intel_ringbuffer.c 77 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct intel_engine_cs *ring,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. u32 cmd;
  87. int ret;
  88. cmd = MI_FLUSH;
  89. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  90. cmd |= MI_NO_WRITE_FLUSH;
  91. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  92. cmd |= MI_READ_FLUSH;
  93. ret = intel_ring_begin(ring, 2);
  94. if (ret)
  95. return ret;
  96. intel_ring_emit(ring, cmd);
  97. intel_ring_emit(ring, MI_NOOP);
  98. intel_ring_advance(ring);
  99. return 0;
  100. }
  101. static int
  102. gen4_render_ring_flush(struct intel_engine_cs *ring,
  103. u32 invalidate_domains,
  104. u32 flush_domains)
  105. {
  106. struct drm_device *dev = ring->dev;
  107. u32 cmd;
  108. int ret;
  109. /*
  110. * read/write caches:
  111. *
  112. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  113. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  114. * also flushed at 2d versus 3d pipeline switches.
  115. *
  116. * read-only caches:
  117. *
  118. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  119. * MI_READ_FLUSH is set, and is always flushed on 965.
  120. *
  121. * I915_GEM_DOMAIN_COMMAND may not exist?
  122. *
  123. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  124. * invalidated when MI_EXE_FLUSH is set.
  125. *
  126. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  127. * invalidated with every MI_FLUSH.
  128. *
  129. * TLBs:
  130. *
  131. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  132. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  133. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  134. * are flushed at any MI_FLUSH.
  135. */
  136. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  137. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  138. cmd &= ~MI_NO_WRITE_FLUSH;
  139. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  140. cmd |= MI_EXE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  142. (IS_G4X(dev) || IS_GEN5(dev)))
  143. cmd |= MI_INVALIDATE_ISP;
  144. ret = intel_ring_begin(ring, 2);
  145. if (ret)
  146. return ret;
  147. intel_ring_emit(ring, cmd);
  148. intel_ring_emit(ring, MI_NOOP);
  149. intel_ring_advance(ring);
  150. return 0;
  151. }
  152. /**
  153. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  154. * implementing two workarounds on gen6. From section 1.4.7.1
  155. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  156. *
  157. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  158. * produced by non-pipelined state commands), software needs to first
  159. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  160. * 0.
  161. *
  162. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  163. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  164. *
  165. * And the workaround for these two requires this workaround first:
  166. *
  167. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  168. * BEFORE the pipe-control with a post-sync op and no write-cache
  169. * flushes.
  170. *
  171. * And this last workaround is tricky because of the requirements on
  172. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  173. * volume 2 part 1:
  174. *
  175. * "1 of the following must also be set:
  176. * - Render Target Cache Flush Enable ([12] of DW1)
  177. * - Depth Cache Flush Enable ([0] of DW1)
  178. * - Stall at Pixel Scoreboard ([1] of DW1)
  179. * - Depth Stall ([13] of DW1)
  180. * - Post-Sync Operation ([13] of DW1)
  181. * - Notify Enable ([8] of DW1)"
  182. *
  183. * The cache flushes require the workaround flush that triggered this
  184. * one, so we can't use it. Depth stall would trigger the same.
  185. * Post-sync nonzero is what triggered this second workaround, so we
  186. * can't use that one either. Notify enable is IRQs, which aren't
  187. * really our business. That leaves only stall at scoreboard.
  188. */
  189. static int
  190. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  191. {
  192. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  193. int ret;
  194. ret = intel_ring_begin(ring, 6);
  195. if (ret)
  196. return ret;
  197. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  198. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  199. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  200. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  201. intel_ring_emit(ring, 0); /* low dword */
  202. intel_ring_emit(ring, 0); /* high dword */
  203. intel_ring_emit(ring, MI_NOOP);
  204. intel_ring_advance(ring);
  205. ret = intel_ring_begin(ring, 6);
  206. if (ret)
  207. return ret;
  208. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  209. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  210. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  211. intel_ring_emit(ring, 0);
  212. intel_ring_emit(ring, 0);
  213. intel_ring_emit(ring, MI_NOOP);
  214. intel_ring_advance(ring);
  215. return 0;
  216. }
  217. static int
  218. gen6_render_ring_flush(struct intel_engine_cs *ring,
  219. u32 invalidate_domains, u32 flush_domains)
  220. {
  221. u32 flags = 0;
  222. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  223. int ret;
  224. /* Force SNB workarounds for PIPE_CONTROL flushes */
  225. ret = intel_emit_post_sync_nonzero_flush(ring);
  226. if (ret)
  227. return ret;
  228. /* Just flush everything. Experiments have shown that reducing the
  229. * number of bits based on the write domains has little performance
  230. * impact.
  231. */
  232. if (flush_domains) {
  233. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  234. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  235. /*
  236. * Ensure that any following seqno writes only happen
  237. * when the render cache is indeed flushed.
  238. */
  239. flags |= PIPE_CONTROL_CS_STALL;
  240. }
  241. if (invalidate_domains) {
  242. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  243. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  244. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  245. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  246. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  247. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  248. /*
  249. * TLB invalidate requires a post-sync write.
  250. */
  251. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  252. }
  253. ret = intel_ring_begin(ring, 4);
  254. if (ret)
  255. return ret;
  256. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  257. intel_ring_emit(ring, flags);
  258. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  259. intel_ring_emit(ring, 0);
  260. intel_ring_advance(ring);
  261. return 0;
  262. }
  263. static int
  264. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  265. {
  266. int ret;
  267. ret = intel_ring_begin(ring, 4);
  268. if (ret)
  269. return ret;
  270. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  271. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  272. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  273. intel_ring_emit(ring, 0);
  274. intel_ring_emit(ring, 0);
  275. intel_ring_advance(ring);
  276. return 0;
  277. }
  278. static int
  279. gen7_render_ring_flush(struct intel_engine_cs *ring,
  280. u32 invalidate_domains, u32 flush_domains)
  281. {
  282. u32 flags = 0;
  283. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  284. int ret;
  285. /*
  286. * Ensure that any following seqno writes only happen when the render
  287. * cache is indeed flushed.
  288. *
  289. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  290. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  291. * don't try to be clever and just set it unconditionally.
  292. */
  293. flags |= PIPE_CONTROL_CS_STALL;
  294. /* Just flush everything. Experiments have shown that reducing the
  295. * number of bits based on the write domains has little performance
  296. * impact.
  297. */
  298. if (flush_domains) {
  299. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  300. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  301. }
  302. if (invalidate_domains) {
  303. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  304. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  305. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  306. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  307. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  308. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  309. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  310. /*
  311. * TLB invalidate requires a post-sync write.
  312. */
  313. flags |= PIPE_CONTROL_QW_WRITE;
  314. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  315. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  316. /* Workaround: we must issue a pipe_control with CS-stall bit
  317. * set before a pipe_control command that has the state cache
  318. * invalidate bit set. */
  319. gen7_render_ring_cs_stall_wa(ring);
  320. }
  321. ret = intel_ring_begin(ring, 4);
  322. if (ret)
  323. return ret;
  324. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  325. intel_ring_emit(ring, flags);
  326. intel_ring_emit(ring, scratch_addr);
  327. intel_ring_emit(ring, 0);
  328. intel_ring_advance(ring);
  329. return 0;
  330. }
  331. static int
  332. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  333. u32 flags, u32 scratch_addr)
  334. {
  335. int ret;
  336. ret = intel_ring_begin(ring, 6);
  337. if (ret)
  338. return ret;
  339. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  340. intel_ring_emit(ring, flags);
  341. intel_ring_emit(ring, scratch_addr);
  342. intel_ring_emit(ring, 0);
  343. intel_ring_emit(ring, 0);
  344. intel_ring_emit(ring, 0);
  345. intel_ring_advance(ring);
  346. return 0;
  347. }
  348. static int
  349. gen8_render_ring_flush(struct intel_engine_cs *ring,
  350. u32 invalidate_domains, u32 flush_domains)
  351. {
  352. u32 flags = 0;
  353. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  354. int ret;
  355. flags |= PIPE_CONTROL_CS_STALL;
  356. if (flush_domains) {
  357. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  358. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  359. }
  360. if (invalidate_domains) {
  361. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  362. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  363. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  365. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  366. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  367. flags |= PIPE_CONTROL_QW_WRITE;
  368. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  369. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  370. ret = gen8_emit_pipe_control(ring,
  371. PIPE_CONTROL_CS_STALL |
  372. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  373. 0);
  374. if (ret)
  375. return ret;
  376. }
  377. return gen8_emit_pipe_control(ring, flags, scratch_addr);
  378. }
  379. static void ring_write_tail(struct intel_engine_cs *ring,
  380. u32 value)
  381. {
  382. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  383. I915_WRITE_TAIL(ring, value);
  384. }
  385. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  386. {
  387. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  388. u64 acthd;
  389. if (INTEL_INFO(ring->dev)->gen >= 8)
  390. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  391. RING_ACTHD_UDW(ring->mmio_base));
  392. else if (INTEL_INFO(ring->dev)->gen >= 4)
  393. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  394. else
  395. acthd = I915_READ(ACTHD);
  396. return acthd;
  397. }
  398. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  399. {
  400. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  401. u32 addr;
  402. addr = dev_priv->status_page_dmah->busaddr;
  403. if (INTEL_INFO(ring->dev)->gen >= 4)
  404. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  405. I915_WRITE(HWS_PGA, addr);
  406. }
  407. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  408. {
  409. struct drm_device *dev = ring->dev;
  410. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  411. u32 mmio = 0;
  412. /* The ring status page addresses are no longer next to the rest of
  413. * the ring registers as of gen7.
  414. */
  415. if (IS_GEN7(dev)) {
  416. switch (ring->id) {
  417. case RCS:
  418. mmio = RENDER_HWS_PGA_GEN7;
  419. break;
  420. case BCS:
  421. mmio = BLT_HWS_PGA_GEN7;
  422. break;
  423. /*
  424. * VCS2 actually doesn't exist on Gen7. Only shut up
  425. * gcc switch check warning
  426. */
  427. case VCS2:
  428. case VCS:
  429. mmio = BSD_HWS_PGA_GEN7;
  430. break;
  431. case VECS:
  432. mmio = VEBOX_HWS_PGA_GEN7;
  433. break;
  434. }
  435. } else if (IS_GEN6(ring->dev)) {
  436. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  437. } else {
  438. /* XXX: gen8 returns to sanity */
  439. mmio = RING_HWS_PGA(ring->mmio_base);
  440. }
  441. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  442. POSTING_READ(mmio);
  443. /*
  444. * Flush the TLB for this page
  445. *
  446. * FIXME: These two bits have disappeared on gen8, so a question
  447. * arises: do we still need this and if so how should we go about
  448. * invalidating the TLB?
  449. */
  450. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  451. u32 reg = RING_INSTPM(ring->mmio_base);
  452. /* ring should be idle before issuing a sync flush*/
  453. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  454. I915_WRITE(reg,
  455. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  456. INSTPM_SYNC_FLUSH));
  457. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  458. 1000))
  459. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  460. ring->name);
  461. }
  462. }
  463. static bool stop_ring(struct intel_engine_cs *ring)
  464. {
  465. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  466. if (!IS_GEN2(ring->dev)) {
  467. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  468. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  469. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  470. /* Sometimes we observe that the idle flag is not
  471. * set even though the ring is empty. So double
  472. * check before giving up.
  473. */
  474. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  475. return false;
  476. }
  477. }
  478. I915_WRITE_CTL(ring, 0);
  479. I915_WRITE_HEAD(ring, 0);
  480. ring->write_tail(ring, 0);
  481. if (!IS_GEN2(ring->dev)) {
  482. (void)I915_READ_CTL(ring);
  483. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  484. }
  485. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  486. }
  487. static int init_ring_common(struct intel_engine_cs *ring)
  488. {
  489. struct drm_device *dev = ring->dev;
  490. struct drm_i915_private *dev_priv = dev->dev_private;
  491. struct intel_ringbuffer *ringbuf = ring->buffer;
  492. struct drm_i915_gem_object *obj = ringbuf->obj;
  493. int ret = 0;
  494. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  495. if (!stop_ring(ring)) {
  496. /* G45 ring initialization often fails to reset head to zero */
  497. DRM_DEBUG_KMS("%s head not reset to zero "
  498. "ctl %08x head %08x tail %08x start %08x\n",
  499. ring->name,
  500. I915_READ_CTL(ring),
  501. I915_READ_HEAD(ring),
  502. I915_READ_TAIL(ring),
  503. I915_READ_START(ring));
  504. if (!stop_ring(ring)) {
  505. DRM_ERROR("failed to set %s head to zero "
  506. "ctl %08x head %08x tail %08x start %08x\n",
  507. ring->name,
  508. I915_READ_CTL(ring),
  509. I915_READ_HEAD(ring),
  510. I915_READ_TAIL(ring),
  511. I915_READ_START(ring));
  512. ret = -EIO;
  513. goto out;
  514. }
  515. }
  516. if (I915_NEED_GFX_HWS(dev))
  517. intel_ring_setup_status_page(ring);
  518. else
  519. ring_setup_phys_status_page(ring);
  520. /* Enforce ordering by reading HEAD register back */
  521. I915_READ_HEAD(ring);
  522. /* Initialize the ring. This must happen _after_ we've cleared the ring
  523. * registers with the above sequence (the readback of the HEAD registers
  524. * also enforces ordering), otherwise the hw might lose the new ring
  525. * register values. */
  526. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  527. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  528. if (I915_READ_HEAD(ring))
  529. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  530. ring->name, I915_READ_HEAD(ring));
  531. I915_WRITE_HEAD(ring, 0);
  532. (void)I915_READ_HEAD(ring);
  533. I915_WRITE_CTL(ring,
  534. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  535. | RING_VALID);
  536. /* If the head is still not zero, the ring is dead */
  537. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  538. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  539. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  540. DRM_ERROR("%s initialization failed "
  541. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  542. ring->name,
  543. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  544. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  545. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  546. ret = -EIO;
  547. goto out;
  548. }
  549. ringbuf->last_retired_head = -1;
  550. ringbuf->head = I915_READ_HEAD(ring);
  551. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  552. intel_ring_update_space(ringbuf);
  553. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  554. out:
  555. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  556. return ret;
  557. }
  558. void
  559. intel_fini_pipe_control(struct intel_engine_cs *ring)
  560. {
  561. struct drm_device *dev = ring->dev;
  562. if (ring->scratch.obj == NULL)
  563. return;
  564. if (INTEL_INFO(dev)->gen >= 5) {
  565. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  566. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  567. }
  568. drm_gem_object_unreference(&ring->scratch.obj->base);
  569. ring->scratch.obj = NULL;
  570. }
  571. int
  572. intel_init_pipe_control(struct intel_engine_cs *ring)
  573. {
  574. int ret;
  575. WARN_ON(ring->scratch.obj);
  576. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  577. if (ring->scratch.obj == NULL) {
  578. DRM_ERROR("Failed to allocate seqno page\n");
  579. ret = -ENOMEM;
  580. goto err;
  581. }
  582. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  583. if (ret)
  584. goto err_unref;
  585. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  586. if (ret)
  587. goto err_unref;
  588. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  589. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  590. if (ring->scratch.cpu_page == NULL) {
  591. ret = -ENOMEM;
  592. goto err_unpin;
  593. }
  594. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  595. ring->name, ring->scratch.gtt_offset);
  596. return 0;
  597. err_unpin:
  598. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  599. err_unref:
  600. drm_gem_object_unreference(&ring->scratch.obj->base);
  601. err:
  602. return ret;
  603. }
  604. static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
  605. struct intel_context *ctx)
  606. {
  607. int ret, i;
  608. struct drm_device *dev = ring->dev;
  609. struct drm_i915_private *dev_priv = dev->dev_private;
  610. struct i915_workarounds *w = &dev_priv->workarounds;
  611. if (WARN_ON_ONCE(w->count == 0))
  612. return 0;
  613. ring->gpu_caches_dirty = true;
  614. ret = intel_ring_flush_all_caches(ring);
  615. if (ret)
  616. return ret;
  617. ret = intel_ring_begin(ring, (w->count * 2 + 2));
  618. if (ret)
  619. return ret;
  620. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  621. for (i = 0; i < w->count; i++) {
  622. intel_ring_emit(ring, w->reg[i].addr);
  623. intel_ring_emit(ring, w->reg[i].value);
  624. }
  625. intel_ring_emit(ring, MI_NOOP);
  626. intel_ring_advance(ring);
  627. ring->gpu_caches_dirty = true;
  628. ret = intel_ring_flush_all_caches(ring);
  629. if (ret)
  630. return ret;
  631. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  632. return 0;
  633. }
  634. static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
  635. struct intel_context *ctx)
  636. {
  637. int ret;
  638. ret = intel_ring_workarounds_emit(ring, ctx);
  639. if (ret != 0)
  640. return ret;
  641. ret = i915_gem_render_state_init(ring);
  642. if (ret)
  643. DRM_ERROR("init render state: %d\n", ret);
  644. return ret;
  645. }
  646. static int wa_add(struct drm_i915_private *dev_priv,
  647. const u32 addr, const u32 mask, const u32 val)
  648. {
  649. const u32 idx = dev_priv->workarounds.count;
  650. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  651. return -ENOSPC;
  652. dev_priv->workarounds.reg[idx].addr = addr;
  653. dev_priv->workarounds.reg[idx].value = val;
  654. dev_priv->workarounds.reg[idx].mask = mask;
  655. dev_priv->workarounds.count++;
  656. return 0;
  657. }
  658. #define WA_REG(addr, mask, val) { \
  659. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  660. if (r) \
  661. return r; \
  662. }
  663. #define WA_SET_BIT_MASKED(addr, mask) \
  664. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  665. #define WA_CLR_BIT_MASKED(addr, mask) \
  666. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  667. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  668. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  669. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  670. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  671. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  672. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  673. {
  674. struct drm_device *dev = ring->dev;
  675. struct drm_i915_private *dev_priv = dev->dev_private;
  676. /* WaDisablePartialInstShootdown:bdw */
  677. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  678. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  679. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  680. STALL_DOP_GATING_DISABLE);
  681. /* WaDisableDopClockGating:bdw */
  682. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  683. DOP_CLOCK_GATING_DISABLE);
  684. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  685. GEN8_SAMPLER_POWER_BYPASS_DIS);
  686. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  687. * workaround for for a possible hang in the unlikely event a TLB
  688. * invalidation occurs during a PSD flush.
  689. */
  690. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  691. /* WaForceEnableNonCoherent:bdw */
  692. HDC_FORCE_NON_COHERENT |
  693. /* WaForceContextSaveRestoreNonCoherent:bdw */
  694. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  695. /* WaHdcDisableFetchWhenMasked:bdw */
  696. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  697. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  698. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  699. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  700. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  701. * polygons in the same 8x4 pixel/sample area to be processed without
  702. * stalling waiting for the earlier ones to write to Hierarchical Z
  703. * buffer."
  704. *
  705. * This optimization is off by default for Broadwell; turn it on.
  706. */
  707. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  708. /* Wa4x4STCOptimizationDisable:bdw */
  709. WA_SET_BIT_MASKED(CACHE_MODE_1,
  710. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  711. /*
  712. * BSpec recommends 8x4 when MSAA is used,
  713. * however in practice 16x4 seems fastest.
  714. *
  715. * Note that PS/WM thread counts depend on the WIZ hashing
  716. * disable bit, which we don't touch here, but it's good
  717. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  718. */
  719. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  720. GEN6_WIZ_HASHING_MASK,
  721. GEN6_WIZ_HASHING_16x4);
  722. /* WaProgramL3SqcReg1Default:bdw */
  723. WA_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
  724. return 0;
  725. }
  726. static int chv_init_workarounds(struct intel_engine_cs *ring)
  727. {
  728. struct drm_device *dev = ring->dev;
  729. struct drm_i915_private *dev_priv = dev->dev_private;
  730. /* WaDisablePartialInstShootdown:chv */
  731. /* WaDisableThreadStallDopClockGating:chv */
  732. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  733. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  734. STALL_DOP_GATING_DISABLE);
  735. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  736. * workaround for a possible hang in the unlikely event a TLB
  737. * invalidation occurs during a PSD flush.
  738. */
  739. /* WaForceEnableNonCoherent:chv */
  740. /* WaHdcDisableFetchWhenMasked:chv */
  741. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  742. HDC_FORCE_NON_COHERENT |
  743. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  744. /* According to the CACHE_MODE_0 default value documentation, some
  745. * CHV platforms disable this optimization by default. Turn it on.
  746. */
  747. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  748. /* Wa4x4STCOptimizationDisable:chv */
  749. WA_SET_BIT_MASKED(CACHE_MODE_1,
  750. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  751. /* Improve HiZ throughput on CHV. */
  752. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  753. /*
  754. * BSpec recommends 8x4 when MSAA is used,
  755. * however in practice 16x4 seems fastest.
  756. *
  757. * Note that PS/WM thread counts depend on the WIZ hashing
  758. * disable bit, which we don't touch here, but it's good
  759. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  760. */
  761. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  762. GEN6_WIZ_HASHING_MASK,
  763. GEN6_WIZ_HASHING_16x4);
  764. if (INTEL_REVID(dev) == SKL_REVID_C0 ||
  765. INTEL_REVID(dev) == SKL_REVID_D0)
  766. /* WaBarrierPerformanceFixDisable:skl */
  767. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  768. HDC_FENCE_DEST_SLM_DISABLE |
  769. HDC_BARRIER_PERFORMANCE_DISABLE);
  770. return 0;
  771. }
  772. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  773. {
  774. struct drm_device *dev = ring->dev;
  775. struct drm_i915_private *dev_priv = dev->dev_private;
  776. /* WaDisablePartialInstShootdown:skl,bxt */
  777. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  778. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  779. /* Syncing dependencies between camera and graphics:skl,bxt */
  780. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  781. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  782. if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
  783. INTEL_REVID(dev) == SKL_REVID_B0)) ||
  784. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  785. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  786. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  787. GEN9_DG_MIRROR_FIX_ENABLE);
  788. }
  789. if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) {
  790. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl */
  791. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  792. GEN9_RHWO_OPTIMIZATION_DISABLE);
  793. WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
  794. DISABLE_PIXEL_MASK_CAMMING);
  795. }
  796. if (INTEL_REVID(dev) >= SKL_REVID_C0) {
  797. /* WaEnableYV12BugFixInHalfSliceChicken7:skl */
  798. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  799. GEN9_ENABLE_YV12_BUGFIX);
  800. }
  801. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  802. /*
  803. *Use Force Non-Coherent whenever executing a 3D context. This
  804. * is a workaround for a possible hang in the unlikely event
  805. * a TLB invalidation occurs during a PSD flush.
  806. */
  807. /* WaForceEnableNonCoherent:skl */
  808. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  809. HDC_FORCE_NON_COHERENT);
  810. }
  811. /* Wa4x4STCOptimizationDisable:skl */
  812. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  813. /* WaDisablePartialResolveInVc:skl */
  814. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
  815. /* WaCcsTlbPrefetchDisable:skl */
  816. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  817. GEN9_CCS_TLB_PREFETCH_ENABLE);
  818. /*
  819. * FIXME: don't apply the following on BXT for stepping C. On BXT A0
  820. * the flag reads back as 0.
  821. */
  822. /* WaDisableMaskBasedCammingInRCC:sklC,bxtA */
  823. if (INTEL_REVID(dev) == SKL_REVID_C0 || IS_BROXTON(dev))
  824. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  825. PIXEL_MASK_CAMMING_DISABLE);
  826. return 0;
  827. }
  828. static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
  829. {
  830. struct drm_device *dev = ring->dev;
  831. struct drm_i915_private *dev_priv = dev->dev_private;
  832. u8 vals[3] = { 0, 0, 0 };
  833. unsigned int i;
  834. for (i = 0; i < 3; i++) {
  835. u8 ss;
  836. /*
  837. * Only consider slices where one, and only one, subslice has 7
  838. * EUs
  839. */
  840. if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
  841. continue;
  842. /*
  843. * subslice_7eu[i] != 0 (because of the check above) and
  844. * ss_max == 4 (maximum number of subslices possible per slice)
  845. *
  846. * -> 0 <= ss <= 3;
  847. */
  848. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  849. vals[i] = 3 - ss;
  850. }
  851. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  852. return 0;
  853. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  854. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  855. GEN9_IZ_HASHING_MASK(2) |
  856. GEN9_IZ_HASHING_MASK(1) |
  857. GEN9_IZ_HASHING_MASK(0),
  858. GEN9_IZ_HASHING(2, vals[2]) |
  859. GEN9_IZ_HASHING(1, vals[1]) |
  860. GEN9_IZ_HASHING(0, vals[0]));
  861. return 0;
  862. }
  863. static int skl_init_workarounds(struct intel_engine_cs *ring)
  864. {
  865. struct drm_device *dev = ring->dev;
  866. struct drm_i915_private *dev_priv = dev->dev_private;
  867. gen9_init_workarounds(ring);
  868. /* WaDisablePowerCompilerClockGating:skl */
  869. if (INTEL_REVID(dev) == SKL_REVID_B0)
  870. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  871. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  872. return skl_tune_iz_hashing(ring);
  873. }
  874. static int bxt_init_workarounds(struct intel_engine_cs *ring)
  875. {
  876. struct drm_device *dev = ring->dev;
  877. struct drm_i915_private *dev_priv = dev->dev_private;
  878. gen9_init_workarounds(ring);
  879. /* WaDisableThreadStallDopClockGating:bxt */
  880. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  881. STALL_DOP_GATING_DISABLE);
  882. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  883. if (INTEL_REVID(dev) <= BXT_REVID_B0) {
  884. WA_SET_BIT_MASKED(
  885. GEN7_HALF_SLICE_CHICKEN1,
  886. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  887. }
  888. /* WaForceContextSaveRestoreNonCoherent:bxt */
  889. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  890. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT);
  891. return 0;
  892. }
  893. int init_workarounds_ring(struct intel_engine_cs *ring)
  894. {
  895. struct drm_device *dev = ring->dev;
  896. struct drm_i915_private *dev_priv = dev->dev_private;
  897. WARN_ON(ring->id != RCS);
  898. dev_priv->workarounds.count = 0;
  899. if (IS_BROADWELL(dev))
  900. return bdw_init_workarounds(ring);
  901. if (IS_CHERRYVIEW(dev))
  902. return chv_init_workarounds(ring);
  903. if (IS_SKYLAKE(dev))
  904. return skl_init_workarounds(ring);
  905. if (IS_BROXTON(dev))
  906. return bxt_init_workarounds(ring);
  907. return 0;
  908. }
  909. static int init_render_ring(struct intel_engine_cs *ring)
  910. {
  911. struct drm_device *dev = ring->dev;
  912. struct drm_i915_private *dev_priv = dev->dev_private;
  913. int ret = init_ring_common(ring);
  914. if (ret)
  915. return ret;
  916. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  917. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  918. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  919. /* We need to disable the AsyncFlip performance optimisations in order
  920. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  921. * programmed to '1' on all products.
  922. *
  923. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  924. */
  925. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
  926. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  927. /* Required for the hardware to program scanline values for waiting */
  928. /* WaEnableFlushTlbInvalidationMode:snb */
  929. if (INTEL_INFO(dev)->gen == 6)
  930. I915_WRITE(GFX_MODE,
  931. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  932. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  933. if (IS_GEN7(dev))
  934. I915_WRITE(GFX_MODE_GEN7,
  935. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  936. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  937. if (IS_GEN6(dev)) {
  938. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  939. * "If this bit is set, STCunit will have LRA as replacement
  940. * policy. [...] This bit must be reset. LRA replacement
  941. * policy is not supported."
  942. */
  943. I915_WRITE(CACHE_MODE_0,
  944. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  945. }
  946. if (INTEL_INFO(dev)->gen >= 6)
  947. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  948. if (HAS_L3_DPF(dev))
  949. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  950. return init_workarounds_ring(ring);
  951. }
  952. static void render_ring_cleanup(struct intel_engine_cs *ring)
  953. {
  954. struct drm_device *dev = ring->dev;
  955. struct drm_i915_private *dev_priv = dev->dev_private;
  956. if (dev_priv->semaphore_obj) {
  957. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  958. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  959. dev_priv->semaphore_obj = NULL;
  960. }
  961. intel_fini_pipe_control(ring);
  962. }
  963. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  964. unsigned int num_dwords)
  965. {
  966. #define MBOX_UPDATE_DWORDS 8
  967. struct drm_device *dev = signaller->dev;
  968. struct drm_i915_private *dev_priv = dev->dev_private;
  969. struct intel_engine_cs *waiter;
  970. int i, ret, num_rings;
  971. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  972. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  973. #undef MBOX_UPDATE_DWORDS
  974. ret = intel_ring_begin(signaller, num_dwords);
  975. if (ret)
  976. return ret;
  977. for_each_ring(waiter, dev_priv, i) {
  978. u32 seqno;
  979. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  980. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  981. continue;
  982. seqno = i915_gem_request_get_seqno(
  983. signaller->outstanding_lazy_request);
  984. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  985. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  986. PIPE_CONTROL_QW_WRITE |
  987. PIPE_CONTROL_FLUSH_ENABLE);
  988. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  989. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  990. intel_ring_emit(signaller, seqno);
  991. intel_ring_emit(signaller, 0);
  992. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  993. MI_SEMAPHORE_TARGET(waiter->id));
  994. intel_ring_emit(signaller, 0);
  995. }
  996. return 0;
  997. }
  998. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  999. unsigned int num_dwords)
  1000. {
  1001. #define MBOX_UPDATE_DWORDS 6
  1002. struct drm_device *dev = signaller->dev;
  1003. struct drm_i915_private *dev_priv = dev->dev_private;
  1004. struct intel_engine_cs *waiter;
  1005. int i, ret, num_rings;
  1006. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1007. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1008. #undef MBOX_UPDATE_DWORDS
  1009. ret = intel_ring_begin(signaller, num_dwords);
  1010. if (ret)
  1011. return ret;
  1012. for_each_ring(waiter, dev_priv, i) {
  1013. u32 seqno;
  1014. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1015. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1016. continue;
  1017. seqno = i915_gem_request_get_seqno(
  1018. signaller->outstanding_lazy_request);
  1019. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1020. MI_FLUSH_DW_OP_STOREDW);
  1021. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1022. MI_FLUSH_DW_USE_GTT);
  1023. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1024. intel_ring_emit(signaller, seqno);
  1025. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1026. MI_SEMAPHORE_TARGET(waiter->id));
  1027. intel_ring_emit(signaller, 0);
  1028. }
  1029. return 0;
  1030. }
  1031. static int gen6_signal(struct intel_engine_cs *signaller,
  1032. unsigned int num_dwords)
  1033. {
  1034. struct drm_device *dev = signaller->dev;
  1035. struct drm_i915_private *dev_priv = dev->dev_private;
  1036. struct intel_engine_cs *useless;
  1037. int i, ret, num_rings;
  1038. #define MBOX_UPDATE_DWORDS 3
  1039. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1040. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1041. #undef MBOX_UPDATE_DWORDS
  1042. ret = intel_ring_begin(signaller, num_dwords);
  1043. if (ret)
  1044. return ret;
  1045. for_each_ring(useless, dev_priv, i) {
  1046. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  1047. if (mbox_reg != GEN6_NOSYNC) {
  1048. u32 seqno = i915_gem_request_get_seqno(
  1049. signaller->outstanding_lazy_request);
  1050. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1051. intel_ring_emit(signaller, mbox_reg);
  1052. intel_ring_emit(signaller, seqno);
  1053. }
  1054. }
  1055. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1056. if (num_rings % 2 == 0)
  1057. intel_ring_emit(signaller, MI_NOOP);
  1058. return 0;
  1059. }
  1060. /**
  1061. * gen6_add_request - Update the semaphore mailbox registers
  1062. *
  1063. * @ring - ring that is adding a request
  1064. * @seqno - return seqno stuck into the ring
  1065. *
  1066. * Update the mailbox registers in the *other* rings with the current seqno.
  1067. * This acts like a signal in the canonical semaphore.
  1068. */
  1069. static int
  1070. gen6_add_request(struct intel_engine_cs *ring)
  1071. {
  1072. int ret;
  1073. if (ring->semaphore.signal)
  1074. ret = ring->semaphore.signal(ring, 4);
  1075. else
  1076. ret = intel_ring_begin(ring, 4);
  1077. if (ret)
  1078. return ret;
  1079. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1080. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1081. intel_ring_emit(ring,
  1082. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1083. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1084. __intel_ring_advance(ring);
  1085. return 0;
  1086. }
  1087. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1088. u32 seqno)
  1089. {
  1090. struct drm_i915_private *dev_priv = dev->dev_private;
  1091. return dev_priv->last_seqno < seqno;
  1092. }
  1093. /**
  1094. * intel_ring_sync - sync the waiter to the signaller on seqno
  1095. *
  1096. * @waiter - ring that is waiting
  1097. * @signaller - ring which has, or will signal
  1098. * @seqno - seqno which the waiter will block on
  1099. */
  1100. static int
  1101. gen8_ring_sync(struct intel_engine_cs *waiter,
  1102. struct intel_engine_cs *signaller,
  1103. u32 seqno)
  1104. {
  1105. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1106. int ret;
  1107. ret = intel_ring_begin(waiter, 4);
  1108. if (ret)
  1109. return ret;
  1110. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1111. MI_SEMAPHORE_GLOBAL_GTT |
  1112. MI_SEMAPHORE_POLL |
  1113. MI_SEMAPHORE_SAD_GTE_SDD);
  1114. intel_ring_emit(waiter, seqno);
  1115. intel_ring_emit(waiter,
  1116. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1117. intel_ring_emit(waiter,
  1118. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1119. intel_ring_advance(waiter);
  1120. return 0;
  1121. }
  1122. static int
  1123. gen6_ring_sync(struct intel_engine_cs *waiter,
  1124. struct intel_engine_cs *signaller,
  1125. u32 seqno)
  1126. {
  1127. u32 dw1 = MI_SEMAPHORE_MBOX |
  1128. MI_SEMAPHORE_COMPARE |
  1129. MI_SEMAPHORE_REGISTER;
  1130. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1131. int ret;
  1132. /* Throughout all of the GEM code, seqno passed implies our current
  1133. * seqno is >= the last seqno executed. However for hardware the
  1134. * comparison is strictly greater than.
  1135. */
  1136. seqno -= 1;
  1137. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1138. ret = intel_ring_begin(waiter, 4);
  1139. if (ret)
  1140. return ret;
  1141. /* If seqno wrap happened, omit the wait with no-ops */
  1142. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1143. intel_ring_emit(waiter, dw1 | wait_mbox);
  1144. intel_ring_emit(waiter, seqno);
  1145. intel_ring_emit(waiter, 0);
  1146. intel_ring_emit(waiter, MI_NOOP);
  1147. } else {
  1148. intel_ring_emit(waiter, MI_NOOP);
  1149. intel_ring_emit(waiter, MI_NOOP);
  1150. intel_ring_emit(waiter, MI_NOOP);
  1151. intel_ring_emit(waiter, MI_NOOP);
  1152. }
  1153. intel_ring_advance(waiter);
  1154. return 0;
  1155. }
  1156. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1157. do { \
  1158. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1159. PIPE_CONTROL_DEPTH_STALL); \
  1160. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1161. intel_ring_emit(ring__, 0); \
  1162. intel_ring_emit(ring__, 0); \
  1163. } while (0)
  1164. static int
  1165. pc_render_add_request(struct intel_engine_cs *ring)
  1166. {
  1167. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1168. int ret;
  1169. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1170. * incoherent with writes to memory, i.e. completely fubar,
  1171. * so we need to use PIPE_NOTIFY instead.
  1172. *
  1173. * However, we also need to workaround the qword write
  1174. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1175. * memory before requesting an interrupt.
  1176. */
  1177. ret = intel_ring_begin(ring, 32);
  1178. if (ret)
  1179. return ret;
  1180. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1181. PIPE_CONTROL_WRITE_FLUSH |
  1182. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1183. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1184. intel_ring_emit(ring,
  1185. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1186. intel_ring_emit(ring, 0);
  1187. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1188. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1189. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1190. scratch_addr += 2 * CACHELINE_BYTES;
  1191. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1192. scratch_addr += 2 * CACHELINE_BYTES;
  1193. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1194. scratch_addr += 2 * CACHELINE_BYTES;
  1195. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1196. scratch_addr += 2 * CACHELINE_BYTES;
  1197. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1198. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1199. PIPE_CONTROL_WRITE_FLUSH |
  1200. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1201. PIPE_CONTROL_NOTIFY);
  1202. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1203. intel_ring_emit(ring,
  1204. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1205. intel_ring_emit(ring, 0);
  1206. __intel_ring_advance(ring);
  1207. return 0;
  1208. }
  1209. static u32
  1210. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1211. {
  1212. /* Workaround to force correct ordering between irq and seqno writes on
  1213. * ivb (and maybe also on snb) by reading from a CS register (like
  1214. * ACTHD) before reading the status page. */
  1215. if (!lazy_coherency) {
  1216. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1217. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1218. }
  1219. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1220. }
  1221. static u32
  1222. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1223. {
  1224. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1225. }
  1226. static void
  1227. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1228. {
  1229. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1230. }
  1231. static u32
  1232. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1233. {
  1234. return ring->scratch.cpu_page[0];
  1235. }
  1236. static void
  1237. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1238. {
  1239. ring->scratch.cpu_page[0] = seqno;
  1240. }
  1241. static bool
  1242. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1243. {
  1244. struct drm_device *dev = ring->dev;
  1245. struct drm_i915_private *dev_priv = dev->dev_private;
  1246. unsigned long flags;
  1247. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1248. return false;
  1249. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1250. if (ring->irq_refcount++ == 0)
  1251. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1252. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1253. return true;
  1254. }
  1255. static void
  1256. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1257. {
  1258. struct drm_device *dev = ring->dev;
  1259. struct drm_i915_private *dev_priv = dev->dev_private;
  1260. unsigned long flags;
  1261. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1262. if (--ring->irq_refcount == 0)
  1263. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1264. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1265. }
  1266. static bool
  1267. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1268. {
  1269. struct drm_device *dev = ring->dev;
  1270. struct drm_i915_private *dev_priv = dev->dev_private;
  1271. unsigned long flags;
  1272. if (!intel_irqs_enabled(dev_priv))
  1273. return false;
  1274. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1275. if (ring->irq_refcount++ == 0) {
  1276. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1277. I915_WRITE(IMR, dev_priv->irq_mask);
  1278. POSTING_READ(IMR);
  1279. }
  1280. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1281. return true;
  1282. }
  1283. static void
  1284. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1285. {
  1286. struct drm_device *dev = ring->dev;
  1287. struct drm_i915_private *dev_priv = dev->dev_private;
  1288. unsigned long flags;
  1289. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1290. if (--ring->irq_refcount == 0) {
  1291. dev_priv->irq_mask |= ring->irq_enable_mask;
  1292. I915_WRITE(IMR, dev_priv->irq_mask);
  1293. POSTING_READ(IMR);
  1294. }
  1295. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1296. }
  1297. static bool
  1298. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1299. {
  1300. struct drm_device *dev = ring->dev;
  1301. struct drm_i915_private *dev_priv = dev->dev_private;
  1302. unsigned long flags;
  1303. if (!intel_irqs_enabled(dev_priv))
  1304. return false;
  1305. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1306. if (ring->irq_refcount++ == 0) {
  1307. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1308. I915_WRITE16(IMR, dev_priv->irq_mask);
  1309. POSTING_READ16(IMR);
  1310. }
  1311. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1312. return true;
  1313. }
  1314. static void
  1315. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1316. {
  1317. struct drm_device *dev = ring->dev;
  1318. struct drm_i915_private *dev_priv = dev->dev_private;
  1319. unsigned long flags;
  1320. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1321. if (--ring->irq_refcount == 0) {
  1322. dev_priv->irq_mask |= ring->irq_enable_mask;
  1323. I915_WRITE16(IMR, dev_priv->irq_mask);
  1324. POSTING_READ16(IMR);
  1325. }
  1326. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1327. }
  1328. static int
  1329. bsd_ring_flush(struct intel_engine_cs *ring,
  1330. u32 invalidate_domains,
  1331. u32 flush_domains)
  1332. {
  1333. int ret;
  1334. ret = intel_ring_begin(ring, 2);
  1335. if (ret)
  1336. return ret;
  1337. intel_ring_emit(ring, MI_FLUSH);
  1338. intel_ring_emit(ring, MI_NOOP);
  1339. intel_ring_advance(ring);
  1340. return 0;
  1341. }
  1342. static int
  1343. i9xx_add_request(struct intel_engine_cs *ring)
  1344. {
  1345. int ret;
  1346. ret = intel_ring_begin(ring, 4);
  1347. if (ret)
  1348. return ret;
  1349. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1350. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1351. intel_ring_emit(ring,
  1352. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1353. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1354. __intel_ring_advance(ring);
  1355. return 0;
  1356. }
  1357. static bool
  1358. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1359. {
  1360. struct drm_device *dev = ring->dev;
  1361. struct drm_i915_private *dev_priv = dev->dev_private;
  1362. unsigned long flags;
  1363. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1364. return false;
  1365. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1366. if (ring->irq_refcount++ == 0) {
  1367. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1368. I915_WRITE_IMR(ring,
  1369. ~(ring->irq_enable_mask |
  1370. GT_PARITY_ERROR(dev)));
  1371. else
  1372. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1373. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1374. }
  1375. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1376. return true;
  1377. }
  1378. static void
  1379. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1380. {
  1381. struct drm_device *dev = ring->dev;
  1382. struct drm_i915_private *dev_priv = dev->dev_private;
  1383. unsigned long flags;
  1384. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1385. if (--ring->irq_refcount == 0) {
  1386. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1387. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1388. else
  1389. I915_WRITE_IMR(ring, ~0);
  1390. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1391. }
  1392. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1393. }
  1394. static bool
  1395. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1396. {
  1397. struct drm_device *dev = ring->dev;
  1398. struct drm_i915_private *dev_priv = dev->dev_private;
  1399. unsigned long flags;
  1400. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1401. return false;
  1402. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1403. if (ring->irq_refcount++ == 0) {
  1404. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1405. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1406. }
  1407. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1408. return true;
  1409. }
  1410. static void
  1411. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1412. {
  1413. struct drm_device *dev = ring->dev;
  1414. struct drm_i915_private *dev_priv = dev->dev_private;
  1415. unsigned long flags;
  1416. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1417. if (--ring->irq_refcount == 0) {
  1418. I915_WRITE_IMR(ring, ~0);
  1419. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1420. }
  1421. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1422. }
  1423. static bool
  1424. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1425. {
  1426. struct drm_device *dev = ring->dev;
  1427. struct drm_i915_private *dev_priv = dev->dev_private;
  1428. unsigned long flags;
  1429. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1430. return false;
  1431. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1432. if (ring->irq_refcount++ == 0) {
  1433. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1434. I915_WRITE_IMR(ring,
  1435. ~(ring->irq_enable_mask |
  1436. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1437. } else {
  1438. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1439. }
  1440. POSTING_READ(RING_IMR(ring->mmio_base));
  1441. }
  1442. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1443. return true;
  1444. }
  1445. static void
  1446. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1447. {
  1448. struct drm_device *dev = ring->dev;
  1449. struct drm_i915_private *dev_priv = dev->dev_private;
  1450. unsigned long flags;
  1451. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1452. if (--ring->irq_refcount == 0) {
  1453. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1454. I915_WRITE_IMR(ring,
  1455. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1456. } else {
  1457. I915_WRITE_IMR(ring, ~0);
  1458. }
  1459. POSTING_READ(RING_IMR(ring->mmio_base));
  1460. }
  1461. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1462. }
  1463. static int
  1464. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1465. u64 offset, u32 length,
  1466. unsigned dispatch_flags)
  1467. {
  1468. int ret;
  1469. ret = intel_ring_begin(ring, 2);
  1470. if (ret)
  1471. return ret;
  1472. intel_ring_emit(ring,
  1473. MI_BATCH_BUFFER_START |
  1474. MI_BATCH_GTT |
  1475. (dispatch_flags & I915_DISPATCH_SECURE ?
  1476. 0 : MI_BATCH_NON_SECURE_I965));
  1477. intel_ring_emit(ring, offset);
  1478. intel_ring_advance(ring);
  1479. return 0;
  1480. }
  1481. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1482. #define I830_BATCH_LIMIT (256*1024)
  1483. #define I830_TLB_ENTRIES (2)
  1484. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1485. static int
  1486. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1487. u64 offset, u32 len,
  1488. unsigned dispatch_flags)
  1489. {
  1490. u32 cs_offset = ring->scratch.gtt_offset;
  1491. int ret;
  1492. ret = intel_ring_begin(ring, 6);
  1493. if (ret)
  1494. return ret;
  1495. /* Evict the invalid PTE TLBs */
  1496. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1497. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1498. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1499. intel_ring_emit(ring, cs_offset);
  1500. intel_ring_emit(ring, 0xdeadbeef);
  1501. intel_ring_emit(ring, MI_NOOP);
  1502. intel_ring_advance(ring);
  1503. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1504. if (len > I830_BATCH_LIMIT)
  1505. return -ENOSPC;
  1506. ret = intel_ring_begin(ring, 6 + 2);
  1507. if (ret)
  1508. return ret;
  1509. /* Blit the batch (which has now all relocs applied) to the
  1510. * stable batch scratch bo area (so that the CS never
  1511. * stumbles over its tlb invalidation bug) ...
  1512. */
  1513. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1514. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1515. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1516. intel_ring_emit(ring, cs_offset);
  1517. intel_ring_emit(ring, 4096);
  1518. intel_ring_emit(ring, offset);
  1519. intel_ring_emit(ring, MI_FLUSH);
  1520. intel_ring_emit(ring, MI_NOOP);
  1521. intel_ring_advance(ring);
  1522. /* ... and execute it. */
  1523. offset = cs_offset;
  1524. }
  1525. ret = intel_ring_begin(ring, 4);
  1526. if (ret)
  1527. return ret;
  1528. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1529. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1530. 0 : MI_BATCH_NON_SECURE));
  1531. intel_ring_emit(ring, offset + len - 8);
  1532. intel_ring_emit(ring, MI_NOOP);
  1533. intel_ring_advance(ring);
  1534. return 0;
  1535. }
  1536. static int
  1537. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1538. u64 offset, u32 len,
  1539. unsigned dispatch_flags)
  1540. {
  1541. int ret;
  1542. ret = intel_ring_begin(ring, 2);
  1543. if (ret)
  1544. return ret;
  1545. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1546. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1547. 0 : MI_BATCH_NON_SECURE));
  1548. intel_ring_advance(ring);
  1549. return 0;
  1550. }
  1551. static void cleanup_status_page(struct intel_engine_cs *ring)
  1552. {
  1553. struct drm_i915_gem_object *obj;
  1554. obj = ring->status_page.obj;
  1555. if (obj == NULL)
  1556. return;
  1557. kunmap(sg_page(obj->pages->sgl));
  1558. i915_gem_object_ggtt_unpin(obj);
  1559. drm_gem_object_unreference(&obj->base);
  1560. ring->status_page.obj = NULL;
  1561. }
  1562. static int init_status_page(struct intel_engine_cs *ring)
  1563. {
  1564. struct drm_i915_gem_object *obj;
  1565. if ((obj = ring->status_page.obj) == NULL) {
  1566. unsigned flags;
  1567. int ret;
  1568. obj = i915_gem_alloc_object(ring->dev, 4096);
  1569. if (obj == NULL) {
  1570. DRM_ERROR("Failed to allocate status page\n");
  1571. return -ENOMEM;
  1572. }
  1573. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1574. if (ret)
  1575. goto err_unref;
  1576. flags = 0;
  1577. if (!HAS_LLC(ring->dev))
  1578. /* On g33, we cannot place HWS above 256MiB, so
  1579. * restrict its pinning to the low mappable arena.
  1580. * Though this restriction is not documented for
  1581. * gen4, gen5, or byt, they also behave similarly
  1582. * and hang if the HWS is placed at the top of the
  1583. * GTT. To generalise, it appears that all !llc
  1584. * platforms have issues with us placing the HWS
  1585. * above the mappable region (even though we never
  1586. * actualy map it).
  1587. */
  1588. flags |= PIN_MAPPABLE;
  1589. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1590. if (ret) {
  1591. err_unref:
  1592. drm_gem_object_unreference(&obj->base);
  1593. return ret;
  1594. }
  1595. ring->status_page.obj = obj;
  1596. }
  1597. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1598. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1599. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1600. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1601. ring->name, ring->status_page.gfx_addr);
  1602. return 0;
  1603. }
  1604. static int init_phys_status_page(struct intel_engine_cs *ring)
  1605. {
  1606. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1607. if (!dev_priv->status_page_dmah) {
  1608. dev_priv->status_page_dmah =
  1609. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1610. if (!dev_priv->status_page_dmah)
  1611. return -ENOMEM;
  1612. }
  1613. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1614. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1615. return 0;
  1616. }
  1617. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1618. {
  1619. iounmap(ringbuf->virtual_start);
  1620. ringbuf->virtual_start = NULL;
  1621. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1622. }
  1623. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1624. struct intel_ringbuffer *ringbuf)
  1625. {
  1626. struct drm_i915_private *dev_priv = to_i915(dev);
  1627. struct drm_i915_gem_object *obj = ringbuf->obj;
  1628. int ret;
  1629. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1630. if (ret)
  1631. return ret;
  1632. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1633. if (ret) {
  1634. i915_gem_object_ggtt_unpin(obj);
  1635. return ret;
  1636. }
  1637. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1638. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1639. if (ringbuf->virtual_start == NULL) {
  1640. i915_gem_object_ggtt_unpin(obj);
  1641. return -EINVAL;
  1642. }
  1643. return 0;
  1644. }
  1645. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1646. {
  1647. drm_gem_object_unreference(&ringbuf->obj->base);
  1648. ringbuf->obj = NULL;
  1649. }
  1650. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1651. struct intel_ringbuffer *ringbuf)
  1652. {
  1653. struct drm_i915_gem_object *obj;
  1654. obj = NULL;
  1655. if (!HAS_LLC(dev))
  1656. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1657. if (obj == NULL)
  1658. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1659. if (obj == NULL)
  1660. return -ENOMEM;
  1661. /* mark ring buffers as read-only from GPU side by default */
  1662. obj->gt_ro = 1;
  1663. ringbuf->obj = obj;
  1664. return 0;
  1665. }
  1666. static int intel_init_ring_buffer(struct drm_device *dev,
  1667. struct intel_engine_cs *ring)
  1668. {
  1669. struct intel_ringbuffer *ringbuf;
  1670. int ret;
  1671. WARN_ON(ring->buffer);
  1672. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1673. if (!ringbuf)
  1674. return -ENOMEM;
  1675. ring->buffer = ringbuf;
  1676. ring->dev = dev;
  1677. INIT_LIST_HEAD(&ring->active_list);
  1678. INIT_LIST_HEAD(&ring->request_list);
  1679. INIT_LIST_HEAD(&ring->execlist_queue);
  1680. i915_gem_batch_pool_init(dev, &ring->batch_pool);
  1681. ringbuf->size = 32 * PAGE_SIZE;
  1682. ringbuf->ring = ring;
  1683. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1684. init_waitqueue_head(&ring->irq_queue);
  1685. if (I915_NEED_GFX_HWS(dev)) {
  1686. ret = init_status_page(ring);
  1687. if (ret)
  1688. goto error;
  1689. } else {
  1690. BUG_ON(ring->id != RCS);
  1691. ret = init_phys_status_page(ring);
  1692. if (ret)
  1693. goto error;
  1694. }
  1695. WARN_ON(ringbuf->obj);
  1696. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1697. if (ret) {
  1698. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1699. ring->name, ret);
  1700. goto error;
  1701. }
  1702. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1703. if (ret) {
  1704. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1705. ring->name, ret);
  1706. intel_destroy_ringbuffer_obj(ringbuf);
  1707. goto error;
  1708. }
  1709. /* Workaround an erratum on the i830 which causes a hang if
  1710. * the TAIL pointer points to within the last 2 cachelines
  1711. * of the buffer.
  1712. */
  1713. ringbuf->effective_size = ringbuf->size;
  1714. if (IS_I830(dev) || IS_845G(dev))
  1715. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1716. ret = i915_cmd_parser_init_ring(ring);
  1717. if (ret)
  1718. goto error;
  1719. return 0;
  1720. error:
  1721. kfree(ringbuf);
  1722. ring->buffer = NULL;
  1723. return ret;
  1724. }
  1725. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1726. {
  1727. struct drm_i915_private *dev_priv;
  1728. struct intel_ringbuffer *ringbuf;
  1729. if (!intel_ring_initialized(ring))
  1730. return;
  1731. dev_priv = to_i915(ring->dev);
  1732. ringbuf = ring->buffer;
  1733. intel_stop_ring_buffer(ring);
  1734. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1735. intel_unpin_ringbuffer_obj(ringbuf);
  1736. intel_destroy_ringbuffer_obj(ringbuf);
  1737. i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
  1738. if (ring->cleanup)
  1739. ring->cleanup(ring);
  1740. cleanup_status_page(ring);
  1741. i915_cmd_parser_fini_ring(ring);
  1742. i915_gem_batch_pool_fini(&ring->batch_pool);
  1743. kfree(ringbuf);
  1744. ring->buffer = NULL;
  1745. }
  1746. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1747. {
  1748. struct intel_ringbuffer *ringbuf = ring->buffer;
  1749. struct drm_i915_gem_request *request;
  1750. int ret, new_space;
  1751. if (intel_ring_space(ringbuf) >= n)
  1752. return 0;
  1753. list_for_each_entry(request, &ring->request_list, list) {
  1754. new_space = __intel_ring_space(request->postfix, ringbuf->tail,
  1755. ringbuf->size);
  1756. if (new_space >= n)
  1757. break;
  1758. }
  1759. if (WARN_ON(&request->list == &ring->request_list))
  1760. return -ENOSPC;
  1761. ret = i915_wait_request(request);
  1762. if (ret)
  1763. return ret;
  1764. i915_gem_retire_requests_ring(ring);
  1765. WARN_ON(intel_ring_space(ringbuf) < new_space);
  1766. return 0;
  1767. }
  1768. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1769. {
  1770. uint32_t __iomem *virt;
  1771. struct intel_ringbuffer *ringbuf = ring->buffer;
  1772. int rem = ringbuf->size - ringbuf->tail;
  1773. if (ringbuf->space < rem) {
  1774. int ret = ring_wait_for_space(ring, rem);
  1775. if (ret)
  1776. return ret;
  1777. }
  1778. virt = ringbuf->virtual_start + ringbuf->tail;
  1779. rem /= 4;
  1780. while (rem--)
  1781. iowrite32(MI_NOOP, virt++);
  1782. ringbuf->tail = 0;
  1783. intel_ring_update_space(ringbuf);
  1784. return 0;
  1785. }
  1786. int intel_ring_idle(struct intel_engine_cs *ring)
  1787. {
  1788. struct drm_i915_gem_request *req;
  1789. int ret;
  1790. /* We need to add any requests required to flush the objects and ring */
  1791. if (ring->outstanding_lazy_request) {
  1792. ret = i915_add_request(ring);
  1793. if (ret)
  1794. return ret;
  1795. }
  1796. /* Wait upon the last request to be completed */
  1797. if (list_empty(&ring->request_list))
  1798. return 0;
  1799. req = list_entry(ring->request_list.prev,
  1800. struct drm_i915_gem_request,
  1801. list);
  1802. return i915_wait_request(req);
  1803. }
  1804. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1805. {
  1806. request->ringbuf = request->ring->buffer;
  1807. return 0;
  1808. }
  1809. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1810. int bytes)
  1811. {
  1812. struct intel_ringbuffer *ringbuf = ring->buffer;
  1813. int ret;
  1814. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1815. ret = intel_wrap_ring_buffer(ring);
  1816. if (unlikely(ret))
  1817. return ret;
  1818. }
  1819. if (unlikely(ringbuf->space < bytes)) {
  1820. ret = ring_wait_for_space(ring, bytes);
  1821. if (unlikely(ret))
  1822. return ret;
  1823. }
  1824. return 0;
  1825. }
  1826. int intel_ring_begin(struct intel_engine_cs *ring,
  1827. int num_dwords)
  1828. {
  1829. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1830. int ret;
  1831. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1832. dev_priv->mm.interruptible);
  1833. if (ret)
  1834. return ret;
  1835. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1836. if (ret)
  1837. return ret;
  1838. /* Preallocate the olr before touching the ring */
  1839. ret = i915_gem_request_alloc(ring, ring->default_context);
  1840. if (ret)
  1841. return ret;
  1842. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1843. return 0;
  1844. }
  1845. /* Align the ring tail to a cacheline boundary */
  1846. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1847. {
  1848. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1849. int ret;
  1850. if (num_dwords == 0)
  1851. return 0;
  1852. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1853. ret = intel_ring_begin(ring, num_dwords);
  1854. if (ret)
  1855. return ret;
  1856. while (num_dwords--)
  1857. intel_ring_emit(ring, MI_NOOP);
  1858. intel_ring_advance(ring);
  1859. return 0;
  1860. }
  1861. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1862. {
  1863. struct drm_device *dev = ring->dev;
  1864. struct drm_i915_private *dev_priv = dev->dev_private;
  1865. BUG_ON(ring->outstanding_lazy_request);
  1866. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1867. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1868. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1869. if (HAS_VEBOX(dev))
  1870. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1871. }
  1872. ring->set_seqno(ring, seqno);
  1873. ring->hangcheck.seqno = seqno;
  1874. }
  1875. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1876. u32 value)
  1877. {
  1878. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1879. /* Every tail move must follow the sequence below */
  1880. /* Disable notification that the ring is IDLE. The GT
  1881. * will then assume that it is busy and bring it out of rc6.
  1882. */
  1883. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1884. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1885. /* Clear the context id. Here be magic! */
  1886. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1887. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1888. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1889. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1890. 50))
  1891. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1892. /* Now that the ring is fully powered up, update the tail */
  1893. I915_WRITE_TAIL(ring, value);
  1894. POSTING_READ(RING_TAIL(ring->mmio_base));
  1895. /* Let the ring send IDLE messages to the GT again,
  1896. * and so let it sleep to conserve power when idle.
  1897. */
  1898. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1899. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1900. }
  1901. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1902. u32 invalidate, u32 flush)
  1903. {
  1904. uint32_t cmd;
  1905. int ret;
  1906. ret = intel_ring_begin(ring, 4);
  1907. if (ret)
  1908. return ret;
  1909. cmd = MI_FLUSH_DW;
  1910. if (INTEL_INFO(ring->dev)->gen >= 8)
  1911. cmd += 1;
  1912. /* We always require a command barrier so that subsequent
  1913. * commands, such as breadcrumb interrupts, are strictly ordered
  1914. * wrt the contents of the write cache being flushed to memory
  1915. * (and thus being coherent from the CPU).
  1916. */
  1917. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1918. /*
  1919. * Bspec vol 1c.5 - video engine command streamer:
  1920. * "If ENABLED, all TLBs will be invalidated once the flush
  1921. * operation is complete. This bit is only valid when the
  1922. * Post-Sync Operation field is a value of 1h or 3h."
  1923. */
  1924. if (invalidate & I915_GEM_GPU_DOMAINS)
  1925. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  1926. intel_ring_emit(ring, cmd);
  1927. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1928. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1929. intel_ring_emit(ring, 0); /* upper addr */
  1930. intel_ring_emit(ring, 0); /* value */
  1931. } else {
  1932. intel_ring_emit(ring, 0);
  1933. intel_ring_emit(ring, MI_NOOP);
  1934. }
  1935. intel_ring_advance(ring);
  1936. return 0;
  1937. }
  1938. static int
  1939. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1940. u64 offset, u32 len,
  1941. unsigned dispatch_flags)
  1942. {
  1943. bool ppgtt = USES_PPGTT(ring->dev) &&
  1944. !(dispatch_flags & I915_DISPATCH_SECURE);
  1945. int ret;
  1946. ret = intel_ring_begin(ring, 4);
  1947. if (ret)
  1948. return ret;
  1949. /* FIXME(BDW): Address space and security selectors. */
  1950. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1951. intel_ring_emit(ring, lower_32_bits(offset));
  1952. intel_ring_emit(ring, upper_32_bits(offset));
  1953. intel_ring_emit(ring, MI_NOOP);
  1954. intel_ring_advance(ring);
  1955. return 0;
  1956. }
  1957. static int
  1958. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1959. u64 offset, u32 len,
  1960. unsigned dispatch_flags)
  1961. {
  1962. int ret;
  1963. ret = intel_ring_begin(ring, 2);
  1964. if (ret)
  1965. return ret;
  1966. intel_ring_emit(ring,
  1967. MI_BATCH_BUFFER_START |
  1968. (dispatch_flags & I915_DISPATCH_SECURE ?
  1969. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
  1970. /* bit0-7 is the length on GEN6+ */
  1971. intel_ring_emit(ring, offset);
  1972. intel_ring_advance(ring);
  1973. return 0;
  1974. }
  1975. static int
  1976. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1977. u64 offset, u32 len,
  1978. unsigned dispatch_flags)
  1979. {
  1980. int ret;
  1981. ret = intel_ring_begin(ring, 2);
  1982. if (ret)
  1983. return ret;
  1984. intel_ring_emit(ring,
  1985. MI_BATCH_BUFFER_START |
  1986. (dispatch_flags & I915_DISPATCH_SECURE ?
  1987. 0 : MI_BATCH_NON_SECURE_I965));
  1988. /* bit0-7 is the length on GEN6+ */
  1989. intel_ring_emit(ring, offset);
  1990. intel_ring_advance(ring);
  1991. return 0;
  1992. }
  1993. /* Blitter support (SandyBridge+) */
  1994. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1995. u32 invalidate, u32 flush)
  1996. {
  1997. struct drm_device *dev = ring->dev;
  1998. uint32_t cmd;
  1999. int ret;
  2000. ret = intel_ring_begin(ring, 4);
  2001. if (ret)
  2002. return ret;
  2003. cmd = MI_FLUSH_DW;
  2004. if (INTEL_INFO(dev)->gen >= 8)
  2005. cmd += 1;
  2006. /* We always require a command barrier so that subsequent
  2007. * commands, such as breadcrumb interrupts, are strictly ordered
  2008. * wrt the contents of the write cache being flushed to memory
  2009. * (and thus being coherent from the CPU).
  2010. */
  2011. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2012. /*
  2013. * Bspec vol 1c.3 - blitter engine command streamer:
  2014. * "If ENABLED, all TLBs will be invalidated once the flush
  2015. * operation is complete. This bit is only valid when the
  2016. * Post-Sync Operation field is a value of 1h or 3h."
  2017. */
  2018. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2019. cmd |= MI_INVALIDATE_TLB;
  2020. intel_ring_emit(ring, cmd);
  2021. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2022. if (INTEL_INFO(dev)->gen >= 8) {
  2023. intel_ring_emit(ring, 0); /* upper addr */
  2024. intel_ring_emit(ring, 0); /* value */
  2025. } else {
  2026. intel_ring_emit(ring, 0);
  2027. intel_ring_emit(ring, MI_NOOP);
  2028. }
  2029. intel_ring_advance(ring);
  2030. return 0;
  2031. }
  2032. int intel_init_render_ring_buffer(struct drm_device *dev)
  2033. {
  2034. struct drm_i915_private *dev_priv = dev->dev_private;
  2035. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2036. struct drm_i915_gem_object *obj;
  2037. int ret;
  2038. ring->name = "render ring";
  2039. ring->id = RCS;
  2040. ring->mmio_base = RENDER_RING_BASE;
  2041. if (INTEL_INFO(dev)->gen >= 8) {
  2042. if (i915_semaphore_is_enabled(dev)) {
  2043. obj = i915_gem_alloc_object(dev, 4096);
  2044. if (obj == NULL) {
  2045. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2046. i915.semaphores = 0;
  2047. } else {
  2048. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2049. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2050. if (ret != 0) {
  2051. drm_gem_object_unreference(&obj->base);
  2052. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2053. i915.semaphores = 0;
  2054. } else
  2055. dev_priv->semaphore_obj = obj;
  2056. }
  2057. }
  2058. ring->init_context = intel_rcs_ctx_init;
  2059. ring->add_request = gen6_add_request;
  2060. ring->flush = gen8_render_ring_flush;
  2061. ring->irq_get = gen8_ring_get_irq;
  2062. ring->irq_put = gen8_ring_put_irq;
  2063. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2064. ring->get_seqno = gen6_ring_get_seqno;
  2065. ring->set_seqno = ring_set_seqno;
  2066. if (i915_semaphore_is_enabled(dev)) {
  2067. WARN_ON(!dev_priv->semaphore_obj);
  2068. ring->semaphore.sync_to = gen8_ring_sync;
  2069. ring->semaphore.signal = gen8_rcs_signal;
  2070. GEN8_RING_SEMAPHORE_INIT;
  2071. }
  2072. } else if (INTEL_INFO(dev)->gen >= 6) {
  2073. ring->add_request = gen6_add_request;
  2074. ring->flush = gen7_render_ring_flush;
  2075. if (INTEL_INFO(dev)->gen == 6)
  2076. ring->flush = gen6_render_ring_flush;
  2077. ring->irq_get = gen6_ring_get_irq;
  2078. ring->irq_put = gen6_ring_put_irq;
  2079. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2080. ring->get_seqno = gen6_ring_get_seqno;
  2081. ring->set_seqno = ring_set_seqno;
  2082. if (i915_semaphore_is_enabled(dev)) {
  2083. ring->semaphore.sync_to = gen6_ring_sync;
  2084. ring->semaphore.signal = gen6_signal;
  2085. /*
  2086. * The current semaphore is only applied on pre-gen8
  2087. * platform. And there is no VCS2 ring on the pre-gen8
  2088. * platform. So the semaphore between RCS and VCS2 is
  2089. * initialized as INVALID. Gen8 will initialize the
  2090. * sema between VCS2 and RCS later.
  2091. */
  2092. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2093. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2094. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2095. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2096. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2097. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2098. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2099. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2100. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2101. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2102. }
  2103. } else if (IS_GEN5(dev)) {
  2104. ring->add_request = pc_render_add_request;
  2105. ring->flush = gen4_render_ring_flush;
  2106. ring->get_seqno = pc_render_get_seqno;
  2107. ring->set_seqno = pc_render_set_seqno;
  2108. ring->irq_get = gen5_ring_get_irq;
  2109. ring->irq_put = gen5_ring_put_irq;
  2110. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2111. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2112. } else {
  2113. ring->add_request = i9xx_add_request;
  2114. if (INTEL_INFO(dev)->gen < 4)
  2115. ring->flush = gen2_render_ring_flush;
  2116. else
  2117. ring->flush = gen4_render_ring_flush;
  2118. ring->get_seqno = ring_get_seqno;
  2119. ring->set_seqno = ring_set_seqno;
  2120. if (IS_GEN2(dev)) {
  2121. ring->irq_get = i8xx_ring_get_irq;
  2122. ring->irq_put = i8xx_ring_put_irq;
  2123. } else {
  2124. ring->irq_get = i9xx_ring_get_irq;
  2125. ring->irq_put = i9xx_ring_put_irq;
  2126. }
  2127. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2128. }
  2129. ring->write_tail = ring_write_tail;
  2130. if (IS_HASWELL(dev))
  2131. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2132. else if (IS_GEN8(dev))
  2133. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2134. else if (INTEL_INFO(dev)->gen >= 6)
  2135. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2136. else if (INTEL_INFO(dev)->gen >= 4)
  2137. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2138. else if (IS_I830(dev) || IS_845G(dev))
  2139. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2140. else
  2141. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2142. ring->init_hw = init_render_ring;
  2143. ring->cleanup = render_ring_cleanup;
  2144. /* Workaround batchbuffer to combat CS tlb bug. */
  2145. if (HAS_BROKEN_CS_TLB(dev)) {
  2146. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2147. if (obj == NULL) {
  2148. DRM_ERROR("Failed to allocate batch bo\n");
  2149. return -ENOMEM;
  2150. }
  2151. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2152. if (ret != 0) {
  2153. drm_gem_object_unreference(&obj->base);
  2154. DRM_ERROR("Failed to ping batch bo\n");
  2155. return ret;
  2156. }
  2157. ring->scratch.obj = obj;
  2158. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2159. }
  2160. ret = intel_init_ring_buffer(dev, ring);
  2161. if (ret)
  2162. return ret;
  2163. if (INTEL_INFO(dev)->gen >= 5) {
  2164. ret = intel_init_pipe_control(ring);
  2165. if (ret)
  2166. return ret;
  2167. }
  2168. return 0;
  2169. }
  2170. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2171. {
  2172. struct drm_i915_private *dev_priv = dev->dev_private;
  2173. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2174. ring->name = "bsd ring";
  2175. ring->id = VCS;
  2176. ring->write_tail = ring_write_tail;
  2177. if (INTEL_INFO(dev)->gen >= 6) {
  2178. ring->mmio_base = GEN6_BSD_RING_BASE;
  2179. /* gen6 bsd needs a special wa for tail updates */
  2180. if (IS_GEN6(dev))
  2181. ring->write_tail = gen6_bsd_ring_write_tail;
  2182. ring->flush = gen6_bsd_ring_flush;
  2183. ring->add_request = gen6_add_request;
  2184. ring->get_seqno = gen6_ring_get_seqno;
  2185. ring->set_seqno = ring_set_seqno;
  2186. if (INTEL_INFO(dev)->gen >= 8) {
  2187. ring->irq_enable_mask =
  2188. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2189. ring->irq_get = gen8_ring_get_irq;
  2190. ring->irq_put = gen8_ring_put_irq;
  2191. ring->dispatch_execbuffer =
  2192. gen8_ring_dispatch_execbuffer;
  2193. if (i915_semaphore_is_enabled(dev)) {
  2194. ring->semaphore.sync_to = gen8_ring_sync;
  2195. ring->semaphore.signal = gen8_xcs_signal;
  2196. GEN8_RING_SEMAPHORE_INIT;
  2197. }
  2198. } else {
  2199. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2200. ring->irq_get = gen6_ring_get_irq;
  2201. ring->irq_put = gen6_ring_put_irq;
  2202. ring->dispatch_execbuffer =
  2203. gen6_ring_dispatch_execbuffer;
  2204. if (i915_semaphore_is_enabled(dev)) {
  2205. ring->semaphore.sync_to = gen6_ring_sync;
  2206. ring->semaphore.signal = gen6_signal;
  2207. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2208. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2209. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2210. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2211. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2212. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2213. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2214. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2215. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2216. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2217. }
  2218. }
  2219. } else {
  2220. ring->mmio_base = BSD_RING_BASE;
  2221. ring->flush = bsd_ring_flush;
  2222. ring->add_request = i9xx_add_request;
  2223. ring->get_seqno = ring_get_seqno;
  2224. ring->set_seqno = ring_set_seqno;
  2225. if (IS_GEN5(dev)) {
  2226. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2227. ring->irq_get = gen5_ring_get_irq;
  2228. ring->irq_put = gen5_ring_put_irq;
  2229. } else {
  2230. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2231. ring->irq_get = i9xx_ring_get_irq;
  2232. ring->irq_put = i9xx_ring_put_irq;
  2233. }
  2234. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2235. }
  2236. ring->init_hw = init_ring_common;
  2237. return intel_init_ring_buffer(dev, ring);
  2238. }
  2239. /**
  2240. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2241. */
  2242. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2243. {
  2244. struct drm_i915_private *dev_priv = dev->dev_private;
  2245. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2246. ring->name = "bsd2 ring";
  2247. ring->id = VCS2;
  2248. ring->write_tail = ring_write_tail;
  2249. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2250. ring->flush = gen6_bsd_ring_flush;
  2251. ring->add_request = gen6_add_request;
  2252. ring->get_seqno = gen6_ring_get_seqno;
  2253. ring->set_seqno = ring_set_seqno;
  2254. ring->irq_enable_mask =
  2255. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2256. ring->irq_get = gen8_ring_get_irq;
  2257. ring->irq_put = gen8_ring_put_irq;
  2258. ring->dispatch_execbuffer =
  2259. gen8_ring_dispatch_execbuffer;
  2260. if (i915_semaphore_is_enabled(dev)) {
  2261. ring->semaphore.sync_to = gen8_ring_sync;
  2262. ring->semaphore.signal = gen8_xcs_signal;
  2263. GEN8_RING_SEMAPHORE_INIT;
  2264. }
  2265. ring->init_hw = init_ring_common;
  2266. return intel_init_ring_buffer(dev, ring);
  2267. }
  2268. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2269. {
  2270. struct drm_i915_private *dev_priv = dev->dev_private;
  2271. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2272. ring->name = "blitter ring";
  2273. ring->id = BCS;
  2274. ring->mmio_base = BLT_RING_BASE;
  2275. ring->write_tail = ring_write_tail;
  2276. ring->flush = gen6_ring_flush;
  2277. ring->add_request = gen6_add_request;
  2278. ring->get_seqno = gen6_ring_get_seqno;
  2279. ring->set_seqno = ring_set_seqno;
  2280. if (INTEL_INFO(dev)->gen >= 8) {
  2281. ring->irq_enable_mask =
  2282. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2283. ring->irq_get = gen8_ring_get_irq;
  2284. ring->irq_put = gen8_ring_put_irq;
  2285. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2286. if (i915_semaphore_is_enabled(dev)) {
  2287. ring->semaphore.sync_to = gen8_ring_sync;
  2288. ring->semaphore.signal = gen8_xcs_signal;
  2289. GEN8_RING_SEMAPHORE_INIT;
  2290. }
  2291. } else {
  2292. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2293. ring->irq_get = gen6_ring_get_irq;
  2294. ring->irq_put = gen6_ring_put_irq;
  2295. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2296. if (i915_semaphore_is_enabled(dev)) {
  2297. ring->semaphore.signal = gen6_signal;
  2298. ring->semaphore.sync_to = gen6_ring_sync;
  2299. /*
  2300. * The current semaphore is only applied on pre-gen8
  2301. * platform. And there is no VCS2 ring on the pre-gen8
  2302. * platform. So the semaphore between BCS and VCS2 is
  2303. * initialized as INVALID. Gen8 will initialize the
  2304. * sema between BCS and VCS2 later.
  2305. */
  2306. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2307. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2308. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2309. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2310. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2311. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2312. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2313. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2314. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2315. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2316. }
  2317. }
  2318. ring->init_hw = init_ring_common;
  2319. return intel_init_ring_buffer(dev, ring);
  2320. }
  2321. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2322. {
  2323. struct drm_i915_private *dev_priv = dev->dev_private;
  2324. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2325. ring->name = "video enhancement ring";
  2326. ring->id = VECS;
  2327. ring->mmio_base = VEBOX_RING_BASE;
  2328. ring->write_tail = ring_write_tail;
  2329. ring->flush = gen6_ring_flush;
  2330. ring->add_request = gen6_add_request;
  2331. ring->get_seqno = gen6_ring_get_seqno;
  2332. ring->set_seqno = ring_set_seqno;
  2333. if (INTEL_INFO(dev)->gen >= 8) {
  2334. ring->irq_enable_mask =
  2335. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2336. ring->irq_get = gen8_ring_get_irq;
  2337. ring->irq_put = gen8_ring_put_irq;
  2338. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2339. if (i915_semaphore_is_enabled(dev)) {
  2340. ring->semaphore.sync_to = gen8_ring_sync;
  2341. ring->semaphore.signal = gen8_xcs_signal;
  2342. GEN8_RING_SEMAPHORE_INIT;
  2343. }
  2344. } else {
  2345. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2346. ring->irq_get = hsw_vebox_get_irq;
  2347. ring->irq_put = hsw_vebox_put_irq;
  2348. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2349. if (i915_semaphore_is_enabled(dev)) {
  2350. ring->semaphore.sync_to = gen6_ring_sync;
  2351. ring->semaphore.signal = gen6_signal;
  2352. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2353. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2354. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2355. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2356. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2357. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2358. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2359. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2360. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2361. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2362. }
  2363. }
  2364. ring->init_hw = init_ring_common;
  2365. return intel_init_ring_buffer(dev, ring);
  2366. }
  2367. int
  2368. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2369. {
  2370. int ret;
  2371. if (!ring->gpu_caches_dirty)
  2372. return 0;
  2373. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2374. if (ret)
  2375. return ret;
  2376. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2377. ring->gpu_caches_dirty = false;
  2378. return 0;
  2379. }
  2380. int
  2381. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2382. {
  2383. uint32_t flush_domains;
  2384. int ret;
  2385. flush_domains = 0;
  2386. if (ring->gpu_caches_dirty)
  2387. flush_domains = I915_GEM_GPU_DOMAINS;
  2388. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2389. if (ret)
  2390. return ret;
  2391. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2392. ring->gpu_caches_dirty = false;
  2393. return 0;
  2394. }
  2395. void
  2396. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2397. {
  2398. int ret;
  2399. if (!intel_ring_initialized(ring))
  2400. return;
  2401. ret = intel_ring_idle(ring);
  2402. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2403. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2404. ring->name, ret);
  2405. stop_ring(ring);
  2406. }