endif
  1607. for (page = start_page; page <= end_page;) {
  1608. if (!pfn_valid_within(page_to_pfn(page))) {
  1609. page++;
  1610. continue;
  1611. }
  1612. /* Make sure we are not inadvertently changing nodes */
  1613. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1614. if (!PageBuddy(page)) {
  1615. page++;
  1616. continue;
  1617. }
  1618. order = page_order(page);
  1619. list_move(&page->lru,
  1620. &zone->free_area[order].free_list[migratetype]);
  1621. page += 1 << order;
  1622. pages_moved += 1 << order;
  1623. }
  1624. return pages_moved;
  1625. }
  1626. int move_freepages_block(struct zone *zone, struct page *page,
  1627. int migratetype)
  1628. {
  1629. unsigned long start_pfn, end_pfn;
  1630. struct page *start_page, *end_page;
  1631. start_pfn = page_to_pfn(page);
  1632. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1633. start_page = pfn_to_page(start_pfn);
  1634. end_page = start_page + pageblock_nr_pages - 1;
  1635. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1636. /* Do not cross zone boundaries */
  1637. if (!zone_spans_pfn(zone, start_pfn))
  1638. start_page = page;
  1639. if (!zone_spans_pfn(zone, end_pfn))
  1640. return 0;
  1641. return move_freepages(zone, start_page, end_page, migratetype);
  1642. }
  1643. static void change_pageblock_range(struct page *pageblock_page,
  1644. int start_order, int migratetype)
  1645. {
  1646. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1647. while (nr_pageblocks--) {
  1648. set_pageblock_migratetype(pageblock_page, migratetype);
  1649. pageblock_page += pageblock_nr_pages;
  1650. }
  1651. }
  1652. /*
  1653. * When we are falling back to another migratetype during allocation, try to
  1654. * steal extra free pages from the same pageblocks to satisfy further
  1655. * allocations, instead of polluting multiple pageblocks.
  1656. *
  1657. * If we are stealing a relatively large buddy page, it is likely there will
  1658. * be more free pages in the pageblock, so try to steal them all. For
  1659. * reclaimable and unmovable allocations, we steal regardless of page size,
  1660. * as fragmentation caused by those allocations polluting movable pageblocks
  1661. * is worse than movable allocations stealing from unmovable and reclaimable
  1662. * pageblocks.
  1663. */
  1664. static bool can_steal_fallback(unsigned int order, int start_mt)
  1665. {
  1666. /*
  1667. * Leaving this order check is intended, although there is
  1668. * relaxed order check in next check. The reason is that
  1669. * we can actually steal whole pageblock if this condition met,
  1670. * but, below check doesn't guarantee it and that is just heuristic
  1671. * so could be changed anytime.
  1672. */
  1673. if (order >= pageblock_order)
  1674. return true;
  1675. if (order >= pageblock_order / 2 ||
  1676. start_mt == MIGRATE_RECLAIMABLE ||
  1677. start_mt == MIGRATE_UNMOVABLE ||
  1678. page_group_by_mobility_disabled)
  1679. return true;
  1680. return false;
  1681. }
  1682. /*
  1683. * This function implements actual steal behaviour. If order is large enough,
  1684. * we can steal whole pageblock. If not, we first move freepages in this
  1685. * pageblock and check whether half of pages are moved or not. If half of
  1686. * pages are moved, we can change migratetype of pageblock and permanently
  1687. * use it's pages as requested migratetype in the future.
  1688. */
  1689. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1690. int start_type)
  1691. {
  1692. unsigned int current_order = page_order(page);
  1693. int pages;
  1694. /* Take ownership for orders >= pageblock_order */
  1695. if (current_order >= pageblock_order) {
  1696. change_pageblock_range(page, current_order, start_type);
  1697. return;
  1698. }
  1699. pages = move_freepages_block(zone, page, start_type);
  1700. /* Claim the whole block if over half of it is free */
  1701. if (pages >= (1 << (pageblock_order-1)) ||
  1702. page_group_by_mobility_disabled)
  1703. set_pageblock_migratetype(page, start_type);
  1704. }
  1705. /*
  1706. * Check whether there is a suitable fallback freepage with requested order.
  1707. * If only_stealable is true, this function returns fallback_mt only if
  1708. * we can steal other freepages all together. This would help to reduce
  1709. * fragmentation due to mixed migratetype pages in one pageblock.
  1710. */
  1711. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1712. int migratetype, bool only_stealable, bool *can_steal)
  1713. {
  1714. int i;
  1715. int fallback_mt;
  1716. if (area->nr_free == 0)
  1717. return -1;
  1718. *can_steal = false;
  1719. for (i = 0;; i++) {
  1720. fallback_mt = fallbacks[migratetype][i];
  1721. if (fallback_mt == MIGRATE_TYPES)
  1722. break;
  1723. if (list_empty(&area->free_list[fallback_mt]))
  1724. continue;
  1725. if (can_steal_fallback(order, migratetype))
  1726. *can_steal = true;
  1727. if (!only_stealable)
  1728. return fallback_mt;
  1729. if (*can_steal)
  1730. return fallback_mt;
  1731. }
  1732. return -1;
  1733. }
  1734. /*
  1735. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1736. * there are no empty page blocks that contain a page with a suitable order
  1737. */
  1738. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1739. unsigned int alloc_order)
  1740. {
  1741. int mt;
  1742. unsigned long max_managed, flags;
  1743. /*
  1744. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1745. * Check is race-prone but harmless.
  1746. */
  1747. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1748. if (zone->nr_reserved_highatomic >= max_managed)
  1749. return;
  1750. spin_lock_irqsave(&zone->lock, flags);
  1751. /* Recheck the nr_reserved_highatomic limit under the lock */
  1752. if (zone->nr_reserved_highatomic >= max_managed)
  1753. goto out_unlock;
  1754. /* Yoink! */
  1755. mt = get_pageblock_migratetype(page);
  1756. if (mt != MIGRATE_HIGHATOMIC &&
  1757. !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
  1758. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1759. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1760. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
  1761. }
  1762. out_unlock:
  1763. spin_unlock_irqrestore(&zone->lock, flags);
  1764. }
  1765. /*
  1766. * Used when an allocation is about to fail under memory pressure. This
  1767. * potentially hurts the reliability of high-order allocations when under
  1768. * intense memory pressure but failed atomic allocations should be easier
  1769. * to recover from than an OOM.
  1770. *
  1771. * If @force is true, try to unreserve a pageblock even though highatomic
  1772. * pageblock is exhausted.
  1773. */
  1774. static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
  1775. bool force)
  1776. {
  1777. struct zonelist *zonelist = ac->zonelist;
  1778. unsigned long flags;
  1779. struct zoneref *z;
  1780. struct zone *zone;
  1781. struct page *page;
  1782. int order;
  1783. bool ret;
  1784. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1785. ac->nodemask) {
  1786. /*
  1787. * Preserve at least one pageblock unless memory pressure
  1788. * is really high.
  1789. */
  1790. if (!force && zone->nr_reserved_highatomic <=
  1791. pageblock_nr_pages)
  1792. continue;
  1793. spin_lock_irqsave(&zone->lock, flags);
  1794. for (order = 0; order < MAX_ORDER; order++) {
  1795. struct free_area *area = &(zone->free_area[order]);
  1796. page = list_first_entry_or_null(
  1797. &area->free_list[MIGRATE_HIGHATOMIC],
  1798. struct page, lru);
  1799. if (!page)
  1800. continue;
  1801. /*
  1802. * In page freeing path, migratetype change is racy so
  1803. * we can counter several free pages in a pageblock
  1804. * in this loop althoug we changed the pageblock type
  1805. * from highatomic to ac->migratetype. So we should
  1806. * adjust the count once.
  1807. */
  1808. if (get_pageblock_migratetype(page) ==
  1809. MIGRATE_HIGHATOMIC) {
  1810. /*
  1811. * It should never happen but changes to
  1812. * locking could inadvertently allow a per-cpu
  1813. * drain to add pages to MIGRATE_HIGHATOMIC
  1814. * while unreserving so be safe and watch for
  1815. * underflows.
  1816. */
  1817. zone->nr_reserved_highatomic -= min(
  1818. pageblock_nr_pages,
  1819. zone->nr_reserved_highatomic);
  1820. }
  1821. /*
  1822. * Convert to ac->migratetype and avoid the normal
  1823. * pageblock stealing heuristics. Minimally, the caller
  1824. * is doing the work and needs the pages. More
  1825. * importantly, if the block was always converted to
  1826. * MIGRATE_UNMOVABLE or another type then the number
  1827. * of pageblocks that cannot be completely freed
  1828. * may increase.
  1829. */
  1830. set_pageblock_migratetype(page, ac->migratetype);
  1831. ret = move_freepages_block(zone, page, ac->migratetype);
  1832. if (ret) {
  1833. spin_unlock_irqrestore(&zone->lock, flags);
  1834. return ret;
  1835. }
  1836. }
  1837. spin_unlock_irqrestore(&zone->lock, flags);
  1838. }
  1839. return false;
  1840. }
  1841. /* Remove an element from the buddy allocator from the fallback list */
  1842. static inline struct page *
  1843. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1844. {
  1845. struct free_area *area;
  1846. unsigned int current_order;
  1847. struct page *page;
  1848. int fallback_mt;
  1849. bool can_steal;
  1850. /* Find the largest possible block of pages in the other list */
  1851. for (current_order = MAX_ORDER-1;
  1852. current_order >= order && current_order <= MAX_ORDER-1;
  1853. --current_order) {
  1854. area = &(zone->free_area[current_order]);
  1855. fallback_mt = find_suitable_fallback(area, current_order,
  1856. start_migratetype, false, &can_steal);
  1857. if (fallback_mt == -1)
  1858. continue;
  1859. page = list_first_entry(&area->free_list[fallback_mt],
  1860. struct page, lru);
  1861. if (can_steal &&
  1862. get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
  1863. steal_suitable_fallback(zone, page, start_migratetype);
  1864. /* Remove the page from the freelists */
  1865. area->nr_free--;
  1866. list_del(&page->lru);
  1867. rmv_page_order(page);
  1868. expand(zone, page, order, current_order, area,
  1869. start_migratetype);
  1870. /*
  1871. * The pcppage_migratetype may differ from pageblock's
  1872. * migratetype depending on the decisions in
  1873. * find_suitable_fallback(). This is OK as long as it does not
  1874. * differ for MIGRATE_CMA pageblocks. Those can be used as
  1875. * fallback only via special __rmqueue_cma_fallback() function
  1876. */
  1877. set_pcppage_migratetype(page, start_migratetype);
  1878. trace_mm_page_alloc_extfrag(page, order, current_order,
  1879. start_migratetype, fallback_mt);
  1880. return page;
  1881. }
  1882. return NULL;
  1883. }
  1884. /*
  1885. * Do the hard work of removing an element from the buddy allocator.
  1886. * Call me with the zone->lock already held.
  1887. */
  1888. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1889. int migratetype)
  1890. {
  1891. struct page *page;
  1892. page = __rmqueue_smallest(zone, order, migratetype);
  1893. if (unlikely(!page)) {
  1894. if (migratetype == MIGRATE_MOVABLE)
  1895. page = __rmqueue_cma_fallback(zone, order);
  1896. if (!page)
  1897. page = __rmqueue_fallback(zone, order, migratetype);
  1898. }
  1899. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1900. return page;
  1901. }
  1902. /*
  1903. * Obtain a specified number of elements from the buddy allocator, all under
  1904. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1905. * Returns the number of new pages which were placed at *list.
  1906. */
  1907. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1908. unsigned long count, struct list_head *list,
  1909. int migratetype, bool cold)
  1910. {
  1911. int i, alloced = 0;
  1912. spin_lock(&zone->lock);
  1913. for (i = 0; i < count; ++i) {
  1914. struct page *page = __rmqueue(zone, order, migratetype);
  1915. if (unlikely(page == NULL))
  1916. break;
  1917. if (unlikely(check_pcp_refill(page)))
  1918. continue;
  1919. /*
  1920. * Split buddy pages returned by expand() are received here
  1921. * in physical page order. The page is added to the callers and
  1922. * list and the list head then moves forward. From the callers
  1923. * perspective, the linked list is ordered by page number in
  1924. * some conditions. This is useful for IO devices that can
  1925. * merge IO requests if the physical pages are ordered
  1926. * properly.
  1927. */
  1928. if (likely(!cold))
  1929. list_add(&page->lru, list);
  1930. else
  1931. list_add_tail(&page->lru, list);
  1932. list = &page->lru;
  1933. alloced++;
  1934. if (is_migrate_cma(get_pcppage_migratetype(page)))
  1935. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1936. -(1 << order));
  1937. }
  1938. /*
  1939. * i pages were removed from the buddy list even if some leak due
  1940. * to check_pcp_refill failing so adjust NR_FREE_PAGES based
  1941. * on i. Do not confuse with 'alloced' which is the number of
  1942. * pages added to the pcp list.
  1943. */
  1944. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1945. spin_unlock(&zone->lock);
  1946. return alloced;
  1947. }
  1948. #ifdef CONFIG_NUMA
  1949. /*
  1950. * Called from the vmstat counter updater to drain pagesets of this
  1951. * currently executing processor on remote nodes after they have
  1952. * expired.
  1953. *
  1954. * Note that this function must be called with the thread pinned to
  1955. * a single processor.
  1956. */
  1957. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1958. {
  1959. unsigned long flags;
  1960. int to_drain, batch;
  1961. local_irq_save(flags);
  1962. batch = READ_ONCE(pcp->batch);
  1963. to_drain = min(pcp->count, batch);
  1964. if (to_drain > 0) {
  1965. free_pcppages_bulk(zone, to_drain, pcp);
  1966. pcp->count -= to_drain;
  1967. }
  1968. local_irq_restore(flags);
  1969. }
  1970. #endif
  1971. /*
  1972. * Drain pcplists of the indicated processor and zone.
  1973. *
  1974. * The processor must either be the current processor and the
  1975. * thread pinned to the current processor or a processor that
  1976. * is not online.
  1977. */
  1978. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1979. {
  1980. unsigned long flags;
  1981. struct per_cpu_pageset *pset;
  1982. struct per_cpu_pages *pcp;
  1983. local_irq_save(flags);
  1984. pset = per_cpu_ptr(zone->pageset, cpu);
  1985. pcp = &pset->pcp;
  1986. if (pcp->count) {
  1987. free_pcppages_bulk(zone, pcp->count, pcp);
  1988. pcp->count = 0;
  1989. }
  1990. local_irq_restore(flags);
  1991. }
  1992. /*
  1993. * Drain pcplists of all zones on the indicated processor.
  1994. *
  1995. * The processor must either be the current processor and the
  1996. * thread pinned to the current processor or a processor that
  1997. * is not online.
  1998. */
  1999. static void drain_pages(unsigned int cpu)
  2000. {
  2001. struct zone *zone;
  2002. for_each_populated_zone(zone) {
  2003. drain_pages_zone(cpu, zone);
  2004. }
  2005. }
  2006. /*
  2007. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  2008. *
  2009. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  2010. * the single zone's pages.
  2011. */
  2012. void drain_local_pages(struct zone *zone)
  2013. {
  2014. int cpu = smp_processor_id();
  2015. if (zone)
  2016. drain_pages_zone(cpu, zone);
  2017. else
  2018. drain_pages(cpu);
  2019. }
  2020. static void drain_local_pages_wq(struct work_struct *work)
  2021. {
  2022. /*
  2023. * drain_all_pages doesn't use proper cpu hotplug protection so
  2024. * we can race with cpu offline when the WQ can move this from
  2025. * a cpu pinned worker to an unbound one. We can operate on a different
  2026. * cpu which is allright but we also have to make sure to not move to
  2027. * a different one.
  2028. */
  2029. preempt_disable();
  2030. drain_local_pages(NULL);
  2031. preempt_enable();
  2032. }
  2033. /*
  2034. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  2035. *
  2036. * When zone parameter is non-NULL, spill just the single zone's pages.
  2037. *
  2038. * Note that this can be extremely slow as the draining happens in a workqueue.
  2039. */
  2040. void drain_all_pages(struct zone *zone)
  2041. {
  2042. int cpu;
  2043. /*
  2044. * Allocate in the BSS so we wont require allocation in
  2045. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  2046. */
  2047. static cpumask_t cpus_with_pcps;
  2048. /*
  2049. * Make sure nobody triggers this path before mm_percpu_wq is fully
  2050. * initialized.
  2051. */
  2052. if (WARN_ON_ONCE(!mm_percpu_wq))
  2053. return;
  2054. /* Workqueues cannot recurse */
  2055. if (current->flags & PF_WQ_WORKER)
  2056. return;
  2057. /*
  2058. * Do not drain if one is already in progress unless it's specific to
  2059. * a zone. Such callers are primarily CMA and memory hotplug and need
  2060. * the drain to be complete when the call returns.
  2061. */
  2062. if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
  2063. if (!zone)
  2064. return;
  2065. mutex_lock(&pcpu_drain_mutex);
  2066. }
  2067. /*
  2068. * We don't care about racing with CPU hotplug event
  2069. * as offline notification will cause the notified
  2070. * cpu to drain that CPU pcps and on_each_cpu_mask
  2071. * disables preemption as part of its processing
  2072. */
  2073. for_each_online_cpu(cpu) {
  2074. struct per_cpu_pageset *pcp;
  2075. struct zone *z;
  2076. bool has_pcps = false;
  2077. if (zone) {
  2078. pcp = per_cpu_ptr(zone->pageset, cpu);
  2079. if (pcp->pcp.count)
  2080. has_pcps = true;
  2081. } else {
  2082. for_each_populated_zone(z) {
  2083. pcp = per_cpu_ptr(z->pageset, cpu);
  2084. if (pcp->pcp.count) {
  2085. has_pcps = true;
  2086. break;
  2087. }
  2088. }
  2089. }
  2090. if (has_pcps)
  2091. cpumask_set_cpu(cpu, &cpus_with_pcps);
  2092. else
  2093. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  2094. }
  2095. for_each_cpu(cpu, &cpus_with_pcps) {
  2096. struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
  2097. INIT_WORK(work, drain_local_pages_wq);
  2098. queue_work_on(cpu, mm_percpu_wq, work);
  2099. }
  2100. for_each_cpu(cpu, &cpus_with_pcps)
  2101. flush_work(per_cpu_ptr(&pcpu_drain, cpu));
  2102. mutex_unlock(&pcpu_drain_mutex);
  2103. }
  2104. #ifdef CONFIG_HIBERNATION
  2105. void mark_free_pages(struct zone *zone)
  2106. {
  2107. unsigned long pfn, max_zone_pfn;
  2108. unsigned long flags;
  2109. unsigned int order, t;
  2110. struct page *page;
  2111. if (zone_is_empty(zone))
  2112. return;
  2113. spin_lock_irqsave(&zone->lock, flags);
  2114. max_zone_pfn = zone_end_pfn(zone);
  2115. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  2116. if (pfn_valid(pfn)) {
  2117. page = pfn_to_page(pfn);
  2118. if (page_zone(page) != zone)
  2119. continue;
  2120. if (!swsusp_page_is_forbidden(page))
  2121. swsusp_unset_page_free(page);
  2122. }
  2123. for_each_migratetype_order(order, t) {
  2124. list_for_each_entry(page,
  2125. &zone->free_area[order].free_list[t], lru) {
  2126. unsigned long i;
  2127. pfn = page_to_pfn(page);
  2128. for (i = 0; i < (1UL << order); i++)
  2129. swsusp_set_page_free(pfn_to_page(pfn + i));
  2130. }
  2131. }
  2132. spin_unlock_irqrestore(&zone->lock, flags);
  2133. }
  2134. #endif /* CONFIG_PM */
  2135. /*
  2136. * Free a 0-order page
  2137. * cold == true ? free a cold page : free a hot page
  2138. */
  2139. void free_hot_cold_page(struct page *page, bool cold)
  2140. {
  2141. struct zone *zone = page_zone(page);
  2142. struct per_cpu_pages *pcp;
  2143. unsigned long flags;
  2144. unsigned long pfn = page_to_pfn(page);
  2145. int migratetype;
  2146. if (!free_pcp_prepare(page))
  2147. return;
  2148. migratetype = get_pfnblock_migratetype(page, pfn);
  2149. set_pcppage_migratetype(page, migratetype);
  2150. local_irq_save(flags);
  2151. __count_vm_event(PGFREE);
  2152. /*
  2153. * We only track unmovable, reclaimable and movable on pcp lists.
  2154. * Free ISOLATE pages back to the allocator because they are being
  2155. * offlined but treat RESERVE as movable pages so we can get those
  2156. * areas back if necessary. Otherwise, we may have to free
  2157. * excessively into the page allocator
  2158. */
  2159. if (migratetype >= MIGRATE_PCPTYPES) {
  2160. if (unlikely(is_migrate_isolate(migratetype))) {
  2161. free_one_page(zone, page, pfn, 0, migratetype);
  2162. goto out;
  2163. }
  2164. migratetype = MIGRATE_MOVABLE;
  2165. }
  2166. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2167. if (!cold)
  2168. list_add(&page->lru, &pcp->lists[migratetype]);
  2169. else
  2170. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  2171. pcp->count++;
  2172. if (pcp->count >= pcp->high) {
  2173. unsigned long batch = READ_ONCE(pcp->batch);
  2174. free_pcppages_bulk(zone, batch, pcp);
  2175. pcp->count -= batch;
  2176. }
  2177. out:
  2178. local_irq_restore(flags);
  2179. }
  2180. /*
  2181. * Free a list of 0-order pages
  2182. */
  2183. void free_hot_cold_page_list(struct list_head *list, bool cold)
  2184. {
  2185. struct page *page, *next;
  2186. list_for_each_entry_safe(page, next, list, lru) {
  2187. trace_mm_page_free_batched(page, cold);
  2188. free_hot_cold_page(page, cold);
  2189. }
  2190. }
  2191. /*
  2192. * split_page takes a non-compound higher-order page, and splits it into
  2193. * n (1<<order) sub-pages: page[0..n]
  2194. * Each sub-page must be freed individually.
  2195. *
  2196. * Note: this is probably too low level an operation for use in drivers.
  2197. * Please consult with lkml before using this in your driver.
  2198. */
  2199. void split_page(struct page *page, unsigned int order)
  2200. {
  2201. int i;
  2202. VM_BUG_ON_PAGE(PageCompound(page), page);
  2203. VM_BUG_ON_PAGE(!page_count(page), page);
  2204. #ifdef CONFIG_KMEMCHECK
  2205. /*
  2206. * Split shadow pages too, because free(page[0]) would
  2207. * otherwise free the whole shadow.
  2208. */
  2209. if (kmemcheck_page_is_tracked(page))
  2210. split_page(virt_to_page(page[0].shadow), order);
  2211. #endif
  2212. for (i = 1; i < (1 << order); i++)
  2213. set_page_refcounted(page + i);
  2214. split_page_owner(page, order);
  2215. }
  2216. EXPORT_SYMBOL_GPL(split_page);
  2217. int __isolate_free_page(struct page *page, unsigned int order)
  2218. {
  2219. unsigned long watermark;
  2220. struct zone *zone;
  2221. int mt;
  2222. BUG_ON(!PageBuddy(page));
  2223. zone = page_zone(page);
  2224. mt = get_pageblock_migratetype(page);
  2225. if (!is_migrate_isolate(mt)) {
  2226. /*
  2227. * Obey watermarks as if the page was being allocated. We can
  2228. * emulate a high-order watermark check with a raised order-0
  2229. * watermark, because we already know our high-order page
  2230. * exists.
  2231. */
  2232. watermark = min_wmark_pages(zone) + (1UL << order);
  2233. if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
  2234. return 0;
  2235. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  2236. }
  2237. /* Remove page from free list */
  2238. list_del(&page->lru);
  2239. zone->free_area[order].nr_free--;
  2240. rmv_page_order(page);
  2241. /*
  2242. * Set the pageblock if the isolated page is at least half of a
  2243. * pageblock
  2244. */
  2245. if (order >= pageblock_order - 1) {
  2246. struct page *endpage = page + (1 << order) - 1;
  2247. for (; page < endpage; page += pageblock_nr_pages) {
  2248. int mt = get_pageblock_migratetype(page);
  2249. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
  2250. && mt != MIGRATE_HIGHATOMIC)
  2251. set_pageblock_migratetype(page,
  2252. MIGRATE_MOVABLE);
  2253. }
  2254. }
  2255. return 1UL << order;
  2256. }
  2257. /*
  2258. * Update NUMA hit/miss statistics
  2259. *
  2260. * Must be called with interrupts disabled.
  2261. */
  2262. static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
  2263. {
  2264. #ifdef CONFIG_NUMA
  2265. enum zone_stat_item local_stat = NUMA_LOCAL;
  2266. if (z->node != numa_node_id())
  2267. local_stat = NUMA_OTHER;
  2268. if (z->node == preferred_zone->node)
  2269. __inc_zone_state(z, NUMA_HIT);
  2270. else {
  2271. __inc_zone_state(z, NUMA_MISS);
  2272. __inc_zone_state(preferred_zone, NUMA_FOREIGN);
  2273. }
  2274. __inc_zone_state(z, local_stat);
  2275. #endif
  2276. }
  2277. /* Remove page from the per-cpu list, caller must protect the list */
  2278. static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
  2279. bool cold, struct per_cpu_pages *pcp,
  2280. struct list_head *list)
  2281. {
  2282. struct page *page;
  2283. do {
  2284. if (list_empty(list)) {
  2285. pcp->count += rmqueue_bulk(zone, 0,
  2286. pcp->batch, list,
  2287. migratetype, cold);
  2288. if (unlikely(list_empty(list)))
  2289. return NULL;
  2290. }
  2291. if (cold)
  2292. page = list_last_entry(list, struct page, lru);
  2293. else
  2294. page = list_first_entry(list, struct page, lru);
  2295. list_del(&page->lru);
  2296. pcp->count--;
  2297. } while (check_new_pcp(page));
  2298. return page;
  2299. }
  2300. /* Lock and remove page from the per-cpu list */
  2301. static struct page *rmqueue_pcplist(struct zone *preferred_zone,
  2302. struct zone *zone, unsigned int order,
  2303. gfp_t gfp_flags, int migratetype)
  2304. {
  2305. struct per_cpu_pages *pcp;
  2306. struct list_head *list;
  2307. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  2308. struct page *page;
  2309. unsigned long flags;
  2310. local_irq_save(flags);
  2311. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2312. list = &pcp->lists[migratetype];
  2313. page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
  2314. if (page) {
  2315. __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
  2316. zone_statistics(preferred_zone, zone);
  2317. }
  2318. local_irq_restore(flags);
  2319. return page;
  2320. }
  2321. /*
  2322. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  2323. */
  2324. static inline
  2325. struct page *rmqueue(struct zone *preferred_zone,
  2326. struct zone *zone, unsigned int order,
  2327. gfp_t gfp_flags, unsigned int alloc_flags,
  2328. int migratetype)
  2329. {
  2330. unsigned long flags;
  2331. struct page *page;
  2332. if (likely(order == 0)) {
  2333. page = rmqueue_pcplist(preferred_zone, zone, order,
  2334. gfp_flags, migratetype);
  2335. goto out;
  2336. }
  2337. /*
  2338. * We most definitely don't want callers attempting to
  2339. * allocate greater than order-1 page units with __GFP_NOFAIL.
  2340. */
  2341. WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
  2342. spin_lock_irqsave(&zone->lock, flags);
  2343. do {
  2344. page = NULL;
  2345. if (alloc_flags & ALLOC_HARDER) {
  2346. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  2347. if (page)
  2348. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2349. }
  2350. if (!page)
  2351. page = __rmqueue(zone, order, migratetype);
  2352. } while (page && check_new_pages(page, order));
  2353. spin_unlock(&zone->lock);
  2354. if (!page)
  2355. goto failed;
  2356. __mod_zone_freepage_state(zone, -(1 << order),
  2357. get_pcppage_migratetype(page));
  2358. __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
  2359. zone_statistics(preferred_zone, zone);
  2360. local_irq_restore(flags);
  2361. out:
  2362. VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
  2363. return page;
  2364. failed:
  2365. local_irq_restore(flags);
  2366. return NULL;
  2367. }
  2368. #ifdef CONFIG_FAIL_PAGE_ALLOC
  2369. static struct {
  2370. struct fault_attr attr;
  2371. bool ignore_gfp_highmem;
  2372. bool ignore_gfp_reclaim;
  2373. u32 min_order;
  2374. } fail_page_alloc = {
  2375. .attr = FAULT_ATTR_INITIALIZER,
  2376. .ignore_gfp_reclaim = true,
  2377. .ignore_gfp_highmem = true,
  2378. .min_order = 1,
  2379. };
  2380. static int __init setup_fail_page_alloc(char *str)
  2381. {
  2382. return setup_fault_attr(&fail_page_alloc.attr, str);
  2383. }
  2384. __setup("fail_page_alloc=", setup_fail_page_alloc);
  2385. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2386. {
  2387. if (order < fail_page_alloc.min_order)
  2388. return false;
  2389. if (gfp_mask & __GFP_NOFAIL)
  2390. return false;
  2391. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  2392. return false;
  2393. if (fail_page_alloc.ignore_gfp_reclaim &&
  2394. (gfp_mask & __GFP_DIRECT_RECLAIM))
  2395. return false;
  2396. return should_fail(&fail_page_alloc.attr, 1 << order);
  2397. }
  2398. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2399. static int __init fail_page_alloc_debugfs(void)
  2400. {
  2401. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2402. struct dentry *dir;
  2403. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  2404. &fail_page_alloc.attr);
  2405. if (IS_ERR(dir))
  2406. return PTR_ERR(dir);
  2407. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2408. &fail_page_alloc.ignore_gfp_reclaim))
  2409. goto fail;
  2410. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  2411. &fail_page_alloc.ignore_gfp_highmem))
  2412. goto fail;
  2413. if (!debugfs_create_u32("min-order", mode, dir,
  2414. &fail_page_alloc.min_order))
  2415. goto fail;
  2416. return 0;
  2417. fail:
  2418. debugfs_remove_recursive(dir);
  2419. return -ENOMEM;
  2420. }
  2421. late_initcall(fail_page_alloc_debugfs);
  2422. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2423. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2424. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2425. {
  2426. return false;
  2427. }
  2428. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2429. /*
  2430. * Return true if free base pages are above 'mark'. For high-order checks it
  2431. * will return true of the order-0 watermark is reached and there is at least
  2432. * one free page of a suitable size. Checking now avoids taking the zone lock
  2433. * to check in the allocation paths if no pages are free.
  2434. */
  2435. bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2436. int classzone_idx, unsigned int alloc_flags,
  2437. long free_pages)
  2438. {
  2439. long min = mark;
  2440. int o;
  2441. const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
  2442. /* free_pages may go negative - that's OK */
  2443. free_pages -= (1 << order) - 1;
  2444. if (alloc_flags & ALLOC_HIGH)
  2445. min -= min / 2;
  2446. /*
  2447. * If the caller does not have rights to ALLOC_HARDER then subtract
  2448. * the high-atomic reserves. This will over-estimate the size of the
  2449. * atomic reserve but it avoids a search.
  2450. */
  2451. if (likely(!alloc_harder))
  2452. free_pages -= z->nr_reserved_highatomic;
  2453. else
  2454. min -= min / 4;
  2455. #ifdef CONFIG_CMA
  2456. /* If allocation can't use CMA areas don't use free CMA pages */
  2457. if (!(alloc_flags & ALLOC_CMA))
  2458. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2459. #endif
  2460. /*
  2461. * Check watermarks for an order-0 allocation request. If these
  2462. * are not met, then a high-order request also cannot go ahead
  2463. * even if a suitable page happened to be free.
  2464. */
  2465. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2466. return false;
  2467. /* If this is an order-0 request then the watermark is fine */
  2468. if (!order)
  2469. return true;
  2470. /* For a high-order request, check at least one suitable page is free */
  2471. for (o = order; o < MAX_ORDER; o++) {
  2472. struct free_area *area = &z->free_area[o];
  2473. int mt;
  2474. if (!area->nr_free)
  2475. continue;
  2476. if (alloc_harder)
  2477. return true;
  2478. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2479. if (!list_empty(&area->free_list[mt]))
  2480. return true;
  2481. }
  2482. #ifdef CONFIG_CMA
  2483. if ((alloc_flags & ALLOC_CMA) &&
  2484. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2485. return true;
  2486. }
  2487. #endif
  2488. }
  2489. return false;
  2490. }
  2491. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2492. int classzone_idx, unsigned int alloc_flags)
  2493. {
  2494. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2495. zone_page_state(z, NR_FREE_PAGES));
  2496. }
  2497. static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
  2498. unsigned long mark, int classzone_idx, unsigned int alloc_flags)
  2499. {
  2500. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2501. long cma_pages = 0;
  2502. #ifdef CONFIG_CMA
  2503. /* If allocation can't use CMA areas don't use free CMA pages */
  2504. if (!(alloc_flags & ALLOC_CMA))
  2505. cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
  2506. #endif
  2507. /*
  2508. * Fast check for order-0 only. If this fails then the reserves
  2509. * need to be calculated. There is a corner case where the check
  2510. * passes but only the high-order atomic reserve are free. If
  2511. * the caller is !atomic then it'll uselessly search the free
  2512. * list. That corner case is then slower but it is harmless.
  2513. */
  2514. if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
  2515. return true;
  2516. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2517. free_pages);
  2518. }
  2519. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2520. unsigned long mark, int classzone_idx)
  2521. {
  2522. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2523. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2524. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2525. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2526. free_pages);
  2527. }
  2528. #ifdef CONFIG_NUMA
  2529. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2530. {
  2531. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
  2532. RECLAIM_DISTANCE;
  2533. }
  2534. #else /* CONFIG_NUMA */
  2535. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2536. {
  2537. return true;
  2538. }
  2539. #endif /* CONFIG_NUMA */
  2540. /*
  2541. * get_page_from_freelist goes through the zonelist trying to allocate
  2542. * a page.
  2543. */
  2544. static struct page *
  2545. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2546. const struct alloc_context *ac)
  2547. {
  2548. struct zoneref *z = ac->preferred_zoneref;
  2549. struct zone *zone;
  2550. struct pglist_data *last_pgdat_dirty_limit = NULL;
  2551. /*
  2552. * Scan zonelist, looking for a zone with enough free.
  2553. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2554. */
  2555. for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2556. ac->nodemask) {
  2557. struct page *page;
  2558. unsigned long mark;
  2559. if (cpusets_enabled() &&
  2560. (alloc_flags & ALLOC_CPUSET) &&
  2561. !__cpuset_zone_allowed(zone, gfp_mask))
  2562. continue;
  2563. /*
  2564. * When allocating a page cache page for writing, we
  2565. * want to get it from a node that is within its dirty
  2566. * limit, such that no single node holds more than its
  2567. * proportional share of globally allowed dirty pages.
  2568. * The dirty limits take into account the node's
  2569. * lowmem reserves and high watermark so that kswapd
  2570. * should be able to balance it without having to
  2571. * write pages from its LRU list.
  2572. *
  2573. * XXX: For now, allow allocations to potentially
  2574. * exceed the per-node dirty limit in the slowpath
  2575. * (spread_dirty_pages unset) before going into reclaim,
  2576. * which is important when on a NUMA setup the allowed
  2577. * nodes are together not big enough to reach the
  2578. * global limit. The proper fix for these situations
  2579. * will require awareness of nodes in the
  2580. * dirty-throttling and the flusher threads.
  2581. */
  2582. if (ac->spread_dirty_pages) {
  2583. if (last_pgdat_dirty_limit == zone->zone_pgdat)
  2584. continue;
  2585. if (!node_dirty_ok(zone->zone_pgdat)) {
  2586. last_pgdat_dirty_limit = zone->zone_pgdat;
  2587. continue;
  2588. }
  2589. }
  2590. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2591. if (!zone_watermark_fast(zone, order, mark,
  2592. ac_classzone_idx(ac), alloc_flags)) {
  2593. int ret;
  2594. /* Checked here to keep the fast path fast */
  2595. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2596. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2597. goto try_this_zone;
  2598. if (node_reclaim_mode == 0 ||
  2599. !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
  2600. continue;
  2601. ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
  2602. switch (ret) {
  2603. case NODE_RECLAIM_NOSCAN:
  2604. /* did not scan */
  2605. continue;
  2606. case NODE_RECLAIM_FULL:
  2607. /* scanned but unreclaimable */
  2608. continue;
  2609. default:
  2610. /* did we reclaim enough */
  2611. if (zone_watermark_ok(zone, order, mark,
  2612. ac_classzone_idx(ac), alloc_flags))
  2613. goto try_this_zone;
  2614. continue;
  2615. }
  2616. }
  2617. try_this_zone:
  2618. page = rmqueue(ac->preferred_zoneref->zone, zone, order,
  2619. gfp_mask, alloc_flags, ac->migratetype);
  2620. if (page) {
  2621. prep_new_page(page, order, gfp_mask, alloc_flags);
  2622. /*
  2623. * If this is a high-order atomic allocation then check
  2624. * if the pageblock should be reserved for the future
  2625. */
  2626. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2627. reserve_highatomic_pageblock(page, zone, order);
  2628. return page;
  2629. }
  2630. }
  2631. return NULL;
  2632. }
  2633. /*
  2634. * Large machines with many possible nodes should not always dump per-node
  2635. * meminfo in irq context.
  2636. */
  2637. static inline bool should_suppress_show_mem(void)
  2638. {
  2639. bool ret = false;
  2640. #if NODES_SHIFT > 8
  2641. ret = in_interrupt();
  2642. #endif
  2643. return ret;
  2644. }
  2645. static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
  2646. {
  2647. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2648. static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
  2649. if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
  2650. return;
  2651. /*
  2652. * This documents exceptions given to allocations in certain
  2653. * contexts that are allowed to allocate outside current's set
  2654. * of allowed nodes.
  2655. */
  2656. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2657. if (test_thread_flag(TIF_MEMDIE) ||
  2658. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2659. filter &= ~SHOW_MEM_FILTER_NODES;
  2660. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2661. filter &= ~SHOW_MEM_FILTER_NODES;
  2662. show_mem(filter, nodemask);
  2663. }
  2664. void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
  2665. {
  2666. struct va_format vaf;
  2667. va_list args;
  2668. static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
  2669. DEFAULT_RATELIMIT_BURST);
  2670. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  2671. debug_guardpage_minorder() > 0)
  2672. return;
  2673. pr_warn("%s: ", current->comm);
  2674. va_start(args, fmt);
  2675. vaf.fmt = fmt;
  2676. vaf.va = &args;
  2677. pr_cont("%pV", &vaf);
  2678. va_end(args);
  2679. pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
  2680. if (nodemask)
  2681. pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
  2682. else
  2683. pr_cont("(null)\n");
  2684. cpuset_print_current_mems_allowed();
  2685. dump_stack();
  2686. warn_alloc_show_mem(gfp_mask, nodemask);
  2687. }
  2688. static inline struct page *
  2689. __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
  2690. unsigned int alloc_flags,
  2691. const struct alloc_context *ac)
  2692. {
  2693. struct page *page;
  2694. page = get_page_from_freelist(gfp_mask, order,
  2695. alloc_flags|ALLOC_CPUSET, ac);
  2696. /*
  2697. * fallback to ignore cpuset restriction if our nodes
  2698. * are depleted
  2699. */
  2700. if (!page)
  2701. page = get_page_from_freelist(gfp_mask, order,
  2702. alloc_flags, ac);
  2703. return page;
  2704. }
  2705. static inline struct page *
  2706. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2707. const struct alloc_context *ac, unsigned long *did_some_progress)
  2708. {
  2709. struct oom_control oc = {
  2710. .zonelist = ac->zonelist,
  2711. .nodemask = ac->nodemask,
  2712. .memcg = NULL,
  2713. .gfp_mask = gfp_mask,
  2714. .order = order,
  2715. };
  2716. struct page *page;
  2717. *did_some_progress = 0;
  2718. /*
  2719. * Acquire the oom lock. If that fails, somebody else is
  2720. * making progress for us.
  2721. */
  2722. if (!mutex_trylock(&oom_lock)) {
  2723. *did_some_progress = 1;
  2724. schedule_timeout_uninterruptible(1);
  2725. return NULL;
  2726. }
  2727. /*
  2728. * Go through the zonelist yet one more time, keep very high watermark
  2729. * here, this is only to catch a parallel oom killing, we must fail if
  2730. * we're still under heavy pressure.
  2731. */
  2732. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2733. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2734. if (page)
  2735. goto out;
  2736. /* Coredumps can quickly deplete all memory reserves */
  2737. if (current->flags & PF_DUMPCORE)
  2738. goto out;
  2739. /* The OOM killer will not help higher order allocs */
  2740. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2741. goto out;
  2742. /* The OOM killer does not needlessly kill tasks for lowmem */
  2743. if (ac->high_zoneidx < ZONE_NORMAL)
  2744. goto out;
  2745. if (pm_suspended_storage())
  2746. goto out;
  2747. /*
  2748. * XXX: GFP_NOFS allocations should rather fail than rely on
  2749. * other request to make a forward progress.
  2750. * We are in an unfortunate situation where out_of_memory cannot
  2751. * do much for this context but let's try it to at least get
  2752. * access to memory reserved if the current task is killed (see
  2753. * out_of_memory). Once filesystems are ready to handle allocation
  2754. * failures more gracefully we should just bail out here.
  2755. */
  2756. /* The OOM killer may not free memory on a specific node */
  2757. if (gfp_mask & __GFP_THISNODE)
  2758. goto out;
  2759. /* Exhausted what can be done so it's blamo time */
  2760. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  2761. *did_some_progress = 1;
  2762. /*
  2763. * Help non-failing allocations by giving them access to memory
  2764. * reserves
  2765. */
  2766. if (gfp_mask & __GFP_NOFAIL)
  2767. page = __alloc_pages_cpuset_fallback(gfp_mask, order,
  2768. ALLOC_NO_WATERMARKS, ac);
  2769. }
  2770. out:
  2771. mutex_unlock(&oom_lock);
  2772. return page;
  2773. }
  2774. /*
  2775. * Maximum number of compaction retries wit a progress before OOM
  2776. * killer is consider as the only way to move forward.
  2777. */
  2778. #define MAX_COMPACT_RETRIES 16
  2779. #ifdef CONFIG_COMPACTION
  2780. /* Try memory compaction for high-order allocations before reclaim */
  2781. static struct page *
  2782. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2783. unsigned int alloc_flags, const struct alloc_context *ac,
  2784. enum compact_priority prio, enum compact_result *compact_result)
  2785. {
  2786. struct page *page;
  2787. if (!order)
  2788. return NULL;
  2789. current->flags |= PF_MEMALLOC;
  2790. *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2791. prio);
  2792. current->flags &= ~PF_MEMALLOC;
  2793. if (*compact_result <= COMPACT_INACTIVE)
  2794. return NULL;
  2795. /*
  2796. * At least in one zone compaction wasn't deferred or skipped, so let's
  2797. * count a compaction stall
  2798. */
  2799. count_vm_event(COMPACTSTALL);
  2800. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  2801. if (page) {
  2802. struct zone *zone = page_zone(page);
  2803. zone->compact_blockskip_flush = false;
  2804. compaction_defer_reset(zone, order, true);
  2805. count_vm_event(COMPACTSUCCESS);
  2806. return page;
  2807. }
  2808. /*
  2809. * It's bad if compaction run occurs and fails. The most likely reason
  2810. * is that pages exist, but not enough to satisfy watermarks.
  2811. */
  2812. count_vm_event(COMPACTFAIL);
  2813. cond_resched();
  2814. return NULL;
  2815. }
  2816. static inline bool
  2817. should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
  2818. enum compact_result compact_result,
  2819. enum compact_priority *compact_priority,
  2820. int *compaction_retries)
  2821. {
  2822. int max_retries = MAX_COMPACT_RETRIES;
  2823. int min_priority;
  2824. bool ret = false;
  2825. int retries = *compaction_retries;
  2826. enum compact_priority priority = *compact_priority;
  2827. if (!order)
  2828. return false;
  2829. if (compaction_made_progress(compact_result))
  2830. (*compaction_retries)++;
  2831. /*
  2832. * compaction considers all the zone as desperately out of memory
  2833. * so it doesn't really make much sense to retry except when the
  2834. * failure could be caused by insufficient priority
  2835. */
  2836. if (compaction_failed(compact_result))
  2837. goto check_priority;
  2838. /*
  2839. * make sure the compaction wasn't deferred or didn't bail out early
  2840. * due to locks contention before we declare that we should give up.
  2841. * But do not retry if the given zonelist is not suitable for
  2842. * compaction.
  2843. */
  2844. if (compaction_withdrawn(compact_result)) {
  2845. ret = compaction_zonelist_suitable(ac, order, alloc_flags);
  2846. goto out;
  2847. }
  2848. /*
  2849. * !costly requests are much more important than __GFP_REPEAT
  2850. * costly ones because they are de facto nofail and invoke OOM
  2851. * killer to move on while costly can fail and users are ready
  2852. * to cope with that. 1/4 retries is rather arbitrary but we
  2853. * would need much more detailed feedback from compaction to
  2854. * make a better decision.
  2855. */
  2856. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2857. max_retries /= 4;
  2858. if (*compaction_retries <= max_retries) {
  2859. ret = true;
  2860. goto out;
  2861. }
  2862. /*
  2863. * Make sure there are attempts at the highest priority if we exhausted
  2864. * all retries or failed at the lower priorities.
  2865. */
  2866. check_priority:
  2867. min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
  2868. MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
  2869. if (*compact_priority > min_priority) {
  2870. (*compact_priority)--;
  2871. *compaction_retries = 0;
  2872. ret = true;
  2873. }
  2874. out:
  2875. trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
  2876. return ret;
  2877. }
  2878. #else
  2879. static inline struct page *
  2880. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2881. unsigned int alloc_flags, const struct alloc_context *ac,
  2882. enum compact_priority prio, enum compact_result *compact_result)
  2883. {
  2884. *compact_result = COMPACT_SKIPPED;
  2885. return NULL;
  2886. }
  2887. static inline bool
  2888. should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
  2889. enum compact_result compact_result,
  2890. enum compact_priority *compact_priority,
  2891. int *compaction_retries)
  2892. {
  2893. struct zone *zone;
  2894. struct zoneref *z;
  2895. if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
  2896. return false;
  2897. /*
  2898. * There are setups with compaction disabled which would prefer to loop
  2899. * inside the allocator rather than hit the oom killer prematurely.
  2900. * Let's give them a good hope and keep retrying while the order-0
  2901. * watermarks are OK.
  2902. */
  2903. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2904. ac->nodemask) {
  2905. if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
  2906. ac_classzone_idx(ac), alloc_flags))
  2907. return true;
  2908. }
  2909. return false;
  2910. }
  2911. #endif /* CONFIG_COMPACTION */
  2912. /* Perform direct synchronous page reclaim */
  2913. static int
  2914. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2915. const struct alloc_context *ac)
  2916. {
  2917. struct reclaim_state reclaim_state;
  2918. int progress;
  2919. cond_resched();
  2920. /* We now go into synchronous reclaim */
  2921. cpuset_memory_pressure_bump();
  2922. current->flags |= PF_MEMALLOC;
  2923. lockdep_set_current_reclaim_state(gfp_mask);
  2924. reclaim_state.reclaimed_slab = 0;
  2925. current->reclaim_state = &reclaim_state;
  2926. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2927. ac->nodemask);
  2928. current->reclaim_state = NULL;
  2929. lockdep_clear_current_reclaim_state();
  2930. current->flags &= ~PF_MEMALLOC;
  2931. cond_resched();
  2932. return progress;
  2933. }
  2934. /* The really slow allocator path where we enter direct reclaim */
  2935. static inline struct page *
  2936. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2937. unsigned int alloc_flags, const struct alloc_context *ac,
  2938. unsigned long *did_some_progress)
  2939. {
  2940. struct page *page = NULL;
  2941. bool drained = false;
  2942. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2943. if (unlikely(!(*did_some_progress)))
  2944. return NULL;
  2945. retry:
  2946. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  2947. /*
  2948. * If an allocation failed after direct reclaim, it could be because
  2949. * pages are pinned on the per-cpu lists or in high alloc reserves.
  2950. * Shrink them them and try again
  2951. */
  2952. if (!page && !drained) {
  2953. unreserve_highatomic_pageblock(ac, false);
  2954. drain_all_pages(NULL);
  2955. drained = true;
  2956. goto retry;
  2957. }
  2958. return page;
  2959. }
  2960. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  2961. {
  2962. struct zoneref *z;
  2963. struct zone *zone;
  2964. pg_data_t *last_pgdat = NULL;
  2965. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2966. ac->high_zoneidx, ac->nodemask) {
  2967. if (last_pgdat != zone->zone_pgdat)
  2968. wakeup_kswapd(zone, order, ac->high_zoneidx);
  2969. last_pgdat = zone->zone_pgdat;
  2970. }
  2971. }
  2972. static inline unsigned int
  2973. gfp_to_alloc_flags(gfp_t gfp_mask)
  2974. {
  2975. unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2976. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2977. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2978. /*
  2979. * The caller may dip into page reserves a bit more if the caller
  2980. * cannot run direct reclaim, or if the caller has realtime scheduling
  2981. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2982. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  2983. */
  2984. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2985. if (gfp_mask & __GFP_ATOMIC) {
  2986. /*
  2987. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2988. * if it can't schedule.
  2989. */
  2990. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2991. alloc_flags |= ALLOC_HARDER;
  2992. /*
  2993. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2994. * comment for __cpuset_node_allowed().
  2995. */
  2996. alloc_flags &= ~ALLOC_CPUSET;
  2997. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2998. alloc_flags |= ALLOC_HARDER;
  2999. #ifdef CONFIG_CMA
  3000. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  3001. alloc_flags |= ALLOC_CMA;
  3002. #endif
  3003. return alloc_flags;
  3004. }
  3005. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  3006. {
  3007. if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
  3008. return false;
  3009. if (gfp_mask & __GFP_MEMALLOC)
  3010. return true;
  3011. if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  3012. return true;
  3013. if (!in_interrupt() &&
  3014. ((current->flags & PF_MEMALLOC) ||
  3015. unlikely(test_thread_flag(TIF_MEMDIE))))
  3016. return true;
  3017. return false;
  3018. }
  3019. /*
  3020. * Maximum number of reclaim retries without any progress before OOM killer
  3021. * is consider as the only way to move forward.
  3022. */
  3023. #define MAX_RECLAIM_RETRIES 16
  3024. /*
  3025. * Checks whether it makes sense to retry the reclaim to make a forward progress
  3026. * for the given allocation request.
  3027. * The reclaim feedback represented by did_some_progress (any progress during
  3028. * the last reclaim round) and no_progress_loops (number of reclaim rounds without
  3029. * any progress in a row) is considered as well as the reclaimable pages on the
  3030. * applicable zone list (with a backoff mechanism which is a function of
  3031. * no_progress_loops).
  3032. *
  3033. * Returns true if a retry is viable or false to enter the oom path.
  3034. */
  3035. static inline bool
  3036. should_reclaim_retry(gfp_t gfp_mask, unsigned order,
  3037. struct alloc_context *ac, int alloc_flags,
  3038. bool did_some_progress, int *no_progress_loops)
  3039. {
  3040. struct zone *zone;
  3041. struct zoneref *z;
  3042. /*
  3043. * Costly allocations might have made a progress but this doesn't mean
  3044. * their order will become available due to high fragmentation so
  3045. * always increment the no progress counter for them
  3046. */
  3047. if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
  3048. *no_progress_loops = 0;
  3049. else
  3050. (*no_progress_loops)++;
  3051. /*
  3052. * Make sure we converge to OOM if we cannot make any progress
  3053. * several times in the row.
  3054. */
  3055. if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
  3056. /* Before OOM, exhaust highatomic_reserve */
  3057. return unreserve_highatomic_pageblock(ac, true);
  3058. }
  3059. /*
  3060. * Keep reclaiming pages while there is a chance this will lead
  3061. * somewhere. If none of the target zones can satisfy our allocation
  3062. * request even if all reclaimable pages are considered then we are
  3063. * screwed and have to go OOM.
  3064. */
  3065. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  3066. ac->nodemask) {
  3067. unsigned long available;
  3068. unsigned long reclaimable;
  3069. unsigned long min_wmark = min_wmark_pages(zone);
  3070. bool wmark;
  3071. available = reclaimable = zone_reclaimable_pages(zone);
  3072. available -= DIV_ROUND_UP((*no_progress_loops) * available,
  3073. MAX_RECLAIM_RETRIES);
  3074. available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
  3075. /*
  3076. * Would the allocation succeed if we reclaimed the whole
  3077. * available?
  3078. */
  3079. wmark = __zone_watermark_ok(zone, order, min_wmark,
  3080. ac_classzone_idx(ac), alloc_flags, available);
  3081. trace_reclaim_retry_zone(z, order, reclaimable,
  3082. available, min_wmark, *no_progress_loops, wmark);
  3083. if (wmark) {
  3084. /*
  3085. * If we didn't make any progress and have a lot of
  3086. * dirty + writeback pages then we should wait for
  3087. * an IO to complete to slow down the reclaim and
  3088. * prevent from pre mature OOM
  3089. */
  3090. if (!did_some_progress) {
  3091. unsigned long write_pending;
  3092. write_pending = zone_page_state_snapshot(zone,
  3093. NR_ZONE_WRITE_PENDING);
  3094. if (2 * write_pending > reclaimable) {
  3095. congestion_wait(BLK_RW_ASYNC, HZ/10);
  3096. return true;
  3097. }
  3098. }
  3099. /*
  3100. * Memory allocation/reclaim might be called from a WQ
  3101. * context and the current implementation of the WQ
  3102. * concurrency control doesn't recognize that
  3103. * a particular WQ is congested if the worker thread is
  3104. * looping without ever sleeping. Therefore we have to
  3105. * do a short sleep here rather than calling
  3106. * cond_resched().
  3107. */
  3108. if (current->flags & PF_WQ_WORKER)
  3109. schedule_timeout_uninterruptible(1);
  3110. else
  3111. cond_resched();
  3112. return true;
  3113. }
  3114. }
  3115. return false;
  3116. }
  3117. static inline struct page *
  3118. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  3119. struct alloc_context *ac)
  3120. {
  3121. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  3122. struct page *page = NULL;
  3123. unsigned int alloc_flags;
  3124. unsigned long did_some_progress;
  3125. enum compact_priority compact_priority;
  3126. enum compact_result compact_result;
  3127. int compaction_retries;
  3128. int no_progress_loops;
  3129. unsigned long alloc_start = jiffies;
  3130. unsigned int stall_timeout = 10 * HZ;
  3131. unsigned int cpuset_mems_cookie;
  3132. /*
  3133. * In the slowpath, we sanity check order to avoid ever trying to
  3134. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  3135. * be using allocators in order of preference for an area that is
  3136. * too large.
  3137. */
  3138. if (order >= MAX_ORDER) {
  3139. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  3140. return NULL;
  3141. }
  3142. /*
  3143. * We also sanity check to catch abuse of atomic reserves being used by
  3144. * callers that are not in atomic context.
  3145. */
  3146. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  3147. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  3148. gfp_mask &= ~__GFP_ATOMIC;
  3149. retry_cpuset:
  3150. compaction_retries = 0;
  3151. no_progress_loops = 0;
  3152. compact_priority = DEF_COMPACT_PRIORITY;
  3153. cpuset_mems_cookie = read_mems_allowed_begin();
  3154. /*
  3155. * The fast path uses conservative alloc_flags to succeed only until
  3156. * kswapd needs to be woken up, and to avoid the cost of setting up
  3157. * alloc_flags precisely. So we do that now.
  3158. */
  3159. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  3160. /*
  3161. * We need to recalculate the starting point for the zonelist iterator
  3162. * because we might have used different nodemask in the fast path, or
  3163. * there was a cpuset modification and we are retrying - otherwise we
  3164. * could end up iterating over non-eligible zones endlessly.
  3165. */
  3166. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3167. ac->high_zoneidx, ac->nodemask);
  3168. if (!ac->preferred_zoneref->zone)
  3169. goto nopage;
  3170. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3171. wake_all_kswapds(order, ac);
  3172. /*
  3173. * The adjusted alloc_flags might result in immediate success, so try
  3174. * that first
  3175. */
  3176. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3177. if (page)
  3178. goto got_pg;
  3179. /*
  3180. * For costly allocations, try direct compaction first, as it's likely
  3181. * that we have enough base pages and don't need to reclaim. Don't try
  3182. * that for allocations that are allowed to ignore watermarks, as the
  3183. * ALLOC_NO_WATERMARKS attempt didn't yet happen.
  3184. */
  3185. if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
  3186. !gfp_pfmemalloc_allowed(gfp_mask)) {
  3187. page = __alloc_pages_direct_compact(gfp_mask, order,
  3188. alloc_flags, ac,
  3189. INIT_COMPACT_PRIORITY,
  3190. &compact_result);
  3191. if (page)
  3192. goto got_pg;
  3193. /*
  3194. * Checks for costly allocations with __GFP_NORETRY, which
  3195. * includes THP page fault allocations
  3196. */
  3197. if (gfp_mask & __GFP_NORETRY) {
  3198. /*
  3199. * If compaction is deferred for high-order allocations,
  3200. * it is because sync compaction recently failed. If
  3201. * this is the case and the caller requested a THP
  3202. * allocation, we do not want to heavily disrupt the
  3203. * system, so we fail the allocation instead of entering
  3204. * direct reclaim.
  3205. */
  3206. if (compact_result == COMPACT_DEFERRED)
  3207. goto nopage;
  3208. /*
  3209. * Looks like reclaim/compaction is worth trying, but
  3210. * sync compaction could be very expensive, so keep
  3211. * using async compaction.
  3212. */
  3213. compact_priority = INIT_COMPACT_PRIORITY;
  3214. }
  3215. }
  3216. retry:
  3217. /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
  3218. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3219. wake_all_kswapds(order, ac);
  3220. if (gfp_pfmemalloc_allowed(gfp_mask))
  3221. alloc_flags = ALLOC_NO_WATERMARKS;
  3222. /*
  3223. * Reset the zonelist iterators if memory policies can be ignored.
  3224. * These allocations are high priority and system rather than user
  3225. * orientated.
  3226. */
  3227. if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
  3228. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  3229. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3230. ac->high_zoneidx, ac->nodemask);
  3231. }
  3232. /* Attempt with potentially adjusted zonelist and alloc_flags */
  3233. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3234. if (page)
  3235. goto got_pg;
  3236. /* Caller is not willing to reclaim, we can't balance anything */
  3237. if (!can_direct_reclaim)
  3238. goto nopage;
  3239. /* Make sure we know about allocations which stall for too long */
  3240. if (time_after(jiffies, alloc_start + stall_timeout)) {
  3241. warn_alloc(gfp_mask, ac->nodemask,
  3242. "page allocation stalls for %ums, order:%u",
  3243. jiffies_to_msecs(jiffies-alloc_start), order);
  3244. stall_timeout += 10 * HZ;
  3245. }
  3246. /* Avoid recursion of direct reclaim */
  3247. if (current->flags & PF_MEMALLOC)
  3248. goto nopage;
  3249. /* Try direct reclaim and then allocating */
  3250. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  3251. &did_some_progress);
  3252. if (page)
  3253. goto got_pg;
  3254. /* Try direct compaction and then allocating */
  3255. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  3256. compact_priority, &compact_result);
  3257. if (page)
  3258. goto got_pg;
  3259. /* Do not loop if specifically requested */
  3260. if (gfp_mask & __GFP_NORETRY)
  3261. goto nopage;
  3262. /*
  3263. * Do not retry costly high order allocations unless they are
  3264. * __GFP_REPEAT
  3265. */
  3266. if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
  3267. goto nopage;
  3268. if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
  3269. did_some_progress > 0, &no_progress_loops))
  3270. goto retry;
  3271. /*
  3272. * It doesn't make any sense to retry for the compaction if the order-0
  3273. * reclaim is not able to make any progress because the current
  3274. * implementation of the compaction depends on the sufficient amount
  3275. * of free memory (see __compaction_suitable)
  3276. */
  3277. if (did_some_progress > 0 &&
  3278. should_compact_retry(ac, order, alloc_flags,
  3279. compact_result, &compact_priority,
  3280. &compaction_retries))
  3281. goto retry;
  3282. /*
  3283. * It's possible we raced with cpuset update so the OOM would be
  3284. * premature (see below the nopage: label for full explanation).
  3285. */
  3286. if (read_mems_allowed_retry(cpuset_mems_cookie))
  3287. goto retry_cpuset;
  3288. /* Reclaim has failed us, start killing things */
  3289. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  3290. if (page)
  3291. goto got_pg;
  3292. /* Avoid allocations with no watermarks from looping endlessly */
  3293. if (test_thread_flag(TIF_MEMDIE))
  3294. goto nopage;
  3295. /* Retry as long as the OOM killer is making progress */
  3296. if (did_some_progress) {
  3297. no_progress_loops = 0;
  3298. goto retry;
  3299. }
  3300. nopage:
  3301. /*
  3302. * When updating a task's mems_allowed or mempolicy nodemask, it is
  3303. * possible to race with parallel threads in such a way that our
  3304. * allocation can fail while the mask is being updated. If we are about
  3305. * to fail, check if the cpuset changed during allocation and if so,
  3306. * retry.
  3307. */
  3308. if (read_mems_allowed_retry(cpuset_mems_cookie))
  3309. goto retry_cpuset;
  3310. /*
  3311. * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
  3312. * we always retry
  3313. */
  3314. if (gfp_mask & __GFP_NOFAIL) {
  3315. /*
  3316. * All existing users of the __GFP_NOFAIL are blockable, so warn
  3317. * of any new users that actually require GFP_NOWAIT
  3318. */
  3319. if (WARN_ON_ONCE(!can_direct_reclaim))
  3320. goto fail;
  3321. /*
  3322. * PF_MEMALLOC request from this context is rather bizarre
  3323. * because we cannot reclaim anything and only can loop waiting
  3324. * for somebody to do a work for us
  3325. */
  3326. WARN_ON_ONCE(current->flags & PF_MEMALLOC);
  3327. /*
  3328. * non failing costly orders are a hard requirement which we
  3329. * are not prepared for much so let's warn about these users
  3330. * so that we can identify them and convert them to something
  3331. * else.
  3332. */
  3333. WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
  3334. /*
  3335. * Help non-failing allocations by giving them access to memory
  3336. * reserves but do not use ALLOC_NO_WATERMARKS because this
  3337. * could deplete whole memory reserves which would just make
  3338. * the situation worse
  3339. */
  3340. page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
  3341. if (page)
  3342. goto got_pg;
  3343. cond_resched();
  3344. goto retry;
  3345. }
  3346. fail:
  3347. warn_alloc(gfp_mask, ac->nodemask,
  3348. "page allocation failure: order:%u", order);
  3349. got_pg:
  3350. return page;
  3351. }
  3352. static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
  3353. struct zonelist *zonelist, nodemask_t *nodemask,
  3354. struct alloc_context *ac, gfp_t *alloc_mask,
  3355. unsigned int *alloc_flags)
  3356. {
  3357. ac->high_zoneidx = gfp_zone(gfp_mask);
  3358. ac->zonelist = zonelist;
  3359. ac->nodemask = nodemask;
  3360. ac->migratetype = gfpflags_to_migratetype(gfp_mask);
  3361. if (cpusets_enabled()) {
  3362. *alloc_mask |= __GFP_HARDWALL;
  3363. if (!ac->nodemask)
  3364. ac->nodemask = &cpuset_current_mems_allowed;
  3365. else
  3366. *alloc_flags |= ALLOC_CPUSET;
  3367. }
  3368. lockdep_trace_alloc(gfp_mask);
  3369. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  3370. if (should_fail_alloc_page(gfp_mask, order))
  3371. return false;
  3372. if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
  3373. *alloc_flags |= ALLOC_CMA;
  3374. return true;
  3375. }
  3376. /* Determine whether to spread dirty pages and what the first usable zone */
  3377. static inline void finalise_ac(gfp_t gfp_mask,
  3378. unsigned int order, struct alloc_context *ac)
  3379. {
  3380. /* Dirty zone balancing only done in the fast path */
  3381. ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  3382. /*
  3383. * The preferred zone is used for statistics but crucially it is
  3384. * also used as the starting point for the zonelist iterator. It
  3385. * may get reset for allocations that ignore memory policies.
  3386. */
  3387. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3388. ac->high_zoneidx, ac->nodemask);
  3389. }
  3390. /*
  3391. * This is the 'heart' of the zoned buddy allocator.
  3392. */
  3393. struct page *
  3394. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  3395. struct zonelist *zonelist, nodemask_t *nodemask)
  3396. {
  3397. struct page *page;
  3398. unsigned int alloc_flags = ALLOC_WMARK_LOW;
  3399. gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
  3400. struct alloc_context ac = { };
  3401. gfp_mask &= gfp_allowed_mask;
  3402. if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
  3403. return NULL;
  3404. finalise_ac(gfp_mask, order, &ac);
  3405. /* First allocation attempt */
  3406. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  3407. if (likely(page))
  3408. goto out;
  3409. /*
  3410. * Runtime PM, block IO and its error handling path can deadlock
  3411. * because I/O on the device might not complete.
  3412. */
  3413. alloc_mask = memalloc_noio_flags(gfp_mask);
  3414. ac.spread_dirty_pages = false;
  3415. /*
  3416. * Restore the original nodemask if it was potentially replaced with
  3417. * &cpuset_current_mems_allowed to optimize the fast-path attempt.
  3418. */
  3419. if (unlikely(ac.nodemask != nodemask))
  3420. ac.nodemask = nodemask;
  3421. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  3422. out:
  3423. if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
  3424. unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
  3425. __free_pages(page, order);
  3426. page = NULL;
  3427. }
  3428. if (kmemcheck_enabled && page)
  3429. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  3430. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  3431. return page;
  3432. }
  3433. EXPORT_SYMBOL(__alloc_pages_nodemask);
  3434. /*
  3435. * Common helper functions.
  3436. */
  3437. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  3438. {
  3439. struct page *page;
  3440. /*
  3441. * __get_free_pages() returns a 32-bit address, which cannot represent
  3442. * a highmem page
  3443. */
  3444. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  3445. page = alloc_pages(gfp_mask, order);
  3446. if (!page)
  3447. return 0;
  3448. return (unsigned long) page_address(page);
  3449. }
  3450. EXPORT_SYMBOL(__get_free_pages);
  3451. unsigned long get_zeroed_page(gfp_t gfp_mask)
  3452. {
  3453. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  3454. }
  3455. EXPORT_SYMBOL(get_zeroed_page);
  3456. void __free_pages(struct page *page, unsigned int order)
  3457. {
  3458. if (put_page_testzero(page)) {
  3459. if (order == 0)
  3460. free_hot_cold_page(page, false);
  3461. else
  3462. __free_pages_ok(page, order);
  3463. }
  3464. }
  3465. EXPORT_SYMBOL(__free_pages);
  3466. void free_pages(unsigned long addr, unsigned int order)
  3467. {
  3468. if (addr != 0) {
  3469. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3470. __free_pages(virt_to_page((void *)addr), order);
  3471. }
  3472. }
  3473. EXPORT_SYMBOL(free_pages);
  3474. /*
  3475. * Page Fragment:
  3476. * An arbitrary-length arbitrary-offset area of memory which resides
  3477. * within a 0 or higher order page. Multiple fragments within that page
  3478. * are individually refcounted, in the page's reference counter.
  3479. *
  3480. * The page_frag functions below provide a simple allocation framework for
  3481. * page fragments. This is used by the network stack and network device
  3482. * drivers to provide a backing region of memory for use as either an
  3483. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  3484. */
  3485. static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
  3486. gfp_t gfp_mask)
  3487. {
  3488. struct page *page = NULL;
  3489. gfp_t gfp = gfp_mask;
  3490. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3491. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  3492. __GFP_NOMEMALLOC;
  3493. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  3494. PAGE_FRAG_CACHE_MAX_ORDER);
  3495. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  3496. #endif
  3497. if (unlikely(!page))
  3498. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  3499. nc->va = page ? page_address(page) : NULL;
  3500. return page;
  3501. }
  3502. void __page_frag_cache_drain(struct page *page, unsigned int count)
  3503. {
  3504. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  3505. if (page_ref_sub_and_test(page, count)) {
  3506. unsigned int order = compound_order(page);
  3507. if (order == 0)
  3508. free_hot_cold_page(page, false);
  3509. else
  3510. __free_pages_ok(page, order);
  3511. }
  3512. }
  3513. EXPORT_SYMBOL(__page_frag_cache_drain);
  3514. void *page_frag_alloc(struct page_frag_cache *nc,
  3515. unsigned int fragsz, gfp_t gfp_mask)
  3516. {
  3517. unsigned int size = PAGE_SIZE;
  3518. struct page *page;
  3519. int offset;
  3520. if (unlikely(!nc->va)) {
  3521. refill:
  3522. page = __page_frag_cache_refill(nc, gfp_mask);
  3523. if (!page)
  3524. return NULL;
  3525. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3526. /* if size can vary use size else just use PAGE_SIZE */
  3527. size = nc->size;
  3528. #endif
  3529. /* Even if we own the page, we do not use atomic_set().
  3530. * This would break get_page_unless_zero() users.
  3531. */
  3532. page_ref_add(page, size - 1);
  3533. /* reset page count bias and offset to start of new frag */
  3534. nc->pfmemalloc = page_is_pfmemalloc(page);
  3535. nc->pagecnt_bias = size;
  3536. nc->offset = size;
  3537. }
  3538. offset = nc->offset - fragsz;
  3539. if (unlikely(offset < 0)) {
  3540. page = virt_to_page(nc->va);
  3541. if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
  3542. goto refill;
  3543. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3544. /* if size can vary use size else just use PAGE_SIZE */
  3545. size = nc->size;
  3546. #endif
  3547. /* OK, page count is 0, we can safely set it */
  3548. set_page_count(page, size);
  3549. /* reset page count bias and offset to start of new frag */
  3550. nc->pagecnt_bias = size;
  3551. offset = size - fragsz;
  3552. }
  3553. nc->pagecnt_bias--;
  3554. nc->offset = offset;
  3555. return nc->va + offset;
  3556. }
  3557. EXPORT_SYMBOL(page_frag_alloc);
  3558. /*
  3559. * Frees a page fragment allocated out of either a compound or order 0 page.
  3560. */
  3561. void page_frag_free(void *addr)
  3562. {
  3563. struct page *page = virt_to_head_page(addr);
  3564. if (unlikely(put_page_testzero(page)))
  3565. __free_pages_ok(page, compound_order(page));
  3566. }
  3567. EXPORT_SYMBOL(page_frag_free);
  3568. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  3569. size_t size)
  3570. {
  3571. if (addr) {
  3572. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  3573. unsigned long used = addr + PAGE_ALIGN(size);
  3574. split_page(virt_to_page((void *)addr), order);
  3575. while (used < alloc_end) {
  3576. free_page(used);
  3577. used += PAGE_SIZE;
  3578. }
  3579. }
  3580. return (void *)addr;
  3581. }
  3582. /**
  3583. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3584. * @size: the number of bytes to allocate
  3585. * @gfp_mask: GFP flags for the allocation
  3586. *
  3587. * This function is similar to alloc_pages(), except that it allocates the
  3588. * minimum number of pages to satisfy the request. alloc_pages() can only
  3589. * allocate memory in power-of-two pages.
  3590. *
  3591. * This function is also limited by MAX_ORDER.
  3592. *
  3593. * Memory allocated by this function must be released by free_pages_exact().
  3594. */
  3595. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3596. {
  3597. unsigned int order = get_order(size);
  3598. unsigned long addr;
  3599. addr = __get_free_pages(gfp_mask, order);
  3600. return make_alloc_exact(addr, order, size);
  3601. }
  3602. EXPORT_SYMBOL(alloc_pages_exact);
  3603. /**
  3604. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3605. * pages on a node.
  3606. * @nid: the preferred node ID where memory should be allocated
  3607. * @size: the number of bytes to allocate
  3608. * @gfp_mask: GFP flags for the allocation
  3609. *
  3610. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3611. * back.
  3612. */
  3613. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3614. {
  3615. unsigned int order = get_order(size);
  3616. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3617. if (!p)
  3618. return NULL;
  3619. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3620. }
  3621. /**
  3622. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3623. * @virt: the value returned by alloc_pages_exact.
  3624. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3625. *
  3626. * Release the memory allocated by a previous call to alloc_pages_exact.
  3627. */
  3628. void free_pages_exact(void *virt, size_t size)
  3629. {
  3630. unsigned long addr = (unsigned long)virt;
  3631. unsigned long end = addr + PAGE_ALIGN(size);
  3632. while (addr < end) {
  3633. free_page(addr);
  3634. addr += PAGE_SIZE;
  3635. }
  3636. }
  3637. EXPORT_SYMBOL(free_pages_exact);
  3638. /**
  3639. * nr_free_zone_pages - count number of pages beyond high watermark
  3640. * @offset: The zone index of the highest zone
  3641. *
  3642. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  3643. * high watermark within all zones at or below a given zone index. For each
  3644. * zone, the number of pages is calculated as:
  3645. * managed_pages - high_pages
  3646. */
  3647. static unsigned long nr_free_zone_pages(int offset)
  3648. {
  3649. struct zoneref *z;
  3650. struct zone *zone;
  3651. /* Just pick one node, since fallback list is circular */
  3652. unsigned long sum = 0;
  3653. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3654. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3655. unsigned long size = zone->managed_pages;
  3656. unsigned long high = high_wmark_pages(zone);
  3657. if (size > high)
  3658. sum += size - high;
  3659. }
  3660. return sum;
  3661. }
  3662. /**
  3663. * nr_free_buffer_pages - count number of pages beyond high watermark
  3664. *
  3665. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3666. * watermark within ZONE_DMA and ZONE_NORMAL.
  3667. */
  3668. unsigned long nr_free_buffer_pages(void)
  3669. {
  3670. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3671. }
  3672. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3673. /**
  3674. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3675. *
  3676. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3677. * high watermark within all zones.
  3678. */
  3679. unsigned long nr_free_pagecache_pages(void)
  3680. {
  3681. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3682. }
  3683. static inline void show_node(struct zone *zone)
  3684. {
  3685. if (IS_ENABLED(CONFIG_NUMA))
  3686. printk("Node %d ", zone_to_nid(zone));
  3687. }
  3688. long si_mem_available(void)
  3689. {
  3690. long available;
  3691. unsigned long pagecache;
  3692. unsigned long wmark_low = 0;
  3693. unsigned long pages[NR_LRU_LISTS];
  3694. struct zone *zone;
  3695. int lru;
  3696. for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
  3697. pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
  3698. for_each_zone(zone)
  3699. wmark_low += zone->watermark[WMARK_LOW];
  3700. /*
  3701. * Estimate the amount of memory available for userspace allocations,
  3702. * without causing swapping.
  3703. */
  3704. available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
  3705. /*
  3706. * Not all the page cache can be freed, otherwise the system will
  3707. * start swapping. Assume at least half of the page cache, or the
  3708. * low watermark worth of cache, needs to stay.
  3709. */
  3710. pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
  3711. pagecache -= min(pagecache / 2, wmark_low);
  3712. available += pagecache;
  3713. /*
  3714. * Part of the reclaimable slab consists of items that are in use,
  3715. * and cannot be freed. Cap this estimate at the low watermark.
  3716. */
  3717. available += global_page_state(NR_SLAB_RECLAIMABLE) -
  3718. min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
  3719. if (available < 0)
  3720. available = 0;
  3721. return available;
  3722. }
  3723. EXPORT_SYMBOL_GPL(si_mem_available);
  3724. void si_meminfo(struct sysinfo *val)
  3725. {
  3726. val->totalram = totalram_pages;
  3727. val->sharedram = global_node_page_state(NR_SHMEM);
  3728. val->freeram = global_page_state(NR_FREE_PAGES);
  3729. val->bufferram = nr_blockdev_pages();
  3730. val->totalhigh = totalhigh_pages;
  3731. val->freehigh = nr_free_highpages();
  3732. val->mem_unit = PAGE_SIZE;
  3733. }
  3734. EXPORT_SYMBOL(si_meminfo);
  3735. #ifdef CONFIG_NUMA
  3736. void si_meminfo_node(struct sysinfo *val, int nid)
  3737. {
  3738. int zone_type; /* needs to be signed */
  3739. unsigned long managed_pages = 0;
  3740. unsigned long managed_highpages = 0;
  3741. unsigned long free_highpages = 0;
  3742. pg_data_t *pgdat = NODE_DATA(nid);
  3743. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3744. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3745. val->totalram = managed_pages;
  3746. val->sharedram = node_page_state(pgdat, NR_SHMEM);
  3747. val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
  3748. #ifdef CONFIG_HIGHMEM
  3749. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3750. struct zone *zone = &pgdat->node_zones[zone_type];
  3751. if (is_highmem(zone)) {
  3752. managed_highpages += zone->managed_pages;
  3753. free_highpages += zone_page_state(zone, NR_FREE_PAGES);
  3754. }
  3755. }
  3756. val->totalhigh = managed_highpages;
  3757. val->freehigh = free_highpages;
  3758. #else
  3759. val->totalhigh = managed_highpages;
  3760. val->freehigh = free_highpages;
  3761. #endif
  3762. val->mem_unit = PAGE_SIZE;
  3763. }
  3764. #endif
  3765. /*
  3766. * Determine whether the node should be displayed or not, depending on whether
  3767. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  3768. */
  3769. static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
  3770. {
  3771. if (!(flags & SHOW_MEM_FILTER_NODES))
  3772. return false;
  3773. /*
  3774. * no node mask - aka implicit memory numa policy. Do not bother with
  3775. * the synchronization - read_mems_allowed_begin - because we do not
  3776. * have to be precise here.
  3777. */
  3778. if (!nodemask)
  3779. nodemask = &cpuset_current_mems_allowed;
  3780. return !node_isset(nid, *nodemask);
  3781. }
  3782. #define K(x) ((x) << (PAGE_SHIFT-10))
  3783. static void show_migration_types(unsigned char type)
  3784. {
  3785. static const char types[MIGRATE_TYPES] = {
  3786. [MIGRATE_UNMOVABLE] = 'U',
  3787. [MIGRATE_MOVABLE] = 'M',
  3788. [MIGRATE_RECLAIMABLE] = 'E',
  3789. [MIGRATE_HIGHATOMIC] = 'H',
  3790. #ifdef CONFIG_CMA
  3791. [MIGRATE_CMA] = 'C',
  3792. #endif
  3793. #ifdef CONFIG_MEMORY_ISOLATION
  3794. [MIGRATE_ISOLATE] = 'I',
  3795. #endif
  3796. };
  3797. char tmp[MIGRATE_TYPES + 1];
  3798. char *p = tmp;
  3799. int i;
  3800. for (i = 0; i < MIGRATE_TYPES; i++) {
  3801. if (type & (1 << i))
  3802. *p++ = types[i];
  3803. }
  3804. *p = '\0';
  3805. printk(KERN_CONT "(%s) ", tmp);
  3806. }
  3807. /*
  3808. * Show free area list (used inside shift_scroll-lock stuff)
  3809. * We also calculate the percentage fragmentation. We do this by counting the
  3810. * memory on each free list with the exception of the first item on the list.
  3811. *
  3812. * Bits in @filter:
  3813. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  3814. * cpuset.
  3815. */
  3816. void show_free_areas(unsigned int filter, nodemask_t *nodemask)
  3817. {
  3818. unsigned long free_pcp = 0;
  3819. int cpu;
  3820. struct zone *zone;
  3821. pg_data_t *pgdat;
  3822. for_each_populated_zone(zone) {
  3823. if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
  3824. continue;
  3825. for_each_online_cpu(cpu)
  3826. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3827. }
  3828. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  3829. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  3830. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  3831. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  3832. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  3833. " free:%lu free_pcp:%lu free_cma:%lu\n",
  3834. global_node_page_state(NR_ACTIVE_ANON),
  3835. global_node_page_state(NR_INACTIVE_ANON),
  3836. global_node_page_state(NR_ISOLATED_ANON),
  3837. global_node_page_state(NR_ACTIVE_FILE),
  3838. global_node_page_state(NR_INACTIVE_FILE),
  3839. global_node_page_state(NR_ISOLATED_FILE),
  3840. global_node_page_state(NR_UNEVICTABLE),
  3841. global_node_page_state(NR_FILE_DIRTY),
  3842. global_node_page_state(NR_WRITEBACK),
  3843. global_node_page_state(NR_UNSTABLE_NFS),
  3844. global_page_state(NR_SLAB_RECLAIMABLE),
  3845. global_page_state(NR_SLAB_UNRECLAIMABLE),
  3846. global_node_page_state(NR_FILE_MAPPED),
  3847. global_node_page_state(NR_SHMEM),
  3848. global_page_state(NR_PAGETABLE),
  3849. global_page_state(NR_BOUNCE),
  3850. global_page_state(NR_FREE_PAGES),
  3851. free_pcp,
  3852. global_page_state(NR_FREE_CMA_PAGES));
  3853. for_each_online_pgdat(pgdat) {
  3854. if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
  3855. continue;
  3856. printk("Node %d"
  3857. " active_anon:%lukB"
  3858. " inactive_anon:%lukB"
  3859. " active_file:%lukB"
  3860. " inactive_file:%lukB"
  3861. " unevictable:%lukB"
  3862. " isolated(anon):%lukB"
  3863. " isolated(file):%lukB"
  3864. " mapped:%lukB"
  3865. " dirty:%lukB"
  3866. " writeback:%lukB"
  3867. " shmem:%lukB"
  3868. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3869. " shmem_thp: %lukB"
  3870. " shmem_pmdmapped: %lukB"
  3871. " anon_thp: %lukB"
  3872. #endif
  3873. " writeback_tmp:%lukB"
  3874. " unstable:%lukB"
  3875. " pages_scanned:%lu"
  3876. " all_unreclaimable? %s"
  3877. "\n",
  3878. pgdat->node_id,
  3879. K(node_page_state(pgdat, NR_ACTIVE_ANON)),
  3880. K(node_page_state(pgdat, NR_INACTIVE_ANON)),
  3881. K(node_page_state(pgdat, NR_ACTIVE_FILE)),
  3882. K(node_page_state(pgdat, NR_INACTIVE_FILE)),
  3883. K(node_page_state(pgdat, NR_UNEVICTABLE)),
  3884. K(node_page_state(pgdat, NR_ISOLATED_ANON)),
  3885. K(node_page_state(pgdat, NR_ISOLATED_FILE)),
  3886. K(node_page_state(pgdat, NR_FILE_MAPPED)),
  3887. K(node_page_state(pgdat, NR_FILE_DIRTY)),
  3888. K(node_page_state(pgdat, NR_WRITEBACK)),
  3889. K(node_page_state(pgdat, NR_SHMEM)),
  3890. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3891. K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
  3892. K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
  3893. * HPAGE_PMD_NR),
  3894. K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
  3895. #endif
  3896. K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
  3897. K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
  3898. node_page_state(pgdat, NR_PAGES_SCANNED),
  3899. !pgdat_reclaimable(pgdat) ? "yes" : "no");
  3900. }
  3901. for_each_populated_zone(zone) {
  3902. int i;
  3903. if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
  3904. continue;
  3905. free_pcp = 0;
  3906. for_each_online_cpu(cpu)
  3907. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3908. show_node(zone);
  3909. printk(KERN_CONT
  3910. "%s"
  3911. " free:%lukB"
  3912. " min:%lukB"
  3913. " low:%lukB"
  3914. " high:%lukB"
  3915. " active_anon:%lukB"
  3916. " inactive_anon:%lukB"
  3917. " active_file:%lukB"
  3918. " inactive_file:%lukB"
  3919. " unevictable:%lukB"
  3920. " writepending:%lukB"
  3921. " present:%lukB"
  3922. " managed:%lukB"
  3923. " mlocked:%lukB"
  3924. " slab_reclaimable:%lukB"
  3925. " slab_unreclaimable:%lukB"
  3926. " kernel_stack:%lukB"
  3927. " pagetables:%lukB"
  3928. " bounce:%lukB"
  3929. " free_pcp:%lukB"
  3930. " local_pcp:%ukB"
  3931. " free_cma:%lukB"
  3932. "\n",
  3933. zone->name,
  3934. K(zone_page_state(zone, NR_FREE_PAGES)),
  3935. K(min_wmark_pages(zone)),
  3936. K(low_wmark_pages(zone)),
  3937. K(high_wmark_pages(zone)),
  3938. K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
  3939. K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
  3940. K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
  3941. K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
  3942. K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
  3943. K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
  3944. K(zone->present_pages),
  3945. K(zone->managed_pages),
  3946. K(zone_page_state(zone, NR_MLOCK)),
  3947. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  3948. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  3949. zone_page_state(zone, NR_KERNEL_STACK_KB),
  3950. K(zone_page_state(zone, NR_PAGETABLE)),
  3951. K(zone_page_state(zone, NR_BOUNCE)),
  3952. K(free_pcp),
  3953. K(this_cpu_read(zone->pageset->pcp.count)),
  3954. K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
  3955. printk("lowmem_reserve[]:");
  3956. for (i = 0; i < MAX_NR_ZONES; i++)
  3957. printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
  3958. printk(KERN_CONT "\n");
  3959. }
  3960. for_each_populated_zone(zone) {
  3961. unsigned int order;
  3962. unsigned long nr[MAX_ORDER], flags, total = 0;
  3963. unsigned char types[MAX_ORDER];
  3964. if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
  3965. continue;
  3966. show_node(zone);
  3967. printk(KERN_CONT "%s: ", zone->name);
  3968. spin_lock_irqsave(&zone->lock, flags);
  3969. for (order = 0; order < MAX_ORDER; order++) {
  3970. struct free_area *area = &zone->free_area[order];
  3971. int type;
  3972. nr[order] = area->nr_free;
  3973. total += nr[order] << order;
  3974. types[order] = 0;
  3975. for (type = 0; type < MIGRATE_TYPES; type++) {
  3976. if (!list_empty(&area->free_list[type]))
  3977. types[order] |= 1 << type;
  3978. }
  3979. }
  3980. spin_unlock_irqrestore(&zone->lock, flags);
  3981. for (order = 0; order < MAX_ORDER; order++) {
  3982. printk(KERN_CONT "%lu*%lukB ",
  3983. nr[order], K(1UL) << order);
  3984. if (nr[order])
  3985. show_migration_types(types[order]);
  3986. }
  3987. printk(KERN_CONT "= %lukB\n", K(total));
  3988. }
  3989. hugetlb_show_meminfo();
  3990. printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
  3991. show_swap_cache_info();
  3992. }
  3993. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  3994. {
  3995. zoneref->zone = zone;
  3996. zoneref->zone_idx = zone_idx(zone);
  3997. }
  3998. /*
  3999. * Builds allocation fallback zone lists.
  4000. *
  4001. * Add all populated zones of a node to the zonelist.
  4002. */
  4003. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  4004. int nr_zones)
  4005. {
  4006. struct zone *zone;
  4007. enum zone_type zone_type = MAX_NR_ZONES;
  4008. do {
  4009. zone_type--;
  4010. zone = pgdat->node_zones + zone_type;
  4011. if (managed_zone(zone)) {
  4012. zoneref_set_zone(zone,
  4013. &zonelist->_zonerefs[nr_zones++]);
  4014. check_highest_zone(zone_type);
  4015. }
  4016. } while (zone_type);
  4017. return nr_zones;
  4018. }
  4019. /*
  4020. * zonelist_order:
  4021. * 0 = automatic detection of better ordering.
  4022. * 1 = order by ([node] distance, -zonetype)
  4023. * 2 = order by (-zonetype, [node] distance)
  4024. *
  4025. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  4026. * the same zonelist. So only NUMA can configure this param.
  4027. */
  4028. #define ZONELIST_ORDER_DEFAULT 0
  4029. #define ZONELIST_ORDER_NODE 1
  4030. #define ZONELIST_ORDER_ZONE 2
  4031. /* zonelist order in the kernel.
  4032. * set_zonelist_order() will set this to NODE or ZONE.
  4033. */
  4034. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  4035. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  4036. #ifdef CONFIG_NUMA
  4037. /* The value user specified ....changed by config */
  4038. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  4039. /* string for sysctl */
  4040. #define NUMA_ZONELIST_ORDER_LEN 16
  4041. char numa_zonelist_order[16] = "default";
  4042. /*
  4043. * interface for configure zonelist ordering.
  4044. * command line option "numa_zonelist_order"
  4045. * = "[dD]efault - default, automatic configuration.
  4046. * = "[nN]ode - order by node locality, then by zone within node
  4047. * = "[zZ]one - order by zone, then by locality within zone
  4048. */
  4049. static int __parse_numa_zonelist_order(char *s)
  4050. {
  4051. if (*s == 'd' || *s == 'D') {
  4052. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  4053. } else if (*s == 'n' || *s == 'N') {
  4054. user_zonelist_order = ZONELIST_ORDER_NODE;
  4055. } else if (*s == 'z' || *s == 'Z') {
  4056. user_zonelist_order = ZONELIST_ORDER_ZONE;
  4057. } else {
  4058. pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
  4059. return -EINVAL;
  4060. }
  4061. return 0;
  4062. }
  4063. static __init int setup_numa_zonelist_order(char *s)
  4064. {
  4065. int ret;
  4066. if (!s)
  4067. return 0;
  4068. ret = __parse_numa_zonelist_order(s);
  4069. if (ret == 0)
  4070. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  4071. return ret;
  4072. }
  4073. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  4074. /*
  4075. * sysctl handler for numa_zonelist_order
  4076. */
  4077. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  4078. void __user *buffer, size_t *length,
  4079. loff_t *ppos)
  4080. {
  4081. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  4082. int ret;
  4083. static DEFINE_MUTEX(zl_order_mutex);
  4084. mutex_lock(&zl_order_mutex);
  4085. if (write) {
  4086. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  4087. ret = -EINVAL;
  4088. goto out;
  4089. }
  4090. strcpy(saved_string, (char *)table->data);
  4091. }
  4092. ret = proc_dostring(table, write, buffer, length, ppos);
  4093. if (ret)
  4094. goto out;
  4095. if (write) {
  4096. int oldval = user_zonelist_order;
  4097. ret = __parse_numa_zonelist_order((char *)table->data);
  4098. if (ret) {
  4099. /*
  4100. * bogus value. restore saved string
  4101. */
  4102. strncpy((char *)table->data, saved_string,
  4103. NUMA_ZONELIST_ORDER_LEN);
  4104. user_zonelist_order = oldval;
  4105. } else if (oldval != user_zonelist_order) {
  4106. mutex_lock(&zonelists_mutex);
  4107. build_all_zonelists(NULL, NULL);
  4108. mutex_unlock(&zonelists_mutex);
  4109. }
  4110. }
  4111. out:
  4112. mutex_unlock(&zl_order_mutex);
  4113. return ret;
  4114. }
  4115. #define MAX_NODE_LOAD (nr_online_nodes)
  4116. static int node_load[MAX_NUMNODES];
  4117. /**
  4118. * find_next_best_node - find the next node that should appear in a given node's fallback list
  4119. * @node: node whose fallback list we're appending
  4120. * @used_node_mask: nodemask_t of already used nodes
  4121. *
  4122. * We use a number of factors to determine which is the next node that should
  4123. * appear on a given node's fallback list. The node should not have appeared
  4124. * already in @node's fallback list, and it should be the next closest node
  4125. * according to the distance array (which contains arbitrary distance values
  4126. * from each node to each node in the system), and should also prefer nodes
  4127. * with no CPUs, since presumably they'll have very little allocation pressure
  4128. * on them otherwise.
  4129. * It returns -1 if no node is found.
  4130. */
  4131. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  4132. {
  4133. int n, val;
  4134. int min_val = INT_MAX;
  4135. int best_node = NUMA_NO_NODE;
  4136. const struct cpumask *tmp = cpumask_of_node(0);
  4137. /* Use the local node if we haven't already */
  4138. if (!node_isset(node, *used_node_mask)) {
  4139. node_set(node, *used_node_mask);
  4140. return node;
  4141. }
  4142. for_each_node_state(n, N_MEMORY) {
  4143. /* Don't want a node to appear more than once */
  4144. if (node_isset(n, *used_node_mask))
  4145. continue;
  4146. /* Use the distance array to find the distance */
  4147. val = node_distance(node, n);
  4148. /* Penalize nodes under us ("prefer the next node") */
  4149. val += (n < node);
  4150. /* Give preference to headless and unused nodes */
  4151. tmp = cpumask_of_node(n);
  4152. if (!cpumask_empty(tmp))
  4153. val += PENALTY_FOR_NODE_WITH_CPUS;
  4154. /* Slight preference for less loaded node */
  4155. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  4156. val += node_load[n];
  4157. if (val < min_val) {
  4158. min_val = val;
  4159. best_node = n;
  4160. }
  4161. }
  4162. if (best_node >= 0)
  4163. node_set(best_node, *used_node_mask);
  4164. return best_node;
  4165. }
  4166. /*
  4167. * Build zonelists ordered by node and zones within node.
  4168. * This results in maximum locality--normal zone overflows into local
  4169. * DMA zone, if any--but risks exhausting DMA zone.
  4170. */
  4171. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  4172. {
  4173. int j;
  4174. struct zonelist *zonelist;
  4175. zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
  4176. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  4177. ;
  4178. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4179. zonelist->_zonerefs[j].zone = NULL;
  4180. zonelist->_zonerefs[j].zone_idx = 0;
  4181. }
  4182. /*
  4183. * Build gfp_thisnode zonelists
  4184. */
  4185. static void build_thisnode_zonelists(pg_data_t *pgdat)
  4186. {
  4187. int j;
  4188. struct zonelist *zonelist;
  4189. zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
  4190. j = build_zonelists_node(pgdat, zonelist, 0);
  4191. zonelist->_zonerefs[j].zone = NULL;
  4192. zonelist->_zonerefs[j].zone_idx = 0;
  4193. }
  4194. /*
  4195. * Build zonelists ordered by zone and nodes within zones.
  4196. * This results in conserving DMA zone[s] until all Normal memory is
  4197. * exhausted, but results in overflowing to remote node while memory
  4198. * may still exist in local DMA zone.
  4199. */
  4200. static int node_order[MAX_NUMNODES];
  4201. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  4202. {
  4203. int pos, j, node;
  4204. int zone_type; /* needs to be signed */
  4205. struct zone *z;
  4206. struct zonelist *zonelist;
  4207. zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
  4208. pos = 0;
  4209. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  4210. for (j = 0; j < nr_nodes; j++) {
  4211. node = node_order[j];
  4212. z = &NODE_DATA(node)->node_zones[zone_type];
  4213. if (managed_zone(z)) {
  4214. zoneref_set_zone(z,
  4215. &zonelist->_zonerefs[pos++]);
  4216. check_highest_zone(zone_type);
  4217. }
  4218. }
  4219. }
  4220. zonelist->_zonerefs[pos].zone = NULL;
  4221. zonelist->_zonerefs[pos].zone_idx = 0;
  4222. }
  4223. #if defined(CONFIG_64BIT)
  4224. /*
  4225. * Devices that require DMA32/DMA are relatively rare and do not justify a
  4226. * penalty to every machine in case the specialised case applies. Default
  4227. * to Node-ordering on 64-bit NUMA machines
  4228. */
  4229. static int default_zonelist_order(void)
  4230. {
  4231. return ZONELIST_ORDER_NODE;
  4232. }
  4233. #else
  4234. /*
  4235. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  4236. * by the kernel. If processes running on node 0 deplete the low memory zone
  4237. * then reclaim will occur more frequency increasing stalls and potentially
  4238. * be easier to OOM if a large percentage of the zone is under writeback or
  4239. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  4240. * Hence, default to zone ordering on 32-bit.
  4241. */
  4242. static int default_zonelist_order(void)
  4243. {
  4244. return ZONELIST_ORDER_ZONE;
  4245. }
  4246. #endif /* CONFIG_64BIT */
  4247. static void set_zonelist_order(void)
  4248. {
  4249. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  4250. current_zonelist_order = default_zonelist_order();
  4251. else
  4252. current_zonelist_order = user_zonelist_order;
  4253. }
  4254. static void build_zonelists(pg_data_t *pgdat)
  4255. {
  4256. int i, node, load;
  4257. nodemask_t used_mask;
  4258. int local_node, prev_node;
  4259. struct zonelist *zonelist;
  4260. unsigned int order = current_zonelist_order;
  4261. /* initialize zonelists */
  4262. for (i = 0; i < MAX_ZONELISTS; i++) {
  4263. zonelist = pgdat->node_zonelists + i;
  4264. zonelist->_zonerefs[0].zone = NULL;
  4265. zonelist->_zonerefs[0].zone_idx = 0;
  4266. }
  4267. /* NUMA-aware ordering of nodes */
  4268. local_node = pgdat->node_id;
  4269. load = nr_online_nodes;
  4270. prev_node = local_node;
  4271. nodes_clear(used_mask);
  4272. memset(node_order, 0, sizeof(node_order));
  4273. i = 0;
  4274. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  4275. /*
  4276. * We don't want to pressure a particular node.
  4277. * So adding penalty to the first node in same
  4278. * distance group to make it round-robin.
  4279. */
  4280. if (node_distance(local_node, node) !=
  4281. node_distance(local_node, prev_node))
  4282. node_load[node] = load;
  4283. prev_node = node;
  4284. load--;
  4285. if (order == ZONELIST_ORDER_NODE)
  4286. build_zonelists_in_node_order(pgdat, node);
  4287. else
  4288. node_order[i++] = node; /* remember order */
  4289. }
  4290. if (order == ZONELIST_ORDER_ZONE) {
  4291. /* calculate node order -- i.e., DMA last! */
  4292. build_zonelists_in_zone_order(pgdat, i);
  4293. }
  4294. build_thisnode_zonelists(pgdat);
  4295. }
  4296. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4297. /*
  4298. * Return node id of node used for "local" allocations.
  4299. * I.e., first node id of first zone in arg node's generic zonelist.
  4300. * Used for initializing percpu 'numa_mem', which is used primarily
  4301. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  4302. */
  4303. int local_memory_node(int node)
  4304. {
  4305. struct zoneref *z;
  4306. z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  4307. gfp_zone(GFP_KERNEL),
  4308. NULL);
  4309. return z->zone->node;
  4310. }
  4311. #endif
  4312. static void setup_min_unmapped_ratio(void);
  4313. static void setup_min_slab_ratio(void);
  4314. #else /* CONFIG_NUMA */
  4315. static void set_zonelist_order(void)
  4316. {
  4317. current_zonelist_order = ZONELIST_ORDER_ZONE;
  4318. }
  4319. static void build_zonelists(pg_data_t *pgdat)
  4320. {
  4321. int node, local_node;
  4322. enum zone_type j;
  4323. struct zonelist *zonelist;
  4324. local_node = pgdat->node_id;
  4325. zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
  4326. j = build_zonelists_node(pgdat, zonelist, 0);
  4327. /*
  4328. * Now we build the zonelist so that it contains the zones
  4329. * of all the other nodes.
  4330. * We don't want to pressure a particular node, so when
  4331. * building the zones for node N, we make sure that the
  4332. * zones coming right after the local ones are those from
  4333. * node N+1 (modulo N)
  4334. */
  4335. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  4336. if (!node_online(node))
  4337. continue;
  4338. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4339. }
  4340. for (node = 0; node < local_node; node++) {
  4341. if (!node_online(node))
  4342. continue;
  4343. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4344. }
  4345. zonelist->_zonerefs[j].zone = NULL;
  4346. zonelist->_zonerefs[j].zone_idx = 0;
  4347. }
  4348. #endif /* CONFIG_NUMA */
  4349. /*
  4350. * Boot pageset table. One per cpu which is going to be used for all
  4351. * zones and all nodes. The parameters will be set in such a way
  4352. * that an item put on a list will immediately be handed over to
  4353. * the buddy list. This is safe since pageset manipulation is done
  4354. * with interrupts disabled.
  4355. *
  4356. * The boot_pagesets must be kept even after bootup is complete for
  4357. * unused processors and/or zones. They do play a role for bootstrapping
  4358. * hotplugged processors.
  4359. *
  4360. * zoneinfo_show() and maybe other functions do
  4361. * not check if the processor is online before following the pageset pointer.
  4362. * Other parts of the kernel may not check if the zone is available.
  4363. */
  4364. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  4365. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  4366. static void setup_zone_pageset(struct zone *zone);
  4367. /*
  4368. * Global mutex to protect against size modification of zonelists
  4369. * as well as to serialize pageset setup for the new populated zone.
  4370. */
  4371. DEFINE_MUTEX(zonelists_mutex);
  4372. /* return values int ....just for stop_machine() */
  4373. static int __build_all_zonelists(void *data)
  4374. {
  4375. int nid;
  4376. int cpu;
  4377. pg_data_t *self = data;
  4378. #ifdef CONFIG_NUMA
  4379. memset(node_load, 0, sizeof(node_load));
  4380. #endif
  4381. if (self && !node_online(self->node_id)) {
  4382. build_zonelists(self);
  4383. }
  4384. for_each_online_node(nid) {
  4385. pg_data_t *pgdat = NODE_DATA(nid);
  4386. build_zonelists(pgdat);
  4387. }
  4388. /*
  4389. * Initialize the boot_pagesets that are going to be used
  4390. * for bootstrapping processors. The real pagesets for
  4391. * each zone will be allocated later when the per cpu
  4392. * allocator is available.
  4393. *
  4394. * boot_pagesets are used also for bootstrapping offline
  4395. * cpus if the system is already booted because the pagesets
  4396. * are needed to initialize allocators on a specific cpu too.
  4397. * F.e. the percpu allocator needs the page allocator which
  4398. * needs the percpu allocator in order to allocate its pagesets
  4399. * (a chicken-egg dilemma).
  4400. */
  4401. for_each_possible_cpu(cpu) {
  4402. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  4403. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4404. /*
  4405. * We now know the "local memory node" for each node--
  4406. * i.e., the node of the first zone in the generic zonelist.
  4407. * Set up numa_mem percpu variable for on-line cpus. During
  4408. * boot, only the boot cpu should be on-line; we'll init the
  4409. * secondary cpus' numa_mem as they come on-line. During
  4410. * node/memory hotplug, we'll fixup all on-line cpus.
  4411. */
  4412. if (cpu_online(cpu))
  4413. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  4414. #endif
  4415. }
  4416. return 0;
  4417. }
  4418. static noinline void __init
  4419. build_all_zonelists_init(void)
  4420. {
  4421. __build_all_zonelists(NULL);
  4422. mminit_verify_zonelist();
  4423. cpuset_init_current_mems_allowed();
  4424. }
  4425. /*
  4426. * Called with zonelists_mutex held always
  4427. * unless system_state == SYSTEM_BOOTING.
  4428. *
  4429. * __ref due to (1) call of __meminit annotated setup_zone_pageset
  4430. * [we're only called with non-NULL zone through __meminit paths] and
  4431. * (2) call of __init annotated helper build_all_zonelists_init
  4432. * [protected by SYSTEM_BOOTING].
  4433. */
  4434. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  4435. {
  4436. set_zonelist_order();
  4437. if (system_state == SYSTEM_BOOTING) {
  4438. build_all_zonelists_init();
  4439. } else {
  4440. #ifdef CONFIG_MEMORY_HOTPLUG
  4441. if (zone)
  4442. setup_zone_pageset(zone);
  4443. #endif
  4444. /* we have to stop all cpus to guarantee there is no user
  4445. of zonelist */
  4446. stop_machine(__build_all_zonelists, pgdat, NULL);
  4447. /* cpuset refresh routine should be here */
  4448. }
  4449. vm_total_pages = nr_free_pagecache_pages();
  4450. /*
  4451. * Disable grouping by mobility if the number of pages in the
  4452. * system is too low to allow the mechanism to work. It would be
  4453. * more accurate, but expensive to check per-zone. This check is
  4454. * made on memory-hotadd so a system can start with mobility
  4455. * disabled and enable it later
  4456. */
  4457. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  4458. page_group_by_mobility_disabled = 1;
  4459. else
  4460. page_group_by_mobility_disabled = 0;
  4461. pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
  4462. nr_online_nodes,
  4463. zonelist_order_name[current_zonelist_order],
  4464. page_group_by_mobility_disabled ? "off" : "on",
  4465. vm_total_pages);
  4466. #ifdef CONFIG_NUMA
  4467. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  4468. #endif
  4469. }
  4470. /*
  4471. * Initially all pages are reserved - free ones are freed
  4472. * up by free_all_bootmem() once the early boot process is
  4473. * done. Non-atomic initialization, single-pass.
  4474. */
  4475. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  4476. unsigned long start_pfn, enum memmap_context context)
  4477. {
  4478. struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
  4479. unsigned long end_pfn = start_pfn + size;
  4480. pg_data_t *pgdat = NODE_DATA(nid);
  4481. unsigned long pfn;
  4482. unsigned long nr_initialised = 0;
  4483. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4484. struct memblock_region *r = NULL, *tmp;
  4485. #endif
  4486. if (highest_memmap_pfn < end_pfn - 1)
  4487. highest_memmap_pfn = end_pfn - 1;
  4488. /*
  4489. * Honor reservation requested by the driver for this ZONE_DEVICE
  4490. * memory
  4491. */
  4492. if (altmap && start_pfn == altmap->base_pfn)
  4493. start_pfn += altmap->reserve;
  4494. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  4495. /*
  4496. * There can be holes in boot-time mem_map[]s handed to this
  4497. * function. They do not exist on hotplugged memory.
  4498. */
  4499. if (context != MEMMAP_EARLY)
  4500. goto not_early;
  4501. if (!early_pfn_valid(pfn)) {
  4502. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4503. /*
  4504. * Skip to the pfn preceding the next valid one (or
  4505. * end_pfn), such that we hit a valid pfn (or end_pfn)
  4506. * on our next iteration of the loop.
  4507. */
  4508. pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
  4509. #endif
  4510. continue;
  4511. }
  4512. if (!early_pfn_in_nid(pfn, nid))
  4513. continue;
  4514. if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
  4515. break;
  4516. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4517. /*
  4518. * Check given memblock attribute by firmware which can affect
  4519. * kernel memory layout. If zone==ZONE_MOVABLE but memory is
  4520. * mirrored, it's an overlapped memmap init. skip it.
  4521. */
  4522. if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
  4523. if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
  4524. for_each_memblock(memory, tmp)
  4525. if (pfn < memblock_region_memory_end_pfn(tmp))
  4526. break;
  4527. r = tmp;
  4528. }
  4529. if (pfn >= memblock_region_memory_base_pfn(r) &&
  4530. memblock_is_mirror(r)) {
  4531. /* already initialized as NORMAL */
  4532. pfn = memblock_region_memory_end_pfn(r);
  4533. continue;
  4534. }
  4535. }
  4536. #endif
  4537. not_early:
  4538. /*
  4539. * Mark the block movable so that blocks are reserved for
  4540. * movable at startup. This will force kernel allocations
  4541. * to reserve their blocks rather than leaking throughout
  4542. * the address space during boot when many long-lived
  4543. * kernel allocations are made.
  4544. *
  4545. * bitmap is created for zone's valid pfn range. but memmap
  4546. * can be created for invalid pages (for alignment)
  4547. * check here not to call set_pageblock_migratetype() against
  4548. * pfn out of zone.
  4549. */
  4550. if (!(pfn & (pageblock_nr_pages - 1))) {
  4551. struct page *page = pfn_to_page(pfn);
  4552. __init_single_page(page, pfn, zone, nid);
  4553. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4554. } else {
  4555. __init_single_pfn(pfn, zone, nid);
  4556. }
  4557. }
  4558. }
  4559. static void __meminit zone_init_free_lists(struct zone *zone)
  4560. {
  4561. unsigned int order, t;
  4562. for_each_migratetype_order(order, t) {
  4563. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  4564. zone->free_area[order].nr_free = 0;
  4565. }
  4566. }
  4567. #ifndef __HAVE_ARCH_MEMMAP_INIT
  4568. #define memmap_init(size, nid, zone, start_pfn) \
  4569. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  4570. #endif
  4571. static int zone_batchsize(struct zone *zone)
  4572. {
  4573. #ifdef CONFIG_MMU
  4574. int batch;
  4575. /*
  4576. * The per-cpu-pages pools are set to around 1000th of the
  4577. * size of the zone. But no more than 1/2 of a meg.
  4578. *
  4579. * OK, so we don't know how big the cache is. So guess.
  4580. */
  4581. batch = zone->managed_pages / 1024;
  4582. if (batch * PAGE_SIZE > 512 * 1024)
  4583. batch = (512 * 1024) / PAGE_SIZE;
  4584. batch /= 4; /* We effectively *= 4 below */
  4585. if (batch < 1)
  4586. batch = 1;
  4587. /*
  4588. * Clamp the batch to a 2^n - 1 value. Having a power
  4589. * of 2 value was found to be more likely to have
  4590. * suboptimal cache aliasing properties in some cases.
  4591. *
  4592. * For example if 2 tasks are alternately allocating
  4593. * batches of pages, one task can end up with a lot
  4594. * of pages of one half of the possible page colors
  4595. * and the other with pages of the other colors.
  4596. */
  4597. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4598. return batch;
  4599. #else
  4600. /* The deferral and batching of frees should be suppressed under NOMMU
  4601. * conditions.
  4602. *
  4603. * The problem is that NOMMU needs to be able to allocate large chunks
  4604. * of contiguous memory as there's no hardware page translation to
  4605. * assemble apparent contiguous memory from discontiguous pages.
  4606. *
  4607. * Queueing large contiguous runs of pages for batching, however,
  4608. * causes the pages to actually be freed in smaller chunks. As there
  4609. * can be a significant delay between the individual batches being
  4610. * recycled, this leads to the once large chunks of space being
  4611. * fragmented and becoming unavailable for high-order allocations.
  4612. */
  4613. return 0;
  4614. #endif
  4615. }
  4616. /*
  4617. * pcp->high and pcp->batch values are related and dependent on one another:
  4618. * ->batch must never be higher then ->high.
  4619. * The following function updates them in a safe manner without read side
  4620. * locking.
  4621. *
  4622. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4623. * those fields changing asynchronously (acording the the above rule).
  4624. *
  4625. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4626. * outside of boot time (or some other assurance that no concurrent updaters
  4627. * exist).
  4628. */
  4629. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4630. unsigned long batch)
  4631. {
  4632. /* start with a fail safe value for batch */
  4633. pcp->batch = 1;
  4634. smp_wmb();
  4635. /* Update high, then batch, in order */
  4636. pcp->high = high;
  4637. smp_wmb();
  4638. pcp->batch = batch;
  4639. }
  4640. /* a companion to pageset_set_high() */
  4641. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4642. {
  4643. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4644. }
  4645. static void pageset_init(struct per_cpu_pageset *p)
  4646. {
  4647. struct per_cpu_pages *pcp;
  4648. int migratetype;
  4649. memset(p, 0, sizeof(*p));
  4650. pcp = &p->pcp;
  4651. pcp->count = 0;
  4652. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4653. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4654. }
  4655. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4656. {
  4657. pageset_init(p);
  4658. pageset_set_batch(p, batch);
  4659. }
  4660. /*
  4661. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4662. * to the value high for the pageset p.
  4663. */
  4664. static void pageset_set_high(struct per_cpu_pageset *p,
  4665. unsigned long high)
  4666. {
  4667. unsigned long batch = max(1UL, high / 4);
  4668. if ((high / 4) > (PAGE_SHIFT * 8))
  4669. batch = PAGE_SHIFT * 8;
  4670. pageset_update(&p->pcp, high, batch);
  4671. }
  4672. static void pageset_set_high_and_batch(struct zone *zone,
  4673. struct per_cpu_pageset *pcp)
  4674. {
  4675. if (percpu_pagelist_fraction)
  4676. pageset_set_high(pcp,
  4677. (zone->managed_pages /
  4678. percpu_pagelist_fraction));
  4679. else
  4680. pageset_set_batch(pcp, zone_batchsize(zone));
  4681. }
  4682. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4683. {
  4684. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4685. pageset_init(pcp);
  4686. pageset_set_high_and_batch(zone, pcp);
  4687. }
  4688. static void __meminit setup_zone_pageset(struct zone *zone)
  4689. {
  4690. int cpu;
  4691. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4692. for_each_possible_cpu(cpu)
  4693. zone_pageset_init(zone, cpu);
  4694. }
  4695. /*
  4696. * Allocate per cpu pagesets and initialize them.
  4697. * Before this call only boot pagesets were available.
  4698. */
  4699. void __init setup_per_cpu_pageset(void)
  4700. {
  4701. struct pglist_data *pgdat;
  4702. struct zone *zone;
  4703. for_each_populated_zone(zone)
  4704. setup_zone_pageset(zone);
  4705. for_each_online_pgdat(pgdat)
  4706. pgdat->per_cpu_nodestats =
  4707. alloc_percpu(struct per_cpu_nodestat);
  4708. }
  4709. static __meminit void zone_pcp_init(struct zone *zone)
  4710. {
  4711. /*
  4712. * per cpu subsystem is not up at this point. The following code
  4713. * relies on the ability of the linker to provide the
  4714. * offset of a (static) per cpu variable into the per cpu area.
  4715. */
  4716. zone->pageset = &boot_pageset;
  4717. if (populated_zone(zone))
  4718. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4719. zone->name, zone->present_pages,
  4720. zone_batchsize(zone));
  4721. }
  4722. int __meminit init_currently_empty_zone(struct zone *zone,
  4723. unsigned long zone_start_pfn,
  4724. unsigned long size)
  4725. {
  4726. struct pglist_data *pgdat = zone->zone_pgdat;
  4727. pgdat->nr_zones = zone_idx(zone) + 1;
  4728. zone->zone_start_pfn = zone_start_pfn;
  4729. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4730. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4731. pgdat->node_id,
  4732. (unsigned long)zone_idx(zone),
  4733. zone_start_pfn, (zone_start_pfn + size));
  4734. zone_init_free_lists(zone);
  4735. zone->initialized = 1;
  4736. return 0;
  4737. }
  4738. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4739. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4740. /*
  4741. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4742. */
  4743. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4744. struct mminit_pfnnid_cache *state)
  4745. {
  4746. unsigned long start_pfn, end_pfn;
  4747. int nid;
  4748. if (state->last_start <= pfn && pfn < state->last_end)
  4749. return state->last_nid;
  4750. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4751. if (nid != -1) {
  4752. state->last_start = start_pfn;
  4753. state->last_end = end_pfn;
  4754. state->last_nid = nid;
  4755. }
  4756. return nid;
  4757. }
  4758. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4759. /**
  4760. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4761. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4762. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4763. *
  4764. * If an architecture guarantees that all ranges registered contain no holes
  4765. * and may be freed, this this function may be used instead of calling
  4766. * memblock_free_early_nid() manually.
  4767. */
  4768. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4769. {
  4770. unsigned long start_pfn, end_pfn;
  4771. int i, this_nid;
  4772. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4773. start_pfn = min(start_pfn, max_low_pfn);
  4774. end_pfn = min(end_pfn, max_low_pfn);
  4775. if (start_pfn < end_pfn)
  4776. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4777. (end_pfn - start_pfn) << PAGE_SHIFT,
  4778. this_nid);
  4779. }
  4780. }
  4781. /**
  4782. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4783. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4784. *
  4785. * If an architecture guarantees that all ranges registered contain no holes and may
  4786. * be freed, this function may be used instead of calling memory_present() manually.
  4787. */
  4788. void __init sparse_memory_present_with_active_regions(int nid)
  4789. {
  4790. unsigned long start_pfn, end_pfn;
  4791. int i, this_nid;
  4792. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4793. memory_present(this_nid, start_pfn, end_pfn);
  4794. }
  4795. /**
  4796. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4797. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4798. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4799. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4800. *
  4801. * It returns the start and end page frame of a node based on information
  4802. * provided by memblock_set_node(). If called for a node
  4803. * with no available memory, a warning is printed and the start and end
  4804. * PFNs will be 0.
  4805. */
  4806. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4807. unsigned long *start_pfn, unsigned long *end_pfn)
  4808. {
  4809. unsigned long this_start_pfn, this_end_pfn;
  4810. int i;
  4811. *start_pfn = -1UL;
  4812. *end_pfn = 0;
  4813. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4814. *start_pfn = min(*start_pfn, this_start_pfn);
  4815. *end_pfn = max(*end_pfn, this_end_pfn);
  4816. }
  4817. if (*start_pfn == -1UL)
  4818. *start_pfn = 0;
  4819. }
  4820. /*
  4821. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4822. * assumption is made that zones within a node are ordered in monotonic
  4823. * increasing memory addresses so that the "highest" populated zone is used
  4824. */
  4825. static void __init find_usable_zone_for_movable(void)
  4826. {
  4827. int zone_index;
  4828. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4829. if (zone_index == ZONE_MOVABLE)
  4830. continue;
  4831. if (arch_zone_highest_possible_pfn[zone_index] >
  4832. arch_zone_lowest_possible_pfn[zone_index])
  4833. break;
  4834. }
  4835. VM_BUG_ON(zone_index == -1);
  4836. movable_zone = zone_index;
  4837. }
  4838. /*
  4839. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4840. * because it is sized independent of architecture. Unlike the other zones,
  4841. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4842. * in each node depending on the size of each node and how evenly kernelcore
  4843. * is distributed. This helper function adjusts the zone ranges
  4844. * provided by the architecture for a given node by using the end of the
  4845. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4846. * zones within a node are in order of monotonic increases memory addresses
  4847. */
  4848. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4849. unsigned long zone_type,
  4850. unsigned long node_start_pfn,
  4851. unsigned long node_end_pfn,
  4852. unsigned long *zone_start_pfn,
  4853. unsigned long *zone_end_pfn)
  4854. {
  4855. /* Only adjust if ZONE_MOVABLE is on this node */
  4856. if (zone_movable_pfn[nid]) {
  4857. /* Size ZONE_MOVABLE */
  4858. if (zone_type == ZONE_MOVABLE) {
  4859. *zone_start_pfn = zone_movable_pfn[nid];
  4860. *zone_end_pfn = min(node_end_pfn,
  4861. arch_zone_highest_possible_pfn[movable_zone]);
  4862. /* Adjust for ZONE_MOVABLE starting within this range */
  4863. } else if (!mirrored_kernelcore &&
  4864. *zone_start_pfn < zone_movable_pfn[nid] &&
  4865. *zone_end_pfn > zone_movable_pfn[nid]) {
  4866. *zone_end_pfn = zone_movable_pfn[nid];
  4867. /* Check if this whole range is within ZONE_MOVABLE */
  4868. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4869. *zone_start_pfn = *zone_end_pfn;
  4870. }
  4871. }
  4872. /*
  4873. * Return the number of pages a zone spans in a node, including holes
  4874. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4875. */
  4876. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4877. unsigned long zone_type,
  4878. unsigned long node_start_pfn,
  4879. unsigned long node_end_pfn,
  4880. unsigned long *zone_start_pfn,
  4881. unsigned long *zone_end_pfn,
  4882. unsigned long *ignored)
  4883. {
  4884. /* When hotadd a new node from cpu_up(), the node should be empty */
  4885. if (!node_start_pfn && !node_end_pfn)
  4886. return 0;
  4887. /* Get the start and end of the zone */
  4888. *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4889. *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4890. adjust_zone_range_for_zone_movable(nid, zone_type,
  4891. node_start_pfn, node_end_pfn,
  4892. zone_start_pfn, zone_end_pfn);
  4893. /* Check that this node has pages within the zone's required range */
  4894. if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
  4895. return 0;
  4896. /* Move the zone boundaries inside the node if necessary */
  4897. *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
  4898. *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
  4899. /* Return the spanned pages */
  4900. return *zone_end_pfn - *zone_start_pfn;
  4901. }
  4902. /*
  4903. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4904. * then all holes in the requested range will be accounted for.
  4905. */
  4906. unsigned long __meminit __absent_pages_in_range(int nid,
  4907. unsigned long range_start_pfn,
  4908. unsigned long range_end_pfn)
  4909. {
  4910. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4911. unsigned long start_pfn, end_pfn;
  4912. int i;
  4913. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4914. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4915. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4916. nr_absent -= end_pfn - start_pfn;
  4917. }
  4918. return nr_absent;
  4919. }
  4920. /**
  4921. * absent_pages_in_range - Return number of page frames in holes within a range
  4922. * @start_pfn: The start PFN to start searching for holes
  4923. * @end_pfn: The end PFN to stop searching for holes
  4924. *
  4925. * It returns the number of pages frames in memory holes within a range.
  4926. */
  4927. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4928. unsigned long end_pfn)
  4929. {
  4930. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4931. }
  4932. /* Return the number of page frames in holes in a zone on a node */
  4933. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4934. unsigned long zone_type,
  4935. unsigned long node_start_pfn,
  4936. unsigned long node_end_pfn,
  4937. unsigned long *ignored)
  4938. {
  4939. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4940. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4941. unsigned long zone_start_pfn, zone_end_pfn;
  4942. unsigned long nr_absent;
  4943. /* When hotadd a new node from cpu_up(), the node should be empty */
  4944. if (!node_start_pfn && !node_end_pfn)
  4945. return 0;
  4946. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4947. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4948. adjust_zone_range_for_zone_movable(nid, zone_type,
  4949. node_start_pfn, node_end_pfn,
  4950. &zone_start_pfn, &zone_end_pfn);
  4951. nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4952. /*
  4953. * ZONE_MOVABLE handling.
  4954. * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
  4955. * and vice versa.
  4956. */
  4957. if (mirrored_kernelcore && zone_movable_pfn[nid]) {
  4958. unsigned long start_pfn, end_pfn;
  4959. struct memblock_region *r;
  4960. for_each_memblock(memory, r) {
  4961. start_pfn = clamp(memblock_region_memory_base_pfn(r),
  4962. zone_start_pfn, zone_end_pfn);
  4963. end_pfn = clamp(memblock_region_memory_end_pfn(r),
  4964. zone_start_pfn, zone_end_pfn);
  4965. if (zone_type == ZONE_MOVABLE &&
  4966. memblock_is_mirror(r))
  4967. nr_absent += end_pfn - start_pfn;
  4968. if (zone_type == ZONE_NORMAL &&
  4969. !memblock_is_mirror(r))
  4970. nr_absent += end_pfn - start_pfn;
  4971. }
  4972. }
  4973. return nr_absent;
  4974. }
  4975. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4976. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4977. unsigned long zone_type,
  4978. unsigned long node_start_pfn,
  4979. unsigned long node_end_pfn,
  4980. unsigned long *zone_start_pfn,
  4981. unsigned long *zone_end_pfn,
  4982. unsigned long *zones_size)
  4983. {
  4984. unsigned int zone;
  4985. *zone_start_pfn = node_start_pfn;
  4986. for (zone = 0; zone < zone_type; zone++)
  4987. *zone_start_pfn += zones_size[zone];
  4988. *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
  4989. return zones_size[zone_type];
  4990. }
  4991. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4992. unsigned long zone_type,
  4993. unsigned long node_start_pfn,
  4994. unsigned long node_end_pfn,
  4995. unsigned long *zholes_size)
  4996. {
  4997. if (!zholes_size)
  4998. return 0;
  4999. return zholes_size[zone_type];
  5000. }
  5001. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5002. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  5003. unsigned long node_start_pfn,
  5004. unsigned long node_end_pfn,
  5005. unsigned long *zones_size,
  5006. unsigned long *zholes_size)
  5007. {
  5008. unsigned long realtotalpages = 0, totalpages = 0;
  5009. enum zone_type i;
  5010. for (i = 0; i < MAX_NR_ZONES; i++) {
  5011. struct zone *zone = pgdat->node_zones + i;
  5012. unsigned long zone_start_pfn, zone_end_pfn;
  5013. unsigned long size, real_size;
  5014. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  5015. node_start_pfn,
  5016. node_end_pfn,
  5017. &zone_start_pfn,
  5018. &zone_end_pfn,
  5019. zones_size);
  5020. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  5021. node_start_pfn, node_end_pfn,
  5022. zholes_size);
  5023. if (size)
  5024. zone->zone_start_pfn = zone_start_pfn;
  5025. else
  5026. zone->zone_start_pfn = 0;
  5027. zone->spanned_pages = size;
  5028. zone->present_pages = real_size;
  5029. totalpages += size;
  5030. realtotalpages += real_size;
  5031. }
  5032. pgdat->node_spanned_pages = totalpages;
  5033. pgdat->node_present_pages = realtotalpages;
  5034. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  5035. realtotalpages);
  5036. }
  5037. #ifndef CONFIG_SPARSEMEM
  5038. /*
  5039. * Calculate the size of the zone->blockflags rounded to an unsigned long
  5040. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  5041. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  5042. * round what is now in bits to nearest long in bits, then return it in
  5043. * bytes.
  5044. */
  5045. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  5046. {
  5047. unsigned long usemapsize;
  5048. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  5049. usemapsize = roundup(zonesize, pageblock_nr_pages);
  5050. usemapsize = usemapsize >> pageblock_order;
  5051. usemapsize *= NR_PAGEBLOCK_BITS;
  5052. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  5053. return usemapsize / 8;
  5054. }
  5055. static void __init setup_usemap(struct pglist_data *pgdat,
  5056. struct zone *zone,
  5057. unsigned long zone_start_pfn,
  5058. unsigned long zonesize)
  5059. {
  5060. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  5061. zone->pageblock_flags = NULL;
  5062. if (usemapsize)
  5063. zone->pageblock_flags =
  5064. memblock_virt_alloc_node_nopanic(usemapsize,
  5065. pgdat->node_id);
  5066. }
  5067. #else
  5068. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  5069. unsigned long zone_start_pfn, unsigned long zonesize) {}
  5070. #endif /* CONFIG_SPARSEMEM */
  5071. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  5072. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  5073. void __paginginit set_pageblock_order(void)
  5074. {
  5075. unsigned int order;
  5076. /* Check that pageblock_nr_pages has not already been setup */
  5077. if (pageblock_order)
  5078. return;
  5079. if (HPAGE_SHIFT > PAGE_SHIFT)
  5080. order = HUGETLB_PAGE_ORDER;
  5081. else
  5082. order = MAX_ORDER - 1;
  5083. /*
  5084. * Assume the largest contiguous order of interest is a huge page.
  5085. * This value may be variable depending on boot parameters on IA64 and
  5086. * powerpc.
  5087. */
  5088. pageblock_order = order;
  5089. }
  5090. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5091. /*
  5092. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  5093. * is unused as pageblock_order is set at compile-time. See
  5094. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  5095. * the kernel config
  5096. */
  5097. void __paginginit set_pageblock_order(void)
  5098. {
  5099. }
  5100. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5101. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  5102. unsigned long present_pages)
  5103. {
  5104. unsigned long pages = spanned_pages;
  5105. /*
  5106. * Provide a more accurate estimation if there are holes within
  5107. * the zone and SPARSEMEM is in use. If there are holes within the
  5108. * zone, each populated memory region may cost us one or two extra
  5109. * memmap pages due to alignment because memmap pages for each
  5110. * populated regions may not be naturally aligned on page boundary.
  5111. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  5112. */
  5113. if (spanned_pages > present_pages + (present_pages >> 4) &&
  5114. IS_ENABLED(CONFIG_SPARSEMEM))
  5115. pages = present_pages;
  5116. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  5117. }
  5118. /*
  5119. * Set up the zone data structures:
  5120. * - mark all pages reserved
  5121. * - mark all memory queues empty
  5122. * - clear the memory bitmaps
  5123. *
  5124. * NOTE: pgdat should get zeroed by caller.
  5125. */
  5126. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  5127. {
  5128. enum zone_type j;
  5129. int nid = pgdat->node_id;
  5130. int ret;
  5131. pgdat_resize_init(pgdat);
  5132. #ifdef CONFIG_NUMA_BALANCING
  5133. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  5134. pgdat->numabalancing_migrate_nr_pages = 0;
  5135. pgdat->numabalancing_migrate_next_window = jiffies;
  5136. #endif
  5137. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5138. spin_lock_init(&pgdat->split_queue_lock);
  5139. INIT_LIST_HEAD(&pgdat->split_queue);
  5140. pgdat->split_queue_len = 0;
  5141. #endif
  5142. init_waitqueue_head(&pgdat->kswapd_wait);
  5143. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  5144. #ifdef CONFIG_COMPACTION
  5145. init_waitqueue_head(&pgdat->kcompactd_wait);
  5146. #endif
  5147. pgdat_page_ext_init(pgdat);
  5148. spin_lock_init(&pgdat->lru_lock);
  5149. lruvec_init(node_lruvec(pgdat));
  5150. for (j = 0; j < MAX_NR_ZONES; j++) {
  5151. struct zone *zone = pgdat->node_zones + j;
  5152. unsigned long size, realsize, freesize, memmap_pages;
  5153. unsigned long zone_start_pfn = zone->zone_start_pfn;
  5154. size = zone->spanned_pages;
  5155. realsize = freesize = zone->present_pages;
  5156. /*
  5157. * Adjust freesize so that it accounts for how much memory
  5158. * is used by this zone for memmap. This affects the watermark
  5159. * and per-cpu initialisations
  5160. */
  5161. memmap_pages = calc_memmap_size(size, realsize);
  5162. if (!is_highmem_idx(j)) {
  5163. if (freesize >= memmap_pages) {
  5164. freesize -= memmap_pages;
  5165. if (memmap_pages)
  5166. printk(KERN_DEBUG
  5167. " %s zone: %lu pages used for memmap\n",
  5168. zone_names[j], memmap_pages);
  5169. } else
  5170. pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
  5171. zone_names[j], memmap_pages, freesize);
  5172. }
  5173. /* Account for reserved pages */
  5174. if (j == 0 && freesize > dma_reserve) {
  5175. freesize -= dma_reserve;
  5176. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  5177. zone_names[0], dma_reserve);
  5178. }
  5179. if (!is_highmem_idx(j))
  5180. nr_kernel_pages += freesize;
  5181. /* Charge for highmem memmap if there are enough kernel pages */
  5182. else if (nr_kernel_pages > memmap_pages * 2)
  5183. nr_kernel_pages -= memmap_pages;
  5184. nr_all_pages += freesize;
  5185. /*
  5186. * Set an approximate value for lowmem here, it will be adjusted
  5187. * when the bootmem allocator frees pages into the buddy system.
  5188. * And all highmem pages will be managed by the buddy system.
  5189. */
  5190. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  5191. #ifdef CONFIG_NUMA
  5192. zone->node = nid;
  5193. #endif
  5194. zone->name = zone_names[j];
  5195. zone->zone_pgdat = pgdat;
  5196. spin_lock_init(&zone->lock);
  5197. zone_seqlock_init(zone);
  5198. zone_pcp_init(zone);
  5199. if (!size)
  5200. continue;
  5201. set_pageblock_order();
  5202. setup_usemap(pgdat, zone, zone_start_pfn, size);
  5203. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  5204. BUG_ON(ret);
  5205. memmap_init(size, nid, j, zone_start_pfn);
  5206. }
  5207. }
  5208. static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
  5209. {
  5210. unsigned long __maybe_unused start = 0;
  5211. unsigned long __maybe_unused offset = 0;
  5212. /* Skip empty nodes */
  5213. if (!pgdat->node_spanned_pages)
  5214. return;
  5215. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5216. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  5217. offset = pgdat->node_start_pfn - start;
  5218. /* ia64 gets its own node_mem_map, before this, without bootmem */
  5219. if (!pgdat->node_mem_map) {
  5220. unsigned long size, end;
  5221. struct page *map;
  5222. /*
  5223. * The zone's endpoints aren't required to be MAX_ORDER
  5224. * aligned but the node_mem_map endpoints must be in order
  5225. * for the buddy allocator to function correctly.
  5226. */
  5227. end = pgdat_end_pfn(pgdat);
  5228. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  5229. size = (end - start) * sizeof(struct page);
  5230. map = alloc_remap(pgdat->node_id, size);
  5231. if (!map)
  5232. map = memblock_virt_alloc_node_nopanic(size,
  5233. pgdat->node_id);
  5234. pgdat->node_mem_map = map + offset;
  5235. }
  5236. #ifndef CONFIG_NEED_MULTIPLE_NODES
  5237. /*
  5238. * With no DISCONTIG, the global mem_map is just set as node 0's
  5239. */
  5240. if (pgdat == NODE_DATA(0)) {
  5241. mem_map = NODE_DATA(0)->node_mem_map;
  5242. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  5243. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  5244. mem_map -= offset;
  5245. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5246. }
  5247. #endif
  5248. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  5249. }
  5250. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  5251. unsigned long node_start_pfn, unsigned long *zholes_size)
  5252. {
  5253. pg_data_t *pgdat = NODE_DATA(nid);
  5254. unsigned long start_pfn = 0;
  5255. unsigned long end_pfn = 0;
  5256. /* pg_data_t should be reset to zero when it's allocated */
  5257. WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
  5258. reset_deferred_meminit(pgdat);
  5259. pgdat->node_id = nid;
  5260. pgdat->node_start_pfn = node_start_pfn;
  5261. pgdat->per_cpu_nodestats = NULL;
  5262. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5263. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  5264. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  5265. (u64)start_pfn << PAGE_SHIFT,
  5266. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  5267. #else
  5268. start_pfn = node_start_pfn;
  5269. #endif
  5270. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  5271. zones_size, zholes_size);
  5272. alloc_node_mem_map(pgdat);
  5273. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5274. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  5275. nid, (unsigned long)pgdat,
  5276. (unsigned long)pgdat->node_mem_map);
  5277. #endif
  5278. free_area_init_core(pgdat);
  5279. }
  5280. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5281. #if MAX_NUMNODES > 1
  5282. /*
  5283. * Figure out the number of possible node ids.
  5284. */
  5285. void __init setup_nr_node_ids(void)
  5286. {
  5287. unsigned int highest;
  5288. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  5289. nr_node_ids = highest + 1;
  5290. }
  5291. #endif
  5292. /**
  5293. * node_map_pfn_alignment - determine the maximum internode alignment
  5294. *
  5295. * This function should be called after node map is populated and sorted.
  5296. * It calculates the maximum power of two alignment which can distinguish
  5297. * all the nodes.
  5298. *
  5299. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  5300. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  5301. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  5302. * shifted, 1GiB is enough and this function will indicate so.
  5303. *
  5304. * This is used to test whether pfn -> nid mapping of the chosen memory
  5305. * model has fine enough granularity to avoid incorrect mapping for the
  5306. * populated node map.
  5307. *
  5308. * Returns the determined alignment in pfn's. 0 if there is no alignment
  5309. * requirement (single node).
  5310. */
  5311. unsigned long __init node_map_pfn_alignment(void)
  5312. {
  5313. unsigned long accl_mask = 0, last_end = 0;
  5314. unsigned long start, end, mask;
  5315. int last_nid = -1;
  5316. int i, nid;
  5317. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  5318. if (!start || last_nid < 0 || last_nid == nid) {
  5319. last_nid = nid;
  5320. last_end = end;
  5321. continue;
  5322. }
  5323. /*
  5324. * Start with a mask granular enough to pin-point to the
  5325. * start pfn and tick off bits one-by-one until it becomes
  5326. * too coarse to separate the current node from the last.
  5327. */
  5328. mask = ~((1 << __ffs(start)) - 1);
  5329. while (mask && last_end <= (start & (mask << 1)))
  5330. mask <<= 1;
  5331. /* accumulate all internode masks */
  5332. accl_mask |= mask;
  5333. }
  5334. /* convert mask to number of pages */
  5335. return ~accl_mask + 1;
  5336. }
  5337. /* Find the lowest pfn for a node */
  5338. static unsigned long __init find_min_pfn_for_node(int nid)
  5339. {
  5340. unsigned long min_pfn = ULONG_MAX;
  5341. unsigned long start_pfn;
  5342. int i;
  5343. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  5344. min_pfn = min(min_pfn, start_pfn);
  5345. if (min_pfn == ULONG_MAX) {
  5346. pr_warn("Could not find start_pfn for node %d\n", nid);
  5347. return 0;
  5348. }
  5349. return min_pfn;
  5350. }
  5351. /**
  5352. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  5353. *
  5354. * It returns the minimum PFN based on information provided via
  5355. * memblock_set_node().
  5356. */
  5357. unsigned long __init find_min_pfn_with_active_regions(void)
  5358. {
  5359. return find_min_pfn_for_node(MAX_NUMNODES);
  5360. }
  5361. /*
  5362. * early_calculate_totalpages()
  5363. * Sum pages in active regions for movable zone.
  5364. * Populate N_MEMORY for calculating usable_nodes.
  5365. */
  5366. static unsigned long __init early_calculate_totalpages(void)
  5367. {
  5368. unsigned long totalpages = 0;
  5369. unsigned long start_pfn, end_pfn;
  5370. int i, nid;
  5371. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  5372. unsigned long pages = end_pfn - start_pfn;
  5373. totalpages += pages;
  5374. if (pages)
  5375. node_set_state(nid, N_MEMORY);
  5376. }
  5377. return totalpages;
  5378. }
  5379. /*
  5380. * Find the PFN the Movable zone begins in each node. Kernel memory
  5381. * is spread evenly between nodes as long as the nodes have enough
  5382. * memory. When they don't, some nodes will have more kernelcore than
  5383. * others
  5384. */
  5385. static void __init find_zone_movable_pfns_for_nodes(void)
  5386. {
  5387. int i, nid;
  5388. unsigned long usable_startpfn;
  5389. unsigned long kernelcore_node, kernelcore_remaining;
  5390. /* save the state before borrow the nodemask */
  5391. nodemask_t saved_node_state = node_states[N_MEMORY];
  5392. unsigned long totalpages = early_calculate_totalpages();
  5393. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  5394. struct memblock_region *r;
  5395. /* Need to find movable_zone earlier when movable_node is specified. */
  5396. find_usable_zone_for_movable();
  5397. /*
  5398. * If movable_node is specified, ignore kernelcore and movablecore
  5399. * options.
  5400. */
  5401. if (movable_node_is_enabled()) {
  5402. for_each_memblock(memory, r) {
  5403. if (!memblock_is_hotpluggable(r))
  5404. continue;
  5405. nid = r->nid;
  5406. usable_startpfn = PFN_DOWN(r->base);
  5407. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5408. min(usable_startpfn, zone_movable_pfn[nid]) :
  5409. usable_startpfn;
  5410. }
  5411. goto out2;
  5412. }
  5413. /*
  5414. * If kernelcore=mirror is specified, ignore movablecore option
  5415. */
  5416. if (mirrored_kernelcore) {
  5417. bool mem_below_4gb_not_mirrored = false;
  5418. for_each_memblock(memory, r) {
  5419. if (memblock_is_mirror(r))
  5420. continue;
  5421. nid = r->nid;
  5422. usable_startpfn = memblock_region_memory_base_pfn(r);
  5423. if (usable_startpfn < 0x100000) {
  5424. mem_below_4gb_not_mirrored = true;
  5425. continue;
  5426. }
  5427. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5428. min(usable_startpfn, zone_movable_pfn[nid]) :
  5429. usable_startpfn;
  5430. }
  5431. if (mem_below_4gb_not_mirrored)
  5432. pr_warn("This configuration results in unmirrored kernel memory.");
  5433. goto out2;
  5434. }
  5435. /*
  5436. * If movablecore=nn[KMG] was specified, calculate what size of
  5437. * kernelcore that corresponds so that memory usable for
  5438. * any allocation type is evenly spread. If both kernelcore
  5439. * and movablecore are specified, then the value of kernelcore
  5440. * will be used for required_kernelcore if it's greater than
  5441. * what movablecore would have allowed.
  5442. */
  5443. if (required_movablecore) {
  5444. unsigned long corepages;
  5445. /*
  5446. * Round-up so that ZONE_MOVABLE is at least as large as what
  5447. * was requested by the user
  5448. */
  5449. required_movablecore =
  5450. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  5451. required_movablecore = min(totalpages, required_movablecore);
  5452. corepages = totalpages - required_movablecore;
  5453. required_kernelcore = max(required_kernelcore, corepages);
  5454. }
  5455. /*
  5456. * If kernelcore was not specified or kernelcore size is larger
  5457. * than totalpages, there is no ZONE_MOVABLE.
  5458. */
  5459. if (!required_kernelcore || required_kernelcore >= totalpages)
  5460. goto out;
  5461. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  5462. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  5463. restart:
  5464. /* Spread kernelcore memory as evenly as possible throughout nodes */
  5465. kernelcore_node = required_kernelcore / usable_nodes;
  5466. for_each_node_state(nid, N_MEMORY) {
  5467. unsigned long start_pfn, end_pfn;
  5468. /*
  5469. * Recalculate kernelcore_node if the division per node
  5470. * now exceeds what is necessary to satisfy the requested
  5471. * amount of memory for the kernel
  5472. */
  5473. if (required_kernelcore < kernelcore_node)
  5474. kernelcore_node = required_kernelcore / usable_nodes;
  5475. /*
  5476. * As the map is walked, we track how much memory is usable
  5477. * by the kernel using kernelcore_remaining. When it is
  5478. * 0, the rest of the node is usable by ZONE_MOVABLE
  5479. */
  5480. kernelcore_remaining = kernelcore_node;
  5481. /* Go through each range of PFNs within this node */
  5482. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5483. unsigned long size_pages;
  5484. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  5485. if (start_pfn >= end_pfn)
  5486. continue;
  5487. /* Account for what is only usable for kernelcore */
  5488. if (start_pfn < usable_startpfn) {
  5489. unsigned long kernel_pages;
  5490. kernel_pages = min(end_pfn, usable_startpfn)
  5491. - start_pfn;
  5492. kernelcore_remaining -= min(kernel_pages,
  5493. kernelcore_remaining);
  5494. required_kernelcore -= min(kernel_pages,
  5495. required_kernelcore);
  5496. /* Continue if range is now fully accounted */
  5497. if (end_pfn <= usable_startpfn) {
  5498. /*
  5499. * Push zone_movable_pfn to the end so
  5500. * that if we have to rebalance
  5501. * kernelcore across nodes, we will
  5502. * not double account here
  5503. */
  5504. zone_movable_pfn[nid] = end_pfn;
  5505. continue;
  5506. }
  5507. start_pfn = usable_startpfn;
  5508. }
  5509. /*
  5510. * The usable PFN range for ZONE_MOVABLE is from
  5511. * start_pfn->end_pfn. Calculate size_pages as the
  5512. * number of pages used as kernelcore
  5513. */
  5514. size_pages = end_pfn - start_pfn;
  5515. if (size_pages > kernelcore_remaining)
  5516. size_pages = kernelcore_remaining;
  5517. zone_movable_pfn[nid] = start_pfn + size_pages;
  5518. /*
  5519. * Some kernelcore has been met, update counts and
  5520. * break if the kernelcore for this node has been
  5521. * satisfied
  5522. */
  5523. required_kernelcore -= min(required_kernelcore,
  5524. size_pages);
  5525. kernelcore_remaining -= size_pages;
  5526. if (!kernelcore_remaining)
  5527. break;
  5528. }
  5529. }
  5530. /*
  5531. * If there is still required_kernelcore, we do another pass with one
  5532. * less node in the count. This will push zone_movable_pfn[nid] further
  5533. * along on the nodes that still have memory until kernelcore is
  5534. * satisfied
  5535. */
  5536. usable_nodes--;
  5537. if (usable_nodes && required_kernelcore > usable_nodes)
  5538. goto restart;
  5539. out2:
  5540. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  5541. for (nid = 0; nid < MAX_NUMNODES; nid++)
  5542. zone_movable_pfn[nid] =
  5543. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  5544. out:
  5545. /* restore the node_state */
  5546. node_states[N_MEMORY] = saved_node_state;
  5547. }
  5548. /* Any regular or high memory on that node ? */
  5549. static void check_for_memory(pg_data_t *pgdat, int nid)
  5550. {
  5551. enum zone_type zone_type;
  5552. if (N_MEMORY == N_NORMAL_MEMORY)
  5553. return;
  5554. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  5555. struct zone *zone = &pgdat->node_zones[zone_type];
  5556. if (populated_zone(zone)) {
  5557. node_set_state(nid, N_HIGH_MEMORY);
  5558. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  5559. zone_type <= ZONE_NORMAL)
  5560. node_set_state(nid, N_NORMAL_MEMORY);
  5561. break;
  5562. }
  5563. }
  5564. }
  5565. /**
  5566. * free_area_init_nodes - Initialise all pg_data_t and zone data
  5567. * @max_zone_pfn: an array of max PFNs for each zone
  5568. *
  5569. * This will call free_area_init_node() for each active node in the system.
  5570. * Using the page ranges provided by memblock_set_node(), the size of each
  5571. * zone in each node and their holes is calculated. If the maximum PFN
  5572. * between two adjacent zones match, it is assumed that the zone is empty.
  5573. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  5574. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  5575. * starts where the previous one ended. For example, ZONE_DMA32 starts
  5576. * at arch_max_dma_pfn.
  5577. */
  5578. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  5579. {
  5580. unsigned long start_pfn, end_pfn;
  5581. int i, nid;
  5582. /* Record where the zone boundaries are */
  5583. memset(arch_zone_lowest_possible_pfn, 0,
  5584. sizeof(arch_zone_lowest_possible_pfn));
  5585. memset(arch_zone_highest_possible_pfn, 0,
  5586. sizeof(arch_zone_highest_possible_pfn));
  5587. start_pfn = find_min_pfn_with_active_regions();
  5588. for (i = 0; i < MAX_NR_ZONES; i++) {
  5589. if (i == ZONE_MOVABLE)
  5590. continue;
  5591. end_pfn = max(max_zone_pfn[i], start_pfn);
  5592. arch_zone_lowest_possible_pfn[i] = start_pfn;
  5593. arch_zone_highest_possible_pfn[i] = end_pfn;
  5594. start_pfn = end_pfn;
  5595. }
  5596. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  5597. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  5598. find_zone_movable_pfns_for_nodes();
  5599. /* Print out the zone ranges */
  5600. pr_info("Zone ranges:\n");
  5601. for (i = 0; i < MAX_NR_ZONES; i++) {
  5602. if (i == ZONE_MOVABLE)
  5603. continue;
  5604. pr_info(" %-8s ", zone_names[i]);
  5605. if (arch_zone_lowest_possible_pfn[i] ==
  5606. arch_zone_highest_possible_pfn[i])
  5607. pr_cont("empty\n");
  5608. else
  5609. pr_cont("[mem %#018Lx-%#018Lx]\n",
  5610. (u64)arch_zone_lowest_possible_pfn[i]
  5611. << PAGE_SHIFT,
  5612. ((u64)arch_zone_highest_possible_pfn[i]
  5613. << PAGE_SHIFT) - 1);
  5614. }
  5615. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  5616. pr_info("Movable zone start for each node\n");
  5617. for (i = 0; i < MAX_NUMNODES; i++) {
  5618. if (zone_movable_pfn[i])
  5619. pr_info(" Node %d: %#018Lx\n", i,
  5620. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  5621. }
  5622. /* Print out the early node map */
  5623. pr_info("Early memory node ranges\n");
  5624. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  5625. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  5626. (u64)start_pfn << PAGE_SHIFT,
  5627. ((u64)end_pfn << PAGE_SHIFT) - 1);
  5628. /* Initialise every node */
  5629. mminit_verify_pageflags_layout();
  5630. setup_nr_node_ids();
  5631. for_each_online_node(nid) {
  5632. pg_data_t *pgdat = NODE_DATA(nid);
  5633. free_area_init_node(nid, NULL,
  5634. find_min_pfn_for_node(nid), NULL);
  5635. /* Any memory on that node */
  5636. if (pgdat->node_present_pages)
  5637. node_set_state(nid, N_MEMORY);
  5638. check_for_memory(pgdat, nid);
  5639. }
  5640. }
  5641. static int __init cmdline_parse_core(char *p, unsigned long *core)
  5642. {
  5643. unsigned long long coremem;
  5644. if (!p)
  5645. return -EINVAL;
  5646. coremem = memparse(p, &p);
  5647. *core = coremem >> PAGE_SHIFT;
  5648. /* Paranoid check that UL is enough for the coremem value */
  5649. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5650. return 0;
  5651. }
  5652. /*
  5653. * kernelcore=size sets the amount of memory for use for allocations that
  5654. * cannot be reclaimed or migrated.
  5655. */
  5656. static int __init cmdline_parse_kernelcore(char *p)
  5657. {
  5658. /* parse kernelcore=mirror */
  5659. if (parse_option_str(p, "mirror")) {
  5660. mirrored_kernelcore = true;
  5661. return 0;
  5662. }
  5663. return cmdline_parse_core(p, &required_kernelcore);
  5664. }
  5665. /*
  5666. * movablecore=size sets the amount of memory for use for allocations that
  5667. * can be reclaimed or migrated.
  5668. */
  5669. static int __init cmdline_parse_movablecore(char *p)
  5670. {
  5671. return cmdline_parse_core(p, &required_movablecore);
  5672. }
  5673. early_param("kernelcore", cmdline_parse_kernelcore);
  5674. early_param("movablecore", cmdline_parse_movablecore);
  5675. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5676. void adjust_managed_page_count(struct page *page, long count)
  5677. {
  5678. spin_lock(&managed_page_count_lock);
  5679. page_zone(page)->managed_pages += count;
  5680. totalram_pages += count;
  5681. #ifdef CONFIG_HIGHMEM
  5682. if (PageHighMem(page))
  5683. totalhigh_pages += count;
  5684. #endif
  5685. spin_unlock(&managed_page_count_lock);
  5686. }
  5687. EXPORT_SYMBOL(adjust_managed_page_count);
  5688. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5689. {
  5690. void *pos;
  5691. unsigned long pages = 0;
  5692. start = (void *)PAGE_ALIGN((unsigned long)start);
  5693. end = (void *)((unsigned long)end & PAGE_MASK);
  5694. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5695. if ((unsigned int)poison <= 0xFF)
  5696. memset(pos, poison, PAGE_SIZE);
  5697. free_reserved_page(virt_to_page(pos));
  5698. }
  5699. if (pages && s)
  5700. pr_info("Freeing %s memory: %ldK\n",
  5701. s, pages << (PAGE_SHIFT - 10));
  5702. return pages;
  5703. }
  5704. EXPORT_SYMBOL(free_reserved_area);
  5705. #ifdef CONFIG_HIGHMEM
  5706. void free_highmem_page(struct page *page)
  5707. {
  5708. __free_reserved_page(page);
  5709. totalram_pages++;
  5710. page_zone(page)->managed_pages++;
  5711. totalhigh_pages++;
  5712. }
  5713. #endif
  5714. void __init mem_init_print_info(const char *str)
  5715. {
  5716. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5717. unsigned long init_code_size, init_data_size;
  5718. physpages = get_num_physpages();
  5719. codesize = _etext - _stext;
  5720. datasize = _edata - _sdata;
  5721. rosize = __end_rodata - __start_rodata;
  5722. bss_size = __bss_stop - __bss_start;
  5723. init_data_size = __init_end - __init_begin;
  5724. init_code_size = _einittext - _sinittext;
  5725. /*
  5726. * Detect special cases and adjust section sizes accordingly:
  5727. * 1) .init.* may be embedded into .data sections
  5728. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5729. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5730. * 3) .rodata.* may be embedded into .text or .data sections.
  5731. */
  5732. #define adj_init_size(start, end, size, pos, adj) \
  5733. do { \
  5734. if (start <= pos && pos < end && size > adj) \
  5735. size -= adj; \
  5736. } while (0)
  5737. adj_init_size(__init_begin, __init_end, init_data_size,
  5738. _sinittext, init_code_size);
  5739. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5740. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5741. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5742. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5743. #undef adj_init_size
  5744. pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5745. #ifdef CONFIG_HIGHMEM
  5746. ", %luK highmem"
  5747. #endif
  5748. "%s%s)\n",
  5749. nr_free_pages() << (PAGE_SHIFT - 10),
  5750. physpages << (PAGE_SHIFT - 10),
  5751. codesize >> 10, datasize >> 10, rosize >> 10,
  5752. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5753. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
  5754. totalcma_pages << (PAGE_SHIFT - 10),
  5755. #ifdef CONFIG_HIGHMEM
  5756. totalhigh_pages << (PAGE_SHIFT - 10),
  5757. #endif
  5758. str ? ", " : "", str ? str : "");
  5759. }
  5760. /**
  5761. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5762. * @new_dma_reserve: The number of pages to mark reserved
  5763. *
  5764. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  5765. * In the DMA zone, a significant percentage may be consumed by kernel image
  5766. * and other unfreeable allocations which can skew the watermarks badly. This
  5767. * function may optionally be used to account for unfreeable pages in the
  5768. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5769. * smaller per-cpu batchsize.
  5770. */
  5771. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5772. {
  5773. dma_reserve = new_dma_reserve;
  5774. }
  5775. void __init free_area_init(unsigned long *zones_size)
  5776. {
  5777. free_area_init_node(0, zones_size,
  5778. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5779. }
  5780. static int page_alloc_cpu_dead(unsigned int cpu)
  5781. {
  5782. lru_add_drain_cpu(cpu);
  5783. drain_pages(cpu);
  5784. /*
  5785. * Spill the event counters of the dead processor
  5786. * into the current processors event counters.
  5787. * This artificially elevates the count of the current
  5788. * processor.
  5789. */
  5790. vm_events_fold_cpu(cpu);
  5791. /*
  5792. * Zero the differential counters of the dead processor
  5793. * so that the vm statistics are consistent.
  5794. *
  5795. * This is only okay since the processor is dead and cannot
  5796. * race with what we are doing.
  5797. */
  5798. cpu_vm_stats_fold(cpu);
  5799. return 0;
  5800. }
  5801. void __init page_alloc_init(void)
  5802. {
  5803. int ret;
  5804. ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
  5805. "mm/page_alloc:dead", NULL,
  5806. page_alloc_cpu_dead);
  5807. WARN_ON(ret < 0);
  5808. }
  5809. /*
  5810. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  5811. * or min_free_kbytes changes.
  5812. */
  5813. static void calculate_totalreserve_pages(void)
  5814. {
  5815. struct pglist_data *pgdat;
  5816. unsigned long reserve_pages = 0;
  5817. enum zone_type i, j;
  5818. for_each_online_pgdat(pgdat) {
  5819. pgdat->totalreserve_pages = 0;
  5820. for (i = 0; i < MAX_NR_ZONES; i++) {
  5821. struct zone *zone = pgdat->node_zones + i;
  5822. long max = 0;
  5823. /* Find valid and maximum lowmem_reserve in the zone */
  5824. for (j = i; j < MAX_NR_ZONES; j++) {
  5825. if (zone->lowmem_reserve[j] > max)
  5826. max = zone->lowmem_reserve[j];
  5827. }
  5828. /* we treat the high watermark as reserved pages. */
  5829. max += high_wmark_pages(zone);
  5830. if (max > zone->managed_pages)
  5831. max = zone->managed_pages;
  5832. pgdat->totalreserve_pages += max;
  5833. reserve_pages += max;
  5834. }
  5835. }
  5836. totalreserve_pages = reserve_pages;
  5837. }
  5838. /*
  5839. * setup_per_zone_lowmem_reserve - called whenever
  5840. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  5841. * has a correct pages reserved value, so an adequate number of
  5842. * pages are left in the zone after a successful __alloc_pages().
  5843. */
  5844. static void setup_per_zone_lowmem_reserve(void)
  5845. {
  5846. struct pglist_data *pgdat;
  5847. enum zone_type j, idx;
  5848. for_each_online_pgdat(pgdat) {
  5849. for (j = 0; j < MAX_NR_ZONES; j++) {
  5850. struct zone *zone = pgdat->node_zones + j;
  5851. unsigned long managed_pages = zone->managed_pages;
  5852. zone->lowmem_reserve[j] = 0;
  5853. idx = j;
  5854. while (idx) {
  5855. struct zone *lower_zone;
  5856. idx--;
  5857. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  5858. sysctl_lowmem_reserve_ratio[idx] = 1;
  5859. lower_zone = pgdat->node_zones + idx;
  5860. lower_zone->lowmem_reserve[j] = managed_pages /
  5861. sysctl_lowmem_reserve_ratio[idx];
  5862. managed_pages += lower_zone->managed_pages;
  5863. }
  5864. }
  5865. }
  5866. /* update totalreserve_pages */
  5867. calculate_totalreserve_pages();
  5868. }
  5869. static void __setup_per_zone_wmarks(void)
  5870. {
  5871. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  5872. unsigned long lowmem_pages = 0;
  5873. struct zone *zone;
  5874. unsigned long flags;
  5875. /* Calculate total number of !ZONE_HIGHMEM pages */
  5876. for_each_zone(zone) {
  5877. if (!is_highmem(zone))
  5878. lowmem_pages += zone->managed_pages;
  5879. }
  5880. for_each_zone(zone) {
  5881. u64 tmp;
  5882. spin_lock_irqsave(&zone->lock, flags);
  5883. tmp = (u64)pages_min * zone->managed_pages;
  5884. do_div(tmp, lowmem_pages);
  5885. if (is_highmem(zone)) {
  5886. /*
  5887. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  5888. * need highmem pages, so cap pages_min to a small
  5889. * value here.
  5890. *
  5891. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  5892. * deltas control asynch page reclaim, and so should
  5893. * not be capped for highmem.
  5894. */
  5895. unsigned long min_pages;
  5896. min_pages = zone->managed_pages / 1024;
  5897. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  5898. zone->watermark[WMARK_MIN] = min_pages;
  5899. } else {
  5900. /*
  5901. * If it's a lowmem zone, reserve a number of pages
  5902. * proportionate to the zone's size.
  5903. */
  5904. zone->watermark[WMARK_MIN] = tmp;
  5905. }
  5906. /*
  5907. * Set the kswapd watermarks distance according to the
  5908. * scale factor in proportion to available memory, but
  5909. * ensure a minimum size on small systems.
  5910. */
  5911. tmp = max_t(u64, tmp >> 2,
  5912. mult_frac(zone->managed_pages,
  5913. watermark_scale_factor, 10000));
  5914. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
  5915. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
  5916. spin_unlock_irqrestore(&zone->lock, flags);
  5917. }
  5918. /* update totalreserve_pages */
  5919. calculate_totalreserve_pages();
  5920. }
  5921. /**
  5922. * setup_per_zone_wmarks - called when min_free_kbytes changes
  5923. * or when memory is hot-{added|removed}
  5924. *
  5925. * Ensures that the watermark[min,low,high] values for each zone are set
  5926. * correctly with respect to min_free_kbytes.
  5927. */
  5928. void setup_per_zone_wmarks(void)
  5929. {
  5930. mutex_lock(&zonelists_mutex);
  5931. __setup_per_zone_wmarks();
  5932. mutex_unlock(&zonelists_mutex);
  5933. }
  5934. /*
  5935. * Initialise min_free_kbytes.
  5936. *
  5937. * For small machines we want it small (128k min). For large machines
  5938. * we want it large (64MB max). But it is not linear, because network
  5939. * bandwidth does not increase linearly with machine size. We use
  5940. *
  5941. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5942. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5943. *
  5944. * which yields
  5945. *
  5946. * 16MB: 512k
  5947. * 32MB: 724k
  5948. * 64MB: 1024k
  5949. * 128MB: 1448k
  5950. * 256MB: 2048k
  5951. * 512MB: 2896k
  5952. * 1024MB: 4096k
  5953. * 2048MB: 5792k
  5954. * 4096MB: 8192k
  5955. * 8192MB: 11584k
  5956. * 16384MB: 16384k
  5957. */
  5958. int __meminit init_per_zone_wmark_min(void)
  5959. {
  5960. unsigned long lowmem_kbytes;
  5961. int new_min_free_kbytes;
  5962. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5963. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5964. if (new_min_free_kbytes > user_min_free_kbytes) {
  5965. min_free_kbytes = new_min_free_kbytes;
  5966. if (min_free_kbytes < 128)
  5967. min_free_kbytes = 128;
  5968. if (min_free_kbytes > 65536)
  5969. min_free_kbytes = 65536;
  5970. } else {
  5971. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5972. new_min_free_kbytes, user_min_free_kbytes);
  5973. }
  5974. setup_per_zone_wmarks();
  5975. refresh_zone_stat_thresholds();
  5976. setup_per_zone_lowmem_reserve();
  5977. #ifdef CONFIG_NUMA
  5978. setup_min_unmapped_ratio();
  5979. setup_min_slab_ratio();
  5980. #endif
  5981. return 0;
  5982. }
  5983. core_initcall(init_per_zone_wmark_min)
  5984. /*
  5985. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5986. * that we can call two helper functions whenever min_free_kbytes
  5987. * changes.
  5988. */
  5989. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5990. void __user *buffer, size_t *length, loff_t *ppos)
  5991. {
  5992. int rc;
  5993. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5994. if (rc)
  5995. return rc;
  5996. if (write) {
  5997. user_min_free_kbytes = min_free_kbytes;
  5998. setup_per_zone_wmarks();
  5999. }
  6000. return 0;
  6001. }
  6002. int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
  6003. void __user *buffer, size_t *length, loff_t *ppos)
  6004. {
  6005. int rc;
  6006. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6007. if (rc)
  6008. return rc;
  6009. if (write)
  6010. setup_per_zone_wmarks();
  6011. return 0;
  6012. }
  6013. #ifdef CONFIG_NUMA
  6014. static void setup_min_unmapped_ratio(void)
  6015. {
  6016. pg_data_t *pgdat;
  6017. struct zone *zone;
  6018. for_each_online_pgdat(pgdat)
  6019. pgdat->min_unmapped_pages = 0;
  6020. for_each_zone(zone)
  6021. zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
  6022. sysctl_min_unmapped_ratio) / 100;
  6023. }
  6024. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  6025. void __user *buffer, size_t *length, loff_t *ppos)
  6026. {
  6027. int rc;
  6028. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6029. if (rc)
  6030. return rc;
  6031. setup_min_unmapped_ratio();
  6032. return 0;
  6033. }
  6034. static void setup_min_slab_ratio(void)
  6035. {
  6036. pg_data_t *pgdat;
  6037. struct zone *zone;
  6038. for_each_online_pgdat(pgdat)
  6039. pgdat->min_slab_pages = 0;
  6040. for_each_zone(zone)
  6041. zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
  6042. sysctl_min_slab_ratio) / 100;
  6043. }
  6044. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  6045. void __user *buffer, size_t *length, loff_t *ppos)
  6046. {
  6047. int rc;
  6048. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6049. if (rc)
  6050. return rc;
  6051. setup_min_slab_ratio();
  6052. return 0;
  6053. }
  6054. #endif
  6055. /*
  6056. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  6057. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  6058. * whenever sysctl_lowmem_reserve_ratio changes.
  6059. *
  6060. * The reserve ratio obviously has absolutely no relation with the
  6061. * minimum watermarks. The lowmem reserve ratio can only make sense
  6062. * if in function of the boot time zone sizes.
  6063. */
  6064. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  6065. void __user *buffer, size_t *length, loff_t *ppos)
  6066. {
  6067. proc_dointvec_minmax(table, write, buffer, length, ppos);
  6068. setup_per_zone_lowmem_reserve();
  6069. return 0;
  6070. }
  6071. /*
  6072. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  6073. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  6074. * pagelist can have before it gets flushed back to buddy allocator.
  6075. */
  6076. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  6077. void __user *buffer, size_t *length, loff_t *ppos)
  6078. {
  6079. struct zone *zone;
  6080. int old_percpu_pagelist_fraction;
  6081. int ret;
  6082. mutex_lock(&pcp_batch_high_lock);
  6083. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  6084. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6085. if (!write || ret < 0)
  6086. goto out;
  6087. /* Sanity checking to avoid pcp imbalance */
  6088. if (percpu_pagelist_fraction &&
  6089. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  6090. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  6091. ret = -EINVAL;
  6092. goto out;
  6093. }
  6094. /* No change? */
  6095. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  6096. goto out;
  6097. for_each_populated_zone(zone) {
  6098. unsigned int cpu;
  6099. for_each_possible_cpu(cpu)
  6100. pageset_set_high_and_batch(zone,
  6101. per_cpu_ptr(zone->pageset, cpu));
  6102. }
  6103. out:
  6104. mutex_unlock(&pcp_batch_high_lock);
  6105. return ret;
  6106. }
  6107. #ifdef CONFIG_NUMA
  6108. int hashdist = HASHDIST_DEFAULT;
  6109. static int __init set_hashdist(char *str)
  6110. {
  6111. if (!str)
  6112. return 0;
  6113. hashdist = simple_strtoul(str, &str, 0);
  6114. return 1;
  6115. }
  6116. __setup("hashdist=", set_hashdist);
  6117. #endif
  6118. #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  6119. /*
  6120. * Returns the number of pages that arch has reserved but
  6121. * is not known to alloc_large_system_hash().
  6122. */
  6123. static unsigned long __init arch_reserved_kernel_pages(void)
  6124. {
  6125. return 0;
  6126. }
  6127. #endif
  6128. /*
  6129. * allocate a large system hash table from bootmem
  6130. * - it is assumed that the hash table must contain an exact power-of-2
  6131. * quantity of entries
  6132. * - limit is the number of hash buckets, not the total allocation size
  6133. */
  6134. void *__init alloc_large_system_hash(const char *tablename,
  6135. unsigned long bucketsize,
  6136. unsigned long numentries,
  6137. int scale,
  6138. int flags,
  6139. unsigned int *_hash_shift,
  6140. unsigned int *_hash_mask,
  6141. unsigned long low_limit,
  6142. unsigned long high_limit)
  6143. {
  6144. unsigned long long max = high_limit;
  6145. unsigned long log2qty, size;
  6146. void *table = NULL;
  6147. /* allow the kernel cmdline to have a say */
  6148. if (!numentries) {
  6149. /* round applicable memory size up to nearest megabyte */
  6150. numentries = nr_kernel_pages;
  6151. numentries -= arch_reserved_kernel_pages();
  6152. /* It isn't necessary when PAGE_SIZE >= 1MB */
  6153. if (PAGE_SHIFT < 20)
  6154. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  6155. /* limit to 1 bucket per 2^scale bytes of low memory */
  6156. if (scale > PAGE_SHIFT)
  6157. numentries >>= (scale - PAGE_SHIFT);
  6158. else
  6159. numentries <<= (PAGE_SHIFT - scale);
  6160. /* Make sure we've got at least a 0-order allocation.. */
  6161. if (unlikely(flags & HASH_SMALL)) {
  6162. /* Makes no sense without HASH_EARLY */
  6163. WARN_ON(!(flags & HASH_EARLY));
  6164. if (!(numentries >> *_hash_shift)) {
  6165. numentries = 1UL << *_hash_shift;
  6166. BUG_ON(!numentries);
  6167. }
  6168. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  6169. numentries = PAGE_SIZE / bucketsize;
  6170. }
  6171. numentries = roundup_pow_of_two(numentries);
  6172. /* limit allocation size to 1/16 total memory by default */
  6173. if (max == 0) {
  6174. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  6175. do_div(max, bucketsize);
  6176. }
  6177. max = min(max, 0x80000000ULL);
  6178. if (numentries < low_limit)
  6179. numentries = low_limit;
  6180. if (numentries > max)
  6181. numentries = max;
  6182. log2qty = ilog2(numentries);
  6183. do {
  6184. size = bucketsize << log2qty;
  6185. if (flags & HASH_EARLY)
  6186. table = memblock_virt_alloc_nopanic(size, 0);
  6187. else if (hashdist)
  6188. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  6189. else {
  6190. /*
  6191. * If bucketsize is not a power-of-two, we may free
  6192. * some pages at the end of hash table which
  6193. * alloc_pages_exact() automatically does
  6194. */
  6195. if (get_order(size) < MAX_ORDER) {
  6196. table = alloc_pages_exact(size, GFP_ATOMIC);
  6197. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  6198. }
  6199. }
  6200. } while (!table && size > PAGE_SIZE && --log2qty);
  6201. if (!table)
  6202. panic("Failed to allocate %s hash table\n", tablename);
  6203. pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
  6204. tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
  6205. if (_hash_shift)
  6206. *_hash_shift = log2qty;
  6207. if (_hash_mask)
  6208. *_hash_mask = (1 << log2qty) - 1;
  6209. return table;
  6210. }
  6211. /*
  6212. * This function checks whether pageblock includes unmovable pages or not.
  6213. * If @count is not zero, it is okay to include less @count unmovable pages
  6214. *
  6215. * PageLRU check without isolation or lru_lock could race so that
  6216. * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
  6217. * check without lock_page also may miss some movable non-lru pages at
  6218. * race condition. So you can't expect this function should be exact.
  6219. */
  6220. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  6221. bool skip_hwpoisoned_pages)
  6222. {
  6223. unsigned long pfn, iter, found;
  6224. int mt;
  6225. /*
  6226. * For avoiding noise data, lru_add_drain_all() should be called
  6227. * If ZONE_MOVABLE, the zone never contains unmovable pages
  6228. */
  6229. if (zone_idx(zone) == ZONE_MOVABLE)
  6230. return false;
  6231. mt = get_pageblock_migratetype(page);
  6232. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  6233. return false;
  6234. pfn = page_to_pfn(page);
  6235. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  6236. unsigned long check = pfn + iter;
  6237. if (!pfn_valid_within(check))
  6238. continue;
  6239. page = pfn_to_page(check);
  6240. /*
  6241. * Hugepages are not in LRU lists, but they're movable.
  6242. * We need not scan over tail pages bacause we don't
  6243. * handle each tail page individually in migration.
  6244. */
  6245. if (PageHuge(page)) {
  6246. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  6247. continue;
  6248. }
  6249. /*
  6250. * We can't use page_count without pin a page
  6251. * because another CPU can free compound page.
  6252. * This check already skips compound tails of THP
  6253. * because their page->_refcount is zero at all time.
  6254. */
  6255. if (!page_ref_count(page)) {
  6256. if (PageBuddy(page))
  6257. iter += (1 << page_order(page)) - 1;
  6258. continue;
  6259. }
  6260. /*
  6261. * The HWPoisoned page may be not in buddy system, and
  6262. * page_count() is not 0.
  6263. */
  6264. if (skip_hwpoisoned_pages && PageHWPoison(page))
  6265. continue;
  6266. if (__PageMovable(page))
  6267. continue;
  6268. if (!PageLRU(page))
  6269. found++;
  6270. /*
  6271. * If there are RECLAIMABLE pages, we need to check
  6272. * it. But now, memory offline itself doesn't call
  6273. * shrink_node_slabs() and it still to be fixed.
  6274. */
  6275. /*
  6276. * If the page is not RAM, page_count()should be 0.
  6277. * we don't need more check. This is an _used_ not-movable page.
  6278. *
  6279. * The problematic thing here is PG_reserved pages. PG_reserved
  6280. * is set to both of a memory hole page and a _used_ kernel
  6281. * page at boot.
  6282. */
  6283. if (found > count)
  6284. return true;
  6285. }
  6286. return false;
  6287. }
  6288. bool is_pageblock_removable_nolock(struct page *page)
  6289. {
  6290. struct zone *zone;
  6291. unsigned long pfn;
  6292. /*
  6293. * We have to be careful here because we are iterating over memory
  6294. * sections which are not zone aware so we might end up outside of
  6295. * the zone but still within the section.
  6296. * We have to take care about the node as well. If the node is offline
  6297. * its NODE_DATA will be NULL - see page_zone.
  6298. */
  6299. if (!node_online(page_to_nid(page)))
  6300. return false;
  6301. zone = page_zone(page);
  6302. pfn = page_to_pfn(page);
  6303. if (!zone_spans_pfn(zone, pfn))
  6304. return false;
  6305. return !has_unmovable_pages(zone, page, 0, true);
  6306. }
  6307. #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
  6308. static unsigned long pfn_max_align_down(unsigned long pfn)
  6309. {
  6310. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6311. pageblock_nr_pages) - 1);
  6312. }
  6313. static unsigned long pfn_max_align_up(unsigned long pfn)
  6314. {
  6315. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6316. pageblock_nr_pages));
  6317. }
  6318. /* [start, end) must belong to a single zone. */
  6319. static int __alloc_contig_migrate_range(struct compact_control *cc,
  6320. unsigned long start, unsigned long end)
  6321. {
  6322. /* This function is based on compact_zone() from compaction.c. */
  6323. unsigned long nr_reclaimed;
  6324. unsigned long pfn = start;
  6325. unsigned int tries = 0;
  6326. int ret = 0;
  6327. migrate_prep();
  6328. while (pfn < end || !list_empty(&cc->migratepages)) {
  6329. if (fatal_signal_pending(current)) {
  6330. ret = -EINTR;
  6331. break;
  6332. }
  6333. if (list_empty(&cc->migratepages)) {
  6334. cc->nr_migratepages = 0;
  6335. pfn = isolate_migratepages_range(cc, pfn, end);
  6336. if (!pfn) {
  6337. ret = -EINTR;
  6338. break;
  6339. }
  6340. tries = 0;
  6341. } else if (++tries == 5) {
  6342. ret = ret < 0 ? ret : -EBUSY;
  6343. break;
  6344. }
  6345. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  6346. &cc->migratepages);
  6347. cc->nr_migratepages -= nr_reclaimed;
  6348. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  6349. NULL, 0, cc->mode, MR_CMA);
  6350. }
  6351. if (ret < 0) {
  6352. putback_movable_pages(&cc->migratepages);
  6353. return ret;
  6354. }
  6355. return 0;
  6356. }
  6357. /**
  6358. * alloc_contig_range() -- tries to allocate given range of pages
  6359. * @start: start PFN to allocate
  6360. * @end: one-past-the-last PFN to allocate
  6361. * @migratetype: migratetype of the underlaying pageblocks (either
  6362. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  6363. * in range must have the same migratetype and it must
  6364. * be either of the two.
  6365. * @gfp_mask: GFP mask to use during compaction
  6366. *
  6367. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  6368. * aligned, however it's the caller's responsibility to guarantee that
  6369. * we are the only thread that changes migrate type of pageblocks the
  6370. * pages fall in.
  6371. *
  6372. * The PFN range must belong to a single zone.
  6373. *
  6374. * Returns zero on success or negative error code. On success all
  6375. * pages which PFN is in [start, end) are allocated for the caller and
  6376. * need to be freed with free_contig_range().
  6377. */
  6378. int alloc_contig_range(unsigned long start, unsigned long end,
  6379. unsigned migratetype, gfp_t gfp_mask)
  6380. {
  6381. unsigned long outer_start, outer_end;
  6382. unsigned int order;
  6383. int ret = 0;
  6384. struct compact_control cc = {
  6385. .nr_migratepages = 0,
  6386. .order = -1,
  6387. .zone = page_zone(pfn_to_page(start)),
  6388. .mode = MIGRATE_SYNC,
  6389. .ignore_skip_hint = true,
  6390. .gfp_mask = memalloc_noio_flags(gfp_mask),
  6391. };
  6392. INIT_LIST_HEAD(&cc.migratepages);
  6393. /*
  6394. * What we do here is we mark all pageblocks in range as
  6395. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  6396. * have different sizes, and due to the way page allocator
  6397. * work, we align the range to biggest of the two pages so
  6398. * that page allocator won't try to merge buddies from
  6399. * different pageblocks and change MIGRATE_ISOLATE to some
  6400. * other migration type.
  6401. *
  6402. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  6403. * migrate the pages from an unaligned range (ie. pages that
  6404. * we are interested in). This will put all the pages in
  6405. * range back to page allocator as MIGRATE_ISOLATE.
  6406. *
  6407. * When this is done, we take the pages in range from page
  6408. * allocator removing them from the buddy system. This way
  6409. * page allocator will never consider using them.
  6410. *
  6411. * This lets us mark the pageblocks back as
  6412. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  6413. * aligned range but not in the unaligned, original range are
  6414. * put back to page allocator so that buddy can use them.
  6415. */
  6416. ret = start_isolate_page_range(pfn_max_align_down(start),
  6417. pfn_max_align_up(end), migratetype,
  6418. false);
  6419. if (ret)
  6420. return ret;
  6421. /*
  6422. * In case of -EBUSY, we'd like to know which page causes problem.
  6423. * So, just fall through. We will check it in test_pages_isolated().
  6424. */
  6425. ret = __alloc_contig_migrate_range(&cc, start, end);
  6426. if (ret && ret != -EBUSY)
  6427. goto done;
  6428. /*
  6429. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  6430. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  6431. * more, all pages in [start, end) are free in page allocator.
  6432. * What we are going to do is to allocate all pages from
  6433. * [start, end) (that is remove them from page allocator).
  6434. *
  6435. * The only problem is that pages at the beginning and at the
  6436. * end of interesting range may be not aligned with pages that
  6437. * page allocator holds, ie. they can be part of higher order
  6438. * pages. Because of this, we reserve the bigger range and
  6439. * once this is done free the pages we are not interested in.
  6440. *
  6441. * We don't have to hold zone->lock here because the pages are
  6442. * isolated thus they won't get removed from buddy.
  6443. */
  6444. lru_add_drain_all();
  6445. drain_all_pages(cc.zone);
  6446. order = 0;
  6447. outer_start = start;
  6448. while (!PageBuddy(pfn_to_page(outer_start))) {
  6449. if (++order >= MAX_ORDER) {
  6450. outer_start = start;
  6451. break;
  6452. }
  6453. outer_start &= ~0UL << order;
  6454. }
  6455. if (outer_start != start) {
  6456. order = page_order(pfn_to_page(outer_start));
  6457. /*
  6458. * outer_start page could be small order buddy page and
  6459. * it doesn't include start page. Adjust outer_start
  6460. * in this case to report failed page properly
  6461. * on tracepoint in test_pages_isolated()
  6462. */
  6463. if (outer_start + (1UL << order) <= start)
  6464. outer_start = start;
  6465. }
  6466. /* Make sure the range is really isolated. */
  6467. if (test_pages_isolated(outer_start, end, false)) {
  6468. pr_info("%s: [%lx, %lx) PFNs busy\n",
  6469. __func__, outer_start, end);
  6470. ret = -EBUSY;
  6471. goto done;
  6472. }
  6473. /* Grab isolated pages from freelists. */
  6474. outer_end = isolate_freepages_range(&cc, outer_start, end);
  6475. if (!outer_end) {
  6476. ret = -EBUSY;
  6477. goto done;
  6478. }
  6479. /* Free head and tail (if any) */
  6480. if (start != outer_start)
  6481. free_contig_range(outer_start, start - outer_start);
  6482. if (end != outer_end)
  6483. free_contig_range(end, outer_end - end);
  6484. done:
  6485. undo_isolate_page_range(pfn_max_align_down(start),
  6486. pfn_max_align_up(end), migratetype);
  6487. return ret;
  6488. }
  6489. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  6490. {
  6491. unsigned int count = 0;
  6492. for (; nr_pages--; pfn++) {
  6493. struct page *page = pfn_to_page(pfn);
  6494. count += page_count(page) != 1;
  6495. __free_page(page);
  6496. }
  6497. WARN(count != 0, "%d pages are still in use!\n", count);
  6498. }
  6499. #endif
  6500. #ifdef CONFIG_MEMORY_HOTPLUG
  6501. /*
  6502. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  6503. * page high values need to be recalulated.
  6504. */
  6505. void __meminit zone_pcp_update(struct zone *zone)
  6506. {
  6507. unsigned cpu;
  6508. mutex_lock(&pcp_batch_high_lock);
  6509. for_each_possible_cpu(cpu)
  6510. pageset_set_high_and_batch(zone,
  6511. per_cpu_ptr(zone->pageset, cpu));
  6512. mutex_unlock(&pcp_batch_high_lock);
  6513. }
  6514. #endif
  6515. void zone_pcp_reset(struct zone *zone)
  6516. {
  6517. unsigned long flags;
  6518. int cpu;
  6519. struct per_cpu_pageset *pset;
  6520. /* avoid races with drain_pages() */
  6521. local_irq_save(flags);
  6522. if (zone->pageset != &boot_pageset) {
  6523. for_each_online_cpu(cpu) {
  6524. pset = per_cpu_ptr(zone->pageset, cpu);
  6525. drain_zonestat(zone, pset);
  6526. }
  6527. free_percpu(zone->pageset);
  6528. zone->pageset = &boot_pageset;
  6529. }
  6530. local_irq_restore(flags);
  6531. }
  6532. #ifdef CONFIG_MEMORY_HOTREMOVE
  6533. /*
  6534. * All pages in the range must be in a single zone and isolated
  6535. * before calling this.
  6536. */
  6537. void
  6538. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  6539. {
  6540. struct page *page;
  6541. struct zone *zone;
  6542. unsigned int order, i;
  6543. unsigned long pfn;
  6544. unsigned long flags;
  6545. /* find the first valid pfn */
  6546. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  6547. if (pfn_valid(pfn))
  6548. break;
  6549. if (pfn == end_pfn)
  6550. return;
  6551. zone = page_zone(pfn_to_page(pfn));
  6552. spin_lock_irqsave(&zone->lock, flags);
  6553. pfn = start_pfn;
  6554. while (pfn < end_pfn) {
  6555. if (!pfn_valid(pfn)) {
  6556. pfn++;
  6557. continue;
  6558. }
  6559. page = pfn_to_page(pfn);
  6560. /*
  6561. * The HWPoisoned page may be not in buddy system, and
  6562. * page_count() is not 0.
  6563. */
  6564. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  6565. pfn++;
  6566. SetPageReserved(page);
  6567. continue;
  6568. }
  6569. BUG_ON(page_count(page));
  6570. BUG_ON(!PageBuddy(page));
  6571. order = page_order(page);
  6572. #ifdef CONFIG_DEBUG_VM
  6573. pr_info("remove from free list %lx %d %lx\n",
  6574. pfn, 1 << order, end_pfn);
  6575. #endif
  6576. list_del(&page->lru);
  6577. rmv_page_order(page);
  6578. zone->free_area[order].nr_free--;
  6579. for (i = 0; i < (1 << order); i++)
  6580. SetPageReserved((page+i));
  6581. pfn += (1 << order);
  6582. }
  6583. spin_unlock_irqrestore(&zone->lock, flags);
  6584. }
  6585. #endif
  6586. bool is_free_buddy_page(struct page *page)
  6587. {
  6588. struct zone *zone = page_zone(page);
  6589. unsigned long pfn = page_to_pfn(page);
  6590. unsigned long flags;
  6591. unsigned int order;
  6592. spin_lock_irqsave(&zone->lock, flags);
  6593. for (order = 0; order < MAX_ORDER; order++) {
  6594. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6595. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6596. break;
  6597. }
  6598. spin_unlock_irqrestore(&zone->lock, flags);
  6599. return order < MAX_ORDER;
  6600. }