disk-io.c 123 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/slab.h>
  28. #include <linux/migrate.h>
  29. #include <linux/ratelimit.h>
  30. #include <linux/uuid.h>
  31. #include <linux/semaphore.h>
  32. #include <asm/unaligned.h>
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "hash.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. #include "free-space-tree.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #include "compression.h"
  52. #ifdef CONFIG_X86
  53. #include <asm/cpufeature.h>
  54. #endif
  55. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  56. BTRFS_HEADER_FLAG_RELOC |\
  57. BTRFS_SUPER_FLAG_ERROR |\
  58. BTRFS_SUPER_FLAG_SEEDING |\
  59. BTRFS_SUPER_FLAG_METADUMP)
  60. static const struct extent_io_ops btree_extent_io_ops;
  61. static void end_workqueue_fn(struct btrfs_work *work);
  62. static void free_fs_root(struct btrfs_root *root);
  63. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  64. int read_only);
  65. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  66. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  67. struct btrfs_root *root);
  68. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  69. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  70. struct extent_io_tree *dirty_pages,
  71. int mark);
  72. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  73. struct extent_io_tree *pinned_extents);
  74. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  75. static void btrfs_error_commit_super(struct btrfs_root *root);
  76. /*
  77. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  78. * is complete. This is used during reads to verify checksums, and it is used
  79. * by writes to insert metadata for new file extents after IO is complete.
  80. */
  81. struct btrfs_end_io_wq {
  82. struct bio *bio;
  83. bio_end_io_t *end_io;
  84. void *private;
  85. struct btrfs_fs_info *info;
  86. int error;
  87. enum btrfs_wq_endio_type metadata;
  88. struct list_head list;
  89. struct btrfs_work work;
  90. };
  91. static struct kmem_cache *btrfs_end_io_wq_cache;
  92. int __init btrfs_end_io_wq_init(void)
  93. {
  94. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  95. sizeof(struct btrfs_end_io_wq),
  96. 0,
  97. SLAB_MEM_SPREAD,
  98. NULL);
  99. if (!btrfs_end_io_wq_cache)
  100. return -ENOMEM;
  101. return 0;
  102. }
  103. void btrfs_end_io_wq_exit(void)
  104. {
  105. kmem_cache_destroy(btrfs_end_io_wq_cache);
  106. }
  107. /*
  108. * async submit bios are used to offload expensive checksumming
  109. * onto the worker threads. They checksum file and metadata bios
  110. * just before they are sent down the IO stack.
  111. */
  112. struct async_submit_bio {
  113. struct inode *inode;
  114. struct bio *bio;
  115. struct list_head list;
  116. extent_submit_bio_hook_t *submit_bio_start;
  117. extent_submit_bio_hook_t *submit_bio_done;
  118. int rw;
  119. int mirror_num;
  120. unsigned long bio_flags;
  121. /*
  122. * bio_offset is optional, can be used if the pages in the bio
  123. * can't tell us where in the file the bio should go
  124. */
  125. u64 bio_offset;
  126. struct btrfs_work work;
  127. int error;
  128. };
  129. /*
  130. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  131. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  132. * the level the eb occupies in the tree.
  133. *
  134. * Different roots are used for different purposes and may nest inside each
  135. * other and they require separate keysets. As lockdep keys should be
  136. * static, assign keysets according to the purpose of the root as indicated
  137. * by btrfs_root->objectid. This ensures that all special purpose roots
  138. * have separate keysets.
  139. *
  140. * Lock-nesting across peer nodes is always done with the immediate parent
  141. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  142. * subclass to avoid triggering lockdep warning in such cases.
  143. *
  144. * The key is set by the readpage_end_io_hook after the buffer has passed
  145. * csum validation but before the pages are unlocked. It is also set by
  146. * btrfs_init_new_buffer on freshly allocated blocks.
  147. *
  148. * We also add a check to make sure the highest level of the tree is the
  149. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  150. * needs update as well.
  151. */
  152. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  153. # if BTRFS_MAX_LEVEL != 8
  154. # error
  155. # endif
  156. static struct btrfs_lockdep_keyset {
  157. u64 id; /* root objectid */
  158. const char *name_stem; /* lock name stem */
  159. char names[BTRFS_MAX_LEVEL + 1][20];
  160. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  161. } btrfs_lockdep_keysets[] = {
  162. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  163. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  164. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  165. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  166. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  167. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  168. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  169. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  170. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  171. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  172. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  173. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  174. { .id = 0, .name_stem = "tree" },
  175. };
  176. void __init btrfs_init_lockdep(void)
  177. {
  178. int i, j;
  179. /* initialize lockdep class names */
  180. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  181. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  182. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  183. snprintf(ks->names[j], sizeof(ks->names[j]),
  184. "btrfs-%s-%02d", ks->name_stem, j);
  185. }
  186. }
  187. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  188. int level)
  189. {
  190. struct btrfs_lockdep_keyset *ks;
  191. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  192. /* find the matching keyset, id 0 is the default entry */
  193. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  194. if (ks->id == objectid)
  195. break;
  196. lockdep_set_class_and_name(&eb->lock,
  197. &ks->keys[level], ks->names[level]);
  198. }
  199. #endif
  200. /*
  201. * extents on the btree inode are pretty simple, there's one extent
  202. * that covers the entire device
  203. */
  204. static struct extent_map *btree_get_extent(struct inode *inode,
  205. struct page *page, size_t pg_offset, u64 start, u64 len,
  206. int create)
  207. {
  208. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  209. struct extent_map *em;
  210. int ret;
  211. read_lock(&em_tree->lock);
  212. em = lookup_extent_mapping(em_tree, start, len);
  213. if (em) {
  214. em->bdev =
  215. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  216. read_unlock(&em_tree->lock);
  217. goto out;
  218. }
  219. read_unlock(&em_tree->lock);
  220. em = alloc_extent_map();
  221. if (!em) {
  222. em = ERR_PTR(-ENOMEM);
  223. goto out;
  224. }
  225. em->start = 0;
  226. em->len = (u64)-1;
  227. em->block_len = (u64)-1;
  228. em->block_start = 0;
  229. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  230. write_lock(&em_tree->lock);
  231. ret = add_extent_mapping(em_tree, em, 0);
  232. if (ret == -EEXIST) {
  233. free_extent_map(em);
  234. em = lookup_extent_mapping(em_tree, start, len);
  235. if (!em)
  236. em = ERR_PTR(-EIO);
  237. } else if (ret) {
  238. free_extent_map(em);
  239. em = ERR_PTR(ret);
  240. }
  241. write_unlock(&em_tree->lock);
  242. out:
  243. return em;
  244. }
  245. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  246. {
  247. return btrfs_crc32c(seed, data, len);
  248. }
  249. void btrfs_csum_final(u32 crc, char *result)
  250. {
  251. put_unaligned_le32(~crc, result);
  252. }
  253. /*
  254. * compute the csum for a btree block, and either verify it or write it
  255. * into the csum field of the block.
  256. */
  257. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  258. struct extent_buffer *buf,
  259. int verify)
  260. {
  261. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  262. char *result = NULL;
  263. unsigned long len;
  264. unsigned long cur_len;
  265. unsigned long offset = BTRFS_CSUM_SIZE;
  266. char *kaddr;
  267. unsigned long map_start;
  268. unsigned long map_len;
  269. int err;
  270. u32 crc = ~(u32)0;
  271. unsigned long inline_result;
  272. len = buf->len - offset;
  273. while (len > 0) {
  274. err = map_private_extent_buffer(buf, offset, 32,
  275. &kaddr, &map_start, &map_len);
  276. if (err)
  277. return err;
  278. cur_len = min(len, map_len - (offset - map_start));
  279. crc = btrfs_csum_data(kaddr + offset - map_start,
  280. crc, cur_len);
  281. len -= cur_len;
  282. offset += cur_len;
  283. }
  284. if (csum_size > sizeof(inline_result)) {
  285. result = kzalloc(csum_size, GFP_NOFS);
  286. if (!result)
  287. return -ENOMEM;
  288. } else {
  289. result = (char *)&inline_result;
  290. }
  291. btrfs_csum_final(crc, result);
  292. if (verify) {
  293. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  294. u32 val;
  295. u32 found = 0;
  296. memcpy(&found, result, csum_size);
  297. read_extent_buffer(buf, &val, 0, csum_size);
  298. btrfs_warn_rl(fs_info,
  299. "%s checksum verify failed on %llu wanted %X found %X "
  300. "level %d",
  301. fs_info->sb->s_id, buf->start,
  302. val, found, btrfs_header_level(buf));
  303. if (result != (char *)&inline_result)
  304. kfree(result);
  305. return -EUCLEAN;
  306. }
  307. } else {
  308. write_extent_buffer(buf, result, 0, csum_size);
  309. }
  310. if (result != (char *)&inline_result)
  311. kfree(result);
  312. return 0;
  313. }
  314. /*
  315. * we can't consider a given block up to date unless the transid of the
  316. * block matches the transid in the parent node's pointer. This is how we
  317. * detect blocks that either didn't get written at all or got written
  318. * in the wrong place.
  319. */
  320. static int verify_parent_transid(struct extent_io_tree *io_tree,
  321. struct extent_buffer *eb, u64 parent_transid,
  322. int atomic)
  323. {
  324. struct extent_state *cached_state = NULL;
  325. int ret;
  326. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  327. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  328. return 0;
  329. if (atomic)
  330. return -EAGAIN;
  331. if (need_lock) {
  332. btrfs_tree_read_lock(eb);
  333. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  334. }
  335. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  336. &cached_state);
  337. if (extent_buffer_uptodate(eb) &&
  338. btrfs_header_generation(eb) == parent_transid) {
  339. ret = 0;
  340. goto out;
  341. }
  342. btrfs_err_rl(eb->fs_info,
  343. "parent transid verify failed on %llu wanted %llu found %llu",
  344. eb->start,
  345. parent_transid, btrfs_header_generation(eb));
  346. ret = 1;
  347. /*
  348. * Things reading via commit roots that don't have normal protection,
  349. * like send, can have a really old block in cache that may point at a
  350. * block that has been freed and re-allocated. So don't clear uptodate
  351. * if we find an eb that is under IO (dirty/writeback) because we could
  352. * end up reading in the stale data and then writing it back out and
  353. * making everybody very sad.
  354. */
  355. if (!extent_buffer_under_io(eb))
  356. clear_extent_buffer_uptodate(eb);
  357. out:
  358. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  359. &cached_state, GFP_NOFS);
  360. if (need_lock)
  361. btrfs_tree_read_unlock_blocking(eb);
  362. return ret;
  363. }
  364. /*
  365. * Return 0 if the superblock checksum type matches the checksum value of that
  366. * algorithm. Pass the raw disk superblock data.
  367. */
  368. static int btrfs_check_super_csum(char *raw_disk_sb)
  369. {
  370. struct btrfs_super_block *disk_sb =
  371. (struct btrfs_super_block *)raw_disk_sb;
  372. u16 csum_type = btrfs_super_csum_type(disk_sb);
  373. int ret = 0;
  374. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  375. u32 crc = ~(u32)0;
  376. const int csum_size = sizeof(crc);
  377. char result[csum_size];
  378. /*
  379. * The super_block structure does not span the whole
  380. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  381. * is filled with zeros and is included in the checksum.
  382. */
  383. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  384. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  385. btrfs_csum_final(crc, result);
  386. if (memcmp(raw_disk_sb, result, csum_size))
  387. ret = 1;
  388. }
  389. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  390. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  391. csum_type);
  392. ret = 1;
  393. }
  394. return ret;
  395. }
  396. /*
  397. * helper to read a given tree block, doing retries as required when
  398. * the checksums don't match and we have alternate mirrors to try.
  399. */
  400. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  401. struct extent_buffer *eb,
  402. u64 start, u64 parent_transid)
  403. {
  404. struct extent_io_tree *io_tree;
  405. int failed = 0;
  406. int ret;
  407. int num_copies = 0;
  408. int mirror_num = 0;
  409. int failed_mirror = 0;
  410. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  411. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  412. while (1) {
  413. ret = read_extent_buffer_pages(io_tree, eb, start,
  414. WAIT_COMPLETE,
  415. btree_get_extent, mirror_num);
  416. if (!ret) {
  417. if (!verify_parent_transid(io_tree, eb,
  418. parent_transid, 0))
  419. break;
  420. else
  421. ret = -EIO;
  422. }
  423. /*
  424. * This buffer's crc is fine, but its contents are corrupted, so
  425. * there is no reason to read the other copies, they won't be
  426. * any less wrong.
  427. */
  428. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  429. break;
  430. num_copies = btrfs_num_copies(root->fs_info,
  431. eb->start, eb->len);
  432. if (num_copies == 1)
  433. break;
  434. if (!failed_mirror) {
  435. failed = 1;
  436. failed_mirror = eb->read_mirror;
  437. }
  438. mirror_num++;
  439. if (mirror_num == failed_mirror)
  440. mirror_num++;
  441. if (mirror_num > num_copies)
  442. break;
  443. }
  444. if (failed && !ret && failed_mirror)
  445. repair_eb_io_failure(root, eb, failed_mirror);
  446. return ret;
  447. }
  448. /*
  449. * checksum a dirty tree block before IO. This has extra checks to make sure
  450. * we only fill in the checksum field in the first page of a multi-page block
  451. */
  452. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  453. {
  454. u64 start = page_offset(page);
  455. u64 found_start;
  456. struct extent_buffer *eb;
  457. eb = (struct extent_buffer *)page->private;
  458. if (page != eb->pages[0])
  459. return 0;
  460. found_start = btrfs_header_bytenr(eb);
  461. /*
  462. * Please do not consolidate these warnings into a single if.
  463. * It is useful to know what went wrong.
  464. */
  465. if (WARN_ON(found_start != start))
  466. return -EUCLEAN;
  467. if (WARN_ON(!PageUptodate(page)))
  468. return -EUCLEAN;
  469. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  470. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  471. return csum_tree_block(fs_info, eb, 0);
  472. }
  473. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  474. struct extent_buffer *eb)
  475. {
  476. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  477. u8 fsid[BTRFS_UUID_SIZE];
  478. int ret = 1;
  479. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  480. while (fs_devices) {
  481. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  482. ret = 0;
  483. break;
  484. }
  485. fs_devices = fs_devices->seed;
  486. }
  487. return ret;
  488. }
  489. #define CORRUPT(reason, eb, root, slot) \
  490. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  491. "root=%llu, slot=%d", reason, \
  492. btrfs_header_bytenr(eb), root->objectid, slot)
  493. static noinline int check_leaf(struct btrfs_root *root,
  494. struct extent_buffer *leaf)
  495. {
  496. struct btrfs_key key;
  497. struct btrfs_key leaf_key;
  498. u32 nritems = btrfs_header_nritems(leaf);
  499. int slot;
  500. if (nritems == 0)
  501. return 0;
  502. /* Check the 0 item */
  503. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  504. BTRFS_LEAF_DATA_SIZE(root)) {
  505. CORRUPT("invalid item offset size pair", leaf, root, 0);
  506. return -EIO;
  507. }
  508. /*
  509. * Check to make sure each items keys are in the correct order and their
  510. * offsets make sense. We only have to loop through nritems-1 because
  511. * we check the current slot against the next slot, which verifies the
  512. * next slot's offset+size makes sense and that the current's slot
  513. * offset is correct.
  514. */
  515. for (slot = 0; slot < nritems - 1; slot++) {
  516. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  517. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  518. /* Make sure the keys are in the right order */
  519. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  520. CORRUPT("bad key order", leaf, root, slot);
  521. return -EIO;
  522. }
  523. /*
  524. * Make sure the offset and ends are right, remember that the
  525. * item data starts at the end of the leaf and grows towards the
  526. * front.
  527. */
  528. if (btrfs_item_offset_nr(leaf, slot) !=
  529. btrfs_item_end_nr(leaf, slot + 1)) {
  530. CORRUPT("slot offset bad", leaf, root, slot);
  531. return -EIO;
  532. }
  533. /*
  534. * Check to make sure that we don't point outside of the leaf,
  535. * just in case all the items are consistent to each other, but
  536. * all point outside of the leaf.
  537. */
  538. if (btrfs_item_end_nr(leaf, slot) >
  539. BTRFS_LEAF_DATA_SIZE(root)) {
  540. CORRUPT("slot end outside of leaf", leaf, root, slot);
  541. return -EIO;
  542. }
  543. }
  544. return 0;
  545. }
  546. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  547. u64 phy_offset, struct page *page,
  548. u64 start, u64 end, int mirror)
  549. {
  550. u64 found_start;
  551. int found_level;
  552. struct extent_buffer *eb;
  553. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  554. struct btrfs_fs_info *fs_info = root->fs_info;
  555. int ret = 0;
  556. int reads_done;
  557. if (!page->private)
  558. goto out;
  559. eb = (struct extent_buffer *)page->private;
  560. /* the pending IO might have been the only thing that kept this buffer
  561. * in memory. Make sure we have a ref for all this other checks
  562. */
  563. extent_buffer_get(eb);
  564. reads_done = atomic_dec_and_test(&eb->io_pages);
  565. if (!reads_done)
  566. goto err;
  567. eb->read_mirror = mirror;
  568. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  569. ret = -EIO;
  570. goto err;
  571. }
  572. found_start = btrfs_header_bytenr(eb);
  573. if (found_start != eb->start) {
  574. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  575. found_start, eb->start);
  576. ret = -EIO;
  577. goto err;
  578. }
  579. if (check_tree_block_fsid(fs_info, eb)) {
  580. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  581. eb->start);
  582. ret = -EIO;
  583. goto err;
  584. }
  585. found_level = btrfs_header_level(eb);
  586. if (found_level >= BTRFS_MAX_LEVEL) {
  587. btrfs_err(fs_info, "bad tree block level %d",
  588. (int)btrfs_header_level(eb));
  589. ret = -EIO;
  590. goto err;
  591. }
  592. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  593. eb, found_level);
  594. ret = csum_tree_block(fs_info, eb, 1);
  595. if (ret)
  596. goto err;
  597. /*
  598. * If this is a leaf block and it is corrupt, set the corrupt bit so
  599. * that we don't try and read the other copies of this block, just
  600. * return -EIO.
  601. */
  602. if (found_level == 0 && check_leaf(root, eb)) {
  603. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  604. ret = -EIO;
  605. }
  606. if (!ret)
  607. set_extent_buffer_uptodate(eb);
  608. err:
  609. if (reads_done &&
  610. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  611. btree_readahead_hook(fs_info, eb, eb->start, ret);
  612. if (ret) {
  613. /*
  614. * our io error hook is going to dec the io pages
  615. * again, we have to make sure it has something
  616. * to decrement
  617. */
  618. atomic_inc(&eb->io_pages);
  619. clear_extent_buffer_uptodate(eb);
  620. }
  621. free_extent_buffer(eb);
  622. out:
  623. return ret;
  624. }
  625. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  626. {
  627. struct extent_buffer *eb;
  628. eb = (struct extent_buffer *)page->private;
  629. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  630. eb->read_mirror = failed_mirror;
  631. atomic_dec(&eb->io_pages);
  632. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  633. btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
  634. return -EIO; /* we fixed nothing */
  635. }
  636. static void end_workqueue_bio(struct bio *bio)
  637. {
  638. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  639. struct btrfs_fs_info *fs_info;
  640. struct btrfs_workqueue *wq;
  641. btrfs_work_func_t func;
  642. fs_info = end_io_wq->info;
  643. end_io_wq->error = bio->bi_error;
  644. if (bio->bi_rw & REQ_WRITE) {
  645. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  646. wq = fs_info->endio_meta_write_workers;
  647. func = btrfs_endio_meta_write_helper;
  648. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  649. wq = fs_info->endio_freespace_worker;
  650. func = btrfs_freespace_write_helper;
  651. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  652. wq = fs_info->endio_raid56_workers;
  653. func = btrfs_endio_raid56_helper;
  654. } else {
  655. wq = fs_info->endio_write_workers;
  656. func = btrfs_endio_write_helper;
  657. }
  658. } else {
  659. if (unlikely(end_io_wq->metadata ==
  660. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  661. wq = fs_info->endio_repair_workers;
  662. func = btrfs_endio_repair_helper;
  663. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  664. wq = fs_info->endio_raid56_workers;
  665. func = btrfs_endio_raid56_helper;
  666. } else if (end_io_wq->metadata) {
  667. wq = fs_info->endio_meta_workers;
  668. func = btrfs_endio_meta_helper;
  669. } else {
  670. wq = fs_info->endio_workers;
  671. func = btrfs_endio_helper;
  672. }
  673. }
  674. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  675. btrfs_queue_work(wq, &end_io_wq->work);
  676. }
  677. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  678. enum btrfs_wq_endio_type metadata)
  679. {
  680. struct btrfs_end_io_wq *end_io_wq;
  681. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  682. if (!end_io_wq)
  683. return -ENOMEM;
  684. end_io_wq->private = bio->bi_private;
  685. end_io_wq->end_io = bio->bi_end_io;
  686. end_io_wq->info = info;
  687. end_io_wq->error = 0;
  688. end_io_wq->bio = bio;
  689. end_io_wq->metadata = metadata;
  690. bio->bi_private = end_io_wq;
  691. bio->bi_end_io = end_workqueue_bio;
  692. return 0;
  693. }
  694. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  695. {
  696. unsigned long limit = min_t(unsigned long,
  697. info->thread_pool_size,
  698. info->fs_devices->open_devices);
  699. return 256 * limit;
  700. }
  701. static void run_one_async_start(struct btrfs_work *work)
  702. {
  703. struct async_submit_bio *async;
  704. int ret;
  705. async = container_of(work, struct async_submit_bio, work);
  706. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  707. async->mirror_num, async->bio_flags,
  708. async->bio_offset);
  709. if (ret)
  710. async->error = ret;
  711. }
  712. static void run_one_async_done(struct btrfs_work *work)
  713. {
  714. struct btrfs_fs_info *fs_info;
  715. struct async_submit_bio *async;
  716. int limit;
  717. async = container_of(work, struct async_submit_bio, work);
  718. fs_info = BTRFS_I(async->inode)->root->fs_info;
  719. limit = btrfs_async_submit_limit(fs_info);
  720. limit = limit * 2 / 3;
  721. /*
  722. * atomic_dec_return implies a barrier for waitqueue_active
  723. */
  724. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  725. waitqueue_active(&fs_info->async_submit_wait))
  726. wake_up(&fs_info->async_submit_wait);
  727. /* If an error occurred we just want to clean up the bio and move on */
  728. if (async->error) {
  729. async->bio->bi_error = async->error;
  730. bio_endio(async->bio);
  731. return;
  732. }
  733. async->submit_bio_done(async->inode, async->rw, async->bio,
  734. async->mirror_num, async->bio_flags,
  735. async->bio_offset);
  736. }
  737. static void run_one_async_free(struct btrfs_work *work)
  738. {
  739. struct async_submit_bio *async;
  740. async = container_of(work, struct async_submit_bio, work);
  741. kfree(async);
  742. }
  743. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  744. int rw, struct bio *bio, int mirror_num,
  745. unsigned long bio_flags,
  746. u64 bio_offset,
  747. extent_submit_bio_hook_t *submit_bio_start,
  748. extent_submit_bio_hook_t *submit_bio_done)
  749. {
  750. struct async_submit_bio *async;
  751. async = kmalloc(sizeof(*async), GFP_NOFS);
  752. if (!async)
  753. return -ENOMEM;
  754. async->inode = inode;
  755. async->rw = rw;
  756. async->bio = bio;
  757. async->mirror_num = mirror_num;
  758. async->submit_bio_start = submit_bio_start;
  759. async->submit_bio_done = submit_bio_done;
  760. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  761. run_one_async_done, run_one_async_free);
  762. async->bio_flags = bio_flags;
  763. async->bio_offset = bio_offset;
  764. async->error = 0;
  765. atomic_inc(&fs_info->nr_async_submits);
  766. if (rw & REQ_SYNC)
  767. btrfs_set_work_high_priority(&async->work);
  768. btrfs_queue_work(fs_info->workers, &async->work);
  769. while (atomic_read(&fs_info->async_submit_draining) &&
  770. atomic_read(&fs_info->nr_async_submits)) {
  771. wait_event(fs_info->async_submit_wait,
  772. (atomic_read(&fs_info->nr_async_submits) == 0));
  773. }
  774. return 0;
  775. }
  776. static int btree_csum_one_bio(struct bio *bio)
  777. {
  778. struct bio_vec *bvec;
  779. struct btrfs_root *root;
  780. int i, ret = 0;
  781. bio_for_each_segment_all(bvec, bio, i) {
  782. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  783. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  784. if (ret)
  785. break;
  786. }
  787. return ret;
  788. }
  789. static int __btree_submit_bio_start(struct inode *inode, int rw,
  790. struct bio *bio, int mirror_num,
  791. unsigned long bio_flags,
  792. u64 bio_offset)
  793. {
  794. /*
  795. * when we're called for a write, we're already in the async
  796. * submission context. Just jump into btrfs_map_bio
  797. */
  798. return btree_csum_one_bio(bio);
  799. }
  800. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  801. int mirror_num, unsigned long bio_flags,
  802. u64 bio_offset)
  803. {
  804. int ret;
  805. /*
  806. * when we're called for a write, we're already in the async
  807. * submission context. Just jump into btrfs_map_bio
  808. */
  809. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  810. if (ret) {
  811. bio->bi_error = ret;
  812. bio_endio(bio);
  813. }
  814. return ret;
  815. }
  816. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  817. {
  818. if (bio_flags & EXTENT_BIO_TREE_LOG)
  819. return 0;
  820. #ifdef CONFIG_X86
  821. if (static_cpu_has(X86_FEATURE_XMM4_2))
  822. return 0;
  823. #endif
  824. return 1;
  825. }
  826. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  827. int mirror_num, unsigned long bio_flags,
  828. u64 bio_offset)
  829. {
  830. int async = check_async_write(inode, bio_flags);
  831. int ret;
  832. if (!(rw & REQ_WRITE)) {
  833. /*
  834. * called for a read, do the setup so that checksum validation
  835. * can happen in the async kernel threads
  836. */
  837. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  838. bio, BTRFS_WQ_ENDIO_METADATA);
  839. if (ret)
  840. goto out_w_error;
  841. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  842. mirror_num, 0);
  843. } else if (!async) {
  844. ret = btree_csum_one_bio(bio);
  845. if (ret)
  846. goto out_w_error;
  847. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  848. mirror_num, 0);
  849. } else {
  850. /*
  851. * kthread helpers are used to submit writes so that
  852. * checksumming can happen in parallel across all CPUs
  853. */
  854. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  855. inode, rw, bio, mirror_num, 0,
  856. bio_offset,
  857. __btree_submit_bio_start,
  858. __btree_submit_bio_done);
  859. }
  860. if (ret)
  861. goto out_w_error;
  862. return 0;
  863. out_w_error:
  864. bio->bi_error = ret;
  865. bio_endio(bio);
  866. return ret;
  867. }
  868. #ifdef CONFIG_MIGRATION
  869. static int btree_migratepage(struct address_space *mapping,
  870. struct page *newpage, struct page *page,
  871. enum migrate_mode mode)
  872. {
  873. /*
  874. * we can't safely write a btree page from here,
  875. * we haven't done the locking hook
  876. */
  877. if (PageDirty(page))
  878. return -EAGAIN;
  879. /*
  880. * Buffers may be managed in a filesystem specific way.
  881. * We must have no buffers or drop them.
  882. */
  883. if (page_has_private(page) &&
  884. !try_to_release_page(page, GFP_KERNEL))
  885. return -EAGAIN;
  886. return migrate_page(mapping, newpage, page, mode);
  887. }
  888. #endif
  889. static int btree_writepages(struct address_space *mapping,
  890. struct writeback_control *wbc)
  891. {
  892. struct btrfs_fs_info *fs_info;
  893. int ret;
  894. if (wbc->sync_mode == WB_SYNC_NONE) {
  895. if (wbc->for_kupdate)
  896. return 0;
  897. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  898. /* this is a bit racy, but that's ok */
  899. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  900. BTRFS_DIRTY_METADATA_THRESH);
  901. if (ret < 0)
  902. return 0;
  903. }
  904. return btree_write_cache_pages(mapping, wbc);
  905. }
  906. static int btree_readpage(struct file *file, struct page *page)
  907. {
  908. struct extent_io_tree *tree;
  909. tree = &BTRFS_I(page->mapping->host)->io_tree;
  910. return extent_read_full_page(tree, page, btree_get_extent, 0);
  911. }
  912. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  913. {
  914. if (PageWriteback(page) || PageDirty(page))
  915. return 0;
  916. return try_release_extent_buffer(page);
  917. }
  918. static void btree_invalidatepage(struct page *page, unsigned int offset,
  919. unsigned int length)
  920. {
  921. struct extent_io_tree *tree;
  922. tree = &BTRFS_I(page->mapping->host)->io_tree;
  923. extent_invalidatepage(tree, page, offset);
  924. btree_releasepage(page, GFP_NOFS);
  925. if (PagePrivate(page)) {
  926. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  927. "page private not zero on page %llu",
  928. (unsigned long long)page_offset(page));
  929. ClearPagePrivate(page);
  930. set_page_private(page, 0);
  931. put_page(page);
  932. }
  933. }
  934. static int btree_set_page_dirty(struct page *page)
  935. {
  936. #ifdef DEBUG
  937. struct extent_buffer *eb;
  938. BUG_ON(!PagePrivate(page));
  939. eb = (struct extent_buffer *)page->private;
  940. BUG_ON(!eb);
  941. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  942. BUG_ON(!atomic_read(&eb->refs));
  943. btrfs_assert_tree_locked(eb);
  944. #endif
  945. return __set_page_dirty_nobuffers(page);
  946. }
  947. static const struct address_space_operations btree_aops = {
  948. .readpage = btree_readpage,
  949. .writepages = btree_writepages,
  950. .releasepage = btree_releasepage,
  951. .invalidatepage = btree_invalidatepage,
  952. #ifdef CONFIG_MIGRATION
  953. .migratepage = btree_migratepage,
  954. #endif
  955. .set_page_dirty = btree_set_page_dirty,
  956. };
  957. void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
  958. {
  959. struct extent_buffer *buf = NULL;
  960. struct inode *btree_inode = root->fs_info->btree_inode;
  961. buf = btrfs_find_create_tree_block(root, bytenr);
  962. if (IS_ERR(buf))
  963. return;
  964. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  965. buf, 0, WAIT_NONE, btree_get_extent, 0);
  966. free_extent_buffer(buf);
  967. }
  968. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
  969. int mirror_num, struct extent_buffer **eb)
  970. {
  971. struct extent_buffer *buf = NULL;
  972. struct inode *btree_inode = root->fs_info->btree_inode;
  973. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  974. int ret;
  975. buf = btrfs_find_create_tree_block(root, bytenr);
  976. if (IS_ERR(buf))
  977. return 0;
  978. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  979. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  980. btree_get_extent, mirror_num);
  981. if (ret) {
  982. free_extent_buffer(buf);
  983. return ret;
  984. }
  985. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  986. free_extent_buffer(buf);
  987. return -EIO;
  988. } else if (extent_buffer_uptodate(buf)) {
  989. *eb = buf;
  990. } else {
  991. free_extent_buffer(buf);
  992. }
  993. return 0;
  994. }
  995. struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
  996. u64 bytenr)
  997. {
  998. return find_extent_buffer(fs_info, bytenr);
  999. }
  1000. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  1001. u64 bytenr)
  1002. {
  1003. if (btrfs_is_testing(root->fs_info))
  1004. return alloc_test_extent_buffer(root->fs_info, bytenr,
  1005. root->nodesize);
  1006. return alloc_extent_buffer(root->fs_info, bytenr);
  1007. }
  1008. int btrfs_write_tree_block(struct extent_buffer *buf)
  1009. {
  1010. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  1011. buf->start + buf->len - 1);
  1012. }
  1013. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1014. {
  1015. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1016. buf->start, buf->start + buf->len - 1);
  1017. }
  1018. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1019. u64 parent_transid)
  1020. {
  1021. struct extent_buffer *buf = NULL;
  1022. int ret;
  1023. buf = btrfs_find_create_tree_block(root, bytenr);
  1024. if (IS_ERR(buf))
  1025. return buf;
  1026. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1027. if (ret) {
  1028. free_extent_buffer(buf);
  1029. return ERR_PTR(ret);
  1030. }
  1031. return buf;
  1032. }
  1033. void clean_tree_block(struct btrfs_trans_handle *trans,
  1034. struct btrfs_fs_info *fs_info,
  1035. struct extent_buffer *buf)
  1036. {
  1037. if (btrfs_header_generation(buf) ==
  1038. fs_info->running_transaction->transid) {
  1039. btrfs_assert_tree_locked(buf);
  1040. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1041. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1042. -buf->len,
  1043. fs_info->dirty_metadata_batch);
  1044. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1045. btrfs_set_lock_blocking(buf);
  1046. clear_extent_buffer_dirty(buf);
  1047. }
  1048. }
  1049. }
  1050. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1051. {
  1052. struct btrfs_subvolume_writers *writers;
  1053. int ret;
  1054. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1055. if (!writers)
  1056. return ERR_PTR(-ENOMEM);
  1057. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1058. if (ret < 0) {
  1059. kfree(writers);
  1060. return ERR_PTR(ret);
  1061. }
  1062. init_waitqueue_head(&writers->wait);
  1063. return writers;
  1064. }
  1065. static void
  1066. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1067. {
  1068. percpu_counter_destroy(&writers->counter);
  1069. kfree(writers);
  1070. }
  1071. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1072. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1073. u64 objectid)
  1074. {
  1075. bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
  1076. root->node = NULL;
  1077. root->commit_root = NULL;
  1078. root->sectorsize = sectorsize;
  1079. root->nodesize = nodesize;
  1080. root->stripesize = stripesize;
  1081. root->state = 0;
  1082. root->orphan_cleanup_state = 0;
  1083. root->objectid = objectid;
  1084. root->last_trans = 0;
  1085. root->highest_objectid = 0;
  1086. root->nr_delalloc_inodes = 0;
  1087. root->nr_ordered_extents = 0;
  1088. root->name = NULL;
  1089. root->inode_tree = RB_ROOT;
  1090. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1091. root->block_rsv = NULL;
  1092. root->orphan_block_rsv = NULL;
  1093. INIT_LIST_HEAD(&root->dirty_list);
  1094. INIT_LIST_HEAD(&root->root_list);
  1095. INIT_LIST_HEAD(&root->delalloc_inodes);
  1096. INIT_LIST_HEAD(&root->delalloc_root);
  1097. INIT_LIST_HEAD(&root->ordered_extents);
  1098. INIT_LIST_HEAD(&root->ordered_root);
  1099. INIT_LIST_HEAD(&root->logged_list[0]);
  1100. INIT_LIST_HEAD(&root->logged_list[1]);
  1101. spin_lock_init(&root->orphan_lock);
  1102. spin_lock_init(&root->inode_lock);
  1103. spin_lock_init(&root->delalloc_lock);
  1104. spin_lock_init(&root->ordered_extent_lock);
  1105. spin_lock_init(&root->accounting_lock);
  1106. spin_lock_init(&root->log_extents_lock[0]);
  1107. spin_lock_init(&root->log_extents_lock[1]);
  1108. mutex_init(&root->objectid_mutex);
  1109. mutex_init(&root->log_mutex);
  1110. mutex_init(&root->ordered_extent_mutex);
  1111. mutex_init(&root->delalloc_mutex);
  1112. init_waitqueue_head(&root->log_writer_wait);
  1113. init_waitqueue_head(&root->log_commit_wait[0]);
  1114. init_waitqueue_head(&root->log_commit_wait[1]);
  1115. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1116. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1117. atomic_set(&root->log_commit[0], 0);
  1118. atomic_set(&root->log_commit[1], 0);
  1119. atomic_set(&root->log_writers, 0);
  1120. atomic_set(&root->log_batch, 0);
  1121. atomic_set(&root->orphan_inodes, 0);
  1122. atomic_set(&root->refs, 1);
  1123. atomic_set(&root->will_be_snapshoted, 0);
  1124. atomic_set(&root->qgroup_meta_rsv, 0);
  1125. root->log_transid = 0;
  1126. root->log_transid_committed = -1;
  1127. root->last_log_commit = 0;
  1128. if (!dummy)
  1129. extent_io_tree_init(&root->dirty_log_pages,
  1130. fs_info->btree_inode->i_mapping);
  1131. memset(&root->root_key, 0, sizeof(root->root_key));
  1132. memset(&root->root_item, 0, sizeof(root->root_item));
  1133. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1134. if (!dummy)
  1135. root->defrag_trans_start = fs_info->generation;
  1136. else
  1137. root->defrag_trans_start = 0;
  1138. root->root_key.objectid = objectid;
  1139. root->anon_dev = 0;
  1140. spin_lock_init(&root->root_item_lock);
  1141. }
  1142. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1143. gfp_t flags)
  1144. {
  1145. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1146. if (root)
  1147. root->fs_info = fs_info;
  1148. return root;
  1149. }
  1150. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1151. /* Should only be used by the testing infrastructure */
  1152. struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
  1153. u32 sectorsize, u32 nodesize)
  1154. {
  1155. struct btrfs_root *root;
  1156. if (!fs_info)
  1157. return ERR_PTR(-EINVAL);
  1158. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1159. if (!root)
  1160. return ERR_PTR(-ENOMEM);
  1161. /* We don't use the stripesize in selftest, set it as sectorsize */
  1162. __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
  1163. BTRFS_ROOT_TREE_OBJECTID);
  1164. root->alloc_bytenr = 0;
  1165. return root;
  1166. }
  1167. #endif
  1168. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1169. struct btrfs_fs_info *fs_info,
  1170. u64 objectid)
  1171. {
  1172. struct extent_buffer *leaf;
  1173. struct btrfs_root *tree_root = fs_info->tree_root;
  1174. struct btrfs_root *root;
  1175. struct btrfs_key key;
  1176. int ret = 0;
  1177. uuid_le uuid;
  1178. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1179. if (!root)
  1180. return ERR_PTR(-ENOMEM);
  1181. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1182. tree_root->stripesize, root, fs_info, objectid);
  1183. root->root_key.objectid = objectid;
  1184. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1185. root->root_key.offset = 0;
  1186. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1187. if (IS_ERR(leaf)) {
  1188. ret = PTR_ERR(leaf);
  1189. leaf = NULL;
  1190. goto fail;
  1191. }
  1192. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1193. btrfs_set_header_bytenr(leaf, leaf->start);
  1194. btrfs_set_header_generation(leaf, trans->transid);
  1195. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1196. btrfs_set_header_owner(leaf, objectid);
  1197. root->node = leaf;
  1198. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1199. BTRFS_FSID_SIZE);
  1200. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1201. btrfs_header_chunk_tree_uuid(leaf),
  1202. BTRFS_UUID_SIZE);
  1203. btrfs_mark_buffer_dirty(leaf);
  1204. root->commit_root = btrfs_root_node(root);
  1205. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1206. root->root_item.flags = 0;
  1207. root->root_item.byte_limit = 0;
  1208. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1209. btrfs_set_root_generation(&root->root_item, trans->transid);
  1210. btrfs_set_root_level(&root->root_item, 0);
  1211. btrfs_set_root_refs(&root->root_item, 1);
  1212. btrfs_set_root_used(&root->root_item, leaf->len);
  1213. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1214. btrfs_set_root_dirid(&root->root_item, 0);
  1215. uuid_le_gen(&uuid);
  1216. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1217. root->root_item.drop_level = 0;
  1218. key.objectid = objectid;
  1219. key.type = BTRFS_ROOT_ITEM_KEY;
  1220. key.offset = 0;
  1221. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1222. if (ret)
  1223. goto fail;
  1224. btrfs_tree_unlock(leaf);
  1225. return root;
  1226. fail:
  1227. if (leaf) {
  1228. btrfs_tree_unlock(leaf);
  1229. free_extent_buffer(root->commit_root);
  1230. free_extent_buffer(leaf);
  1231. }
  1232. kfree(root);
  1233. return ERR_PTR(ret);
  1234. }
  1235. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1236. struct btrfs_fs_info *fs_info)
  1237. {
  1238. struct btrfs_root *root;
  1239. struct btrfs_root *tree_root = fs_info->tree_root;
  1240. struct extent_buffer *leaf;
  1241. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1242. if (!root)
  1243. return ERR_PTR(-ENOMEM);
  1244. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1245. tree_root->stripesize, root, fs_info,
  1246. BTRFS_TREE_LOG_OBJECTID);
  1247. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1248. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1249. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1250. /*
  1251. * DON'T set REF_COWS for log trees
  1252. *
  1253. * log trees do not get reference counted because they go away
  1254. * before a real commit is actually done. They do store pointers
  1255. * to file data extents, and those reference counts still get
  1256. * updated (along with back refs to the log tree).
  1257. */
  1258. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1259. NULL, 0, 0, 0);
  1260. if (IS_ERR(leaf)) {
  1261. kfree(root);
  1262. return ERR_CAST(leaf);
  1263. }
  1264. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1265. btrfs_set_header_bytenr(leaf, leaf->start);
  1266. btrfs_set_header_generation(leaf, trans->transid);
  1267. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1268. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1269. root->node = leaf;
  1270. write_extent_buffer(root->node, root->fs_info->fsid,
  1271. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1272. btrfs_mark_buffer_dirty(root->node);
  1273. btrfs_tree_unlock(root->node);
  1274. return root;
  1275. }
  1276. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1277. struct btrfs_fs_info *fs_info)
  1278. {
  1279. struct btrfs_root *log_root;
  1280. log_root = alloc_log_tree(trans, fs_info);
  1281. if (IS_ERR(log_root))
  1282. return PTR_ERR(log_root);
  1283. WARN_ON(fs_info->log_root_tree);
  1284. fs_info->log_root_tree = log_root;
  1285. return 0;
  1286. }
  1287. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1288. struct btrfs_root *root)
  1289. {
  1290. struct btrfs_root *log_root;
  1291. struct btrfs_inode_item *inode_item;
  1292. log_root = alloc_log_tree(trans, root->fs_info);
  1293. if (IS_ERR(log_root))
  1294. return PTR_ERR(log_root);
  1295. log_root->last_trans = trans->transid;
  1296. log_root->root_key.offset = root->root_key.objectid;
  1297. inode_item = &log_root->root_item.inode;
  1298. btrfs_set_stack_inode_generation(inode_item, 1);
  1299. btrfs_set_stack_inode_size(inode_item, 3);
  1300. btrfs_set_stack_inode_nlink(inode_item, 1);
  1301. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1302. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1303. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1304. WARN_ON(root->log_root);
  1305. root->log_root = log_root;
  1306. root->log_transid = 0;
  1307. root->log_transid_committed = -1;
  1308. root->last_log_commit = 0;
  1309. return 0;
  1310. }
  1311. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1312. struct btrfs_key *key)
  1313. {
  1314. struct btrfs_root *root;
  1315. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1316. struct btrfs_path *path;
  1317. u64 generation;
  1318. int ret;
  1319. path = btrfs_alloc_path();
  1320. if (!path)
  1321. return ERR_PTR(-ENOMEM);
  1322. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1323. if (!root) {
  1324. ret = -ENOMEM;
  1325. goto alloc_fail;
  1326. }
  1327. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1328. tree_root->stripesize, root, fs_info, key->objectid);
  1329. ret = btrfs_find_root(tree_root, key, path,
  1330. &root->root_item, &root->root_key);
  1331. if (ret) {
  1332. if (ret > 0)
  1333. ret = -ENOENT;
  1334. goto find_fail;
  1335. }
  1336. generation = btrfs_root_generation(&root->root_item);
  1337. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1338. generation);
  1339. if (IS_ERR(root->node)) {
  1340. ret = PTR_ERR(root->node);
  1341. goto find_fail;
  1342. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1343. ret = -EIO;
  1344. free_extent_buffer(root->node);
  1345. goto find_fail;
  1346. }
  1347. root->commit_root = btrfs_root_node(root);
  1348. out:
  1349. btrfs_free_path(path);
  1350. return root;
  1351. find_fail:
  1352. kfree(root);
  1353. alloc_fail:
  1354. root = ERR_PTR(ret);
  1355. goto out;
  1356. }
  1357. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1358. struct btrfs_key *location)
  1359. {
  1360. struct btrfs_root *root;
  1361. root = btrfs_read_tree_root(tree_root, location);
  1362. if (IS_ERR(root))
  1363. return root;
  1364. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1365. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1366. btrfs_check_and_init_root_item(&root->root_item);
  1367. }
  1368. return root;
  1369. }
  1370. int btrfs_init_fs_root(struct btrfs_root *root)
  1371. {
  1372. int ret;
  1373. struct btrfs_subvolume_writers *writers;
  1374. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1375. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1376. GFP_NOFS);
  1377. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1378. ret = -ENOMEM;
  1379. goto fail;
  1380. }
  1381. writers = btrfs_alloc_subvolume_writers();
  1382. if (IS_ERR(writers)) {
  1383. ret = PTR_ERR(writers);
  1384. goto fail;
  1385. }
  1386. root->subv_writers = writers;
  1387. btrfs_init_free_ino_ctl(root);
  1388. spin_lock_init(&root->ino_cache_lock);
  1389. init_waitqueue_head(&root->ino_cache_wait);
  1390. ret = get_anon_bdev(&root->anon_dev);
  1391. if (ret)
  1392. goto fail;
  1393. mutex_lock(&root->objectid_mutex);
  1394. ret = btrfs_find_highest_objectid(root,
  1395. &root->highest_objectid);
  1396. if (ret) {
  1397. mutex_unlock(&root->objectid_mutex);
  1398. goto fail;
  1399. }
  1400. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1401. mutex_unlock(&root->objectid_mutex);
  1402. return 0;
  1403. fail:
  1404. /* the caller is responsible to call free_fs_root */
  1405. return ret;
  1406. }
  1407. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1408. u64 root_id)
  1409. {
  1410. struct btrfs_root *root;
  1411. spin_lock(&fs_info->fs_roots_radix_lock);
  1412. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1413. (unsigned long)root_id);
  1414. spin_unlock(&fs_info->fs_roots_radix_lock);
  1415. return root;
  1416. }
  1417. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1418. struct btrfs_root *root)
  1419. {
  1420. int ret;
  1421. ret = radix_tree_preload(GFP_NOFS);
  1422. if (ret)
  1423. return ret;
  1424. spin_lock(&fs_info->fs_roots_radix_lock);
  1425. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1426. (unsigned long)root->root_key.objectid,
  1427. root);
  1428. if (ret == 0)
  1429. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1430. spin_unlock(&fs_info->fs_roots_radix_lock);
  1431. radix_tree_preload_end();
  1432. return ret;
  1433. }
  1434. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1435. struct btrfs_key *location,
  1436. bool check_ref)
  1437. {
  1438. struct btrfs_root *root;
  1439. struct btrfs_path *path;
  1440. struct btrfs_key key;
  1441. int ret;
  1442. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1443. return fs_info->tree_root;
  1444. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1445. return fs_info->extent_root;
  1446. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1447. return fs_info->chunk_root;
  1448. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1449. return fs_info->dev_root;
  1450. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1451. return fs_info->csum_root;
  1452. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1453. return fs_info->quota_root ? fs_info->quota_root :
  1454. ERR_PTR(-ENOENT);
  1455. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1456. return fs_info->uuid_root ? fs_info->uuid_root :
  1457. ERR_PTR(-ENOENT);
  1458. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1459. return fs_info->free_space_root ? fs_info->free_space_root :
  1460. ERR_PTR(-ENOENT);
  1461. again:
  1462. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1463. if (root) {
  1464. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1465. return ERR_PTR(-ENOENT);
  1466. return root;
  1467. }
  1468. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1469. if (IS_ERR(root))
  1470. return root;
  1471. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1472. ret = -ENOENT;
  1473. goto fail;
  1474. }
  1475. ret = btrfs_init_fs_root(root);
  1476. if (ret)
  1477. goto fail;
  1478. path = btrfs_alloc_path();
  1479. if (!path) {
  1480. ret = -ENOMEM;
  1481. goto fail;
  1482. }
  1483. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1484. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1485. key.offset = location->objectid;
  1486. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1487. btrfs_free_path(path);
  1488. if (ret < 0)
  1489. goto fail;
  1490. if (ret == 0)
  1491. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1492. ret = btrfs_insert_fs_root(fs_info, root);
  1493. if (ret) {
  1494. if (ret == -EEXIST) {
  1495. free_fs_root(root);
  1496. goto again;
  1497. }
  1498. goto fail;
  1499. }
  1500. return root;
  1501. fail:
  1502. free_fs_root(root);
  1503. return ERR_PTR(ret);
  1504. }
  1505. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1506. {
  1507. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1508. int ret = 0;
  1509. struct btrfs_device *device;
  1510. struct backing_dev_info *bdi;
  1511. rcu_read_lock();
  1512. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1513. if (!device->bdev)
  1514. continue;
  1515. bdi = blk_get_backing_dev_info(device->bdev);
  1516. if (bdi_congested(bdi, bdi_bits)) {
  1517. ret = 1;
  1518. break;
  1519. }
  1520. }
  1521. rcu_read_unlock();
  1522. return ret;
  1523. }
  1524. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1525. {
  1526. int err;
  1527. err = bdi_setup_and_register(bdi, "btrfs");
  1528. if (err)
  1529. return err;
  1530. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
  1531. bdi->congested_fn = btrfs_congested_fn;
  1532. bdi->congested_data = info;
  1533. bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  1534. return 0;
  1535. }
  1536. /*
  1537. * called by the kthread helper functions to finally call the bio end_io
  1538. * functions. This is where read checksum verification actually happens
  1539. */
  1540. static void end_workqueue_fn(struct btrfs_work *work)
  1541. {
  1542. struct bio *bio;
  1543. struct btrfs_end_io_wq *end_io_wq;
  1544. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1545. bio = end_io_wq->bio;
  1546. bio->bi_error = end_io_wq->error;
  1547. bio->bi_private = end_io_wq->private;
  1548. bio->bi_end_io = end_io_wq->end_io;
  1549. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1550. bio_endio(bio);
  1551. }
  1552. static int cleaner_kthread(void *arg)
  1553. {
  1554. struct btrfs_root *root = arg;
  1555. int again;
  1556. struct btrfs_trans_handle *trans;
  1557. do {
  1558. again = 0;
  1559. /* Make the cleaner go to sleep early. */
  1560. if (btrfs_need_cleaner_sleep(root))
  1561. goto sleep;
  1562. /*
  1563. * Do not do anything if we might cause open_ctree() to block
  1564. * before we have finished mounting the filesystem.
  1565. */
  1566. if (!root->fs_info->open)
  1567. goto sleep;
  1568. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1569. goto sleep;
  1570. /*
  1571. * Avoid the problem that we change the status of the fs
  1572. * during the above check and trylock.
  1573. */
  1574. if (btrfs_need_cleaner_sleep(root)) {
  1575. mutex_unlock(&root->fs_info->cleaner_mutex);
  1576. goto sleep;
  1577. }
  1578. mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
  1579. btrfs_run_delayed_iputs(root);
  1580. mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
  1581. again = btrfs_clean_one_deleted_snapshot(root);
  1582. mutex_unlock(&root->fs_info->cleaner_mutex);
  1583. /*
  1584. * The defragger has dealt with the R/O remount and umount,
  1585. * needn't do anything special here.
  1586. */
  1587. btrfs_run_defrag_inodes(root->fs_info);
  1588. /*
  1589. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1590. * with relocation (btrfs_relocate_chunk) and relocation
  1591. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1592. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1593. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1594. * unused block groups.
  1595. */
  1596. btrfs_delete_unused_bgs(root->fs_info);
  1597. sleep:
  1598. if (!again) {
  1599. set_current_state(TASK_INTERRUPTIBLE);
  1600. if (!kthread_should_stop())
  1601. schedule();
  1602. __set_current_state(TASK_RUNNING);
  1603. }
  1604. } while (!kthread_should_stop());
  1605. /*
  1606. * Transaction kthread is stopped before us and wakes us up.
  1607. * However we might have started a new transaction and COWed some
  1608. * tree blocks when deleting unused block groups for example. So
  1609. * make sure we commit the transaction we started to have a clean
  1610. * shutdown when evicting the btree inode - if it has dirty pages
  1611. * when we do the final iput() on it, eviction will trigger a
  1612. * writeback for it which will fail with null pointer dereferences
  1613. * since work queues and other resources were already released and
  1614. * destroyed by the time the iput/eviction/writeback is made.
  1615. */
  1616. trans = btrfs_attach_transaction(root);
  1617. if (IS_ERR(trans)) {
  1618. if (PTR_ERR(trans) != -ENOENT)
  1619. btrfs_err(root->fs_info,
  1620. "cleaner transaction attach returned %ld",
  1621. PTR_ERR(trans));
  1622. } else {
  1623. int ret;
  1624. ret = btrfs_commit_transaction(trans, root);
  1625. if (ret)
  1626. btrfs_err(root->fs_info,
  1627. "cleaner open transaction commit returned %d",
  1628. ret);
  1629. }
  1630. return 0;
  1631. }
  1632. static int transaction_kthread(void *arg)
  1633. {
  1634. struct btrfs_root *root = arg;
  1635. struct btrfs_trans_handle *trans;
  1636. struct btrfs_transaction *cur;
  1637. u64 transid;
  1638. unsigned long now;
  1639. unsigned long delay;
  1640. bool cannot_commit;
  1641. do {
  1642. cannot_commit = false;
  1643. delay = HZ * root->fs_info->commit_interval;
  1644. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1645. spin_lock(&root->fs_info->trans_lock);
  1646. cur = root->fs_info->running_transaction;
  1647. if (!cur) {
  1648. spin_unlock(&root->fs_info->trans_lock);
  1649. goto sleep;
  1650. }
  1651. now = get_seconds();
  1652. if (cur->state < TRANS_STATE_BLOCKED &&
  1653. (now < cur->start_time ||
  1654. now - cur->start_time < root->fs_info->commit_interval)) {
  1655. spin_unlock(&root->fs_info->trans_lock);
  1656. delay = HZ * 5;
  1657. goto sleep;
  1658. }
  1659. transid = cur->transid;
  1660. spin_unlock(&root->fs_info->trans_lock);
  1661. /* If the file system is aborted, this will always fail. */
  1662. trans = btrfs_attach_transaction(root);
  1663. if (IS_ERR(trans)) {
  1664. if (PTR_ERR(trans) != -ENOENT)
  1665. cannot_commit = true;
  1666. goto sleep;
  1667. }
  1668. if (transid == trans->transid) {
  1669. btrfs_commit_transaction(trans, root);
  1670. } else {
  1671. btrfs_end_transaction(trans, root);
  1672. }
  1673. sleep:
  1674. wake_up_process(root->fs_info->cleaner_kthread);
  1675. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1676. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1677. &root->fs_info->fs_state)))
  1678. btrfs_cleanup_transaction(root);
  1679. set_current_state(TASK_INTERRUPTIBLE);
  1680. if (!kthread_should_stop() &&
  1681. (!btrfs_transaction_blocked(root->fs_info) ||
  1682. cannot_commit))
  1683. schedule_timeout(delay);
  1684. __set_current_state(TASK_RUNNING);
  1685. } while (!kthread_should_stop());
  1686. return 0;
  1687. }
  1688. /*
  1689. * this will find the highest generation in the array of
  1690. * root backups. The index of the highest array is returned,
  1691. * or -1 if we can't find anything.
  1692. *
  1693. * We check to make sure the array is valid by comparing the
  1694. * generation of the latest root in the array with the generation
  1695. * in the super block. If they don't match we pitch it.
  1696. */
  1697. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1698. {
  1699. u64 cur;
  1700. int newest_index = -1;
  1701. struct btrfs_root_backup *root_backup;
  1702. int i;
  1703. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1704. root_backup = info->super_copy->super_roots + i;
  1705. cur = btrfs_backup_tree_root_gen(root_backup);
  1706. if (cur == newest_gen)
  1707. newest_index = i;
  1708. }
  1709. /* check to see if we actually wrapped around */
  1710. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1711. root_backup = info->super_copy->super_roots;
  1712. cur = btrfs_backup_tree_root_gen(root_backup);
  1713. if (cur == newest_gen)
  1714. newest_index = 0;
  1715. }
  1716. return newest_index;
  1717. }
  1718. /*
  1719. * find the oldest backup so we know where to store new entries
  1720. * in the backup array. This will set the backup_root_index
  1721. * field in the fs_info struct
  1722. */
  1723. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1724. u64 newest_gen)
  1725. {
  1726. int newest_index = -1;
  1727. newest_index = find_newest_super_backup(info, newest_gen);
  1728. /* if there was garbage in there, just move along */
  1729. if (newest_index == -1) {
  1730. info->backup_root_index = 0;
  1731. } else {
  1732. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1733. }
  1734. }
  1735. /*
  1736. * copy all the root pointers into the super backup array.
  1737. * this will bump the backup pointer by one when it is
  1738. * done
  1739. */
  1740. static void backup_super_roots(struct btrfs_fs_info *info)
  1741. {
  1742. int next_backup;
  1743. struct btrfs_root_backup *root_backup;
  1744. int last_backup;
  1745. next_backup = info->backup_root_index;
  1746. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1747. BTRFS_NUM_BACKUP_ROOTS;
  1748. /*
  1749. * just overwrite the last backup if we're at the same generation
  1750. * this happens only at umount
  1751. */
  1752. root_backup = info->super_for_commit->super_roots + last_backup;
  1753. if (btrfs_backup_tree_root_gen(root_backup) ==
  1754. btrfs_header_generation(info->tree_root->node))
  1755. next_backup = last_backup;
  1756. root_backup = info->super_for_commit->super_roots + next_backup;
  1757. /*
  1758. * make sure all of our padding and empty slots get zero filled
  1759. * regardless of which ones we use today
  1760. */
  1761. memset(root_backup, 0, sizeof(*root_backup));
  1762. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1763. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1764. btrfs_set_backup_tree_root_gen(root_backup,
  1765. btrfs_header_generation(info->tree_root->node));
  1766. btrfs_set_backup_tree_root_level(root_backup,
  1767. btrfs_header_level(info->tree_root->node));
  1768. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1769. btrfs_set_backup_chunk_root_gen(root_backup,
  1770. btrfs_header_generation(info->chunk_root->node));
  1771. btrfs_set_backup_chunk_root_level(root_backup,
  1772. btrfs_header_level(info->chunk_root->node));
  1773. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1774. btrfs_set_backup_extent_root_gen(root_backup,
  1775. btrfs_header_generation(info->extent_root->node));
  1776. btrfs_set_backup_extent_root_level(root_backup,
  1777. btrfs_header_level(info->extent_root->node));
  1778. /*
  1779. * we might commit during log recovery, which happens before we set
  1780. * the fs_root. Make sure it is valid before we fill it in.
  1781. */
  1782. if (info->fs_root && info->fs_root->node) {
  1783. btrfs_set_backup_fs_root(root_backup,
  1784. info->fs_root->node->start);
  1785. btrfs_set_backup_fs_root_gen(root_backup,
  1786. btrfs_header_generation(info->fs_root->node));
  1787. btrfs_set_backup_fs_root_level(root_backup,
  1788. btrfs_header_level(info->fs_root->node));
  1789. }
  1790. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1791. btrfs_set_backup_dev_root_gen(root_backup,
  1792. btrfs_header_generation(info->dev_root->node));
  1793. btrfs_set_backup_dev_root_level(root_backup,
  1794. btrfs_header_level(info->dev_root->node));
  1795. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1796. btrfs_set_backup_csum_root_gen(root_backup,
  1797. btrfs_header_generation(info->csum_root->node));
  1798. btrfs_set_backup_csum_root_level(root_backup,
  1799. btrfs_header_level(info->csum_root->node));
  1800. btrfs_set_backup_total_bytes(root_backup,
  1801. btrfs_super_total_bytes(info->super_copy));
  1802. btrfs_set_backup_bytes_used(root_backup,
  1803. btrfs_super_bytes_used(info->super_copy));
  1804. btrfs_set_backup_num_devices(root_backup,
  1805. btrfs_super_num_devices(info->super_copy));
  1806. /*
  1807. * if we don't copy this out to the super_copy, it won't get remembered
  1808. * for the next commit
  1809. */
  1810. memcpy(&info->super_copy->super_roots,
  1811. &info->super_for_commit->super_roots,
  1812. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1813. }
  1814. /*
  1815. * this copies info out of the root backup array and back into
  1816. * the in-memory super block. It is meant to help iterate through
  1817. * the array, so you send it the number of backups you've already
  1818. * tried and the last backup index you used.
  1819. *
  1820. * this returns -1 when it has tried all the backups
  1821. */
  1822. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1823. struct btrfs_super_block *super,
  1824. int *num_backups_tried, int *backup_index)
  1825. {
  1826. struct btrfs_root_backup *root_backup;
  1827. int newest = *backup_index;
  1828. if (*num_backups_tried == 0) {
  1829. u64 gen = btrfs_super_generation(super);
  1830. newest = find_newest_super_backup(info, gen);
  1831. if (newest == -1)
  1832. return -1;
  1833. *backup_index = newest;
  1834. *num_backups_tried = 1;
  1835. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1836. /* we've tried all the backups, all done */
  1837. return -1;
  1838. } else {
  1839. /* jump to the next oldest backup */
  1840. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1841. BTRFS_NUM_BACKUP_ROOTS;
  1842. *backup_index = newest;
  1843. *num_backups_tried += 1;
  1844. }
  1845. root_backup = super->super_roots + newest;
  1846. btrfs_set_super_generation(super,
  1847. btrfs_backup_tree_root_gen(root_backup));
  1848. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1849. btrfs_set_super_root_level(super,
  1850. btrfs_backup_tree_root_level(root_backup));
  1851. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1852. /*
  1853. * fixme: the total bytes and num_devices need to match or we should
  1854. * need a fsck
  1855. */
  1856. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1857. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1858. return 0;
  1859. }
  1860. /* helper to cleanup workers */
  1861. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1862. {
  1863. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1864. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1865. btrfs_destroy_workqueue(fs_info->workers);
  1866. btrfs_destroy_workqueue(fs_info->endio_workers);
  1867. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1868. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1869. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1870. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1871. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1872. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1873. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1874. btrfs_destroy_workqueue(fs_info->submit_workers);
  1875. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1876. btrfs_destroy_workqueue(fs_info->caching_workers);
  1877. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1878. btrfs_destroy_workqueue(fs_info->flush_workers);
  1879. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1880. btrfs_destroy_workqueue(fs_info->extent_workers);
  1881. }
  1882. static void free_root_extent_buffers(struct btrfs_root *root)
  1883. {
  1884. if (root) {
  1885. free_extent_buffer(root->node);
  1886. free_extent_buffer(root->commit_root);
  1887. root->node = NULL;
  1888. root->commit_root = NULL;
  1889. }
  1890. }
  1891. /* helper to cleanup tree roots */
  1892. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1893. {
  1894. free_root_extent_buffers(info->tree_root);
  1895. free_root_extent_buffers(info->dev_root);
  1896. free_root_extent_buffers(info->extent_root);
  1897. free_root_extent_buffers(info->csum_root);
  1898. free_root_extent_buffers(info->quota_root);
  1899. free_root_extent_buffers(info->uuid_root);
  1900. if (chunk_root)
  1901. free_root_extent_buffers(info->chunk_root);
  1902. free_root_extent_buffers(info->free_space_root);
  1903. }
  1904. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1905. {
  1906. int ret;
  1907. struct btrfs_root *gang[8];
  1908. int i;
  1909. while (!list_empty(&fs_info->dead_roots)) {
  1910. gang[0] = list_entry(fs_info->dead_roots.next,
  1911. struct btrfs_root, root_list);
  1912. list_del(&gang[0]->root_list);
  1913. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1914. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1915. } else {
  1916. free_extent_buffer(gang[0]->node);
  1917. free_extent_buffer(gang[0]->commit_root);
  1918. btrfs_put_fs_root(gang[0]);
  1919. }
  1920. }
  1921. while (1) {
  1922. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1923. (void **)gang, 0,
  1924. ARRAY_SIZE(gang));
  1925. if (!ret)
  1926. break;
  1927. for (i = 0; i < ret; i++)
  1928. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1929. }
  1930. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1931. btrfs_free_log_root_tree(NULL, fs_info);
  1932. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1933. fs_info->pinned_extents);
  1934. }
  1935. }
  1936. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1937. {
  1938. mutex_init(&fs_info->scrub_lock);
  1939. atomic_set(&fs_info->scrubs_running, 0);
  1940. atomic_set(&fs_info->scrub_pause_req, 0);
  1941. atomic_set(&fs_info->scrubs_paused, 0);
  1942. atomic_set(&fs_info->scrub_cancel_req, 0);
  1943. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1944. fs_info->scrub_workers_refcnt = 0;
  1945. }
  1946. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1947. {
  1948. spin_lock_init(&fs_info->balance_lock);
  1949. mutex_init(&fs_info->balance_mutex);
  1950. atomic_set(&fs_info->balance_running, 0);
  1951. atomic_set(&fs_info->balance_pause_req, 0);
  1952. atomic_set(&fs_info->balance_cancel_req, 0);
  1953. fs_info->balance_ctl = NULL;
  1954. init_waitqueue_head(&fs_info->balance_wait_q);
  1955. }
  1956. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
  1957. struct btrfs_root *tree_root)
  1958. {
  1959. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1960. set_nlink(fs_info->btree_inode, 1);
  1961. /*
  1962. * we set the i_size on the btree inode to the max possible int.
  1963. * the real end of the address space is determined by all of
  1964. * the devices in the system
  1965. */
  1966. fs_info->btree_inode->i_size = OFFSET_MAX;
  1967. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1968. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1969. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1970. fs_info->btree_inode->i_mapping);
  1971. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1972. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1973. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1974. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1975. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1976. sizeof(struct btrfs_key));
  1977. set_bit(BTRFS_INODE_DUMMY,
  1978. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1979. btrfs_insert_inode_hash(fs_info->btree_inode);
  1980. }
  1981. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1982. {
  1983. fs_info->dev_replace.lock_owner = 0;
  1984. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1985. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1986. rwlock_init(&fs_info->dev_replace.lock);
  1987. atomic_set(&fs_info->dev_replace.read_locks, 0);
  1988. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  1989. init_waitqueue_head(&fs_info->replace_wait);
  1990. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  1991. }
  1992. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1993. {
  1994. spin_lock_init(&fs_info->qgroup_lock);
  1995. mutex_init(&fs_info->qgroup_ioctl_lock);
  1996. fs_info->qgroup_tree = RB_ROOT;
  1997. fs_info->qgroup_op_tree = RB_ROOT;
  1998. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1999. fs_info->qgroup_seq = 1;
  2000. fs_info->quota_enabled = 0;
  2001. fs_info->pending_quota_state = 0;
  2002. fs_info->qgroup_ulist = NULL;
  2003. fs_info->qgroup_rescan_running = false;
  2004. mutex_init(&fs_info->qgroup_rescan_lock);
  2005. }
  2006. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  2007. struct btrfs_fs_devices *fs_devices)
  2008. {
  2009. int max_active = fs_info->thread_pool_size;
  2010. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  2011. fs_info->workers =
  2012. btrfs_alloc_workqueue(fs_info, "worker",
  2013. flags | WQ_HIGHPRI, max_active, 16);
  2014. fs_info->delalloc_workers =
  2015. btrfs_alloc_workqueue(fs_info, "delalloc",
  2016. flags, max_active, 2);
  2017. fs_info->flush_workers =
  2018. btrfs_alloc_workqueue(fs_info, "flush_delalloc",
  2019. flags, max_active, 0);
  2020. fs_info->caching_workers =
  2021. btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
  2022. /*
  2023. * a higher idle thresh on the submit workers makes it much more
  2024. * likely that bios will be send down in a sane order to the
  2025. * devices
  2026. */
  2027. fs_info->submit_workers =
  2028. btrfs_alloc_workqueue(fs_info, "submit", flags,
  2029. min_t(u64, fs_devices->num_devices,
  2030. max_active), 64);
  2031. fs_info->fixup_workers =
  2032. btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
  2033. /*
  2034. * endios are largely parallel and should have a very
  2035. * low idle thresh
  2036. */
  2037. fs_info->endio_workers =
  2038. btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
  2039. fs_info->endio_meta_workers =
  2040. btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
  2041. max_active, 4);
  2042. fs_info->endio_meta_write_workers =
  2043. btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
  2044. max_active, 2);
  2045. fs_info->endio_raid56_workers =
  2046. btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
  2047. max_active, 4);
  2048. fs_info->endio_repair_workers =
  2049. btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
  2050. fs_info->rmw_workers =
  2051. btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
  2052. fs_info->endio_write_workers =
  2053. btrfs_alloc_workqueue(fs_info, "endio-write", flags,
  2054. max_active, 2);
  2055. fs_info->endio_freespace_worker =
  2056. btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
  2057. max_active, 0);
  2058. fs_info->delayed_workers =
  2059. btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
  2060. max_active, 0);
  2061. fs_info->readahead_workers =
  2062. btrfs_alloc_workqueue(fs_info, "readahead", flags,
  2063. max_active, 2);
  2064. fs_info->qgroup_rescan_workers =
  2065. btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
  2066. fs_info->extent_workers =
  2067. btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
  2068. min_t(u64, fs_devices->num_devices,
  2069. max_active), 8);
  2070. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2071. fs_info->submit_workers && fs_info->flush_workers &&
  2072. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2073. fs_info->endio_meta_write_workers &&
  2074. fs_info->endio_repair_workers &&
  2075. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2076. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2077. fs_info->caching_workers && fs_info->readahead_workers &&
  2078. fs_info->fixup_workers && fs_info->delayed_workers &&
  2079. fs_info->extent_workers &&
  2080. fs_info->qgroup_rescan_workers)) {
  2081. return -ENOMEM;
  2082. }
  2083. return 0;
  2084. }
  2085. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2086. struct btrfs_fs_devices *fs_devices)
  2087. {
  2088. int ret;
  2089. struct btrfs_root *tree_root = fs_info->tree_root;
  2090. struct btrfs_root *log_tree_root;
  2091. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2092. u64 bytenr = btrfs_super_log_root(disk_super);
  2093. if (fs_devices->rw_devices == 0) {
  2094. btrfs_warn(fs_info, "log replay required on RO media");
  2095. return -EIO;
  2096. }
  2097. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2098. if (!log_tree_root)
  2099. return -ENOMEM;
  2100. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  2101. tree_root->stripesize, log_tree_root, fs_info,
  2102. BTRFS_TREE_LOG_OBJECTID);
  2103. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2104. fs_info->generation + 1);
  2105. if (IS_ERR(log_tree_root->node)) {
  2106. btrfs_warn(fs_info, "failed to read log tree");
  2107. ret = PTR_ERR(log_tree_root->node);
  2108. kfree(log_tree_root);
  2109. return ret;
  2110. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2111. btrfs_err(fs_info, "failed to read log tree");
  2112. free_extent_buffer(log_tree_root->node);
  2113. kfree(log_tree_root);
  2114. return -EIO;
  2115. }
  2116. /* returns with log_tree_root freed on success */
  2117. ret = btrfs_recover_log_trees(log_tree_root);
  2118. if (ret) {
  2119. btrfs_handle_fs_error(tree_root->fs_info, ret,
  2120. "Failed to recover log tree");
  2121. free_extent_buffer(log_tree_root->node);
  2122. kfree(log_tree_root);
  2123. return ret;
  2124. }
  2125. if (fs_info->sb->s_flags & MS_RDONLY) {
  2126. ret = btrfs_commit_super(tree_root);
  2127. if (ret)
  2128. return ret;
  2129. }
  2130. return 0;
  2131. }
  2132. static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
  2133. struct btrfs_root *tree_root)
  2134. {
  2135. struct btrfs_root *root;
  2136. struct btrfs_key location;
  2137. int ret;
  2138. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2139. location.type = BTRFS_ROOT_ITEM_KEY;
  2140. location.offset = 0;
  2141. root = btrfs_read_tree_root(tree_root, &location);
  2142. if (IS_ERR(root))
  2143. return PTR_ERR(root);
  2144. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2145. fs_info->extent_root = root;
  2146. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2147. root = btrfs_read_tree_root(tree_root, &location);
  2148. if (IS_ERR(root))
  2149. return PTR_ERR(root);
  2150. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2151. fs_info->dev_root = root;
  2152. btrfs_init_devices_late(fs_info);
  2153. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2154. root = btrfs_read_tree_root(tree_root, &location);
  2155. if (IS_ERR(root))
  2156. return PTR_ERR(root);
  2157. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2158. fs_info->csum_root = root;
  2159. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2160. root = btrfs_read_tree_root(tree_root, &location);
  2161. if (!IS_ERR(root)) {
  2162. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2163. fs_info->quota_enabled = 1;
  2164. fs_info->pending_quota_state = 1;
  2165. fs_info->quota_root = root;
  2166. }
  2167. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2168. root = btrfs_read_tree_root(tree_root, &location);
  2169. if (IS_ERR(root)) {
  2170. ret = PTR_ERR(root);
  2171. if (ret != -ENOENT)
  2172. return ret;
  2173. } else {
  2174. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2175. fs_info->uuid_root = root;
  2176. }
  2177. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2178. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2179. root = btrfs_read_tree_root(tree_root, &location);
  2180. if (IS_ERR(root))
  2181. return PTR_ERR(root);
  2182. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2183. fs_info->free_space_root = root;
  2184. }
  2185. return 0;
  2186. }
  2187. int open_ctree(struct super_block *sb,
  2188. struct btrfs_fs_devices *fs_devices,
  2189. char *options)
  2190. {
  2191. u32 sectorsize;
  2192. u32 nodesize;
  2193. u32 stripesize;
  2194. u64 generation;
  2195. u64 features;
  2196. struct btrfs_key location;
  2197. struct buffer_head *bh;
  2198. struct btrfs_super_block *disk_super;
  2199. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2200. struct btrfs_root *tree_root;
  2201. struct btrfs_root *chunk_root;
  2202. int ret;
  2203. int err = -EINVAL;
  2204. int num_backups_tried = 0;
  2205. int backup_index = 0;
  2206. int max_active;
  2207. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2208. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2209. if (!tree_root || !chunk_root) {
  2210. err = -ENOMEM;
  2211. goto fail;
  2212. }
  2213. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2214. if (ret) {
  2215. err = ret;
  2216. goto fail;
  2217. }
  2218. ret = setup_bdi(fs_info, &fs_info->bdi);
  2219. if (ret) {
  2220. err = ret;
  2221. goto fail_srcu;
  2222. }
  2223. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2224. if (ret) {
  2225. err = ret;
  2226. goto fail_bdi;
  2227. }
  2228. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2229. (1 + ilog2(nr_cpu_ids));
  2230. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2231. if (ret) {
  2232. err = ret;
  2233. goto fail_dirty_metadata_bytes;
  2234. }
  2235. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2236. if (ret) {
  2237. err = ret;
  2238. goto fail_delalloc_bytes;
  2239. }
  2240. fs_info->btree_inode = new_inode(sb);
  2241. if (!fs_info->btree_inode) {
  2242. err = -ENOMEM;
  2243. goto fail_bio_counter;
  2244. }
  2245. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2246. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2247. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2248. INIT_LIST_HEAD(&fs_info->trans_list);
  2249. INIT_LIST_HEAD(&fs_info->dead_roots);
  2250. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2251. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2252. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2253. spin_lock_init(&fs_info->delalloc_root_lock);
  2254. spin_lock_init(&fs_info->trans_lock);
  2255. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2256. spin_lock_init(&fs_info->delayed_iput_lock);
  2257. spin_lock_init(&fs_info->defrag_inodes_lock);
  2258. spin_lock_init(&fs_info->free_chunk_lock);
  2259. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2260. spin_lock_init(&fs_info->super_lock);
  2261. spin_lock_init(&fs_info->qgroup_op_lock);
  2262. spin_lock_init(&fs_info->buffer_lock);
  2263. spin_lock_init(&fs_info->unused_bgs_lock);
  2264. rwlock_init(&fs_info->tree_mod_log_lock);
  2265. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2266. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2267. mutex_init(&fs_info->reloc_mutex);
  2268. mutex_init(&fs_info->delalloc_root_mutex);
  2269. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2270. seqlock_init(&fs_info->profiles_lock);
  2271. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2272. INIT_LIST_HEAD(&fs_info->space_info);
  2273. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2274. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2275. btrfs_mapping_init(&fs_info->mapping_tree);
  2276. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2277. BTRFS_BLOCK_RSV_GLOBAL);
  2278. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2279. BTRFS_BLOCK_RSV_DELALLOC);
  2280. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2281. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2282. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2283. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2284. BTRFS_BLOCK_RSV_DELOPS);
  2285. atomic_set(&fs_info->nr_async_submits, 0);
  2286. atomic_set(&fs_info->async_delalloc_pages, 0);
  2287. atomic_set(&fs_info->async_submit_draining, 0);
  2288. atomic_set(&fs_info->nr_async_bios, 0);
  2289. atomic_set(&fs_info->defrag_running, 0);
  2290. atomic_set(&fs_info->qgroup_op_seq, 0);
  2291. atomic_set(&fs_info->reada_works_cnt, 0);
  2292. atomic64_set(&fs_info->tree_mod_seq, 0);
  2293. fs_info->sb = sb;
  2294. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2295. fs_info->metadata_ratio = 0;
  2296. fs_info->defrag_inodes = RB_ROOT;
  2297. fs_info->free_chunk_space = 0;
  2298. fs_info->tree_mod_log = RB_ROOT;
  2299. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2300. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2301. /* readahead state */
  2302. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2303. spin_lock_init(&fs_info->reada_lock);
  2304. fs_info->thread_pool_size = min_t(unsigned long,
  2305. num_online_cpus() + 2, 8);
  2306. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2307. spin_lock_init(&fs_info->ordered_root_lock);
  2308. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2309. GFP_KERNEL);
  2310. if (!fs_info->delayed_root) {
  2311. err = -ENOMEM;
  2312. goto fail_iput;
  2313. }
  2314. btrfs_init_delayed_root(fs_info->delayed_root);
  2315. btrfs_init_scrub(fs_info);
  2316. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2317. fs_info->check_integrity_print_mask = 0;
  2318. #endif
  2319. btrfs_init_balance(fs_info);
  2320. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2321. sb->s_blocksize = 4096;
  2322. sb->s_blocksize_bits = blksize_bits(4096);
  2323. sb->s_bdi = &fs_info->bdi;
  2324. btrfs_init_btree_inode(fs_info, tree_root);
  2325. spin_lock_init(&fs_info->block_group_cache_lock);
  2326. fs_info->block_group_cache_tree = RB_ROOT;
  2327. fs_info->first_logical_byte = (u64)-1;
  2328. extent_io_tree_init(&fs_info->freed_extents[0],
  2329. fs_info->btree_inode->i_mapping);
  2330. extent_io_tree_init(&fs_info->freed_extents[1],
  2331. fs_info->btree_inode->i_mapping);
  2332. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2333. fs_info->do_barriers = 1;
  2334. mutex_init(&fs_info->ordered_operations_mutex);
  2335. mutex_init(&fs_info->tree_log_mutex);
  2336. mutex_init(&fs_info->chunk_mutex);
  2337. mutex_init(&fs_info->transaction_kthread_mutex);
  2338. mutex_init(&fs_info->cleaner_mutex);
  2339. mutex_init(&fs_info->volume_mutex);
  2340. mutex_init(&fs_info->ro_block_group_mutex);
  2341. init_rwsem(&fs_info->commit_root_sem);
  2342. init_rwsem(&fs_info->cleanup_work_sem);
  2343. init_rwsem(&fs_info->subvol_sem);
  2344. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2345. btrfs_init_dev_replace_locks(fs_info);
  2346. btrfs_init_qgroup(fs_info);
  2347. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2348. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2349. init_waitqueue_head(&fs_info->transaction_throttle);
  2350. init_waitqueue_head(&fs_info->transaction_wait);
  2351. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2352. init_waitqueue_head(&fs_info->async_submit_wait);
  2353. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2354. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2355. if (ret) {
  2356. err = ret;
  2357. goto fail_alloc;
  2358. }
  2359. __setup_root(4096, 4096, 4096, tree_root,
  2360. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2361. invalidate_bdev(fs_devices->latest_bdev);
  2362. /*
  2363. * Read super block and check the signature bytes only
  2364. */
  2365. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2366. if (IS_ERR(bh)) {
  2367. err = PTR_ERR(bh);
  2368. goto fail_alloc;
  2369. }
  2370. /*
  2371. * We want to check superblock checksum, the type is stored inside.
  2372. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2373. */
  2374. if (btrfs_check_super_csum(bh->b_data)) {
  2375. btrfs_err(fs_info, "superblock checksum mismatch");
  2376. err = -EINVAL;
  2377. brelse(bh);
  2378. goto fail_alloc;
  2379. }
  2380. /*
  2381. * super_copy is zeroed at allocation time and we never touch the
  2382. * following bytes up to INFO_SIZE, the checksum is calculated from
  2383. * the whole block of INFO_SIZE
  2384. */
  2385. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2386. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2387. sizeof(*fs_info->super_for_commit));
  2388. brelse(bh);
  2389. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2390. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2391. if (ret) {
  2392. btrfs_err(fs_info, "superblock contains fatal errors");
  2393. err = -EINVAL;
  2394. goto fail_alloc;
  2395. }
  2396. disk_super = fs_info->super_copy;
  2397. if (!btrfs_super_root(disk_super))
  2398. goto fail_alloc;
  2399. /* check FS state, whether FS is broken. */
  2400. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2401. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2402. /*
  2403. * run through our array of backup supers and setup
  2404. * our ring pointer to the oldest one
  2405. */
  2406. generation = btrfs_super_generation(disk_super);
  2407. find_oldest_super_backup(fs_info, generation);
  2408. /*
  2409. * In the long term, we'll store the compression type in the super
  2410. * block, and it'll be used for per file compression control.
  2411. */
  2412. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2413. ret = btrfs_parse_options(tree_root, options, sb->s_flags);
  2414. if (ret) {
  2415. err = ret;
  2416. goto fail_alloc;
  2417. }
  2418. features = btrfs_super_incompat_flags(disk_super) &
  2419. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2420. if (features) {
  2421. btrfs_err(fs_info,
  2422. "cannot mount because of unsupported optional features (%llx)",
  2423. features);
  2424. err = -EINVAL;
  2425. goto fail_alloc;
  2426. }
  2427. features = btrfs_super_incompat_flags(disk_super);
  2428. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2429. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2430. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2431. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2432. btrfs_info(fs_info, "has skinny extents");
  2433. /*
  2434. * flag our filesystem as having big metadata blocks if
  2435. * they are bigger than the page size
  2436. */
  2437. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2438. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2439. btrfs_info(fs_info,
  2440. "flagging fs with big metadata feature");
  2441. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2442. }
  2443. nodesize = btrfs_super_nodesize(disk_super);
  2444. sectorsize = btrfs_super_sectorsize(disk_super);
  2445. stripesize = sectorsize;
  2446. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2447. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2448. /*
  2449. * mixed block groups end up with duplicate but slightly offset
  2450. * extent buffers for the same range. It leads to corruptions
  2451. */
  2452. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2453. (sectorsize != nodesize)) {
  2454. btrfs_err(fs_info,
  2455. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2456. nodesize, sectorsize);
  2457. goto fail_alloc;
  2458. }
  2459. /*
  2460. * Needn't use the lock because there is no other task which will
  2461. * update the flag.
  2462. */
  2463. btrfs_set_super_incompat_flags(disk_super, features);
  2464. features = btrfs_super_compat_ro_flags(disk_super) &
  2465. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2466. if (!(sb->s_flags & MS_RDONLY) && features) {
  2467. btrfs_err(fs_info,
  2468. "cannot mount read-write because of unsupported optional features (%llx)",
  2469. features);
  2470. err = -EINVAL;
  2471. goto fail_alloc;
  2472. }
  2473. max_active = fs_info->thread_pool_size;
  2474. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2475. if (ret) {
  2476. err = ret;
  2477. goto fail_sb_buffer;
  2478. }
  2479. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2480. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2481. SZ_4M / PAGE_SIZE);
  2482. tree_root->nodesize = nodesize;
  2483. tree_root->sectorsize = sectorsize;
  2484. tree_root->stripesize = stripesize;
  2485. sb->s_blocksize = sectorsize;
  2486. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2487. mutex_lock(&fs_info->chunk_mutex);
  2488. ret = btrfs_read_sys_array(tree_root);
  2489. mutex_unlock(&fs_info->chunk_mutex);
  2490. if (ret) {
  2491. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2492. goto fail_sb_buffer;
  2493. }
  2494. generation = btrfs_super_chunk_root_generation(disk_super);
  2495. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2496. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2497. chunk_root->node = read_tree_block(chunk_root,
  2498. btrfs_super_chunk_root(disk_super),
  2499. generation);
  2500. if (IS_ERR(chunk_root->node) ||
  2501. !extent_buffer_uptodate(chunk_root->node)) {
  2502. btrfs_err(fs_info, "failed to read chunk root");
  2503. if (!IS_ERR(chunk_root->node))
  2504. free_extent_buffer(chunk_root->node);
  2505. chunk_root->node = NULL;
  2506. goto fail_tree_roots;
  2507. }
  2508. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2509. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2510. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2511. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2512. ret = btrfs_read_chunk_tree(chunk_root);
  2513. if (ret) {
  2514. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2515. goto fail_tree_roots;
  2516. }
  2517. /*
  2518. * keep the device that is marked to be the target device for the
  2519. * dev_replace procedure
  2520. */
  2521. btrfs_close_extra_devices(fs_devices, 0);
  2522. if (!fs_devices->latest_bdev) {
  2523. btrfs_err(fs_info, "failed to read devices");
  2524. goto fail_tree_roots;
  2525. }
  2526. retry_root_backup:
  2527. generation = btrfs_super_generation(disk_super);
  2528. tree_root->node = read_tree_block(tree_root,
  2529. btrfs_super_root(disk_super),
  2530. generation);
  2531. if (IS_ERR(tree_root->node) ||
  2532. !extent_buffer_uptodate(tree_root->node)) {
  2533. btrfs_warn(fs_info, "failed to read tree root");
  2534. if (!IS_ERR(tree_root->node))
  2535. free_extent_buffer(tree_root->node);
  2536. tree_root->node = NULL;
  2537. goto recovery_tree_root;
  2538. }
  2539. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2540. tree_root->commit_root = btrfs_root_node(tree_root);
  2541. btrfs_set_root_refs(&tree_root->root_item, 1);
  2542. mutex_lock(&tree_root->objectid_mutex);
  2543. ret = btrfs_find_highest_objectid(tree_root,
  2544. &tree_root->highest_objectid);
  2545. if (ret) {
  2546. mutex_unlock(&tree_root->objectid_mutex);
  2547. goto recovery_tree_root;
  2548. }
  2549. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2550. mutex_unlock(&tree_root->objectid_mutex);
  2551. ret = btrfs_read_roots(fs_info, tree_root);
  2552. if (ret)
  2553. goto recovery_tree_root;
  2554. fs_info->generation = generation;
  2555. fs_info->last_trans_committed = generation;
  2556. ret = btrfs_recover_balance(fs_info);
  2557. if (ret) {
  2558. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2559. goto fail_block_groups;
  2560. }
  2561. ret = btrfs_init_dev_stats(fs_info);
  2562. if (ret) {
  2563. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2564. goto fail_block_groups;
  2565. }
  2566. ret = btrfs_init_dev_replace(fs_info);
  2567. if (ret) {
  2568. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2569. goto fail_block_groups;
  2570. }
  2571. btrfs_close_extra_devices(fs_devices, 1);
  2572. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2573. if (ret) {
  2574. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2575. ret);
  2576. goto fail_block_groups;
  2577. }
  2578. ret = btrfs_sysfs_add_device(fs_devices);
  2579. if (ret) {
  2580. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2581. ret);
  2582. goto fail_fsdev_sysfs;
  2583. }
  2584. ret = btrfs_sysfs_add_mounted(fs_info);
  2585. if (ret) {
  2586. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2587. goto fail_fsdev_sysfs;
  2588. }
  2589. ret = btrfs_init_space_info(fs_info);
  2590. if (ret) {
  2591. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2592. goto fail_sysfs;
  2593. }
  2594. ret = btrfs_read_block_groups(fs_info->extent_root);
  2595. if (ret) {
  2596. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2597. goto fail_sysfs;
  2598. }
  2599. fs_info->num_tolerated_disk_barrier_failures =
  2600. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2601. if (fs_info->fs_devices->missing_devices >
  2602. fs_info->num_tolerated_disk_barrier_failures &&
  2603. !(sb->s_flags & MS_RDONLY)) {
  2604. btrfs_warn(fs_info,
  2605. "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
  2606. fs_info->fs_devices->missing_devices,
  2607. fs_info->num_tolerated_disk_barrier_failures);
  2608. goto fail_sysfs;
  2609. }
  2610. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2611. "btrfs-cleaner");
  2612. if (IS_ERR(fs_info->cleaner_kthread))
  2613. goto fail_sysfs;
  2614. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2615. tree_root,
  2616. "btrfs-transaction");
  2617. if (IS_ERR(fs_info->transaction_kthread))
  2618. goto fail_cleaner;
  2619. if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
  2620. !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
  2621. !fs_info->fs_devices->rotating) {
  2622. btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
  2623. btrfs_set_opt(fs_info->mount_opt, SSD);
  2624. }
  2625. /*
  2626. * Mount does not set all options immediately, we can do it now and do
  2627. * not have to wait for transaction commit
  2628. */
  2629. btrfs_apply_pending_changes(fs_info);
  2630. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2631. if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
  2632. ret = btrfsic_mount(tree_root, fs_devices,
  2633. btrfs_test_opt(tree_root->fs_info,
  2634. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2635. 1 : 0,
  2636. fs_info->check_integrity_print_mask);
  2637. if (ret)
  2638. btrfs_warn(fs_info,
  2639. "failed to initialize integrity check module: %d",
  2640. ret);
  2641. }
  2642. #endif
  2643. ret = btrfs_read_qgroup_config(fs_info);
  2644. if (ret)
  2645. goto fail_trans_kthread;
  2646. /* do not make disk changes in broken FS or nologreplay is given */
  2647. if (btrfs_super_log_root(disk_super) != 0 &&
  2648. !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
  2649. ret = btrfs_replay_log(fs_info, fs_devices);
  2650. if (ret) {
  2651. err = ret;
  2652. goto fail_qgroup;
  2653. }
  2654. }
  2655. ret = btrfs_find_orphan_roots(tree_root);
  2656. if (ret)
  2657. goto fail_qgroup;
  2658. if (!(sb->s_flags & MS_RDONLY)) {
  2659. ret = btrfs_cleanup_fs_roots(fs_info);
  2660. if (ret)
  2661. goto fail_qgroup;
  2662. mutex_lock(&fs_info->cleaner_mutex);
  2663. ret = btrfs_recover_relocation(tree_root);
  2664. mutex_unlock(&fs_info->cleaner_mutex);
  2665. if (ret < 0) {
  2666. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2667. ret);
  2668. err = -EINVAL;
  2669. goto fail_qgroup;
  2670. }
  2671. }
  2672. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2673. location.type = BTRFS_ROOT_ITEM_KEY;
  2674. location.offset = 0;
  2675. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2676. if (IS_ERR(fs_info->fs_root)) {
  2677. err = PTR_ERR(fs_info->fs_root);
  2678. goto fail_qgroup;
  2679. }
  2680. if (sb->s_flags & MS_RDONLY)
  2681. return 0;
  2682. if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
  2683. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2684. btrfs_info(fs_info, "creating free space tree");
  2685. ret = btrfs_create_free_space_tree(fs_info);
  2686. if (ret) {
  2687. btrfs_warn(fs_info,
  2688. "failed to create free space tree: %d", ret);
  2689. close_ctree(tree_root);
  2690. return ret;
  2691. }
  2692. }
  2693. down_read(&fs_info->cleanup_work_sem);
  2694. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2695. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2696. up_read(&fs_info->cleanup_work_sem);
  2697. close_ctree(tree_root);
  2698. return ret;
  2699. }
  2700. up_read(&fs_info->cleanup_work_sem);
  2701. ret = btrfs_resume_balance_async(fs_info);
  2702. if (ret) {
  2703. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2704. close_ctree(tree_root);
  2705. return ret;
  2706. }
  2707. ret = btrfs_resume_dev_replace_async(fs_info);
  2708. if (ret) {
  2709. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2710. close_ctree(tree_root);
  2711. return ret;
  2712. }
  2713. btrfs_qgroup_rescan_resume(fs_info);
  2714. if (btrfs_test_opt(tree_root->fs_info, CLEAR_CACHE) &&
  2715. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2716. btrfs_info(fs_info, "clearing free space tree");
  2717. ret = btrfs_clear_free_space_tree(fs_info);
  2718. if (ret) {
  2719. btrfs_warn(fs_info,
  2720. "failed to clear free space tree: %d", ret);
  2721. close_ctree(tree_root);
  2722. return ret;
  2723. }
  2724. }
  2725. if (!fs_info->uuid_root) {
  2726. btrfs_info(fs_info, "creating UUID tree");
  2727. ret = btrfs_create_uuid_tree(fs_info);
  2728. if (ret) {
  2729. btrfs_warn(fs_info,
  2730. "failed to create the UUID tree: %d", ret);
  2731. close_ctree(tree_root);
  2732. return ret;
  2733. }
  2734. } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
  2735. fs_info->generation !=
  2736. btrfs_super_uuid_tree_generation(disk_super)) {
  2737. btrfs_info(fs_info, "checking UUID tree");
  2738. ret = btrfs_check_uuid_tree(fs_info);
  2739. if (ret) {
  2740. btrfs_warn(fs_info,
  2741. "failed to check the UUID tree: %d", ret);
  2742. close_ctree(tree_root);
  2743. return ret;
  2744. }
  2745. } else {
  2746. fs_info->update_uuid_tree_gen = 1;
  2747. }
  2748. fs_info->open = 1;
  2749. /*
  2750. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2751. * no need to keep the flag
  2752. */
  2753. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2754. return 0;
  2755. fail_qgroup:
  2756. btrfs_free_qgroup_config(fs_info);
  2757. fail_trans_kthread:
  2758. kthread_stop(fs_info->transaction_kthread);
  2759. btrfs_cleanup_transaction(fs_info->tree_root);
  2760. btrfs_free_fs_roots(fs_info);
  2761. fail_cleaner:
  2762. kthread_stop(fs_info->cleaner_kthread);
  2763. /*
  2764. * make sure we're done with the btree inode before we stop our
  2765. * kthreads
  2766. */
  2767. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2768. fail_sysfs:
  2769. btrfs_sysfs_remove_mounted(fs_info);
  2770. fail_fsdev_sysfs:
  2771. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2772. fail_block_groups:
  2773. btrfs_put_block_group_cache(fs_info);
  2774. btrfs_free_block_groups(fs_info);
  2775. fail_tree_roots:
  2776. free_root_pointers(fs_info, 1);
  2777. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2778. fail_sb_buffer:
  2779. btrfs_stop_all_workers(fs_info);
  2780. fail_alloc:
  2781. fail_iput:
  2782. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2783. iput(fs_info->btree_inode);
  2784. fail_bio_counter:
  2785. percpu_counter_destroy(&fs_info->bio_counter);
  2786. fail_delalloc_bytes:
  2787. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2788. fail_dirty_metadata_bytes:
  2789. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2790. fail_bdi:
  2791. bdi_destroy(&fs_info->bdi);
  2792. fail_srcu:
  2793. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2794. fail:
  2795. btrfs_free_stripe_hash_table(fs_info);
  2796. btrfs_close_devices(fs_info->fs_devices);
  2797. return err;
  2798. recovery_tree_root:
  2799. if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
  2800. goto fail_tree_roots;
  2801. free_root_pointers(fs_info, 0);
  2802. /* don't use the log in recovery mode, it won't be valid */
  2803. btrfs_set_super_log_root(disk_super, 0);
  2804. /* we can't trust the free space cache either */
  2805. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2806. ret = next_root_backup(fs_info, fs_info->super_copy,
  2807. &num_backups_tried, &backup_index);
  2808. if (ret == -1)
  2809. goto fail_block_groups;
  2810. goto retry_root_backup;
  2811. }
  2812. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2813. {
  2814. if (uptodate) {
  2815. set_buffer_uptodate(bh);
  2816. } else {
  2817. struct btrfs_device *device = (struct btrfs_device *)
  2818. bh->b_private;
  2819. btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
  2820. "lost page write due to IO error on %s",
  2821. rcu_str_deref(device->name));
  2822. /* note, we don't set_buffer_write_io_error because we have
  2823. * our own ways of dealing with the IO errors
  2824. */
  2825. clear_buffer_uptodate(bh);
  2826. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2827. }
  2828. unlock_buffer(bh);
  2829. put_bh(bh);
  2830. }
  2831. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2832. struct buffer_head **bh_ret)
  2833. {
  2834. struct buffer_head *bh;
  2835. struct btrfs_super_block *super;
  2836. u64 bytenr;
  2837. bytenr = btrfs_sb_offset(copy_num);
  2838. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2839. return -EINVAL;
  2840. bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
  2841. /*
  2842. * If we fail to read from the underlying devices, as of now
  2843. * the best option we have is to mark it EIO.
  2844. */
  2845. if (!bh)
  2846. return -EIO;
  2847. super = (struct btrfs_super_block *)bh->b_data;
  2848. if (btrfs_super_bytenr(super) != bytenr ||
  2849. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2850. brelse(bh);
  2851. return -EINVAL;
  2852. }
  2853. *bh_ret = bh;
  2854. return 0;
  2855. }
  2856. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2857. {
  2858. struct buffer_head *bh;
  2859. struct buffer_head *latest = NULL;
  2860. struct btrfs_super_block *super;
  2861. int i;
  2862. u64 transid = 0;
  2863. int ret = -EINVAL;
  2864. /* we would like to check all the supers, but that would make
  2865. * a btrfs mount succeed after a mkfs from a different FS.
  2866. * So, we need to add a special mount option to scan for
  2867. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2868. */
  2869. for (i = 0; i < 1; i++) {
  2870. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2871. if (ret)
  2872. continue;
  2873. super = (struct btrfs_super_block *)bh->b_data;
  2874. if (!latest || btrfs_super_generation(super) > transid) {
  2875. brelse(latest);
  2876. latest = bh;
  2877. transid = btrfs_super_generation(super);
  2878. } else {
  2879. brelse(bh);
  2880. }
  2881. }
  2882. if (!latest)
  2883. return ERR_PTR(ret);
  2884. return latest;
  2885. }
  2886. /*
  2887. * this should be called twice, once with wait == 0 and
  2888. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2889. * we write are pinned.
  2890. *
  2891. * They are released when wait == 1 is done.
  2892. * max_mirrors must be the same for both runs, and it indicates how
  2893. * many supers on this one device should be written.
  2894. *
  2895. * max_mirrors == 0 means to write them all.
  2896. */
  2897. static int write_dev_supers(struct btrfs_device *device,
  2898. struct btrfs_super_block *sb,
  2899. int do_barriers, int wait, int max_mirrors)
  2900. {
  2901. struct buffer_head *bh;
  2902. int i;
  2903. int ret;
  2904. int errors = 0;
  2905. u32 crc;
  2906. u64 bytenr;
  2907. if (max_mirrors == 0)
  2908. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2909. for (i = 0; i < max_mirrors; i++) {
  2910. bytenr = btrfs_sb_offset(i);
  2911. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2912. device->commit_total_bytes)
  2913. break;
  2914. if (wait) {
  2915. bh = __find_get_block(device->bdev, bytenr / 4096,
  2916. BTRFS_SUPER_INFO_SIZE);
  2917. if (!bh) {
  2918. errors++;
  2919. continue;
  2920. }
  2921. wait_on_buffer(bh);
  2922. if (!buffer_uptodate(bh))
  2923. errors++;
  2924. /* drop our reference */
  2925. brelse(bh);
  2926. /* drop the reference from the wait == 0 run */
  2927. brelse(bh);
  2928. continue;
  2929. } else {
  2930. btrfs_set_super_bytenr(sb, bytenr);
  2931. crc = ~(u32)0;
  2932. crc = btrfs_csum_data((char *)sb +
  2933. BTRFS_CSUM_SIZE, crc,
  2934. BTRFS_SUPER_INFO_SIZE -
  2935. BTRFS_CSUM_SIZE);
  2936. btrfs_csum_final(crc, sb->csum);
  2937. /*
  2938. * one reference for us, and we leave it for the
  2939. * caller
  2940. */
  2941. bh = __getblk(device->bdev, bytenr / 4096,
  2942. BTRFS_SUPER_INFO_SIZE);
  2943. if (!bh) {
  2944. btrfs_err(device->dev_root->fs_info,
  2945. "couldn't get super buffer head for bytenr %llu",
  2946. bytenr);
  2947. errors++;
  2948. continue;
  2949. }
  2950. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2951. /* one reference for submit_bh */
  2952. get_bh(bh);
  2953. set_buffer_uptodate(bh);
  2954. lock_buffer(bh);
  2955. bh->b_end_io = btrfs_end_buffer_write_sync;
  2956. bh->b_private = device;
  2957. }
  2958. /*
  2959. * we fua the first super. The others we allow
  2960. * to go down lazy.
  2961. */
  2962. if (i == 0)
  2963. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2964. else
  2965. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2966. if (ret)
  2967. errors++;
  2968. }
  2969. return errors < i ? 0 : -1;
  2970. }
  2971. /*
  2972. * endio for the write_dev_flush, this will wake anyone waiting
  2973. * for the barrier when it is done
  2974. */
  2975. static void btrfs_end_empty_barrier(struct bio *bio)
  2976. {
  2977. if (bio->bi_private)
  2978. complete(bio->bi_private);
  2979. bio_put(bio);
  2980. }
  2981. /*
  2982. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2983. * sent down. With wait == 1, it waits for the previous flush.
  2984. *
  2985. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2986. * capable
  2987. */
  2988. static int write_dev_flush(struct btrfs_device *device, int wait)
  2989. {
  2990. struct bio *bio;
  2991. int ret = 0;
  2992. if (device->nobarriers)
  2993. return 0;
  2994. if (wait) {
  2995. bio = device->flush_bio;
  2996. if (!bio)
  2997. return 0;
  2998. wait_for_completion(&device->flush_wait);
  2999. if (bio->bi_error) {
  3000. ret = bio->bi_error;
  3001. btrfs_dev_stat_inc_and_print(device,
  3002. BTRFS_DEV_STAT_FLUSH_ERRS);
  3003. }
  3004. /* drop the reference from the wait == 0 run */
  3005. bio_put(bio);
  3006. device->flush_bio = NULL;
  3007. return ret;
  3008. }
  3009. /*
  3010. * one reference for us, and we leave it for the
  3011. * caller
  3012. */
  3013. device->flush_bio = NULL;
  3014. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  3015. if (!bio)
  3016. return -ENOMEM;
  3017. bio->bi_end_io = btrfs_end_empty_barrier;
  3018. bio->bi_bdev = device->bdev;
  3019. init_completion(&device->flush_wait);
  3020. bio->bi_private = &device->flush_wait;
  3021. device->flush_bio = bio;
  3022. bio_get(bio);
  3023. btrfsic_submit_bio(WRITE_FLUSH, bio);
  3024. return 0;
  3025. }
  3026. /*
  3027. * send an empty flush down to each device in parallel,
  3028. * then wait for them
  3029. */
  3030. static int barrier_all_devices(struct btrfs_fs_info *info)
  3031. {
  3032. struct list_head *head;
  3033. struct btrfs_device *dev;
  3034. int errors_send = 0;
  3035. int errors_wait = 0;
  3036. int ret;
  3037. /* send down all the barriers */
  3038. head = &info->fs_devices->devices;
  3039. list_for_each_entry_rcu(dev, head, dev_list) {
  3040. if (dev->missing)
  3041. continue;
  3042. if (!dev->bdev) {
  3043. errors_send++;
  3044. continue;
  3045. }
  3046. if (!dev->in_fs_metadata || !dev->writeable)
  3047. continue;
  3048. ret = write_dev_flush(dev, 0);
  3049. if (ret)
  3050. errors_send++;
  3051. }
  3052. /* wait for all the barriers */
  3053. list_for_each_entry_rcu(dev, head, dev_list) {
  3054. if (dev->missing)
  3055. continue;
  3056. if (!dev->bdev) {
  3057. errors_wait++;
  3058. continue;
  3059. }
  3060. if (!dev->in_fs_metadata || !dev->writeable)
  3061. continue;
  3062. ret = write_dev_flush(dev, 1);
  3063. if (ret)
  3064. errors_wait++;
  3065. }
  3066. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  3067. errors_wait > info->num_tolerated_disk_barrier_failures)
  3068. return -EIO;
  3069. return 0;
  3070. }
  3071. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3072. {
  3073. int raid_type;
  3074. int min_tolerated = INT_MAX;
  3075. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3076. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3077. min_tolerated = min(min_tolerated,
  3078. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3079. tolerated_failures);
  3080. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3081. if (raid_type == BTRFS_RAID_SINGLE)
  3082. continue;
  3083. if (!(flags & btrfs_raid_group[raid_type]))
  3084. continue;
  3085. min_tolerated = min(min_tolerated,
  3086. btrfs_raid_array[raid_type].
  3087. tolerated_failures);
  3088. }
  3089. if (min_tolerated == INT_MAX) {
  3090. pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
  3091. min_tolerated = 0;
  3092. }
  3093. return min_tolerated;
  3094. }
  3095. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3096. struct btrfs_fs_info *fs_info)
  3097. {
  3098. struct btrfs_ioctl_space_info space;
  3099. struct btrfs_space_info *sinfo;
  3100. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3101. BTRFS_BLOCK_GROUP_SYSTEM,
  3102. BTRFS_BLOCK_GROUP_METADATA,
  3103. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3104. int i;
  3105. int c;
  3106. int num_tolerated_disk_barrier_failures =
  3107. (int)fs_info->fs_devices->num_devices;
  3108. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3109. struct btrfs_space_info *tmp;
  3110. sinfo = NULL;
  3111. rcu_read_lock();
  3112. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3113. if (tmp->flags == types[i]) {
  3114. sinfo = tmp;
  3115. break;
  3116. }
  3117. }
  3118. rcu_read_unlock();
  3119. if (!sinfo)
  3120. continue;
  3121. down_read(&sinfo->groups_sem);
  3122. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3123. u64 flags;
  3124. if (list_empty(&sinfo->block_groups[c]))
  3125. continue;
  3126. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3127. &space);
  3128. if (space.total_bytes == 0 || space.used_bytes == 0)
  3129. continue;
  3130. flags = space.flags;
  3131. num_tolerated_disk_barrier_failures = min(
  3132. num_tolerated_disk_barrier_failures,
  3133. btrfs_get_num_tolerated_disk_barrier_failures(
  3134. flags));
  3135. }
  3136. up_read(&sinfo->groups_sem);
  3137. }
  3138. return num_tolerated_disk_barrier_failures;
  3139. }
  3140. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  3141. {
  3142. struct list_head *head;
  3143. struct btrfs_device *dev;
  3144. struct btrfs_super_block *sb;
  3145. struct btrfs_dev_item *dev_item;
  3146. int ret;
  3147. int do_barriers;
  3148. int max_errors;
  3149. int total_errors = 0;
  3150. u64 flags;
  3151. do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
  3152. backup_super_roots(root->fs_info);
  3153. sb = root->fs_info->super_for_commit;
  3154. dev_item = &sb->dev_item;
  3155. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  3156. head = &root->fs_info->fs_devices->devices;
  3157. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  3158. if (do_barriers) {
  3159. ret = barrier_all_devices(root->fs_info);
  3160. if (ret) {
  3161. mutex_unlock(
  3162. &root->fs_info->fs_devices->device_list_mutex);
  3163. btrfs_handle_fs_error(root->fs_info, ret,
  3164. "errors while submitting device barriers.");
  3165. return ret;
  3166. }
  3167. }
  3168. list_for_each_entry_rcu(dev, head, dev_list) {
  3169. if (!dev->bdev) {
  3170. total_errors++;
  3171. continue;
  3172. }
  3173. if (!dev->in_fs_metadata || !dev->writeable)
  3174. continue;
  3175. btrfs_set_stack_device_generation(dev_item, 0);
  3176. btrfs_set_stack_device_type(dev_item, dev->type);
  3177. btrfs_set_stack_device_id(dev_item, dev->devid);
  3178. btrfs_set_stack_device_total_bytes(dev_item,
  3179. dev->commit_total_bytes);
  3180. btrfs_set_stack_device_bytes_used(dev_item,
  3181. dev->commit_bytes_used);
  3182. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3183. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3184. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3185. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3186. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3187. flags = btrfs_super_flags(sb);
  3188. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3189. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3190. if (ret)
  3191. total_errors++;
  3192. }
  3193. if (total_errors > max_errors) {
  3194. btrfs_err(root->fs_info, "%d errors while writing supers",
  3195. total_errors);
  3196. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3197. /* FUA is masked off if unsupported and can't be the reason */
  3198. btrfs_handle_fs_error(root->fs_info, -EIO,
  3199. "%d errors while writing supers", total_errors);
  3200. return -EIO;
  3201. }
  3202. total_errors = 0;
  3203. list_for_each_entry_rcu(dev, head, dev_list) {
  3204. if (!dev->bdev)
  3205. continue;
  3206. if (!dev->in_fs_metadata || !dev->writeable)
  3207. continue;
  3208. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3209. if (ret)
  3210. total_errors++;
  3211. }
  3212. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3213. if (total_errors > max_errors) {
  3214. btrfs_handle_fs_error(root->fs_info, -EIO,
  3215. "%d errors while writing supers", total_errors);
  3216. return -EIO;
  3217. }
  3218. return 0;
  3219. }
  3220. int write_ctree_super(struct btrfs_trans_handle *trans,
  3221. struct btrfs_root *root, int max_mirrors)
  3222. {
  3223. return write_all_supers(root, max_mirrors);
  3224. }
  3225. /* Drop a fs root from the radix tree and free it. */
  3226. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3227. struct btrfs_root *root)
  3228. {
  3229. spin_lock(&fs_info->fs_roots_radix_lock);
  3230. radix_tree_delete(&fs_info->fs_roots_radix,
  3231. (unsigned long)root->root_key.objectid);
  3232. spin_unlock(&fs_info->fs_roots_radix_lock);
  3233. if (btrfs_root_refs(&root->root_item) == 0)
  3234. synchronize_srcu(&fs_info->subvol_srcu);
  3235. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3236. btrfs_free_log(NULL, root);
  3237. if (root->reloc_root) {
  3238. free_extent_buffer(root->reloc_root->node);
  3239. free_extent_buffer(root->reloc_root->commit_root);
  3240. btrfs_put_fs_root(root->reloc_root);
  3241. root->reloc_root = NULL;
  3242. }
  3243. }
  3244. if (root->free_ino_pinned)
  3245. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3246. if (root->free_ino_ctl)
  3247. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3248. free_fs_root(root);
  3249. }
  3250. static void free_fs_root(struct btrfs_root *root)
  3251. {
  3252. iput(root->ino_cache_inode);
  3253. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3254. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3255. root->orphan_block_rsv = NULL;
  3256. if (root->anon_dev)
  3257. free_anon_bdev(root->anon_dev);
  3258. if (root->subv_writers)
  3259. btrfs_free_subvolume_writers(root->subv_writers);
  3260. free_extent_buffer(root->node);
  3261. free_extent_buffer(root->commit_root);
  3262. kfree(root->free_ino_ctl);
  3263. kfree(root->free_ino_pinned);
  3264. kfree(root->name);
  3265. btrfs_put_fs_root(root);
  3266. }
  3267. void btrfs_free_fs_root(struct btrfs_root *root)
  3268. {
  3269. free_fs_root(root);
  3270. }
  3271. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3272. {
  3273. u64 root_objectid = 0;
  3274. struct btrfs_root *gang[8];
  3275. int i = 0;
  3276. int err = 0;
  3277. unsigned int ret = 0;
  3278. int index;
  3279. while (1) {
  3280. index = srcu_read_lock(&fs_info->subvol_srcu);
  3281. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3282. (void **)gang, root_objectid,
  3283. ARRAY_SIZE(gang));
  3284. if (!ret) {
  3285. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3286. break;
  3287. }
  3288. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3289. for (i = 0; i < ret; i++) {
  3290. /* Avoid to grab roots in dead_roots */
  3291. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3292. gang[i] = NULL;
  3293. continue;
  3294. }
  3295. /* grab all the search result for later use */
  3296. gang[i] = btrfs_grab_fs_root(gang[i]);
  3297. }
  3298. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3299. for (i = 0; i < ret; i++) {
  3300. if (!gang[i])
  3301. continue;
  3302. root_objectid = gang[i]->root_key.objectid;
  3303. err = btrfs_orphan_cleanup(gang[i]);
  3304. if (err)
  3305. break;
  3306. btrfs_put_fs_root(gang[i]);
  3307. }
  3308. root_objectid++;
  3309. }
  3310. /* release the uncleaned roots due to error */
  3311. for (; i < ret; i++) {
  3312. if (gang[i])
  3313. btrfs_put_fs_root(gang[i]);
  3314. }
  3315. return err;
  3316. }
  3317. int btrfs_commit_super(struct btrfs_root *root)
  3318. {
  3319. struct btrfs_trans_handle *trans;
  3320. mutex_lock(&root->fs_info->cleaner_mutex);
  3321. btrfs_run_delayed_iputs(root);
  3322. mutex_unlock(&root->fs_info->cleaner_mutex);
  3323. wake_up_process(root->fs_info->cleaner_kthread);
  3324. /* wait until ongoing cleanup work done */
  3325. down_write(&root->fs_info->cleanup_work_sem);
  3326. up_write(&root->fs_info->cleanup_work_sem);
  3327. trans = btrfs_join_transaction(root);
  3328. if (IS_ERR(trans))
  3329. return PTR_ERR(trans);
  3330. return btrfs_commit_transaction(trans, root);
  3331. }
  3332. void close_ctree(struct btrfs_root *root)
  3333. {
  3334. struct btrfs_fs_info *fs_info = root->fs_info;
  3335. int ret;
  3336. fs_info->closing = 1;
  3337. smp_mb();
  3338. /* wait for the qgroup rescan worker to stop */
  3339. btrfs_qgroup_wait_for_completion(fs_info);
  3340. /* wait for the uuid_scan task to finish */
  3341. down(&fs_info->uuid_tree_rescan_sem);
  3342. /* avoid complains from lockdep et al., set sem back to initial state */
  3343. up(&fs_info->uuid_tree_rescan_sem);
  3344. /* pause restriper - we want to resume on mount */
  3345. btrfs_pause_balance(fs_info);
  3346. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3347. btrfs_scrub_cancel(fs_info);
  3348. /* wait for any defraggers to finish */
  3349. wait_event(fs_info->transaction_wait,
  3350. (atomic_read(&fs_info->defrag_running) == 0));
  3351. /* clear out the rbtree of defraggable inodes */
  3352. btrfs_cleanup_defrag_inodes(fs_info);
  3353. cancel_work_sync(&fs_info->async_reclaim_work);
  3354. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3355. /*
  3356. * If the cleaner thread is stopped and there are
  3357. * block groups queued for removal, the deletion will be
  3358. * skipped when we quit the cleaner thread.
  3359. */
  3360. btrfs_delete_unused_bgs(root->fs_info);
  3361. ret = btrfs_commit_super(root);
  3362. if (ret)
  3363. btrfs_err(fs_info, "commit super ret %d", ret);
  3364. }
  3365. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3366. btrfs_error_commit_super(root);
  3367. kthread_stop(fs_info->transaction_kthread);
  3368. kthread_stop(fs_info->cleaner_kthread);
  3369. fs_info->closing = 2;
  3370. smp_mb();
  3371. btrfs_free_qgroup_config(fs_info);
  3372. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3373. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3374. percpu_counter_sum(&fs_info->delalloc_bytes));
  3375. }
  3376. btrfs_sysfs_remove_mounted(fs_info);
  3377. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3378. btrfs_free_fs_roots(fs_info);
  3379. btrfs_put_block_group_cache(fs_info);
  3380. btrfs_free_block_groups(fs_info);
  3381. /*
  3382. * we must make sure there is not any read request to
  3383. * submit after we stopping all workers.
  3384. */
  3385. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3386. btrfs_stop_all_workers(fs_info);
  3387. fs_info->open = 0;
  3388. free_root_pointers(fs_info, 1);
  3389. iput(fs_info->btree_inode);
  3390. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3391. if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
  3392. btrfsic_unmount(root, fs_info->fs_devices);
  3393. #endif
  3394. btrfs_close_devices(fs_info->fs_devices);
  3395. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3396. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3397. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3398. percpu_counter_destroy(&fs_info->bio_counter);
  3399. bdi_destroy(&fs_info->bdi);
  3400. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3401. btrfs_free_stripe_hash_table(fs_info);
  3402. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3403. root->orphan_block_rsv = NULL;
  3404. lock_chunks(root);
  3405. while (!list_empty(&fs_info->pinned_chunks)) {
  3406. struct extent_map *em;
  3407. em = list_first_entry(&fs_info->pinned_chunks,
  3408. struct extent_map, list);
  3409. list_del_init(&em->list);
  3410. free_extent_map(em);
  3411. }
  3412. unlock_chunks(root);
  3413. }
  3414. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3415. int atomic)
  3416. {
  3417. int ret;
  3418. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3419. ret = extent_buffer_uptodate(buf);
  3420. if (!ret)
  3421. return ret;
  3422. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3423. parent_transid, atomic);
  3424. if (ret == -EAGAIN)
  3425. return ret;
  3426. return !ret;
  3427. }
  3428. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3429. {
  3430. struct btrfs_root *root;
  3431. u64 transid = btrfs_header_generation(buf);
  3432. int was_dirty;
  3433. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3434. /*
  3435. * This is a fast path so only do this check if we have sanity tests
  3436. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3437. * outside of the sanity tests.
  3438. */
  3439. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3440. return;
  3441. #endif
  3442. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3443. btrfs_assert_tree_locked(buf);
  3444. if (transid != root->fs_info->generation)
  3445. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3446. "found %llu running %llu\n",
  3447. buf->start, transid, root->fs_info->generation);
  3448. was_dirty = set_extent_buffer_dirty(buf);
  3449. if (!was_dirty)
  3450. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3451. buf->len,
  3452. root->fs_info->dirty_metadata_batch);
  3453. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3454. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3455. btrfs_print_leaf(root, buf);
  3456. ASSERT(0);
  3457. }
  3458. #endif
  3459. }
  3460. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3461. int flush_delayed)
  3462. {
  3463. /*
  3464. * looks as though older kernels can get into trouble with
  3465. * this code, they end up stuck in balance_dirty_pages forever
  3466. */
  3467. int ret;
  3468. if (current->flags & PF_MEMALLOC)
  3469. return;
  3470. if (flush_delayed)
  3471. btrfs_balance_delayed_items(root);
  3472. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3473. BTRFS_DIRTY_METADATA_THRESH);
  3474. if (ret > 0) {
  3475. balance_dirty_pages_ratelimited(
  3476. root->fs_info->btree_inode->i_mapping);
  3477. }
  3478. }
  3479. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3480. {
  3481. __btrfs_btree_balance_dirty(root, 1);
  3482. }
  3483. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3484. {
  3485. __btrfs_btree_balance_dirty(root, 0);
  3486. }
  3487. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3488. {
  3489. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3490. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3491. }
  3492. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3493. int read_only)
  3494. {
  3495. struct btrfs_super_block *sb = fs_info->super_copy;
  3496. u64 nodesize = btrfs_super_nodesize(sb);
  3497. u64 sectorsize = btrfs_super_sectorsize(sb);
  3498. int ret = 0;
  3499. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3500. printk(KERN_ERR "BTRFS: no valid FS found\n");
  3501. ret = -EINVAL;
  3502. }
  3503. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
  3504. printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
  3505. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3506. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3507. printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
  3508. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3509. ret = -EINVAL;
  3510. }
  3511. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3512. printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
  3513. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3514. ret = -EINVAL;
  3515. }
  3516. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3517. printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
  3518. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3519. ret = -EINVAL;
  3520. }
  3521. /*
  3522. * Check sectorsize and nodesize first, other check will need it.
  3523. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3524. */
  3525. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3526. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3527. printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
  3528. ret = -EINVAL;
  3529. }
  3530. /* Only PAGE SIZE is supported yet */
  3531. if (sectorsize != PAGE_SIZE) {
  3532. printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
  3533. sectorsize, PAGE_SIZE);
  3534. ret = -EINVAL;
  3535. }
  3536. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3537. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3538. printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
  3539. ret = -EINVAL;
  3540. }
  3541. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3542. printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
  3543. le32_to_cpu(sb->__unused_leafsize),
  3544. nodesize);
  3545. ret = -EINVAL;
  3546. }
  3547. /* Root alignment check */
  3548. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3549. printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
  3550. btrfs_super_root(sb));
  3551. ret = -EINVAL;
  3552. }
  3553. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3554. printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
  3555. btrfs_super_chunk_root(sb));
  3556. ret = -EINVAL;
  3557. }
  3558. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3559. printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
  3560. btrfs_super_log_root(sb));
  3561. ret = -EINVAL;
  3562. }
  3563. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3564. printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
  3565. fs_info->fsid, sb->dev_item.fsid);
  3566. ret = -EINVAL;
  3567. }
  3568. /*
  3569. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3570. * done later
  3571. */
  3572. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3573. btrfs_err(fs_info, "bytes_used is too small %llu",
  3574. btrfs_super_bytes_used(sb));
  3575. ret = -EINVAL;
  3576. }
  3577. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3578. btrfs_err(fs_info, "invalid stripesize %u",
  3579. btrfs_super_stripesize(sb));
  3580. ret = -EINVAL;
  3581. }
  3582. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3583. printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
  3584. btrfs_super_num_devices(sb));
  3585. if (btrfs_super_num_devices(sb) == 0) {
  3586. printk(KERN_ERR "BTRFS: number of devices is 0\n");
  3587. ret = -EINVAL;
  3588. }
  3589. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3590. printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
  3591. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3592. ret = -EINVAL;
  3593. }
  3594. /*
  3595. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3596. * and one chunk
  3597. */
  3598. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3599. printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
  3600. btrfs_super_sys_array_size(sb),
  3601. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3602. ret = -EINVAL;
  3603. }
  3604. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3605. + sizeof(struct btrfs_chunk)) {
  3606. printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
  3607. btrfs_super_sys_array_size(sb),
  3608. sizeof(struct btrfs_disk_key)
  3609. + sizeof(struct btrfs_chunk));
  3610. ret = -EINVAL;
  3611. }
  3612. /*
  3613. * The generation is a global counter, we'll trust it more than the others
  3614. * but it's still possible that it's the one that's wrong.
  3615. */
  3616. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3617. printk(KERN_WARNING
  3618. "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
  3619. btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
  3620. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3621. && btrfs_super_cache_generation(sb) != (u64)-1)
  3622. printk(KERN_WARNING
  3623. "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
  3624. btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
  3625. return ret;
  3626. }
  3627. static void btrfs_error_commit_super(struct btrfs_root *root)
  3628. {
  3629. mutex_lock(&root->fs_info->cleaner_mutex);
  3630. btrfs_run_delayed_iputs(root);
  3631. mutex_unlock(&root->fs_info->cleaner_mutex);
  3632. down_write(&root->fs_info->cleanup_work_sem);
  3633. up_write(&root->fs_info->cleanup_work_sem);
  3634. /* cleanup FS via transaction */
  3635. btrfs_cleanup_transaction(root);
  3636. }
  3637. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3638. {
  3639. struct btrfs_ordered_extent *ordered;
  3640. spin_lock(&root->ordered_extent_lock);
  3641. /*
  3642. * This will just short circuit the ordered completion stuff which will
  3643. * make sure the ordered extent gets properly cleaned up.
  3644. */
  3645. list_for_each_entry(ordered, &root->ordered_extents,
  3646. root_extent_list)
  3647. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3648. spin_unlock(&root->ordered_extent_lock);
  3649. }
  3650. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3651. {
  3652. struct btrfs_root *root;
  3653. struct list_head splice;
  3654. INIT_LIST_HEAD(&splice);
  3655. spin_lock(&fs_info->ordered_root_lock);
  3656. list_splice_init(&fs_info->ordered_roots, &splice);
  3657. while (!list_empty(&splice)) {
  3658. root = list_first_entry(&splice, struct btrfs_root,
  3659. ordered_root);
  3660. list_move_tail(&root->ordered_root,
  3661. &fs_info->ordered_roots);
  3662. spin_unlock(&fs_info->ordered_root_lock);
  3663. btrfs_destroy_ordered_extents(root);
  3664. cond_resched();
  3665. spin_lock(&fs_info->ordered_root_lock);
  3666. }
  3667. spin_unlock(&fs_info->ordered_root_lock);
  3668. }
  3669. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3670. struct btrfs_root *root)
  3671. {
  3672. struct rb_node *node;
  3673. struct btrfs_delayed_ref_root *delayed_refs;
  3674. struct btrfs_delayed_ref_node *ref;
  3675. int ret = 0;
  3676. delayed_refs = &trans->delayed_refs;
  3677. spin_lock(&delayed_refs->lock);
  3678. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3679. spin_unlock(&delayed_refs->lock);
  3680. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3681. return ret;
  3682. }
  3683. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3684. struct btrfs_delayed_ref_head *head;
  3685. struct btrfs_delayed_ref_node *tmp;
  3686. bool pin_bytes = false;
  3687. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3688. href_node);
  3689. if (!mutex_trylock(&head->mutex)) {
  3690. atomic_inc(&head->node.refs);
  3691. spin_unlock(&delayed_refs->lock);
  3692. mutex_lock(&head->mutex);
  3693. mutex_unlock(&head->mutex);
  3694. btrfs_put_delayed_ref(&head->node);
  3695. spin_lock(&delayed_refs->lock);
  3696. continue;
  3697. }
  3698. spin_lock(&head->lock);
  3699. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3700. list) {
  3701. ref->in_tree = 0;
  3702. list_del(&ref->list);
  3703. atomic_dec(&delayed_refs->num_entries);
  3704. btrfs_put_delayed_ref(ref);
  3705. }
  3706. if (head->must_insert_reserved)
  3707. pin_bytes = true;
  3708. btrfs_free_delayed_extent_op(head->extent_op);
  3709. delayed_refs->num_heads--;
  3710. if (head->processing == 0)
  3711. delayed_refs->num_heads_ready--;
  3712. atomic_dec(&delayed_refs->num_entries);
  3713. head->node.in_tree = 0;
  3714. rb_erase(&head->href_node, &delayed_refs->href_root);
  3715. spin_unlock(&head->lock);
  3716. spin_unlock(&delayed_refs->lock);
  3717. mutex_unlock(&head->mutex);
  3718. if (pin_bytes)
  3719. btrfs_pin_extent(root, head->node.bytenr,
  3720. head->node.num_bytes, 1);
  3721. btrfs_put_delayed_ref(&head->node);
  3722. cond_resched();
  3723. spin_lock(&delayed_refs->lock);
  3724. }
  3725. spin_unlock(&delayed_refs->lock);
  3726. return ret;
  3727. }
  3728. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3729. {
  3730. struct btrfs_inode *btrfs_inode;
  3731. struct list_head splice;
  3732. INIT_LIST_HEAD(&splice);
  3733. spin_lock(&root->delalloc_lock);
  3734. list_splice_init(&root->delalloc_inodes, &splice);
  3735. while (!list_empty(&splice)) {
  3736. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3737. delalloc_inodes);
  3738. list_del_init(&btrfs_inode->delalloc_inodes);
  3739. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3740. &btrfs_inode->runtime_flags);
  3741. spin_unlock(&root->delalloc_lock);
  3742. btrfs_invalidate_inodes(btrfs_inode->root);
  3743. spin_lock(&root->delalloc_lock);
  3744. }
  3745. spin_unlock(&root->delalloc_lock);
  3746. }
  3747. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3748. {
  3749. struct btrfs_root *root;
  3750. struct list_head splice;
  3751. INIT_LIST_HEAD(&splice);
  3752. spin_lock(&fs_info->delalloc_root_lock);
  3753. list_splice_init(&fs_info->delalloc_roots, &splice);
  3754. while (!list_empty(&splice)) {
  3755. root = list_first_entry(&splice, struct btrfs_root,
  3756. delalloc_root);
  3757. list_del_init(&root->delalloc_root);
  3758. root = btrfs_grab_fs_root(root);
  3759. BUG_ON(!root);
  3760. spin_unlock(&fs_info->delalloc_root_lock);
  3761. btrfs_destroy_delalloc_inodes(root);
  3762. btrfs_put_fs_root(root);
  3763. spin_lock(&fs_info->delalloc_root_lock);
  3764. }
  3765. spin_unlock(&fs_info->delalloc_root_lock);
  3766. }
  3767. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3768. struct extent_io_tree *dirty_pages,
  3769. int mark)
  3770. {
  3771. int ret;
  3772. struct extent_buffer *eb;
  3773. u64 start = 0;
  3774. u64 end;
  3775. while (1) {
  3776. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3777. mark, NULL);
  3778. if (ret)
  3779. break;
  3780. clear_extent_bits(dirty_pages, start, end, mark);
  3781. while (start <= end) {
  3782. eb = btrfs_find_tree_block(root->fs_info, start);
  3783. start += root->nodesize;
  3784. if (!eb)
  3785. continue;
  3786. wait_on_extent_buffer_writeback(eb);
  3787. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3788. &eb->bflags))
  3789. clear_extent_buffer_dirty(eb);
  3790. free_extent_buffer_stale(eb);
  3791. }
  3792. }
  3793. return ret;
  3794. }
  3795. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3796. struct extent_io_tree *pinned_extents)
  3797. {
  3798. struct extent_io_tree *unpin;
  3799. u64 start;
  3800. u64 end;
  3801. int ret;
  3802. bool loop = true;
  3803. unpin = pinned_extents;
  3804. again:
  3805. while (1) {
  3806. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3807. EXTENT_DIRTY, NULL);
  3808. if (ret)
  3809. break;
  3810. clear_extent_dirty(unpin, start, end);
  3811. btrfs_error_unpin_extent_range(root, start, end);
  3812. cond_resched();
  3813. }
  3814. if (loop) {
  3815. if (unpin == &root->fs_info->freed_extents[0])
  3816. unpin = &root->fs_info->freed_extents[1];
  3817. else
  3818. unpin = &root->fs_info->freed_extents[0];
  3819. loop = false;
  3820. goto again;
  3821. }
  3822. return 0;
  3823. }
  3824. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3825. struct btrfs_root *root)
  3826. {
  3827. btrfs_destroy_delayed_refs(cur_trans, root);
  3828. cur_trans->state = TRANS_STATE_COMMIT_START;
  3829. wake_up(&root->fs_info->transaction_blocked_wait);
  3830. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3831. wake_up(&root->fs_info->transaction_wait);
  3832. btrfs_destroy_delayed_inodes(root);
  3833. btrfs_assert_delayed_root_empty(root);
  3834. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3835. EXTENT_DIRTY);
  3836. btrfs_destroy_pinned_extent(root,
  3837. root->fs_info->pinned_extents);
  3838. cur_trans->state =TRANS_STATE_COMPLETED;
  3839. wake_up(&cur_trans->commit_wait);
  3840. /*
  3841. memset(cur_trans, 0, sizeof(*cur_trans));
  3842. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3843. */
  3844. }
  3845. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3846. {
  3847. struct btrfs_transaction *t;
  3848. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3849. spin_lock(&root->fs_info->trans_lock);
  3850. while (!list_empty(&root->fs_info->trans_list)) {
  3851. t = list_first_entry(&root->fs_info->trans_list,
  3852. struct btrfs_transaction, list);
  3853. if (t->state >= TRANS_STATE_COMMIT_START) {
  3854. atomic_inc(&t->use_count);
  3855. spin_unlock(&root->fs_info->trans_lock);
  3856. btrfs_wait_for_commit(root, t->transid);
  3857. btrfs_put_transaction(t);
  3858. spin_lock(&root->fs_info->trans_lock);
  3859. continue;
  3860. }
  3861. if (t == root->fs_info->running_transaction) {
  3862. t->state = TRANS_STATE_COMMIT_DOING;
  3863. spin_unlock(&root->fs_info->trans_lock);
  3864. /*
  3865. * We wait for 0 num_writers since we don't hold a trans
  3866. * handle open currently for this transaction.
  3867. */
  3868. wait_event(t->writer_wait,
  3869. atomic_read(&t->num_writers) == 0);
  3870. } else {
  3871. spin_unlock(&root->fs_info->trans_lock);
  3872. }
  3873. btrfs_cleanup_one_transaction(t, root);
  3874. spin_lock(&root->fs_info->trans_lock);
  3875. if (t == root->fs_info->running_transaction)
  3876. root->fs_info->running_transaction = NULL;
  3877. list_del_init(&t->list);
  3878. spin_unlock(&root->fs_info->trans_lock);
  3879. btrfs_put_transaction(t);
  3880. trace_btrfs_transaction_commit(root);
  3881. spin_lock(&root->fs_info->trans_lock);
  3882. }
  3883. spin_unlock(&root->fs_info->trans_lock);
  3884. btrfs_destroy_all_ordered_extents(root->fs_info);
  3885. btrfs_destroy_delayed_inodes(root);
  3886. btrfs_assert_delayed_root_empty(root);
  3887. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3888. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3889. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3890. return 0;
  3891. }
  3892. static const struct extent_io_ops btree_extent_io_ops = {
  3893. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3894. .readpage_io_failed_hook = btree_io_failed_hook,
  3895. .submit_bio_hook = btree_submit_bio_hook,
  3896. /* note we're sharing with inode.c for the merge bio hook */
  3897. .merge_bio_hook = btrfs_merge_bio_hook,
  3898. };