arm_arch_timer.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738
  1. /*
  2. * linux/drivers/clocksource/arm_arch_timer.c
  3. *
  4. * Copyright (C) 2011 ARM Ltd.
  5. * All Rights Reserved
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/kernel.h>
  13. #include <linux/device.h>
  14. #include <linux/smp.h>
  15. #include <linux/cpu.h>
  16. #include <linux/cpu_pm.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/of_irq.h>
  20. #include <linux/of_address.h>
  21. #include <linux/io.h>
  22. #include <linux/slab.h>
  23. #include <linux/sched_clock.h>
  24. #include <asm/arch_timer.h>
  25. #include <asm/virt.h>
  26. #include <clocksource/arm_arch_timer.h>
  27. #define CNTTIDR 0x08
  28. #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
  29. #define CNTVCT_LO 0x08
  30. #define CNTVCT_HI 0x0c
  31. #define CNTFRQ 0x10
  32. #define CNTP_TVAL 0x28
  33. #define CNTP_CTL 0x2c
  34. #define CNTV_TVAL 0x38
  35. #define CNTV_CTL 0x3c
  36. #define ARCH_CP15_TIMER BIT(0)
  37. #define ARCH_MEM_TIMER BIT(1)
  38. static unsigned arch_timers_present __initdata;
  39. static void __iomem *arch_counter_base;
  40. struct arch_timer {
  41. void __iomem *base;
  42. struct clock_event_device evt;
  43. };
  44. #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  45. static u32 arch_timer_rate;
  46. enum ppi_nr {
  47. PHYS_SECURE_PPI,
  48. PHYS_NONSECURE_PPI,
  49. VIRT_PPI,
  50. HYP_PPI,
  51. MAX_TIMER_PPI
  52. };
  53. static int arch_timer_ppi[MAX_TIMER_PPI];
  54. static struct clock_event_device __percpu *arch_timer_evt;
  55. static bool arch_timer_use_virtual = true;
  56. static bool arch_timer_mem_use_virtual;
  57. /*
  58. * Architected system timer support.
  59. */
  60. static __always_inline
  61. void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  62. struct clock_event_device *clk)
  63. {
  64. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  65. struct arch_timer *timer = to_arch_timer(clk);
  66. switch (reg) {
  67. case ARCH_TIMER_REG_CTRL:
  68. writel_relaxed(val, timer->base + CNTP_CTL);
  69. break;
  70. case ARCH_TIMER_REG_TVAL:
  71. writel_relaxed(val, timer->base + CNTP_TVAL);
  72. break;
  73. }
  74. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  75. struct arch_timer *timer = to_arch_timer(clk);
  76. switch (reg) {
  77. case ARCH_TIMER_REG_CTRL:
  78. writel_relaxed(val, timer->base + CNTV_CTL);
  79. break;
  80. case ARCH_TIMER_REG_TVAL:
  81. writel_relaxed(val, timer->base + CNTV_TVAL);
  82. break;
  83. }
  84. } else {
  85. arch_timer_reg_write_cp15(access, reg, val);
  86. }
  87. }
  88. static __always_inline
  89. u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
  90. struct clock_event_device *clk)
  91. {
  92. u32 val;
  93. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  94. struct arch_timer *timer = to_arch_timer(clk);
  95. switch (reg) {
  96. case ARCH_TIMER_REG_CTRL:
  97. val = readl_relaxed(timer->base + CNTP_CTL);
  98. break;
  99. case ARCH_TIMER_REG_TVAL:
  100. val = readl_relaxed(timer->base + CNTP_TVAL);
  101. break;
  102. }
  103. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  104. struct arch_timer *timer = to_arch_timer(clk);
  105. switch (reg) {
  106. case ARCH_TIMER_REG_CTRL:
  107. val = readl_relaxed(timer->base + CNTV_CTL);
  108. break;
  109. case ARCH_TIMER_REG_TVAL:
  110. val = readl_relaxed(timer->base + CNTV_TVAL);
  111. break;
  112. }
  113. } else {
  114. val = arch_timer_reg_read_cp15(access, reg);
  115. }
  116. return val;
  117. }
  118. static __always_inline irqreturn_t timer_handler(const int access,
  119. struct clock_event_device *evt)
  120. {
  121. unsigned long ctrl;
  122. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
  123. if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
  124. ctrl |= ARCH_TIMER_CTRL_IT_MASK;
  125. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
  126. evt->event_handler(evt);
  127. return IRQ_HANDLED;
  128. }
  129. return IRQ_NONE;
  130. }
  131. static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
  132. {
  133. struct clock_event_device *evt = dev_id;
  134. return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
  135. }
  136. static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
  137. {
  138. struct clock_event_device *evt = dev_id;
  139. return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
  140. }
  141. static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
  142. {
  143. struct clock_event_device *evt = dev_id;
  144. return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
  145. }
  146. static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
  147. {
  148. struct clock_event_device *evt = dev_id;
  149. return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
  150. }
  151. static __always_inline void timer_set_mode(const int access, int mode,
  152. struct clock_event_device *clk)
  153. {
  154. unsigned long ctrl;
  155. switch (mode) {
  156. case CLOCK_EVT_MODE_UNUSED:
  157. case CLOCK_EVT_MODE_SHUTDOWN:
  158. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  159. ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
  160. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  161. break;
  162. default:
  163. break;
  164. }
  165. }
  166. static void arch_timer_set_mode_virt(enum clock_event_mode mode,
  167. struct clock_event_device *clk)
  168. {
  169. timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
  170. }
  171. static void arch_timer_set_mode_phys(enum clock_event_mode mode,
  172. struct clock_event_device *clk)
  173. {
  174. timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
  175. }
  176. static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
  177. struct clock_event_device *clk)
  178. {
  179. timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
  180. }
  181. static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
  182. struct clock_event_device *clk)
  183. {
  184. timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
  185. }
  186. static __always_inline void set_next_event(const int access, unsigned long evt,
  187. struct clock_event_device *clk)
  188. {
  189. unsigned long ctrl;
  190. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  191. ctrl |= ARCH_TIMER_CTRL_ENABLE;
  192. ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
  193. arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
  194. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  195. }
  196. static int arch_timer_set_next_event_virt(unsigned long evt,
  197. struct clock_event_device *clk)
  198. {
  199. set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
  200. return 0;
  201. }
  202. static int arch_timer_set_next_event_phys(unsigned long evt,
  203. struct clock_event_device *clk)
  204. {
  205. set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
  206. return 0;
  207. }
  208. static int arch_timer_set_next_event_virt_mem(unsigned long evt,
  209. struct clock_event_device *clk)
  210. {
  211. set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
  212. return 0;
  213. }
  214. static int arch_timer_set_next_event_phys_mem(unsigned long evt,
  215. struct clock_event_device *clk)
  216. {
  217. set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
  218. return 0;
  219. }
  220. static void __arch_timer_setup(unsigned type,
  221. struct clock_event_device *clk)
  222. {
  223. clk->features = CLOCK_EVT_FEAT_ONESHOT;
  224. if (type == ARCH_CP15_TIMER) {
  225. clk->features |= CLOCK_EVT_FEAT_C3STOP;
  226. clk->name = "arch_sys_timer";
  227. clk->rating = 450;
  228. clk->cpumask = cpumask_of(smp_processor_id());
  229. if (arch_timer_use_virtual) {
  230. clk->irq = arch_timer_ppi[VIRT_PPI];
  231. clk->set_mode = arch_timer_set_mode_virt;
  232. clk->set_next_event = arch_timer_set_next_event_virt;
  233. } else {
  234. clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
  235. clk->set_mode = arch_timer_set_mode_phys;
  236. clk->set_next_event = arch_timer_set_next_event_phys;
  237. }
  238. } else {
  239. clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
  240. clk->name = "arch_mem_timer";
  241. clk->rating = 400;
  242. clk->cpumask = cpu_all_mask;
  243. if (arch_timer_mem_use_virtual) {
  244. clk->set_mode = arch_timer_set_mode_virt_mem;
  245. clk->set_next_event =
  246. arch_timer_set_next_event_virt_mem;
  247. } else {
  248. clk->set_mode = arch_timer_set_mode_phys_mem;
  249. clk->set_next_event =
  250. arch_timer_set_next_event_phys_mem;
  251. }
  252. }
  253. clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
  254. clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
  255. }
  256. static void arch_timer_configure_evtstream(void)
  257. {
  258. int evt_stream_div, pos;
  259. /* Find the closest power of two to the divisor */
  260. evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
  261. pos = fls(evt_stream_div);
  262. if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
  263. pos--;
  264. /* enable event stream */
  265. arch_timer_evtstrm_enable(min(pos, 15));
  266. }
  267. static int arch_timer_setup(struct clock_event_device *clk)
  268. {
  269. __arch_timer_setup(ARCH_CP15_TIMER, clk);
  270. if (arch_timer_use_virtual)
  271. enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
  272. else {
  273. enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
  274. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  275. enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
  276. }
  277. arch_counter_set_user_access();
  278. if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
  279. arch_timer_configure_evtstream();
  280. return 0;
  281. }
  282. static void
  283. arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
  284. {
  285. /* Who has more than one independent system counter? */
  286. if (arch_timer_rate)
  287. return;
  288. /* Try to determine the frequency from the device tree or CNTFRQ */
  289. if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
  290. if (cntbase)
  291. arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
  292. else
  293. arch_timer_rate = arch_timer_get_cntfrq();
  294. }
  295. /* Check the timer frequency. */
  296. if (arch_timer_rate == 0)
  297. pr_warn("Architected timer frequency not available\n");
  298. }
  299. static void arch_timer_banner(unsigned type)
  300. {
  301. pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
  302. type & ARCH_CP15_TIMER ? "cp15" : "",
  303. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
  304. type & ARCH_MEM_TIMER ? "mmio" : "",
  305. (unsigned long)arch_timer_rate / 1000000,
  306. (unsigned long)(arch_timer_rate / 10000) % 100,
  307. type & ARCH_CP15_TIMER ?
  308. arch_timer_use_virtual ? "virt" : "phys" :
  309. "",
  310. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
  311. type & ARCH_MEM_TIMER ?
  312. arch_timer_mem_use_virtual ? "virt" : "phys" :
  313. "");
  314. }
  315. u32 arch_timer_get_rate(void)
  316. {
  317. return arch_timer_rate;
  318. }
  319. static u64 arch_counter_get_cntvct_mem(void)
  320. {
  321. u32 vct_lo, vct_hi, tmp_hi;
  322. do {
  323. vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  324. vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
  325. tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  326. } while (vct_hi != tmp_hi);
  327. return ((u64) vct_hi << 32) | vct_lo;
  328. }
  329. /*
  330. * Default to cp15 based access because arm64 uses this function for
  331. * sched_clock() before DT is probed and the cp15 method is guaranteed
  332. * to exist on arm64. arm doesn't use this before DT is probed so even
  333. * if we don't have the cp15 accessors we won't have a problem.
  334. */
  335. u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
  336. static cycle_t arch_counter_read(struct clocksource *cs)
  337. {
  338. return arch_timer_read_counter();
  339. }
  340. static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
  341. {
  342. return arch_timer_read_counter();
  343. }
  344. static struct clocksource clocksource_counter = {
  345. .name = "arch_sys_counter",
  346. .rating = 400,
  347. .read = arch_counter_read,
  348. .mask = CLOCKSOURCE_MASK(56),
  349. .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
  350. };
  351. static struct cyclecounter cyclecounter = {
  352. .read = arch_counter_read_cc,
  353. .mask = CLOCKSOURCE_MASK(56),
  354. };
  355. static struct timecounter timecounter;
  356. struct timecounter *arch_timer_get_timecounter(void)
  357. {
  358. return &timecounter;
  359. }
  360. static void __init arch_counter_register(unsigned type)
  361. {
  362. u64 start_count;
  363. /* Register the CP15 based counter if we have one */
  364. if (type & ARCH_CP15_TIMER)
  365. arch_timer_read_counter = arch_counter_get_cntvct;
  366. else
  367. arch_timer_read_counter = arch_counter_get_cntvct_mem;
  368. start_count = arch_timer_read_counter();
  369. clocksource_register_hz(&clocksource_counter, arch_timer_rate);
  370. cyclecounter.mult = clocksource_counter.mult;
  371. cyclecounter.shift = clocksource_counter.shift;
  372. timecounter_init(&timecounter, &cyclecounter, start_count);
  373. /* 56 bits minimum, so we assume worst case rollover */
  374. sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
  375. }
  376. static void arch_timer_stop(struct clock_event_device *clk)
  377. {
  378. pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
  379. clk->irq, smp_processor_id());
  380. if (arch_timer_use_virtual)
  381. disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
  382. else {
  383. disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
  384. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  385. disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
  386. }
  387. clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
  388. }
  389. static int arch_timer_cpu_notify(struct notifier_block *self,
  390. unsigned long action, void *hcpu)
  391. {
  392. /*
  393. * Grab cpu pointer in each case to avoid spurious
  394. * preemptible warnings
  395. */
  396. switch (action & ~CPU_TASKS_FROZEN) {
  397. case CPU_STARTING:
  398. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  399. break;
  400. case CPU_DYING:
  401. arch_timer_stop(this_cpu_ptr(arch_timer_evt));
  402. break;
  403. }
  404. return NOTIFY_OK;
  405. }
  406. static struct notifier_block arch_timer_cpu_nb = {
  407. .notifier_call = arch_timer_cpu_notify,
  408. };
  409. #ifdef CONFIG_CPU_PM
  410. static unsigned int saved_cntkctl;
  411. static int arch_timer_cpu_pm_notify(struct notifier_block *self,
  412. unsigned long action, void *hcpu)
  413. {
  414. if (action == CPU_PM_ENTER)
  415. saved_cntkctl = arch_timer_get_cntkctl();
  416. else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
  417. arch_timer_set_cntkctl(saved_cntkctl);
  418. return NOTIFY_OK;
  419. }
  420. static struct notifier_block arch_timer_cpu_pm_notifier = {
  421. .notifier_call = arch_timer_cpu_pm_notify,
  422. };
  423. static int __init arch_timer_cpu_pm_init(void)
  424. {
  425. return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
  426. }
  427. #else
  428. static int __init arch_timer_cpu_pm_init(void)
  429. {
  430. return 0;
  431. }
  432. #endif
  433. static int __init arch_timer_register(void)
  434. {
  435. int err;
  436. int ppi;
  437. arch_timer_evt = alloc_percpu(struct clock_event_device);
  438. if (!arch_timer_evt) {
  439. err = -ENOMEM;
  440. goto out;
  441. }
  442. if (arch_timer_use_virtual) {
  443. ppi = arch_timer_ppi[VIRT_PPI];
  444. err = request_percpu_irq(ppi, arch_timer_handler_virt,
  445. "arch_timer", arch_timer_evt);
  446. } else {
  447. ppi = arch_timer_ppi[PHYS_SECURE_PPI];
  448. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  449. "arch_timer", arch_timer_evt);
  450. if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  451. ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
  452. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  453. "arch_timer", arch_timer_evt);
  454. if (err)
  455. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  456. arch_timer_evt);
  457. }
  458. }
  459. if (err) {
  460. pr_err("arch_timer: can't register interrupt %d (%d)\n",
  461. ppi, err);
  462. goto out_free;
  463. }
  464. err = register_cpu_notifier(&arch_timer_cpu_nb);
  465. if (err)
  466. goto out_free_irq;
  467. err = arch_timer_cpu_pm_init();
  468. if (err)
  469. goto out_unreg_notify;
  470. /* Immediately configure the timer on the boot CPU */
  471. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  472. return 0;
  473. out_unreg_notify:
  474. unregister_cpu_notifier(&arch_timer_cpu_nb);
  475. out_free_irq:
  476. if (arch_timer_use_virtual)
  477. free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
  478. else {
  479. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  480. arch_timer_evt);
  481. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  482. free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
  483. arch_timer_evt);
  484. }
  485. out_free:
  486. free_percpu(arch_timer_evt);
  487. out:
  488. return err;
  489. }
  490. static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
  491. {
  492. int ret;
  493. irq_handler_t func;
  494. struct arch_timer *t;
  495. t = kzalloc(sizeof(*t), GFP_KERNEL);
  496. if (!t)
  497. return -ENOMEM;
  498. t->base = base;
  499. t->evt.irq = irq;
  500. __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
  501. if (arch_timer_mem_use_virtual)
  502. func = arch_timer_handler_virt_mem;
  503. else
  504. func = arch_timer_handler_phys_mem;
  505. ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
  506. if (ret) {
  507. pr_err("arch_timer: Failed to request mem timer irq\n");
  508. kfree(t);
  509. }
  510. return ret;
  511. }
  512. static const struct of_device_id arch_timer_of_match[] __initconst = {
  513. { .compatible = "arm,armv7-timer", },
  514. { .compatible = "arm,armv8-timer", },
  515. {},
  516. };
  517. static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
  518. { .compatible = "arm,armv7-timer-mem", },
  519. {},
  520. };
  521. static void __init arch_timer_common_init(void)
  522. {
  523. unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
  524. /* Wait until both nodes are probed if we have two timers */
  525. if ((arch_timers_present & mask) != mask) {
  526. if (of_find_matching_node(NULL, arch_timer_mem_of_match) &&
  527. !(arch_timers_present & ARCH_MEM_TIMER))
  528. return;
  529. if (of_find_matching_node(NULL, arch_timer_of_match) &&
  530. !(arch_timers_present & ARCH_CP15_TIMER))
  531. return;
  532. }
  533. arch_timer_banner(arch_timers_present);
  534. arch_counter_register(arch_timers_present);
  535. arch_timer_arch_init();
  536. }
  537. static void __init arch_timer_init(struct device_node *np)
  538. {
  539. int i;
  540. if (arch_timers_present & ARCH_CP15_TIMER) {
  541. pr_warn("arch_timer: multiple nodes in dt, skipping\n");
  542. return;
  543. }
  544. arch_timers_present |= ARCH_CP15_TIMER;
  545. for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
  546. arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
  547. arch_timer_detect_rate(NULL, np);
  548. /*
  549. * If HYP mode is available, we know that the physical timer
  550. * has been configured to be accessible from PL1. Use it, so
  551. * that a guest can use the virtual timer instead.
  552. *
  553. * If no interrupt provided for virtual timer, we'll have to
  554. * stick to the physical timer. It'd better be accessible...
  555. */
  556. if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
  557. arch_timer_use_virtual = false;
  558. if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
  559. !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  560. pr_warn("arch_timer: No interrupt available, giving up\n");
  561. return;
  562. }
  563. }
  564. arch_timer_register();
  565. arch_timer_common_init();
  566. }
  567. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
  568. CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
  569. static void __init arch_timer_mem_init(struct device_node *np)
  570. {
  571. struct device_node *frame, *best_frame = NULL;
  572. void __iomem *cntctlbase, *base;
  573. unsigned int irq;
  574. u32 cnttidr;
  575. arch_timers_present |= ARCH_MEM_TIMER;
  576. cntctlbase = of_iomap(np, 0);
  577. if (!cntctlbase) {
  578. pr_err("arch_timer: Can't find CNTCTLBase\n");
  579. return;
  580. }
  581. cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
  582. iounmap(cntctlbase);
  583. /*
  584. * Try to find a virtual capable frame. Otherwise fall back to a
  585. * physical capable frame.
  586. */
  587. for_each_available_child_of_node(np, frame) {
  588. int n;
  589. if (of_property_read_u32(frame, "frame-number", &n)) {
  590. pr_err("arch_timer: Missing frame-number\n");
  591. of_node_put(best_frame);
  592. of_node_put(frame);
  593. return;
  594. }
  595. if (cnttidr & CNTTIDR_VIRT(n)) {
  596. of_node_put(best_frame);
  597. best_frame = frame;
  598. arch_timer_mem_use_virtual = true;
  599. break;
  600. }
  601. of_node_put(best_frame);
  602. best_frame = of_node_get(frame);
  603. }
  604. base = arch_counter_base = of_iomap(best_frame, 0);
  605. if (!base) {
  606. pr_err("arch_timer: Can't map frame's registers\n");
  607. of_node_put(best_frame);
  608. return;
  609. }
  610. if (arch_timer_mem_use_virtual)
  611. irq = irq_of_parse_and_map(best_frame, 1);
  612. else
  613. irq = irq_of_parse_and_map(best_frame, 0);
  614. of_node_put(best_frame);
  615. if (!irq) {
  616. pr_err("arch_timer: Frame missing %s irq",
  617. arch_timer_mem_use_virtual ? "virt" : "phys");
  618. return;
  619. }
  620. arch_timer_detect_rate(base, np);
  621. arch_timer_mem_register(base, irq);
  622. arch_timer_common_init();
  623. }
  624. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
  625. arch_timer_mem_init);