bpf_jit_comp.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328
  1. /*
  2. * BPF Jit compiler for s390.
  3. *
  4. * Minimum build requirements:
  5. *
  6. * - HAVE_MARCH_Z196_FEATURES: laal, laalg
  7. * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
  8. * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
  9. * - PACK_STACK
  10. * - 64BIT
  11. *
  12. * Copyright IBM Corp. 2012,2015
  13. *
  14. * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
  15. * Michael Holzheu <holzheu@linux.vnet.ibm.com>
  16. */
  17. #define KMSG_COMPONENT "bpf_jit"
  18. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  19. #include <linux/netdevice.h>
  20. #include <linux/filter.h>
  21. #include <linux/init.h>
  22. #include <linux/bpf.h>
  23. #include <asm/cacheflush.h>
  24. #include <asm/dis.h>
  25. #include "bpf_jit.h"
  26. int bpf_jit_enable __read_mostly;
  27. struct bpf_jit {
  28. u32 seen; /* Flags to remember seen eBPF instructions */
  29. u32 seen_reg[16]; /* Array to remember which registers are used */
  30. u32 *addrs; /* Array with relative instruction addresses */
  31. u8 *prg_buf; /* Start of program */
  32. int size; /* Size of program and literal pool */
  33. int size_prg; /* Size of program */
  34. int prg; /* Current position in program */
  35. int lit_start; /* Start of literal pool */
  36. int lit; /* Current position in literal pool */
  37. int base_ip; /* Base address for literal pool */
  38. int ret0_ip; /* Address of return 0 */
  39. int exit_ip; /* Address of exit */
  40. int tail_call_start; /* Tail call start offset */
  41. int labels[1]; /* Labels for local jumps */
  42. };
  43. #define BPF_SIZE_MAX 0x7ffff /* Max size for program (20 bit signed displ) */
  44. #define SEEN_SKB 1 /* skb access */
  45. #define SEEN_MEM 2 /* use mem[] for temporary storage */
  46. #define SEEN_RET0 4 /* ret0_ip points to a valid return 0 */
  47. #define SEEN_LITERAL 8 /* code uses literals */
  48. #define SEEN_FUNC 16 /* calls C functions */
  49. #define SEEN_TAIL_CALL 32 /* code uses tail calls */
  50. #define SEEN_SKB_CHANGE 64 /* code changes skb data */
  51. #define SEEN_STACK (SEEN_FUNC | SEEN_MEM | SEEN_SKB)
  52. /*
  53. * s390 registers
  54. */
  55. #define REG_W0 (__MAX_BPF_REG+0) /* Work register 1 (even) */
  56. #define REG_W1 (__MAX_BPF_REG+1) /* Work register 2 (odd) */
  57. #define REG_SKB_DATA (__MAX_BPF_REG+2) /* SKB data register */
  58. #define REG_L (__MAX_BPF_REG+3) /* Literal pool register */
  59. #define REG_15 (__MAX_BPF_REG+4) /* Register 15 */
  60. #define REG_0 REG_W0 /* Register 0 */
  61. #define REG_1 REG_W1 /* Register 1 */
  62. #define REG_2 BPF_REG_1 /* Register 2 */
  63. #define REG_14 BPF_REG_0 /* Register 14 */
  64. /*
  65. * Mapping of BPF registers to s390 registers
  66. */
  67. static const int reg2hex[] = {
  68. /* Return code */
  69. [BPF_REG_0] = 14,
  70. /* Function parameters */
  71. [BPF_REG_1] = 2,
  72. [BPF_REG_2] = 3,
  73. [BPF_REG_3] = 4,
  74. [BPF_REG_4] = 5,
  75. [BPF_REG_5] = 6,
  76. /* Call saved registers */
  77. [BPF_REG_6] = 7,
  78. [BPF_REG_7] = 8,
  79. [BPF_REG_8] = 9,
  80. [BPF_REG_9] = 10,
  81. /* BPF stack pointer */
  82. [BPF_REG_FP] = 13,
  83. /* SKB data pointer */
  84. [REG_SKB_DATA] = 12,
  85. /* Work registers for s390x backend */
  86. [REG_W0] = 0,
  87. [REG_W1] = 1,
  88. [REG_L] = 11,
  89. [REG_15] = 15,
  90. };
  91. static inline u32 reg(u32 dst_reg, u32 src_reg)
  92. {
  93. return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
  94. }
  95. static inline u32 reg_high(u32 reg)
  96. {
  97. return reg2hex[reg] << 4;
  98. }
  99. static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
  100. {
  101. u32 r1 = reg2hex[b1];
  102. if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
  103. jit->seen_reg[r1] = 1;
  104. }
  105. #define REG_SET_SEEN(b1) \
  106. ({ \
  107. reg_set_seen(jit, b1); \
  108. })
  109. #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
  110. /*
  111. * EMIT macros for code generation
  112. */
  113. #define _EMIT2(op) \
  114. ({ \
  115. if (jit->prg_buf) \
  116. *(u16 *) (jit->prg_buf + jit->prg) = op; \
  117. jit->prg += 2; \
  118. })
  119. #define EMIT2(op, b1, b2) \
  120. ({ \
  121. _EMIT2(op | reg(b1, b2)); \
  122. REG_SET_SEEN(b1); \
  123. REG_SET_SEEN(b2); \
  124. })
  125. #define _EMIT4(op) \
  126. ({ \
  127. if (jit->prg_buf) \
  128. *(u32 *) (jit->prg_buf + jit->prg) = op; \
  129. jit->prg += 4; \
  130. })
  131. #define EMIT4(op, b1, b2) \
  132. ({ \
  133. _EMIT4(op | reg(b1, b2)); \
  134. REG_SET_SEEN(b1); \
  135. REG_SET_SEEN(b2); \
  136. })
  137. #define EMIT4_RRF(op, b1, b2, b3) \
  138. ({ \
  139. _EMIT4(op | reg_high(b3) << 8 | reg(b1, b2)); \
  140. REG_SET_SEEN(b1); \
  141. REG_SET_SEEN(b2); \
  142. REG_SET_SEEN(b3); \
  143. })
  144. #define _EMIT4_DISP(op, disp) \
  145. ({ \
  146. unsigned int __disp = (disp) & 0xfff; \
  147. _EMIT4(op | __disp); \
  148. })
  149. #define EMIT4_DISP(op, b1, b2, disp) \
  150. ({ \
  151. _EMIT4_DISP(op | reg_high(b1) << 16 | \
  152. reg_high(b2) << 8, disp); \
  153. REG_SET_SEEN(b1); \
  154. REG_SET_SEEN(b2); \
  155. })
  156. #define EMIT4_IMM(op, b1, imm) \
  157. ({ \
  158. unsigned int __imm = (imm) & 0xffff; \
  159. _EMIT4(op | reg_high(b1) << 16 | __imm); \
  160. REG_SET_SEEN(b1); \
  161. })
  162. #define EMIT4_PCREL(op, pcrel) \
  163. ({ \
  164. long __pcrel = ((pcrel) >> 1) & 0xffff; \
  165. _EMIT4(op | __pcrel); \
  166. })
  167. #define _EMIT6(op1, op2) \
  168. ({ \
  169. if (jit->prg_buf) { \
  170. *(u32 *) (jit->prg_buf + jit->prg) = op1; \
  171. *(u16 *) (jit->prg_buf + jit->prg + 4) = op2; \
  172. } \
  173. jit->prg += 6; \
  174. })
  175. #define _EMIT6_DISP(op1, op2, disp) \
  176. ({ \
  177. unsigned int __disp = (disp) & 0xfff; \
  178. _EMIT6(op1 | __disp, op2); \
  179. })
  180. #define _EMIT6_DISP_LH(op1, op2, disp) \
  181. ({ \
  182. u32 _disp = (u32) disp; \
  183. unsigned int __disp_h = _disp & 0xff000; \
  184. unsigned int __disp_l = _disp & 0x00fff; \
  185. _EMIT6(op1 | __disp_l, op2 | __disp_h >> 4); \
  186. })
  187. #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
  188. ({ \
  189. _EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 | \
  190. reg_high(b3) << 8, op2, disp); \
  191. REG_SET_SEEN(b1); \
  192. REG_SET_SEEN(b2); \
  193. REG_SET_SEEN(b3); \
  194. })
  195. #define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask) \
  196. ({ \
  197. int rel = (jit->labels[label] - jit->prg) >> 1; \
  198. _EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), \
  199. op2 | mask << 12); \
  200. REG_SET_SEEN(b1); \
  201. REG_SET_SEEN(b2); \
  202. })
  203. #define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask) \
  204. ({ \
  205. int rel = (jit->labels[label] - jit->prg) >> 1; \
  206. _EMIT6(op1 | (reg_high(b1) | mask) << 16 | \
  207. (rel & 0xffff), op2 | (imm & 0xff) << 8); \
  208. REG_SET_SEEN(b1); \
  209. BUILD_BUG_ON(((unsigned long) imm) > 0xff); \
  210. })
  211. #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
  212. ({ \
  213. /* Branch instruction needs 6 bytes */ \
  214. int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
  215. _EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask); \
  216. REG_SET_SEEN(b1); \
  217. REG_SET_SEEN(b2); \
  218. })
  219. #define _EMIT6_IMM(op, imm) \
  220. ({ \
  221. unsigned int __imm = (imm); \
  222. _EMIT6(op | (__imm >> 16), __imm & 0xffff); \
  223. })
  224. #define EMIT6_IMM(op, b1, imm) \
  225. ({ \
  226. _EMIT6_IMM(op | reg_high(b1) << 16, imm); \
  227. REG_SET_SEEN(b1); \
  228. })
  229. #define EMIT_CONST_U32(val) \
  230. ({ \
  231. unsigned int ret; \
  232. ret = jit->lit - jit->base_ip; \
  233. jit->seen |= SEEN_LITERAL; \
  234. if (jit->prg_buf) \
  235. *(u32 *) (jit->prg_buf + jit->lit) = (u32) val; \
  236. jit->lit += 4; \
  237. ret; \
  238. })
  239. #define EMIT_CONST_U64(val) \
  240. ({ \
  241. unsigned int ret; \
  242. ret = jit->lit - jit->base_ip; \
  243. jit->seen |= SEEN_LITERAL; \
  244. if (jit->prg_buf) \
  245. *(u64 *) (jit->prg_buf + jit->lit) = (u64) val; \
  246. jit->lit += 8; \
  247. ret; \
  248. })
  249. #define EMIT_ZERO(b1) \
  250. ({ \
  251. /* llgfr %dst,%dst (zero extend to 64 bit) */ \
  252. EMIT4(0xb9160000, b1, b1); \
  253. REG_SET_SEEN(b1); \
  254. })
  255. /*
  256. * Fill whole space with illegal instructions
  257. */
  258. static void jit_fill_hole(void *area, unsigned int size)
  259. {
  260. memset(area, 0, size);
  261. }
  262. /*
  263. * Save registers from "rs" (register start) to "re" (register end) on stack
  264. */
  265. static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
  266. {
  267. u32 off = STK_OFF_R6 + (rs - 6) * 8;
  268. if (rs == re)
  269. /* stg %rs,off(%r15) */
  270. _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
  271. else
  272. /* stmg %rs,%re,off(%r15) */
  273. _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
  274. }
  275. /*
  276. * Restore registers from "rs" (register start) to "re" (register end) on stack
  277. */
  278. static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
  279. {
  280. u32 off = STK_OFF_R6 + (rs - 6) * 8;
  281. if (jit->seen & SEEN_STACK)
  282. off += STK_OFF;
  283. if (rs == re)
  284. /* lg %rs,off(%r15) */
  285. _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
  286. else
  287. /* lmg %rs,%re,off(%r15) */
  288. _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
  289. }
  290. /*
  291. * Return first seen register (from start)
  292. */
  293. static int get_start(struct bpf_jit *jit, int start)
  294. {
  295. int i;
  296. for (i = start; i <= 15; i++) {
  297. if (jit->seen_reg[i])
  298. return i;
  299. }
  300. return 0;
  301. }
  302. /*
  303. * Return last seen register (from start) (gap >= 2)
  304. */
  305. static int get_end(struct bpf_jit *jit, int start)
  306. {
  307. int i;
  308. for (i = start; i < 15; i++) {
  309. if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
  310. return i - 1;
  311. }
  312. return jit->seen_reg[15] ? 15 : 14;
  313. }
  314. #define REGS_SAVE 1
  315. #define REGS_RESTORE 0
  316. /*
  317. * Save and restore clobbered registers (6-15) on stack.
  318. * We save/restore registers in chunks with gap >= 2 registers.
  319. */
  320. static void save_restore_regs(struct bpf_jit *jit, int op)
  321. {
  322. int re = 6, rs;
  323. do {
  324. rs = get_start(jit, re);
  325. if (!rs)
  326. break;
  327. re = get_end(jit, rs + 1);
  328. if (op == REGS_SAVE)
  329. save_regs(jit, rs, re);
  330. else
  331. restore_regs(jit, rs, re);
  332. re++;
  333. } while (re <= 15);
  334. }
  335. /*
  336. * For SKB access %b1 contains the SKB pointer. For "bpf_jit.S"
  337. * we store the SKB header length on the stack and the SKB data
  338. * pointer in REG_SKB_DATA.
  339. */
  340. static void emit_load_skb_data_hlen(struct bpf_jit *jit)
  341. {
  342. /* Header length: llgf %w1,<len>(%b1) */
  343. EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_1,
  344. offsetof(struct sk_buff, len));
  345. /* s %w1,<data_len>(%b1) */
  346. EMIT4_DISP(0x5b000000, REG_W1, BPF_REG_1,
  347. offsetof(struct sk_buff, data_len));
  348. /* stg %w1,ST_OFF_HLEN(%r0,%r15) */
  349. EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15, STK_OFF_HLEN);
  350. /* lg %skb_data,data_off(%b1) */
  351. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
  352. BPF_REG_1, offsetof(struct sk_buff, data));
  353. }
  354. /*
  355. * Emit function prologue
  356. *
  357. * Save registers and create stack frame if necessary.
  358. * See stack frame layout desription in "bpf_jit.h"!
  359. */
  360. static void bpf_jit_prologue(struct bpf_jit *jit)
  361. {
  362. if (jit->seen & SEEN_TAIL_CALL) {
  363. /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
  364. _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
  365. } else {
  366. /* j tail_call_start: NOP if no tail calls are used */
  367. EMIT4_PCREL(0xa7f40000, 6);
  368. _EMIT2(0);
  369. }
  370. /* Tail calls have to skip above initialization */
  371. jit->tail_call_start = jit->prg;
  372. /* Save registers */
  373. save_restore_regs(jit, REGS_SAVE);
  374. /* Setup literal pool */
  375. if (jit->seen & SEEN_LITERAL) {
  376. /* basr %r13,0 */
  377. EMIT2(0x0d00, REG_L, REG_0);
  378. jit->base_ip = jit->prg;
  379. }
  380. /* Setup stack and backchain */
  381. if (jit->seen & SEEN_STACK) {
  382. if (jit->seen & SEEN_FUNC)
  383. /* lgr %w1,%r15 (backchain) */
  384. EMIT4(0xb9040000, REG_W1, REG_15);
  385. /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
  386. EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
  387. /* aghi %r15,-STK_OFF */
  388. EMIT4_IMM(0xa70b0000, REG_15, -STK_OFF);
  389. if (jit->seen & SEEN_FUNC)
  390. /* stg %w1,152(%r15) (backchain) */
  391. EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
  392. REG_15, 152);
  393. }
  394. if (jit->seen & SEEN_SKB)
  395. emit_load_skb_data_hlen(jit);
  396. if (jit->seen & SEEN_SKB_CHANGE)
  397. /* stg %b1,ST_OFF_SKBP(%r0,%r15) */
  398. EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15,
  399. STK_OFF_SKBP);
  400. }
  401. /*
  402. * Function epilogue
  403. */
  404. static void bpf_jit_epilogue(struct bpf_jit *jit)
  405. {
  406. /* Return 0 */
  407. if (jit->seen & SEEN_RET0) {
  408. jit->ret0_ip = jit->prg;
  409. /* lghi %b0,0 */
  410. EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
  411. }
  412. jit->exit_ip = jit->prg;
  413. /* Load exit code: lgr %r2,%b0 */
  414. EMIT4(0xb9040000, REG_2, BPF_REG_0);
  415. /* Restore registers */
  416. save_restore_regs(jit, REGS_RESTORE);
  417. /* br %r14 */
  418. _EMIT2(0x07fe);
  419. }
  420. /*
  421. * Compile one eBPF instruction into s390x code
  422. *
  423. * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
  424. * stack space for the large switch statement.
  425. */
  426. static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
  427. {
  428. struct bpf_insn *insn = &fp->insnsi[i];
  429. int jmp_off, last, insn_count = 1;
  430. unsigned int func_addr, mask;
  431. u32 dst_reg = insn->dst_reg;
  432. u32 src_reg = insn->src_reg;
  433. u32 *addrs = jit->addrs;
  434. s32 imm = insn->imm;
  435. s16 off = insn->off;
  436. switch (insn->code) {
  437. /*
  438. * BPF_MOV
  439. */
  440. case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
  441. /* llgfr %dst,%src */
  442. EMIT4(0xb9160000, dst_reg, src_reg);
  443. break;
  444. case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
  445. /* lgr %dst,%src */
  446. EMIT4(0xb9040000, dst_reg, src_reg);
  447. break;
  448. case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
  449. /* llilf %dst,imm */
  450. EMIT6_IMM(0xc00f0000, dst_reg, imm);
  451. break;
  452. case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
  453. /* lgfi %dst,imm */
  454. EMIT6_IMM(0xc0010000, dst_reg, imm);
  455. break;
  456. /*
  457. * BPF_LD 64
  458. */
  459. case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
  460. {
  461. /* 16 byte instruction that uses two 'struct bpf_insn' */
  462. u64 imm64;
  463. imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
  464. /* lg %dst,<d(imm)>(%l) */
  465. EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
  466. EMIT_CONST_U64(imm64));
  467. insn_count = 2;
  468. break;
  469. }
  470. /*
  471. * BPF_ADD
  472. */
  473. case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
  474. /* ar %dst,%src */
  475. EMIT2(0x1a00, dst_reg, src_reg);
  476. EMIT_ZERO(dst_reg);
  477. break;
  478. case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
  479. /* agr %dst,%src */
  480. EMIT4(0xb9080000, dst_reg, src_reg);
  481. break;
  482. case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
  483. if (!imm)
  484. break;
  485. /* alfi %dst,imm */
  486. EMIT6_IMM(0xc20b0000, dst_reg, imm);
  487. EMIT_ZERO(dst_reg);
  488. break;
  489. case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
  490. if (!imm)
  491. break;
  492. /* agfi %dst,imm */
  493. EMIT6_IMM(0xc2080000, dst_reg, imm);
  494. break;
  495. /*
  496. * BPF_SUB
  497. */
  498. case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
  499. /* sr %dst,%src */
  500. EMIT2(0x1b00, dst_reg, src_reg);
  501. EMIT_ZERO(dst_reg);
  502. break;
  503. case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
  504. /* sgr %dst,%src */
  505. EMIT4(0xb9090000, dst_reg, src_reg);
  506. break;
  507. case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
  508. if (!imm)
  509. break;
  510. /* alfi %dst,-imm */
  511. EMIT6_IMM(0xc20b0000, dst_reg, -imm);
  512. EMIT_ZERO(dst_reg);
  513. break;
  514. case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
  515. if (!imm)
  516. break;
  517. /* agfi %dst,-imm */
  518. EMIT6_IMM(0xc2080000, dst_reg, -imm);
  519. break;
  520. /*
  521. * BPF_MUL
  522. */
  523. case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
  524. /* msr %dst,%src */
  525. EMIT4(0xb2520000, dst_reg, src_reg);
  526. EMIT_ZERO(dst_reg);
  527. break;
  528. case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
  529. /* msgr %dst,%src */
  530. EMIT4(0xb90c0000, dst_reg, src_reg);
  531. break;
  532. case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
  533. if (imm == 1)
  534. break;
  535. /* msfi %r5,imm */
  536. EMIT6_IMM(0xc2010000, dst_reg, imm);
  537. EMIT_ZERO(dst_reg);
  538. break;
  539. case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
  540. if (imm == 1)
  541. break;
  542. /* msgfi %dst,imm */
  543. EMIT6_IMM(0xc2000000, dst_reg, imm);
  544. break;
  545. /*
  546. * BPF_DIV / BPF_MOD
  547. */
  548. case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
  549. case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
  550. {
  551. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  552. jit->seen |= SEEN_RET0;
  553. /* ltr %src,%src (if src == 0 goto fail) */
  554. EMIT2(0x1200, src_reg, src_reg);
  555. /* jz <ret0> */
  556. EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
  557. /* lhi %w0,0 */
  558. EMIT4_IMM(0xa7080000, REG_W0, 0);
  559. /* lr %w1,%dst */
  560. EMIT2(0x1800, REG_W1, dst_reg);
  561. /* dlr %w0,%src */
  562. EMIT4(0xb9970000, REG_W0, src_reg);
  563. /* llgfr %dst,%rc */
  564. EMIT4(0xb9160000, dst_reg, rc_reg);
  565. break;
  566. }
  567. case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
  568. case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
  569. {
  570. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  571. jit->seen |= SEEN_RET0;
  572. /* ltgr %src,%src (if src == 0 goto fail) */
  573. EMIT4(0xb9020000, src_reg, src_reg);
  574. /* jz <ret0> */
  575. EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
  576. /* lghi %w0,0 */
  577. EMIT4_IMM(0xa7090000, REG_W0, 0);
  578. /* lgr %w1,%dst */
  579. EMIT4(0xb9040000, REG_W1, dst_reg);
  580. /* dlgr %w0,%dst */
  581. EMIT4(0xb9870000, REG_W0, src_reg);
  582. /* lgr %dst,%rc */
  583. EMIT4(0xb9040000, dst_reg, rc_reg);
  584. break;
  585. }
  586. case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
  587. case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
  588. {
  589. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  590. if (imm == 1) {
  591. if (BPF_OP(insn->code) == BPF_MOD)
  592. /* lhgi %dst,0 */
  593. EMIT4_IMM(0xa7090000, dst_reg, 0);
  594. break;
  595. }
  596. /* lhi %w0,0 */
  597. EMIT4_IMM(0xa7080000, REG_W0, 0);
  598. /* lr %w1,%dst */
  599. EMIT2(0x1800, REG_W1, dst_reg);
  600. /* dl %w0,<d(imm)>(%l) */
  601. EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
  602. EMIT_CONST_U32(imm));
  603. /* llgfr %dst,%rc */
  604. EMIT4(0xb9160000, dst_reg, rc_reg);
  605. break;
  606. }
  607. case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
  608. case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
  609. {
  610. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  611. if (imm == 1) {
  612. if (BPF_OP(insn->code) == BPF_MOD)
  613. /* lhgi %dst,0 */
  614. EMIT4_IMM(0xa7090000, dst_reg, 0);
  615. break;
  616. }
  617. /* lghi %w0,0 */
  618. EMIT4_IMM(0xa7090000, REG_W0, 0);
  619. /* lgr %w1,%dst */
  620. EMIT4(0xb9040000, REG_W1, dst_reg);
  621. /* dlg %w0,<d(imm)>(%l) */
  622. EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
  623. EMIT_CONST_U64(imm));
  624. /* lgr %dst,%rc */
  625. EMIT4(0xb9040000, dst_reg, rc_reg);
  626. break;
  627. }
  628. /*
  629. * BPF_AND
  630. */
  631. case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
  632. /* nr %dst,%src */
  633. EMIT2(0x1400, dst_reg, src_reg);
  634. EMIT_ZERO(dst_reg);
  635. break;
  636. case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
  637. /* ngr %dst,%src */
  638. EMIT4(0xb9800000, dst_reg, src_reg);
  639. break;
  640. case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
  641. /* nilf %dst,imm */
  642. EMIT6_IMM(0xc00b0000, dst_reg, imm);
  643. EMIT_ZERO(dst_reg);
  644. break;
  645. case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
  646. /* ng %dst,<d(imm)>(%l) */
  647. EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
  648. EMIT_CONST_U64(imm));
  649. break;
  650. /*
  651. * BPF_OR
  652. */
  653. case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
  654. /* or %dst,%src */
  655. EMIT2(0x1600, dst_reg, src_reg);
  656. EMIT_ZERO(dst_reg);
  657. break;
  658. case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
  659. /* ogr %dst,%src */
  660. EMIT4(0xb9810000, dst_reg, src_reg);
  661. break;
  662. case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
  663. /* oilf %dst,imm */
  664. EMIT6_IMM(0xc00d0000, dst_reg, imm);
  665. EMIT_ZERO(dst_reg);
  666. break;
  667. case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
  668. /* og %dst,<d(imm)>(%l) */
  669. EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
  670. EMIT_CONST_U64(imm));
  671. break;
  672. /*
  673. * BPF_XOR
  674. */
  675. case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
  676. /* xr %dst,%src */
  677. EMIT2(0x1700, dst_reg, src_reg);
  678. EMIT_ZERO(dst_reg);
  679. break;
  680. case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
  681. /* xgr %dst,%src */
  682. EMIT4(0xb9820000, dst_reg, src_reg);
  683. break;
  684. case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
  685. if (!imm)
  686. break;
  687. /* xilf %dst,imm */
  688. EMIT6_IMM(0xc0070000, dst_reg, imm);
  689. EMIT_ZERO(dst_reg);
  690. break;
  691. case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
  692. /* xg %dst,<d(imm)>(%l) */
  693. EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
  694. EMIT_CONST_U64(imm));
  695. break;
  696. /*
  697. * BPF_LSH
  698. */
  699. case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
  700. /* sll %dst,0(%src) */
  701. EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
  702. EMIT_ZERO(dst_reg);
  703. break;
  704. case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
  705. /* sllg %dst,%dst,0(%src) */
  706. EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
  707. break;
  708. case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
  709. if (imm == 0)
  710. break;
  711. /* sll %dst,imm(%r0) */
  712. EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
  713. EMIT_ZERO(dst_reg);
  714. break;
  715. case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
  716. if (imm == 0)
  717. break;
  718. /* sllg %dst,%dst,imm(%r0) */
  719. EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
  720. break;
  721. /*
  722. * BPF_RSH
  723. */
  724. case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
  725. /* srl %dst,0(%src) */
  726. EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
  727. EMIT_ZERO(dst_reg);
  728. break;
  729. case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
  730. /* srlg %dst,%dst,0(%src) */
  731. EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
  732. break;
  733. case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
  734. if (imm == 0)
  735. break;
  736. /* srl %dst,imm(%r0) */
  737. EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
  738. EMIT_ZERO(dst_reg);
  739. break;
  740. case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
  741. if (imm == 0)
  742. break;
  743. /* srlg %dst,%dst,imm(%r0) */
  744. EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
  745. break;
  746. /*
  747. * BPF_ARSH
  748. */
  749. case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
  750. /* srag %dst,%dst,0(%src) */
  751. EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
  752. break;
  753. case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
  754. if (imm == 0)
  755. break;
  756. /* srag %dst,%dst,imm(%r0) */
  757. EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
  758. break;
  759. /*
  760. * BPF_NEG
  761. */
  762. case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
  763. /* lcr %dst,%dst */
  764. EMIT2(0x1300, dst_reg, dst_reg);
  765. EMIT_ZERO(dst_reg);
  766. break;
  767. case BPF_ALU64 | BPF_NEG: /* dst = -dst */
  768. /* lcgr %dst,%dst */
  769. EMIT4(0xb9130000, dst_reg, dst_reg);
  770. break;
  771. /*
  772. * BPF_FROM_BE/LE
  773. */
  774. case BPF_ALU | BPF_END | BPF_FROM_BE:
  775. /* s390 is big endian, therefore only clear high order bytes */
  776. switch (imm) {
  777. case 16: /* dst = (u16) cpu_to_be16(dst) */
  778. /* llghr %dst,%dst */
  779. EMIT4(0xb9850000, dst_reg, dst_reg);
  780. break;
  781. case 32: /* dst = (u32) cpu_to_be32(dst) */
  782. /* llgfr %dst,%dst */
  783. EMIT4(0xb9160000, dst_reg, dst_reg);
  784. break;
  785. case 64: /* dst = (u64) cpu_to_be64(dst) */
  786. break;
  787. }
  788. break;
  789. case BPF_ALU | BPF_END | BPF_FROM_LE:
  790. switch (imm) {
  791. case 16: /* dst = (u16) cpu_to_le16(dst) */
  792. /* lrvr %dst,%dst */
  793. EMIT4(0xb91f0000, dst_reg, dst_reg);
  794. /* srl %dst,16(%r0) */
  795. EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
  796. /* llghr %dst,%dst */
  797. EMIT4(0xb9850000, dst_reg, dst_reg);
  798. break;
  799. case 32: /* dst = (u32) cpu_to_le32(dst) */
  800. /* lrvr %dst,%dst */
  801. EMIT4(0xb91f0000, dst_reg, dst_reg);
  802. /* llgfr %dst,%dst */
  803. EMIT4(0xb9160000, dst_reg, dst_reg);
  804. break;
  805. case 64: /* dst = (u64) cpu_to_le64(dst) */
  806. /* lrvgr %dst,%dst */
  807. EMIT4(0xb90f0000, dst_reg, dst_reg);
  808. break;
  809. }
  810. break;
  811. /*
  812. * BPF_ST(X)
  813. */
  814. case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
  815. /* stcy %src,off(%dst) */
  816. EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
  817. jit->seen |= SEEN_MEM;
  818. break;
  819. case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
  820. /* sthy %src,off(%dst) */
  821. EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
  822. jit->seen |= SEEN_MEM;
  823. break;
  824. case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
  825. /* sty %src,off(%dst) */
  826. EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
  827. jit->seen |= SEEN_MEM;
  828. break;
  829. case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
  830. /* stg %src,off(%dst) */
  831. EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
  832. jit->seen |= SEEN_MEM;
  833. break;
  834. case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
  835. /* lhi %w0,imm */
  836. EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
  837. /* stcy %w0,off(dst) */
  838. EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
  839. jit->seen |= SEEN_MEM;
  840. break;
  841. case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
  842. /* lhi %w0,imm */
  843. EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
  844. /* sthy %w0,off(dst) */
  845. EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
  846. jit->seen |= SEEN_MEM;
  847. break;
  848. case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
  849. /* llilf %w0,imm */
  850. EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
  851. /* sty %w0,off(%dst) */
  852. EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
  853. jit->seen |= SEEN_MEM;
  854. break;
  855. case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
  856. /* lgfi %w0,imm */
  857. EMIT6_IMM(0xc0010000, REG_W0, imm);
  858. /* stg %w0,off(%dst) */
  859. EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
  860. jit->seen |= SEEN_MEM;
  861. break;
  862. /*
  863. * BPF_STX XADD (atomic_add)
  864. */
  865. case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
  866. /* laal %w0,%src,off(%dst) */
  867. EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
  868. dst_reg, off);
  869. jit->seen |= SEEN_MEM;
  870. break;
  871. case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
  872. /* laalg %w0,%src,off(%dst) */
  873. EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
  874. dst_reg, off);
  875. jit->seen |= SEEN_MEM;
  876. break;
  877. /*
  878. * BPF_LDX
  879. */
  880. case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
  881. /* llgc %dst,0(off,%src) */
  882. EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
  883. jit->seen |= SEEN_MEM;
  884. break;
  885. case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
  886. /* llgh %dst,0(off,%src) */
  887. EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
  888. jit->seen |= SEEN_MEM;
  889. break;
  890. case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
  891. /* llgf %dst,off(%src) */
  892. jit->seen |= SEEN_MEM;
  893. EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
  894. break;
  895. case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
  896. /* lg %dst,0(off,%src) */
  897. jit->seen |= SEEN_MEM;
  898. EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
  899. break;
  900. /*
  901. * BPF_JMP / CALL
  902. */
  903. case BPF_JMP | BPF_CALL:
  904. {
  905. /*
  906. * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
  907. */
  908. const u64 func = (u64)__bpf_call_base + imm;
  909. REG_SET_SEEN(BPF_REG_5);
  910. jit->seen |= SEEN_FUNC;
  911. /* lg %w1,<d(imm)>(%l) */
  912. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
  913. EMIT_CONST_U64(func));
  914. /* basr %r14,%w1 */
  915. EMIT2(0x0d00, REG_14, REG_W1);
  916. /* lgr %b0,%r2: load return value into %b0 */
  917. EMIT4(0xb9040000, BPF_REG_0, REG_2);
  918. if (bpf_helper_changes_skb_data((void *)func)) {
  919. jit->seen |= SEEN_SKB_CHANGE;
  920. /* lg %b1,ST_OFF_SKBP(%r15) */
  921. EMIT6_DISP_LH(0xe3000000, 0x0004, BPF_REG_1, REG_0,
  922. REG_15, STK_OFF_SKBP);
  923. emit_load_skb_data_hlen(jit);
  924. }
  925. break;
  926. }
  927. case BPF_JMP | BPF_CALL | BPF_X:
  928. /*
  929. * Implicit input:
  930. * B1: pointer to ctx
  931. * B2: pointer to bpf_array
  932. * B3: index in bpf_array
  933. */
  934. jit->seen |= SEEN_TAIL_CALL;
  935. /*
  936. * if (index >= array->map.max_entries)
  937. * goto out;
  938. */
  939. /* llgf %w1,map.max_entries(%b2) */
  940. EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
  941. offsetof(struct bpf_array, map.max_entries));
  942. /* clgrj %b3,%w1,0xa,label0: if %b3 >= %w1 goto out */
  943. EMIT6_PCREL_LABEL(0xec000000, 0x0065, BPF_REG_3,
  944. REG_W1, 0, 0xa);
  945. /*
  946. * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
  947. * goto out;
  948. */
  949. if (jit->seen & SEEN_STACK)
  950. off = STK_OFF_TCCNT + STK_OFF;
  951. else
  952. off = STK_OFF_TCCNT;
  953. /* lhi %w0,1 */
  954. EMIT4_IMM(0xa7080000, REG_W0, 1);
  955. /* laal %w1,%w0,off(%r15) */
  956. EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
  957. /* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
  958. EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
  959. MAX_TAIL_CALL_CNT, 0, 0x2);
  960. /*
  961. * prog = array->ptrs[index];
  962. * if (prog == NULL)
  963. * goto out;
  964. */
  965. /* sllg %r1,%b3,3: %r1 = index * 8 */
  966. EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, BPF_REG_3, REG_0, 3);
  967. /* lg %r1,prog(%b2,%r1) */
  968. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
  969. REG_1, offsetof(struct bpf_array, ptrs));
  970. /* clgij %r1,0,0x8,label0 */
  971. EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
  972. /*
  973. * Restore registers before calling function
  974. */
  975. save_restore_regs(jit, REGS_RESTORE);
  976. /*
  977. * goto *(prog->bpf_func + tail_call_start);
  978. */
  979. /* lg %r1,bpf_func(%r1) */
  980. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
  981. offsetof(struct bpf_prog, bpf_func));
  982. /* bc 0xf,tail_call_start(%r1) */
  983. _EMIT4(0x47f01000 + jit->tail_call_start);
  984. /* out: */
  985. jit->labels[0] = jit->prg;
  986. break;
  987. case BPF_JMP | BPF_EXIT: /* return b0 */
  988. last = (i == fp->len - 1) ? 1 : 0;
  989. if (last && !(jit->seen & SEEN_RET0))
  990. break;
  991. /* j <exit> */
  992. EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
  993. break;
  994. /*
  995. * Branch relative (number of skipped instructions) to offset on
  996. * condition.
  997. *
  998. * Condition code to mask mapping:
  999. *
  1000. * CC | Description | Mask
  1001. * ------------------------------
  1002. * 0 | Operands equal | 8
  1003. * 1 | First operand low | 4
  1004. * 2 | First operand high | 2
  1005. * 3 | Unused | 1
  1006. *
  1007. * For s390x relative branches: ip = ip + off_bytes
  1008. * For BPF relative branches: insn = insn + off_insns + 1
  1009. *
  1010. * For example for s390x with offset 0 we jump to the branch
  1011. * instruction itself (loop) and for BPF with offset 0 we
  1012. * branch to the instruction behind the branch.
  1013. */
  1014. case BPF_JMP | BPF_JA: /* if (true) */
  1015. mask = 0xf000; /* j */
  1016. goto branch_oc;
  1017. case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
  1018. mask = 0x2000; /* jh */
  1019. goto branch_ks;
  1020. case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
  1021. mask = 0xa000; /* jhe */
  1022. goto branch_ks;
  1023. case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
  1024. mask = 0x2000; /* jh */
  1025. goto branch_ku;
  1026. case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
  1027. mask = 0xa000; /* jhe */
  1028. goto branch_ku;
  1029. case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
  1030. mask = 0x7000; /* jne */
  1031. goto branch_ku;
  1032. case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
  1033. mask = 0x8000; /* je */
  1034. goto branch_ku;
  1035. case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
  1036. mask = 0x7000; /* jnz */
  1037. /* lgfi %w1,imm (load sign extend imm) */
  1038. EMIT6_IMM(0xc0010000, REG_W1, imm);
  1039. /* ngr %w1,%dst */
  1040. EMIT4(0xb9800000, REG_W1, dst_reg);
  1041. goto branch_oc;
  1042. case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
  1043. mask = 0x2000; /* jh */
  1044. goto branch_xs;
  1045. case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
  1046. mask = 0xa000; /* jhe */
  1047. goto branch_xs;
  1048. case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
  1049. mask = 0x2000; /* jh */
  1050. goto branch_xu;
  1051. case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
  1052. mask = 0xa000; /* jhe */
  1053. goto branch_xu;
  1054. case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
  1055. mask = 0x7000; /* jne */
  1056. goto branch_xu;
  1057. case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
  1058. mask = 0x8000; /* je */
  1059. goto branch_xu;
  1060. case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
  1061. mask = 0x7000; /* jnz */
  1062. /* ngrk %w1,%dst,%src */
  1063. EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
  1064. goto branch_oc;
  1065. branch_ks:
  1066. /* lgfi %w1,imm (load sign extend imm) */
  1067. EMIT6_IMM(0xc0010000, REG_W1, imm);
  1068. /* cgrj %dst,%w1,mask,off */
  1069. EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
  1070. break;
  1071. branch_ku:
  1072. /* lgfi %w1,imm (load sign extend imm) */
  1073. EMIT6_IMM(0xc0010000, REG_W1, imm);
  1074. /* clgrj %dst,%w1,mask,off */
  1075. EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
  1076. break;
  1077. branch_xs:
  1078. /* cgrj %dst,%src,mask,off */
  1079. EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
  1080. break;
  1081. branch_xu:
  1082. /* clgrj %dst,%src,mask,off */
  1083. EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
  1084. break;
  1085. branch_oc:
  1086. /* brc mask,jmp_off (branch instruction needs 4 bytes) */
  1087. jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
  1088. EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
  1089. break;
  1090. /*
  1091. * BPF_LD
  1092. */
  1093. case BPF_LD | BPF_ABS | BPF_B: /* b0 = *(u8 *) (skb->data+imm) */
  1094. case BPF_LD | BPF_IND | BPF_B: /* b0 = *(u8 *) (skb->data+imm+src) */
  1095. if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
  1096. func_addr = __pa(sk_load_byte_pos);
  1097. else
  1098. func_addr = __pa(sk_load_byte);
  1099. goto call_fn;
  1100. case BPF_LD | BPF_ABS | BPF_H: /* b0 = *(u16 *) (skb->data+imm) */
  1101. case BPF_LD | BPF_IND | BPF_H: /* b0 = *(u16 *) (skb->data+imm+src) */
  1102. if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
  1103. func_addr = __pa(sk_load_half_pos);
  1104. else
  1105. func_addr = __pa(sk_load_half);
  1106. goto call_fn;
  1107. case BPF_LD | BPF_ABS | BPF_W: /* b0 = *(u32 *) (skb->data+imm) */
  1108. case BPF_LD | BPF_IND | BPF_W: /* b0 = *(u32 *) (skb->data+imm+src) */
  1109. if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
  1110. func_addr = __pa(sk_load_word_pos);
  1111. else
  1112. func_addr = __pa(sk_load_word);
  1113. goto call_fn;
  1114. call_fn:
  1115. jit->seen |= SEEN_SKB | SEEN_RET0 | SEEN_FUNC;
  1116. REG_SET_SEEN(REG_14); /* Return address of possible func call */
  1117. /*
  1118. * Implicit input:
  1119. * BPF_REG_6 (R7) : skb pointer
  1120. * REG_SKB_DATA (R12): skb data pointer
  1121. *
  1122. * Calculated input:
  1123. * BPF_REG_2 (R3) : offset of byte(s) to fetch in skb
  1124. * BPF_REG_5 (R6) : return address
  1125. *
  1126. * Output:
  1127. * BPF_REG_0 (R14): data read from skb
  1128. *
  1129. * Scratch registers (BPF_REG_1-5)
  1130. */
  1131. /* Call function: llilf %w1,func_addr */
  1132. EMIT6_IMM(0xc00f0000, REG_W1, func_addr);
  1133. /* Offset: lgfi %b2,imm */
  1134. EMIT6_IMM(0xc0010000, BPF_REG_2, imm);
  1135. if (BPF_MODE(insn->code) == BPF_IND)
  1136. /* agfr %b2,%src (%src is s32 here) */
  1137. EMIT4(0xb9180000, BPF_REG_2, src_reg);
  1138. /* basr %b5,%w1 (%b5 is call saved) */
  1139. EMIT2(0x0d00, BPF_REG_5, REG_W1);
  1140. /*
  1141. * Note: For fast access we jump directly after the
  1142. * jnz instruction from bpf_jit.S
  1143. */
  1144. /* jnz <ret0> */
  1145. EMIT4_PCREL(0xa7740000, jit->ret0_ip - jit->prg);
  1146. break;
  1147. default: /* too complex, give up */
  1148. pr_err("Unknown opcode %02x\n", insn->code);
  1149. return -1;
  1150. }
  1151. return insn_count;
  1152. }
  1153. /*
  1154. * Compile eBPF program into s390x code
  1155. */
  1156. static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
  1157. {
  1158. int i, insn_count;
  1159. jit->lit = jit->lit_start;
  1160. jit->prg = 0;
  1161. bpf_jit_prologue(jit);
  1162. for (i = 0; i < fp->len; i += insn_count) {
  1163. insn_count = bpf_jit_insn(jit, fp, i);
  1164. if (insn_count < 0)
  1165. return -1;
  1166. jit->addrs[i + 1] = jit->prg; /* Next instruction address */
  1167. }
  1168. bpf_jit_epilogue(jit);
  1169. jit->lit_start = jit->prg;
  1170. jit->size = jit->lit;
  1171. jit->size_prg = jit->prg;
  1172. return 0;
  1173. }
  1174. /*
  1175. * Classic BPF function stub. BPF programs will be converted into
  1176. * eBPF and then bpf_int_jit_compile() will be called.
  1177. */
  1178. void bpf_jit_compile(struct bpf_prog *fp)
  1179. {
  1180. }
  1181. /*
  1182. * Compile eBPF program "fp"
  1183. */
  1184. struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
  1185. {
  1186. struct bpf_binary_header *header;
  1187. struct bpf_jit jit;
  1188. int pass;
  1189. if (!bpf_jit_enable)
  1190. return fp;
  1191. memset(&jit, 0, sizeof(jit));
  1192. jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
  1193. if (jit.addrs == NULL)
  1194. return fp;
  1195. /*
  1196. * Three initial passes:
  1197. * - 1/2: Determine clobbered registers
  1198. * - 3: Calculate program size and addrs arrray
  1199. */
  1200. for (pass = 1; pass <= 3; pass++) {
  1201. if (bpf_jit_prog(&jit, fp))
  1202. goto free_addrs;
  1203. }
  1204. /*
  1205. * Final pass: Allocate and generate program
  1206. */
  1207. if (jit.size >= BPF_SIZE_MAX)
  1208. goto free_addrs;
  1209. header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
  1210. if (!header)
  1211. goto free_addrs;
  1212. if (bpf_jit_prog(&jit, fp))
  1213. goto free_addrs;
  1214. if (bpf_jit_enable > 1) {
  1215. bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
  1216. if (jit.prg_buf)
  1217. print_fn_code(jit.prg_buf, jit.size_prg);
  1218. }
  1219. if (jit.prg_buf) {
  1220. set_memory_ro((unsigned long)header, header->pages);
  1221. fp->bpf_func = (void *) jit.prg_buf;
  1222. fp->jited = 1;
  1223. }
  1224. free_addrs:
  1225. kfree(jit.addrs);
  1226. return fp;
  1227. }
  1228. /*
  1229. * Free eBPF program
  1230. */
  1231. void bpf_jit_free(struct bpf_prog *fp)
  1232. {
  1233. unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
  1234. struct bpf_binary_header *header = (void *)addr;
  1235. if (!fp->jited)
  1236. goto free_filter;
  1237. set_memory_rw(addr, header->pages);
  1238. bpf_jit_binary_free(header);
  1239. free_filter:
  1240. bpf_prog_unlock_free(fp);
  1241. }