kfd_chardev.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/device.h>
  23. #include <linux/export.h>
  24. #include <linux/err.h>
  25. #include <linux/fs.h>
  26. #include <linux/sched.h>
  27. #include <linux/slab.h>
  28. #include <linux/uaccess.h>
  29. #include <linux/compat.h>
  30. #include <uapi/linux/kfd_ioctl.h>
  31. #include <linux/time.h>
  32. #include <linux/mm.h>
  33. #include <linux/mman.h>
  34. #include <asm/processor.h>
  35. #include "kfd_priv.h"
  36. #include "kfd_device_queue_manager.h"
  37. #include "kfd_dbgmgr.h"
  38. static long kfd_ioctl(struct file *, unsigned int, unsigned long);
  39. static int kfd_open(struct inode *, struct file *);
  40. static int kfd_mmap(struct file *, struct vm_area_struct *);
  41. static const char kfd_dev_name[] = "kfd";
  42. static const struct file_operations kfd_fops = {
  43. .owner = THIS_MODULE,
  44. .unlocked_ioctl = kfd_ioctl,
  45. .compat_ioctl = kfd_ioctl,
  46. .open = kfd_open,
  47. .mmap = kfd_mmap,
  48. };
  49. static int kfd_char_dev_major = -1;
  50. static struct class *kfd_class;
  51. struct device *kfd_device;
  52. int kfd_chardev_init(void)
  53. {
  54. int err = 0;
  55. kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
  56. err = kfd_char_dev_major;
  57. if (err < 0)
  58. goto err_register_chrdev;
  59. kfd_class = class_create(THIS_MODULE, kfd_dev_name);
  60. err = PTR_ERR(kfd_class);
  61. if (IS_ERR(kfd_class))
  62. goto err_class_create;
  63. kfd_device = device_create(kfd_class, NULL,
  64. MKDEV(kfd_char_dev_major, 0),
  65. NULL, kfd_dev_name);
  66. err = PTR_ERR(kfd_device);
  67. if (IS_ERR(kfd_device))
  68. goto err_device_create;
  69. return 0;
  70. err_device_create:
  71. class_destroy(kfd_class);
  72. err_class_create:
  73. unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
  74. err_register_chrdev:
  75. return err;
  76. }
  77. void kfd_chardev_exit(void)
  78. {
  79. device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
  80. class_destroy(kfd_class);
  81. unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
  82. }
  83. struct device *kfd_chardev(void)
  84. {
  85. return kfd_device;
  86. }
  87. static int kfd_open(struct inode *inode, struct file *filep)
  88. {
  89. struct kfd_process *process;
  90. bool is_32bit_user_mode;
  91. if (iminor(inode) != 0)
  92. return -ENODEV;
  93. is_32bit_user_mode = in_compat_syscall();
  94. if (is_32bit_user_mode) {
  95. dev_warn(kfd_device,
  96. "Process %d (32-bit) failed to open /dev/kfd\n"
  97. "32-bit processes are not supported by amdkfd\n",
  98. current->pid);
  99. return -EPERM;
  100. }
  101. process = kfd_create_process(filep);
  102. if (IS_ERR(process))
  103. return PTR_ERR(process);
  104. dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
  105. process->pasid, process->is_32bit_user_mode);
  106. return 0;
  107. }
  108. static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
  109. void *data)
  110. {
  111. struct kfd_ioctl_get_version_args *args = data;
  112. args->major_version = KFD_IOCTL_MAJOR_VERSION;
  113. args->minor_version = KFD_IOCTL_MINOR_VERSION;
  114. return 0;
  115. }
  116. static int set_queue_properties_from_user(struct queue_properties *q_properties,
  117. struct kfd_ioctl_create_queue_args *args)
  118. {
  119. if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
  120. pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
  121. return -EINVAL;
  122. }
  123. if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
  124. pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
  125. return -EINVAL;
  126. }
  127. if ((args->ring_base_address) &&
  128. (!access_ok(VERIFY_WRITE,
  129. (const void __user *) args->ring_base_address,
  130. sizeof(uint64_t)))) {
  131. pr_err("Can't access ring base address\n");
  132. return -EFAULT;
  133. }
  134. if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
  135. pr_err("Ring size must be a power of 2 or 0\n");
  136. return -EINVAL;
  137. }
  138. if (!access_ok(VERIFY_WRITE,
  139. (const void __user *) args->read_pointer_address,
  140. sizeof(uint32_t))) {
  141. pr_err("Can't access read pointer\n");
  142. return -EFAULT;
  143. }
  144. if (!access_ok(VERIFY_WRITE,
  145. (const void __user *) args->write_pointer_address,
  146. sizeof(uint32_t))) {
  147. pr_err("Can't access write pointer\n");
  148. return -EFAULT;
  149. }
  150. if (args->eop_buffer_address &&
  151. !access_ok(VERIFY_WRITE,
  152. (const void __user *) args->eop_buffer_address,
  153. sizeof(uint32_t))) {
  154. pr_debug("Can't access eop buffer");
  155. return -EFAULT;
  156. }
  157. if (args->ctx_save_restore_address &&
  158. !access_ok(VERIFY_WRITE,
  159. (const void __user *) args->ctx_save_restore_address,
  160. sizeof(uint32_t))) {
  161. pr_debug("Can't access ctx save restore buffer");
  162. return -EFAULT;
  163. }
  164. q_properties->is_interop = false;
  165. q_properties->queue_percent = args->queue_percentage;
  166. q_properties->priority = args->queue_priority;
  167. q_properties->queue_address = args->ring_base_address;
  168. q_properties->queue_size = args->ring_size;
  169. q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
  170. q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
  171. q_properties->eop_ring_buffer_address = args->eop_buffer_address;
  172. q_properties->eop_ring_buffer_size = args->eop_buffer_size;
  173. q_properties->ctx_save_restore_area_address =
  174. args->ctx_save_restore_address;
  175. q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
  176. q_properties->ctl_stack_size = args->ctl_stack_size;
  177. if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
  178. args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
  179. q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
  180. else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
  181. q_properties->type = KFD_QUEUE_TYPE_SDMA;
  182. else
  183. return -ENOTSUPP;
  184. if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
  185. q_properties->format = KFD_QUEUE_FORMAT_AQL;
  186. else
  187. q_properties->format = KFD_QUEUE_FORMAT_PM4;
  188. pr_debug("Queue Percentage: %d, %d\n",
  189. q_properties->queue_percent, args->queue_percentage);
  190. pr_debug("Queue Priority: %d, %d\n",
  191. q_properties->priority, args->queue_priority);
  192. pr_debug("Queue Address: 0x%llX, 0x%llX\n",
  193. q_properties->queue_address, args->ring_base_address);
  194. pr_debug("Queue Size: 0x%llX, %u\n",
  195. q_properties->queue_size, args->ring_size);
  196. pr_debug("Queue r/w Pointers: %p, %p\n",
  197. q_properties->read_ptr,
  198. q_properties->write_ptr);
  199. pr_debug("Queue Format: %d\n", q_properties->format);
  200. pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
  201. pr_debug("Queue CTX save area: 0x%llX\n",
  202. q_properties->ctx_save_restore_area_address);
  203. return 0;
  204. }
  205. static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
  206. void *data)
  207. {
  208. struct kfd_ioctl_create_queue_args *args = data;
  209. struct kfd_dev *dev;
  210. int err = 0;
  211. unsigned int queue_id;
  212. struct kfd_process_device *pdd;
  213. struct queue_properties q_properties;
  214. memset(&q_properties, 0, sizeof(struct queue_properties));
  215. pr_debug("Creating queue ioctl\n");
  216. err = set_queue_properties_from_user(&q_properties, args);
  217. if (err)
  218. return err;
  219. pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
  220. dev = kfd_device_by_id(args->gpu_id);
  221. if (!dev) {
  222. pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
  223. return -EINVAL;
  224. }
  225. mutex_lock(&p->mutex);
  226. pdd = kfd_bind_process_to_device(dev, p);
  227. if (IS_ERR(pdd)) {
  228. err = -ESRCH;
  229. goto err_bind_process;
  230. }
  231. pr_debug("Creating queue for PASID %d on gpu 0x%x\n",
  232. p->pasid,
  233. dev->id);
  234. err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id);
  235. if (err != 0)
  236. goto err_create_queue;
  237. args->queue_id = queue_id;
  238. /* Return gpu_id as doorbell offset for mmap usage */
  239. args->doorbell_offset = (KFD_MMAP_DOORBELL_MASK | args->gpu_id);
  240. args->doorbell_offset <<= PAGE_SHIFT;
  241. mutex_unlock(&p->mutex);
  242. pr_debug("Queue id %d was created successfully\n", args->queue_id);
  243. pr_debug("Ring buffer address == 0x%016llX\n",
  244. args->ring_base_address);
  245. pr_debug("Read ptr address == 0x%016llX\n",
  246. args->read_pointer_address);
  247. pr_debug("Write ptr address == 0x%016llX\n",
  248. args->write_pointer_address);
  249. return 0;
  250. err_create_queue:
  251. err_bind_process:
  252. mutex_unlock(&p->mutex);
  253. return err;
  254. }
  255. static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
  256. void *data)
  257. {
  258. int retval;
  259. struct kfd_ioctl_destroy_queue_args *args = data;
  260. pr_debug("Destroying queue id %d for pasid %d\n",
  261. args->queue_id,
  262. p->pasid);
  263. mutex_lock(&p->mutex);
  264. retval = pqm_destroy_queue(&p->pqm, args->queue_id);
  265. mutex_unlock(&p->mutex);
  266. return retval;
  267. }
  268. static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
  269. void *data)
  270. {
  271. int retval;
  272. struct kfd_ioctl_update_queue_args *args = data;
  273. struct queue_properties properties;
  274. if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
  275. pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
  276. return -EINVAL;
  277. }
  278. if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
  279. pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
  280. return -EINVAL;
  281. }
  282. if ((args->ring_base_address) &&
  283. (!access_ok(VERIFY_WRITE,
  284. (const void __user *) args->ring_base_address,
  285. sizeof(uint64_t)))) {
  286. pr_err("Can't access ring base address\n");
  287. return -EFAULT;
  288. }
  289. if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
  290. pr_err("Ring size must be a power of 2 or 0\n");
  291. return -EINVAL;
  292. }
  293. properties.queue_address = args->ring_base_address;
  294. properties.queue_size = args->ring_size;
  295. properties.queue_percent = args->queue_percentage;
  296. properties.priority = args->queue_priority;
  297. pr_debug("Updating queue id %d for pasid %d\n",
  298. args->queue_id, p->pasid);
  299. mutex_lock(&p->mutex);
  300. retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
  301. mutex_unlock(&p->mutex);
  302. return retval;
  303. }
  304. static int kfd_ioctl_set_memory_policy(struct file *filep,
  305. struct kfd_process *p, void *data)
  306. {
  307. struct kfd_ioctl_set_memory_policy_args *args = data;
  308. struct kfd_dev *dev;
  309. int err = 0;
  310. struct kfd_process_device *pdd;
  311. enum cache_policy default_policy, alternate_policy;
  312. if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
  313. && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
  314. return -EINVAL;
  315. }
  316. if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
  317. && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
  318. return -EINVAL;
  319. }
  320. dev = kfd_device_by_id(args->gpu_id);
  321. if (!dev)
  322. return -EINVAL;
  323. mutex_lock(&p->mutex);
  324. pdd = kfd_bind_process_to_device(dev, p);
  325. if (IS_ERR(pdd)) {
  326. err = -ESRCH;
  327. goto out;
  328. }
  329. default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
  330. ? cache_policy_coherent : cache_policy_noncoherent;
  331. alternate_policy =
  332. (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
  333. ? cache_policy_coherent : cache_policy_noncoherent;
  334. if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
  335. &pdd->qpd,
  336. default_policy,
  337. alternate_policy,
  338. (void __user *)args->alternate_aperture_base,
  339. args->alternate_aperture_size))
  340. err = -EINVAL;
  341. out:
  342. mutex_unlock(&p->mutex);
  343. return err;
  344. }
  345. static int kfd_ioctl_set_trap_handler(struct file *filep,
  346. struct kfd_process *p, void *data)
  347. {
  348. struct kfd_ioctl_set_trap_handler_args *args = data;
  349. struct kfd_dev *dev;
  350. int err = 0;
  351. struct kfd_process_device *pdd;
  352. dev = kfd_device_by_id(args->gpu_id);
  353. if (dev == NULL)
  354. return -EINVAL;
  355. mutex_lock(&p->mutex);
  356. pdd = kfd_bind_process_to_device(dev, p);
  357. if (IS_ERR(pdd)) {
  358. err = -ESRCH;
  359. goto out;
  360. }
  361. if (dev->dqm->ops.set_trap_handler(dev->dqm,
  362. &pdd->qpd,
  363. args->tba_addr,
  364. args->tma_addr))
  365. err = -EINVAL;
  366. out:
  367. mutex_unlock(&p->mutex);
  368. return err;
  369. }
  370. static int kfd_ioctl_dbg_register(struct file *filep,
  371. struct kfd_process *p, void *data)
  372. {
  373. struct kfd_ioctl_dbg_register_args *args = data;
  374. struct kfd_dev *dev;
  375. struct kfd_dbgmgr *dbgmgr_ptr;
  376. struct kfd_process_device *pdd;
  377. bool create_ok;
  378. long status = 0;
  379. dev = kfd_device_by_id(args->gpu_id);
  380. if (!dev)
  381. return -EINVAL;
  382. if (dev->device_info->asic_family == CHIP_CARRIZO) {
  383. pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
  384. return -EINVAL;
  385. }
  386. mutex_lock(&p->mutex);
  387. mutex_lock(kfd_get_dbgmgr_mutex());
  388. /*
  389. * make sure that we have pdd, if this the first queue created for
  390. * this process
  391. */
  392. pdd = kfd_bind_process_to_device(dev, p);
  393. if (IS_ERR(pdd)) {
  394. status = PTR_ERR(pdd);
  395. goto out;
  396. }
  397. if (!dev->dbgmgr) {
  398. /* In case of a legal call, we have no dbgmgr yet */
  399. create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
  400. if (create_ok) {
  401. status = kfd_dbgmgr_register(dbgmgr_ptr, p);
  402. if (status != 0)
  403. kfd_dbgmgr_destroy(dbgmgr_ptr);
  404. else
  405. dev->dbgmgr = dbgmgr_ptr;
  406. }
  407. } else {
  408. pr_debug("debugger already registered\n");
  409. status = -EINVAL;
  410. }
  411. out:
  412. mutex_unlock(kfd_get_dbgmgr_mutex());
  413. mutex_unlock(&p->mutex);
  414. return status;
  415. }
  416. static int kfd_ioctl_dbg_unregister(struct file *filep,
  417. struct kfd_process *p, void *data)
  418. {
  419. struct kfd_ioctl_dbg_unregister_args *args = data;
  420. struct kfd_dev *dev;
  421. long status;
  422. dev = kfd_device_by_id(args->gpu_id);
  423. if (!dev || !dev->dbgmgr)
  424. return -EINVAL;
  425. if (dev->device_info->asic_family == CHIP_CARRIZO) {
  426. pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
  427. return -EINVAL;
  428. }
  429. mutex_lock(kfd_get_dbgmgr_mutex());
  430. status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
  431. if (!status) {
  432. kfd_dbgmgr_destroy(dev->dbgmgr);
  433. dev->dbgmgr = NULL;
  434. }
  435. mutex_unlock(kfd_get_dbgmgr_mutex());
  436. return status;
  437. }
  438. /*
  439. * Parse and generate variable size data structure for address watch.
  440. * Total size of the buffer and # watch points is limited in order
  441. * to prevent kernel abuse. (no bearing to the much smaller HW limitation
  442. * which is enforced by dbgdev module)
  443. * please also note that the watch address itself are not "copied from user",
  444. * since it be set into the HW in user mode values.
  445. *
  446. */
  447. static int kfd_ioctl_dbg_address_watch(struct file *filep,
  448. struct kfd_process *p, void *data)
  449. {
  450. struct kfd_ioctl_dbg_address_watch_args *args = data;
  451. struct kfd_dev *dev;
  452. struct dbg_address_watch_info aw_info;
  453. unsigned char *args_buff;
  454. long status;
  455. void __user *cmd_from_user;
  456. uint64_t watch_mask_value = 0;
  457. unsigned int args_idx = 0;
  458. memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
  459. dev = kfd_device_by_id(args->gpu_id);
  460. if (!dev)
  461. return -EINVAL;
  462. if (dev->device_info->asic_family == CHIP_CARRIZO) {
  463. pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
  464. return -EINVAL;
  465. }
  466. cmd_from_user = (void __user *) args->content_ptr;
  467. /* Validate arguments */
  468. if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
  469. (args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
  470. (cmd_from_user == NULL))
  471. return -EINVAL;
  472. /* this is the actual buffer to work with */
  473. args_buff = memdup_user(cmd_from_user,
  474. args->buf_size_in_bytes - sizeof(*args));
  475. if (IS_ERR(args_buff))
  476. return PTR_ERR(args_buff);
  477. aw_info.process = p;
  478. aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
  479. args_idx += sizeof(aw_info.num_watch_points);
  480. aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
  481. args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
  482. /*
  483. * set watch address base pointer to point on the array base
  484. * within args_buff
  485. */
  486. aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
  487. /* skip over the addresses buffer */
  488. args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
  489. if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
  490. status = -EINVAL;
  491. goto out;
  492. }
  493. watch_mask_value = (uint64_t) args_buff[args_idx];
  494. if (watch_mask_value > 0) {
  495. /*
  496. * There is an array of masks.
  497. * set watch mask base pointer to point on the array base
  498. * within args_buff
  499. */
  500. aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
  501. /* skip over the masks buffer */
  502. args_idx += sizeof(aw_info.watch_mask) *
  503. aw_info.num_watch_points;
  504. } else {
  505. /* just the NULL mask, set to NULL and skip over it */
  506. aw_info.watch_mask = NULL;
  507. args_idx += sizeof(aw_info.watch_mask);
  508. }
  509. if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
  510. status = -EINVAL;
  511. goto out;
  512. }
  513. /* Currently HSA Event is not supported for DBG */
  514. aw_info.watch_event = NULL;
  515. mutex_lock(kfd_get_dbgmgr_mutex());
  516. status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
  517. mutex_unlock(kfd_get_dbgmgr_mutex());
  518. out:
  519. kfree(args_buff);
  520. return status;
  521. }
  522. /* Parse and generate fixed size data structure for wave control */
  523. static int kfd_ioctl_dbg_wave_control(struct file *filep,
  524. struct kfd_process *p, void *data)
  525. {
  526. struct kfd_ioctl_dbg_wave_control_args *args = data;
  527. struct kfd_dev *dev;
  528. struct dbg_wave_control_info wac_info;
  529. unsigned char *args_buff;
  530. uint32_t computed_buff_size;
  531. long status;
  532. void __user *cmd_from_user;
  533. unsigned int args_idx = 0;
  534. memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
  535. /* we use compact form, independent of the packing attribute value */
  536. computed_buff_size = sizeof(*args) +
  537. sizeof(wac_info.mode) +
  538. sizeof(wac_info.operand) +
  539. sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
  540. sizeof(wac_info.dbgWave_msg.MemoryVA) +
  541. sizeof(wac_info.trapId);
  542. dev = kfd_device_by_id(args->gpu_id);
  543. if (!dev)
  544. return -EINVAL;
  545. if (dev->device_info->asic_family == CHIP_CARRIZO) {
  546. pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
  547. return -EINVAL;
  548. }
  549. /* input size must match the computed "compact" size */
  550. if (args->buf_size_in_bytes != computed_buff_size) {
  551. pr_debug("size mismatch, computed : actual %u : %u\n",
  552. args->buf_size_in_bytes, computed_buff_size);
  553. return -EINVAL;
  554. }
  555. cmd_from_user = (void __user *) args->content_ptr;
  556. if (cmd_from_user == NULL)
  557. return -EINVAL;
  558. /* copy the entire buffer from user */
  559. args_buff = memdup_user(cmd_from_user,
  560. args->buf_size_in_bytes - sizeof(*args));
  561. if (IS_ERR(args_buff))
  562. return PTR_ERR(args_buff);
  563. /* move ptr to the start of the "pay-load" area */
  564. wac_info.process = p;
  565. wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
  566. args_idx += sizeof(wac_info.operand);
  567. wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
  568. args_idx += sizeof(wac_info.mode);
  569. wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
  570. args_idx += sizeof(wac_info.trapId);
  571. wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
  572. *((uint32_t *)(&args_buff[args_idx]));
  573. wac_info.dbgWave_msg.MemoryVA = NULL;
  574. mutex_lock(kfd_get_dbgmgr_mutex());
  575. pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
  576. wac_info.process, wac_info.operand,
  577. wac_info.mode, wac_info.trapId,
  578. wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
  579. status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
  580. pr_debug("Returned status of dbg manager is %ld\n", status);
  581. mutex_unlock(kfd_get_dbgmgr_mutex());
  582. kfree(args_buff);
  583. return status;
  584. }
  585. static int kfd_ioctl_get_clock_counters(struct file *filep,
  586. struct kfd_process *p, void *data)
  587. {
  588. struct kfd_ioctl_get_clock_counters_args *args = data;
  589. struct kfd_dev *dev;
  590. struct timespec64 time;
  591. dev = kfd_device_by_id(args->gpu_id);
  592. if (dev == NULL)
  593. return -EINVAL;
  594. /* Reading GPU clock counter from KGD */
  595. args->gpu_clock_counter =
  596. dev->kfd2kgd->get_gpu_clock_counter(dev->kgd);
  597. /* No access to rdtsc. Using raw monotonic time */
  598. getrawmonotonic64(&time);
  599. args->cpu_clock_counter = (uint64_t)timespec64_to_ns(&time);
  600. get_monotonic_boottime64(&time);
  601. args->system_clock_counter = (uint64_t)timespec64_to_ns(&time);
  602. /* Since the counter is in nano-seconds we use 1GHz frequency */
  603. args->system_clock_freq = 1000000000;
  604. return 0;
  605. }
  606. static int kfd_ioctl_get_process_apertures(struct file *filp,
  607. struct kfd_process *p, void *data)
  608. {
  609. struct kfd_ioctl_get_process_apertures_args *args = data;
  610. struct kfd_process_device_apertures *pAperture;
  611. struct kfd_process_device *pdd;
  612. dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
  613. args->num_of_nodes = 0;
  614. mutex_lock(&p->mutex);
  615. /*if the process-device list isn't empty*/
  616. if (kfd_has_process_device_data(p)) {
  617. /* Run over all pdd of the process */
  618. pdd = kfd_get_first_process_device_data(p);
  619. do {
  620. pAperture =
  621. &args->process_apertures[args->num_of_nodes];
  622. pAperture->gpu_id = pdd->dev->id;
  623. pAperture->lds_base = pdd->lds_base;
  624. pAperture->lds_limit = pdd->lds_limit;
  625. pAperture->gpuvm_base = pdd->gpuvm_base;
  626. pAperture->gpuvm_limit = pdd->gpuvm_limit;
  627. pAperture->scratch_base = pdd->scratch_base;
  628. pAperture->scratch_limit = pdd->scratch_limit;
  629. dev_dbg(kfd_device,
  630. "node id %u\n", args->num_of_nodes);
  631. dev_dbg(kfd_device,
  632. "gpu id %u\n", pdd->dev->id);
  633. dev_dbg(kfd_device,
  634. "lds_base %llX\n", pdd->lds_base);
  635. dev_dbg(kfd_device,
  636. "lds_limit %llX\n", pdd->lds_limit);
  637. dev_dbg(kfd_device,
  638. "gpuvm_base %llX\n", pdd->gpuvm_base);
  639. dev_dbg(kfd_device,
  640. "gpuvm_limit %llX\n", pdd->gpuvm_limit);
  641. dev_dbg(kfd_device,
  642. "scratch_base %llX\n", pdd->scratch_base);
  643. dev_dbg(kfd_device,
  644. "scratch_limit %llX\n", pdd->scratch_limit);
  645. args->num_of_nodes++;
  646. pdd = kfd_get_next_process_device_data(p, pdd);
  647. } while (pdd && (args->num_of_nodes < NUM_OF_SUPPORTED_GPUS));
  648. }
  649. mutex_unlock(&p->mutex);
  650. return 0;
  651. }
  652. static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
  653. void *data)
  654. {
  655. struct kfd_ioctl_create_event_args *args = data;
  656. int err;
  657. err = kfd_event_create(filp, p, args->event_type,
  658. args->auto_reset != 0, args->node_id,
  659. &args->event_id, &args->event_trigger_data,
  660. &args->event_page_offset,
  661. &args->event_slot_index);
  662. return err;
  663. }
  664. static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
  665. void *data)
  666. {
  667. struct kfd_ioctl_destroy_event_args *args = data;
  668. return kfd_event_destroy(p, args->event_id);
  669. }
  670. static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
  671. void *data)
  672. {
  673. struct kfd_ioctl_set_event_args *args = data;
  674. return kfd_set_event(p, args->event_id);
  675. }
  676. static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
  677. void *data)
  678. {
  679. struct kfd_ioctl_reset_event_args *args = data;
  680. return kfd_reset_event(p, args->event_id);
  681. }
  682. static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
  683. void *data)
  684. {
  685. struct kfd_ioctl_wait_events_args *args = data;
  686. int err;
  687. err = kfd_wait_on_events(p, args->num_events,
  688. (void __user *)args->events_ptr,
  689. (args->wait_for_all != 0),
  690. args->timeout, &args->wait_result);
  691. return err;
  692. }
  693. static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
  694. struct kfd_process *p, void *data)
  695. {
  696. struct kfd_ioctl_set_scratch_backing_va_args *args = data;
  697. struct kfd_process_device *pdd;
  698. struct kfd_dev *dev;
  699. long err;
  700. dev = kfd_device_by_id(args->gpu_id);
  701. if (!dev)
  702. return -EINVAL;
  703. mutex_lock(&p->mutex);
  704. pdd = kfd_bind_process_to_device(dev, p);
  705. if (IS_ERR(pdd)) {
  706. err = PTR_ERR(pdd);
  707. goto bind_process_to_device_fail;
  708. }
  709. pdd->qpd.sh_hidden_private_base = args->va_addr;
  710. mutex_unlock(&p->mutex);
  711. if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
  712. pdd->qpd.vmid != 0)
  713. dev->kfd2kgd->set_scratch_backing_va(
  714. dev->kgd, args->va_addr, pdd->qpd.vmid);
  715. return 0;
  716. bind_process_to_device_fail:
  717. mutex_unlock(&p->mutex);
  718. return err;
  719. }
  720. static int kfd_ioctl_get_tile_config(struct file *filep,
  721. struct kfd_process *p, void *data)
  722. {
  723. struct kfd_ioctl_get_tile_config_args *args = data;
  724. struct kfd_dev *dev;
  725. struct tile_config config;
  726. int err = 0;
  727. dev = kfd_device_by_id(args->gpu_id);
  728. if (!dev)
  729. return -EINVAL;
  730. dev->kfd2kgd->get_tile_config(dev->kgd, &config);
  731. args->gb_addr_config = config.gb_addr_config;
  732. args->num_banks = config.num_banks;
  733. args->num_ranks = config.num_ranks;
  734. if (args->num_tile_configs > config.num_tile_configs)
  735. args->num_tile_configs = config.num_tile_configs;
  736. err = copy_to_user((void __user *)args->tile_config_ptr,
  737. config.tile_config_ptr,
  738. args->num_tile_configs * sizeof(uint32_t));
  739. if (err) {
  740. args->num_tile_configs = 0;
  741. return -EFAULT;
  742. }
  743. if (args->num_macro_tile_configs > config.num_macro_tile_configs)
  744. args->num_macro_tile_configs =
  745. config.num_macro_tile_configs;
  746. err = copy_to_user((void __user *)args->macro_tile_config_ptr,
  747. config.macro_tile_config_ptr,
  748. args->num_macro_tile_configs * sizeof(uint32_t));
  749. if (err) {
  750. args->num_macro_tile_configs = 0;
  751. return -EFAULT;
  752. }
  753. return 0;
  754. }
  755. #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
  756. [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
  757. .cmd_drv = 0, .name = #ioctl}
  758. /** Ioctl table */
  759. static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
  760. AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
  761. kfd_ioctl_get_version, 0),
  762. AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
  763. kfd_ioctl_create_queue, 0),
  764. AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
  765. kfd_ioctl_destroy_queue, 0),
  766. AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
  767. kfd_ioctl_set_memory_policy, 0),
  768. AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
  769. kfd_ioctl_get_clock_counters, 0),
  770. AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
  771. kfd_ioctl_get_process_apertures, 0),
  772. AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
  773. kfd_ioctl_update_queue, 0),
  774. AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
  775. kfd_ioctl_create_event, 0),
  776. AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
  777. kfd_ioctl_destroy_event, 0),
  778. AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
  779. kfd_ioctl_set_event, 0),
  780. AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
  781. kfd_ioctl_reset_event, 0),
  782. AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
  783. kfd_ioctl_wait_events, 0),
  784. AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
  785. kfd_ioctl_dbg_register, 0),
  786. AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
  787. kfd_ioctl_dbg_unregister, 0),
  788. AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
  789. kfd_ioctl_dbg_address_watch, 0),
  790. AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
  791. kfd_ioctl_dbg_wave_control, 0),
  792. AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
  793. kfd_ioctl_set_scratch_backing_va, 0),
  794. AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
  795. kfd_ioctl_get_tile_config, 0),
  796. AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
  797. kfd_ioctl_set_trap_handler, 0),
  798. };
  799. #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
  800. static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
  801. {
  802. struct kfd_process *process;
  803. amdkfd_ioctl_t *func;
  804. const struct amdkfd_ioctl_desc *ioctl = NULL;
  805. unsigned int nr = _IOC_NR(cmd);
  806. char stack_kdata[128];
  807. char *kdata = NULL;
  808. unsigned int usize, asize;
  809. int retcode = -EINVAL;
  810. if (nr >= AMDKFD_CORE_IOCTL_COUNT)
  811. goto err_i1;
  812. if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
  813. u32 amdkfd_size;
  814. ioctl = &amdkfd_ioctls[nr];
  815. amdkfd_size = _IOC_SIZE(ioctl->cmd);
  816. usize = asize = _IOC_SIZE(cmd);
  817. if (amdkfd_size > asize)
  818. asize = amdkfd_size;
  819. cmd = ioctl->cmd;
  820. } else
  821. goto err_i1;
  822. dev_dbg(kfd_device, "ioctl cmd 0x%x (#%d), arg 0x%lx\n", cmd, nr, arg);
  823. process = kfd_get_process(current);
  824. if (IS_ERR(process)) {
  825. dev_dbg(kfd_device, "no process\n");
  826. goto err_i1;
  827. }
  828. /* Do not trust userspace, use our own definition */
  829. func = ioctl->func;
  830. if (unlikely(!func)) {
  831. dev_dbg(kfd_device, "no function\n");
  832. retcode = -EINVAL;
  833. goto err_i1;
  834. }
  835. if (cmd & (IOC_IN | IOC_OUT)) {
  836. if (asize <= sizeof(stack_kdata)) {
  837. kdata = stack_kdata;
  838. } else {
  839. kdata = kmalloc(asize, GFP_KERNEL);
  840. if (!kdata) {
  841. retcode = -ENOMEM;
  842. goto err_i1;
  843. }
  844. }
  845. if (asize > usize)
  846. memset(kdata + usize, 0, asize - usize);
  847. }
  848. if (cmd & IOC_IN) {
  849. if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
  850. retcode = -EFAULT;
  851. goto err_i1;
  852. }
  853. } else if (cmd & IOC_OUT) {
  854. memset(kdata, 0, usize);
  855. }
  856. retcode = func(filep, process, kdata);
  857. if (cmd & IOC_OUT)
  858. if (copy_to_user((void __user *)arg, kdata, usize) != 0)
  859. retcode = -EFAULT;
  860. err_i1:
  861. if (!ioctl)
  862. dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
  863. task_pid_nr(current), cmd, nr);
  864. if (kdata != stack_kdata)
  865. kfree(kdata);
  866. if (retcode)
  867. dev_dbg(kfd_device, "ret = %d\n", retcode);
  868. return retcode;
  869. }
  870. static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
  871. {
  872. struct kfd_process *process;
  873. process = kfd_get_process(current);
  874. if (IS_ERR(process))
  875. return PTR_ERR(process);
  876. if ((vma->vm_pgoff & KFD_MMAP_DOORBELL_MASK) ==
  877. KFD_MMAP_DOORBELL_MASK) {
  878. vma->vm_pgoff = vma->vm_pgoff ^ KFD_MMAP_DOORBELL_MASK;
  879. return kfd_doorbell_mmap(process, vma);
  880. } else if ((vma->vm_pgoff & KFD_MMAP_EVENTS_MASK) ==
  881. KFD_MMAP_EVENTS_MASK) {
  882. vma->vm_pgoff = vma->vm_pgoff ^ KFD_MMAP_EVENTS_MASK;
  883. return kfd_event_mmap(process, vma);
  884. } else if ((vma->vm_pgoff & KFD_MMAP_RESERVED_MEM_MASK) ==
  885. KFD_MMAP_RESERVED_MEM_MASK) {
  886. vma->vm_pgoff = vma->vm_pgoff ^ KFD_MMAP_RESERVED_MEM_MASK;
  887. return kfd_reserved_mem_mmap(process, vma);
  888. }
  889. return -EFAULT;
  890. }