gmc_v8_0.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include <drm/drmP.h>
  25. #include <drm/drm_cache.h>
  26. #include "amdgpu.h"
  27. #include "gmc_v8_0.h"
  28. #include "amdgpu_ucode.h"
  29. #include "gmc/gmc_8_1_d.h"
  30. #include "gmc/gmc_8_1_sh_mask.h"
  31. #include "bif/bif_5_0_d.h"
  32. #include "bif/bif_5_0_sh_mask.h"
  33. #include "oss/oss_3_0_d.h"
  34. #include "oss/oss_3_0_sh_mask.h"
  35. #include "dce/dce_10_0_d.h"
  36. #include "dce/dce_10_0_sh_mask.h"
  37. #include "vid.h"
  38. #include "vi.h"
  39. #include "amdgpu_atombios.h"
  40. static void gmc_v8_0_set_gmc_funcs(struct amdgpu_device *adev);
  41. static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev);
  42. static int gmc_v8_0_wait_for_idle(void *handle);
  43. MODULE_FIRMWARE("amdgpu/tonga_mc.bin");
  44. MODULE_FIRMWARE("amdgpu/polaris11_mc.bin");
  45. MODULE_FIRMWARE("amdgpu/polaris10_mc.bin");
  46. MODULE_FIRMWARE("amdgpu/polaris12_mc.bin");
  47. static const u32 golden_settings_tonga_a11[] =
  48. {
  49. mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
  50. mmMC_HUB_RDREQ_DMIF_LIMIT, 0x0000007f, 0x00000028,
  51. mmMC_HUB_WDP_UMC, 0x00007fb6, 0x00000991,
  52. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  53. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  54. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  55. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  56. };
  57. static const u32 tonga_mgcg_cgcg_init[] =
  58. {
  59. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  60. };
  61. static const u32 golden_settings_fiji_a10[] =
  62. {
  63. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  64. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  65. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  66. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  67. };
  68. static const u32 fiji_mgcg_cgcg_init[] =
  69. {
  70. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  71. };
  72. static const u32 golden_settings_polaris11_a11[] =
  73. {
  74. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  75. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  76. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  77. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
  78. };
  79. static const u32 golden_settings_polaris10_a11[] =
  80. {
  81. mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
  82. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  83. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  84. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  85. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
  86. };
  87. static const u32 cz_mgcg_cgcg_init[] =
  88. {
  89. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  90. };
  91. static const u32 stoney_mgcg_cgcg_init[] =
  92. {
  93. mmATC_MISC_CG, 0xffffffff, 0x000c0200,
  94. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  95. };
  96. static const u32 golden_settings_stoney_common[] =
  97. {
  98. mmMC_HUB_RDREQ_UVD, MC_HUB_RDREQ_UVD__PRESCALE_MASK, 0x00000004,
  99. mmMC_RD_GRP_OTH, MC_RD_GRP_OTH__UVD_MASK, 0x00600000
  100. };
  101. static void gmc_v8_0_init_golden_registers(struct amdgpu_device *adev)
  102. {
  103. switch (adev->asic_type) {
  104. case CHIP_FIJI:
  105. amdgpu_device_program_register_sequence(adev,
  106. fiji_mgcg_cgcg_init,
  107. ARRAY_SIZE(fiji_mgcg_cgcg_init));
  108. amdgpu_device_program_register_sequence(adev,
  109. golden_settings_fiji_a10,
  110. ARRAY_SIZE(golden_settings_fiji_a10));
  111. break;
  112. case CHIP_TONGA:
  113. amdgpu_device_program_register_sequence(adev,
  114. tonga_mgcg_cgcg_init,
  115. ARRAY_SIZE(tonga_mgcg_cgcg_init));
  116. amdgpu_device_program_register_sequence(adev,
  117. golden_settings_tonga_a11,
  118. ARRAY_SIZE(golden_settings_tonga_a11));
  119. break;
  120. case CHIP_POLARIS11:
  121. case CHIP_POLARIS12:
  122. amdgpu_device_program_register_sequence(adev,
  123. golden_settings_polaris11_a11,
  124. ARRAY_SIZE(golden_settings_polaris11_a11));
  125. break;
  126. case CHIP_POLARIS10:
  127. amdgpu_device_program_register_sequence(adev,
  128. golden_settings_polaris10_a11,
  129. ARRAY_SIZE(golden_settings_polaris10_a11));
  130. break;
  131. case CHIP_CARRIZO:
  132. amdgpu_device_program_register_sequence(adev,
  133. cz_mgcg_cgcg_init,
  134. ARRAY_SIZE(cz_mgcg_cgcg_init));
  135. break;
  136. case CHIP_STONEY:
  137. amdgpu_device_program_register_sequence(adev,
  138. stoney_mgcg_cgcg_init,
  139. ARRAY_SIZE(stoney_mgcg_cgcg_init));
  140. amdgpu_device_program_register_sequence(adev,
  141. golden_settings_stoney_common,
  142. ARRAY_SIZE(golden_settings_stoney_common));
  143. break;
  144. default:
  145. break;
  146. }
  147. }
  148. static void gmc_v8_0_mc_stop(struct amdgpu_device *adev)
  149. {
  150. u32 blackout;
  151. gmc_v8_0_wait_for_idle(adev);
  152. blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
  153. if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) {
  154. /* Block CPU access */
  155. WREG32(mmBIF_FB_EN, 0);
  156. /* blackout the MC */
  157. blackout = REG_SET_FIELD(blackout,
  158. MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 1);
  159. WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout);
  160. }
  161. /* wait for the MC to settle */
  162. udelay(100);
  163. }
  164. static void gmc_v8_0_mc_resume(struct amdgpu_device *adev)
  165. {
  166. u32 tmp;
  167. /* unblackout the MC */
  168. tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
  169. tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0);
  170. WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp);
  171. /* allow CPU access */
  172. tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1);
  173. tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1);
  174. WREG32(mmBIF_FB_EN, tmp);
  175. }
  176. /**
  177. * gmc_v8_0_init_microcode - load ucode images from disk
  178. *
  179. * @adev: amdgpu_device pointer
  180. *
  181. * Use the firmware interface to load the ucode images into
  182. * the driver (not loaded into hw).
  183. * Returns 0 on success, error on failure.
  184. */
  185. static int gmc_v8_0_init_microcode(struct amdgpu_device *adev)
  186. {
  187. const char *chip_name;
  188. char fw_name[30];
  189. int err;
  190. DRM_DEBUG("\n");
  191. switch (adev->asic_type) {
  192. case CHIP_TONGA:
  193. chip_name = "tonga";
  194. break;
  195. case CHIP_POLARIS11:
  196. chip_name = "polaris11";
  197. break;
  198. case CHIP_POLARIS10:
  199. chip_name = "polaris10";
  200. break;
  201. case CHIP_POLARIS12:
  202. chip_name = "polaris12";
  203. break;
  204. case CHIP_FIJI:
  205. case CHIP_CARRIZO:
  206. case CHIP_STONEY:
  207. return 0;
  208. default: BUG();
  209. }
  210. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name);
  211. err = request_firmware(&adev->gmc.fw, fw_name, adev->dev);
  212. if (err)
  213. goto out;
  214. err = amdgpu_ucode_validate(adev->gmc.fw);
  215. out:
  216. if (err) {
  217. pr_err("mc: Failed to load firmware \"%s\"\n", fw_name);
  218. release_firmware(adev->gmc.fw);
  219. adev->gmc.fw = NULL;
  220. }
  221. return err;
  222. }
  223. /**
  224. * gmc_v8_0_tonga_mc_load_microcode - load tonga MC ucode into the hw
  225. *
  226. * @adev: amdgpu_device pointer
  227. *
  228. * Load the GDDR MC ucode into the hw (CIK).
  229. * Returns 0 on success, error on failure.
  230. */
  231. static int gmc_v8_0_tonga_mc_load_microcode(struct amdgpu_device *adev)
  232. {
  233. const struct mc_firmware_header_v1_0 *hdr;
  234. const __le32 *fw_data = NULL;
  235. const __le32 *io_mc_regs = NULL;
  236. u32 running;
  237. int i, ucode_size, regs_size;
  238. /* Skip MC ucode loading on SR-IOV capable boards.
  239. * vbios does this for us in asic_init in that case.
  240. * Skip MC ucode loading on VF, because hypervisor will do that
  241. * for this adaptor.
  242. */
  243. if (amdgpu_sriov_bios(adev))
  244. return 0;
  245. if (!adev->gmc.fw)
  246. return -EINVAL;
  247. hdr = (const struct mc_firmware_header_v1_0 *)adev->gmc.fw->data;
  248. amdgpu_ucode_print_mc_hdr(&hdr->header);
  249. adev->gmc.fw_version = le32_to_cpu(hdr->header.ucode_version);
  250. regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
  251. io_mc_regs = (const __le32 *)
  252. (adev->gmc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
  253. ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  254. fw_data = (const __le32 *)
  255. (adev->gmc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  256. running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN);
  257. if (running == 0) {
  258. /* reset the engine and set to writable */
  259. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  260. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
  261. /* load mc io regs */
  262. for (i = 0; i < regs_size; i++) {
  263. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
  264. WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
  265. }
  266. /* load the MC ucode */
  267. for (i = 0; i < ucode_size; i++)
  268. WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
  269. /* put the engine back into the active state */
  270. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  271. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
  272. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
  273. /* wait for training to complete */
  274. for (i = 0; i < adev->usec_timeout; i++) {
  275. if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
  276. MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0))
  277. break;
  278. udelay(1);
  279. }
  280. for (i = 0; i < adev->usec_timeout; i++) {
  281. if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
  282. MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1))
  283. break;
  284. udelay(1);
  285. }
  286. }
  287. return 0;
  288. }
  289. static int gmc_v8_0_polaris_mc_load_microcode(struct amdgpu_device *adev)
  290. {
  291. const struct mc_firmware_header_v1_0 *hdr;
  292. const __le32 *fw_data = NULL;
  293. const __le32 *io_mc_regs = NULL;
  294. u32 data, vbios_version;
  295. int i, ucode_size, regs_size;
  296. /* Skip MC ucode loading on SR-IOV capable boards.
  297. * vbios does this for us in asic_init in that case.
  298. * Skip MC ucode loading on VF, because hypervisor will do that
  299. * for this adaptor.
  300. */
  301. if (amdgpu_sriov_bios(adev))
  302. return 0;
  303. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
  304. data = RREG32(mmMC_SEQ_IO_DEBUG_DATA);
  305. vbios_version = data & 0xf;
  306. if (vbios_version == 0)
  307. return 0;
  308. if (!adev->gmc.fw)
  309. return -EINVAL;
  310. hdr = (const struct mc_firmware_header_v1_0 *)adev->gmc.fw->data;
  311. amdgpu_ucode_print_mc_hdr(&hdr->header);
  312. adev->gmc.fw_version = le32_to_cpu(hdr->header.ucode_version);
  313. regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
  314. io_mc_regs = (const __le32 *)
  315. (adev->gmc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
  316. ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  317. fw_data = (const __le32 *)
  318. (adev->gmc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  319. data = RREG32(mmMC_SEQ_MISC0);
  320. data &= ~(0x40);
  321. WREG32(mmMC_SEQ_MISC0, data);
  322. /* load mc io regs */
  323. for (i = 0; i < regs_size; i++) {
  324. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
  325. WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
  326. }
  327. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  328. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
  329. /* load the MC ucode */
  330. for (i = 0; i < ucode_size; i++)
  331. WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
  332. /* put the engine back into the active state */
  333. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  334. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
  335. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
  336. /* wait for training to complete */
  337. for (i = 0; i < adev->usec_timeout; i++) {
  338. data = RREG32(mmMC_SEQ_MISC0);
  339. if (data & 0x80)
  340. break;
  341. udelay(1);
  342. }
  343. return 0;
  344. }
  345. static void gmc_v8_0_vram_gtt_location(struct amdgpu_device *adev,
  346. struct amdgpu_gmc *mc)
  347. {
  348. u64 base = 0;
  349. if (!amdgpu_sriov_vf(adev))
  350. base = RREG32(mmMC_VM_FB_LOCATION) & 0xFFFF;
  351. base <<= 24;
  352. amdgpu_device_vram_location(adev, &adev->gmc, base);
  353. amdgpu_device_gart_location(adev, mc);
  354. }
  355. /**
  356. * gmc_v8_0_mc_program - program the GPU memory controller
  357. *
  358. * @adev: amdgpu_device pointer
  359. *
  360. * Set the location of vram, gart, and AGP in the GPU's
  361. * physical address space (CIK).
  362. */
  363. static void gmc_v8_0_mc_program(struct amdgpu_device *adev)
  364. {
  365. u32 tmp;
  366. int i, j;
  367. /* Initialize HDP */
  368. for (i = 0, j = 0; i < 32; i++, j += 0x6) {
  369. WREG32((0xb05 + j), 0x00000000);
  370. WREG32((0xb06 + j), 0x00000000);
  371. WREG32((0xb07 + j), 0x00000000);
  372. WREG32((0xb08 + j), 0x00000000);
  373. WREG32((0xb09 + j), 0x00000000);
  374. }
  375. WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0);
  376. if (gmc_v8_0_wait_for_idle((void *)adev)) {
  377. dev_warn(adev->dev, "Wait for MC idle timedout !\n");
  378. }
  379. if (adev->mode_info.num_crtc) {
  380. /* Lockout access through VGA aperture*/
  381. tmp = RREG32(mmVGA_HDP_CONTROL);
  382. tmp = REG_SET_FIELD(tmp, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 1);
  383. WREG32(mmVGA_HDP_CONTROL, tmp);
  384. /* disable VGA render */
  385. tmp = RREG32(mmVGA_RENDER_CONTROL);
  386. tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 0);
  387. WREG32(mmVGA_RENDER_CONTROL, tmp);
  388. }
  389. /* Update configuration */
  390. WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR,
  391. adev->gmc.vram_start >> 12);
  392. WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR,
  393. adev->gmc.vram_end >> 12);
  394. WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
  395. adev->vram_scratch.gpu_addr >> 12);
  396. if (amdgpu_sriov_vf(adev)) {
  397. tmp = ((adev->gmc.vram_end >> 24) & 0xFFFF) << 16;
  398. tmp |= ((adev->gmc.vram_start >> 24) & 0xFFFF);
  399. WREG32(mmMC_VM_FB_LOCATION, tmp);
  400. /* XXX double check these! */
  401. WREG32(mmHDP_NONSURFACE_BASE, (adev->gmc.vram_start >> 8));
  402. WREG32(mmHDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
  403. WREG32(mmHDP_NONSURFACE_SIZE, 0x3FFFFFFF);
  404. }
  405. WREG32(mmMC_VM_AGP_BASE, 0);
  406. WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF);
  407. WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF);
  408. if (gmc_v8_0_wait_for_idle((void *)adev)) {
  409. dev_warn(adev->dev, "Wait for MC idle timedout !\n");
  410. }
  411. WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK);
  412. tmp = RREG32(mmHDP_MISC_CNTL);
  413. tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 0);
  414. WREG32(mmHDP_MISC_CNTL, tmp);
  415. tmp = RREG32(mmHDP_HOST_PATH_CNTL);
  416. WREG32(mmHDP_HOST_PATH_CNTL, tmp);
  417. }
  418. /**
  419. * gmc_v8_0_mc_init - initialize the memory controller driver params
  420. *
  421. * @adev: amdgpu_device pointer
  422. *
  423. * Look up the amount of vram, vram width, and decide how to place
  424. * vram and gart within the GPU's physical address space (CIK).
  425. * Returns 0 for success.
  426. */
  427. static int gmc_v8_0_mc_init(struct amdgpu_device *adev)
  428. {
  429. int r;
  430. adev->gmc.vram_width = amdgpu_atombios_get_vram_width(adev);
  431. if (!adev->gmc.vram_width) {
  432. u32 tmp;
  433. int chansize, numchan;
  434. /* Get VRAM informations */
  435. tmp = RREG32(mmMC_ARB_RAMCFG);
  436. if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) {
  437. chansize = 64;
  438. } else {
  439. chansize = 32;
  440. }
  441. tmp = RREG32(mmMC_SHARED_CHMAP);
  442. switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) {
  443. case 0:
  444. default:
  445. numchan = 1;
  446. break;
  447. case 1:
  448. numchan = 2;
  449. break;
  450. case 2:
  451. numchan = 4;
  452. break;
  453. case 3:
  454. numchan = 8;
  455. break;
  456. case 4:
  457. numchan = 3;
  458. break;
  459. case 5:
  460. numchan = 6;
  461. break;
  462. case 6:
  463. numchan = 10;
  464. break;
  465. case 7:
  466. numchan = 12;
  467. break;
  468. case 8:
  469. numchan = 16;
  470. break;
  471. }
  472. adev->gmc.vram_width = numchan * chansize;
  473. }
  474. /* size in MB on si */
  475. adev->gmc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
  476. adev->gmc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
  477. if (!(adev->flags & AMD_IS_APU)) {
  478. r = amdgpu_device_resize_fb_bar(adev);
  479. if (r)
  480. return r;
  481. }
  482. adev->gmc.aper_base = pci_resource_start(adev->pdev, 0);
  483. adev->gmc.aper_size = pci_resource_len(adev->pdev, 0);
  484. #ifdef CONFIG_X86_64
  485. if (adev->flags & AMD_IS_APU) {
  486. adev->gmc.aper_base = ((u64)RREG32(mmMC_VM_FB_OFFSET)) << 22;
  487. adev->gmc.aper_size = adev->gmc.real_vram_size;
  488. }
  489. #endif
  490. /* In case the PCI BAR is larger than the actual amount of vram */
  491. adev->gmc.visible_vram_size = adev->gmc.aper_size;
  492. if (adev->gmc.visible_vram_size > adev->gmc.real_vram_size)
  493. adev->gmc.visible_vram_size = adev->gmc.real_vram_size;
  494. /* set the gart size */
  495. if (amdgpu_gart_size == -1) {
  496. switch (adev->asic_type) {
  497. case CHIP_POLARIS11: /* all engines support GPUVM */
  498. case CHIP_POLARIS10: /* all engines support GPUVM */
  499. case CHIP_POLARIS12: /* all engines support GPUVM */
  500. default:
  501. adev->gmc.gart_size = 256ULL << 20;
  502. break;
  503. case CHIP_TONGA: /* UVD, VCE do not support GPUVM */
  504. case CHIP_FIJI: /* UVD, VCE do not support GPUVM */
  505. case CHIP_CARRIZO: /* UVD, VCE do not support GPUVM, DCE SG support */
  506. case CHIP_STONEY: /* UVD does not support GPUVM, DCE SG support */
  507. adev->gmc.gart_size = 1024ULL << 20;
  508. break;
  509. }
  510. } else {
  511. adev->gmc.gart_size = (u64)amdgpu_gart_size << 20;
  512. }
  513. gmc_v8_0_vram_gtt_location(adev, &adev->gmc);
  514. return 0;
  515. }
  516. /*
  517. * GART
  518. * VMID 0 is the physical GPU addresses as used by the kernel.
  519. * VMIDs 1-15 are used for userspace clients and are handled
  520. * by the amdgpu vm/hsa code.
  521. */
  522. /**
  523. * gmc_v8_0_flush_gpu_tlb - gart tlb flush callback
  524. *
  525. * @adev: amdgpu_device pointer
  526. * @vmid: vm instance to flush
  527. *
  528. * Flush the TLB for the requested page table (CIK).
  529. */
  530. static void gmc_v8_0_flush_gpu_tlb(struct amdgpu_device *adev,
  531. uint32_t vmid)
  532. {
  533. /* bits 0-15 are the VM contexts0-15 */
  534. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  535. }
  536. static uint64_t gmc_v8_0_emit_flush_gpu_tlb(struct amdgpu_ring *ring,
  537. unsigned vmid, uint64_t pd_addr)
  538. {
  539. uint32_t reg;
  540. if (vmid < 8)
  541. reg = mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vmid;
  542. else
  543. reg = mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8;
  544. amdgpu_ring_emit_wreg(ring, reg, pd_addr >> 12);
  545. /* bits 0-15 are the VM contexts0-15 */
  546. amdgpu_ring_emit_wreg(ring, mmVM_INVALIDATE_REQUEST, 1 << vmid);
  547. return pd_addr;
  548. }
  549. static void gmc_v8_0_emit_pasid_mapping(struct amdgpu_ring *ring, unsigned vmid,
  550. unsigned pasid)
  551. {
  552. amdgpu_ring_emit_wreg(ring, mmIH_VMID_0_LUT + vmid, pasid);
  553. }
  554. /**
  555. * gmc_v8_0_set_pte_pde - update the page tables using MMIO
  556. *
  557. * @adev: amdgpu_device pointer
  558. * @cpu_pt_addr: cpu address of the page table
  559. * @gpu_page_idx: entry in the page table to update
  560. * @addr: dst addr to write into pte/pde
  561. * @flags: access flags
  562. *
  563. * Update the page tables using the CPU.
  564. */
  565. static int gmc_v8_0_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
  566. uint32_t gpu_page_idx, uint64_t addr,
  567. uint64_t flags)
  568. {
  569. void __iomem *ptr = (void *)cpu_pt_addr;
  570. uint64_t value;
  571. /*
  572. * PTE format on VI:
  573. * 63:40 reserved
  574. * 39:12 4k physical page base address
  575. * 11:7 fragment
  576. * 6 write
  577. * 5 read
  578. * 4 exe
  579. * 3 reserved
  580. * 2 snooped
  581. * 1 system
  582. * 0 valid
  583. *
  584. * PDE format on VI:
  585. * 63:59 block fragment size
  586. * 58:40 reserved
  587. * 39:1 physical base address of PTE
  588. * bits 5:1 must be 0.
  589. * 0 valid
  590. */
  591. value = addr & 0x000000FFFFFFF000ULL;
  592. value |= flags;
  593. writeq(value, ptr + (gpu_page_idx * 8));
  594. return 0;
  595. }
  596. static uint64_t gmc_v8_0_get_vm_pte_flags(struct amdgpu_device *adev,
  597. uint32_t flags)
  598. {
  599. uint64_t pte_flag = 0;
  600. if (flags & AMDGPU_VM_PAGE_EXECUTABLE)
  601. pte_flag |= AMDGPU_PTE_EXECUTABLE;
  602. if (flags & AMDGPU_VM_PAGE_READABLE)
  603. pte_flag |= AMDGPU_PTE_READABLE;
  604. if (flags & AMDGPU_VM_PAGE_WRITEABLE)
  605. pte_flag |= AMDGPU_PTE_WRITEABLE;
  606. if (flags & AMDGPU_VM_PAGE_PRT)
  607. pte_flag |= AMDGPU_PTE_PRT;
  608. return pte_flag;
  609. }
  610. static void gmc_v8_0_get_vm_pde(struct amdgpu_device *adev, int level,
  611. uint64_t *addr, uint64_t *flags)
  612. {
  613. BUG_ON(*addr & 0xFFFFFF0000000FFFULL);
  614. }
  615. /**
  616. * gmc_v8_0_set_fault_enable_default - update VM fault handling
  617. *
  618. * @adev: amdgpu_device pointer
  619. * @value: true redirects VM faults to the default page
  620. */
  621. static void gmc_v8_0_set_fault_enable_default(struct amdgpu_device *adev,
  622. bool value)
  623. {
  624. u32 tmp;
  625. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  626. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  627. RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  628. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  629. DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  630. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  631. PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  632. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  633. VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  634. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  635. READ_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  636. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  637. WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  638. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  639. EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  640. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  641. }
  642. /**
  643. * gmc_v8_0_set_prt - set PRT VM fault
  644. *
  645. * @adev: amdgpu_device pointer
  646. * @enable: enable/disable VM fault handling for PRT
  647. */
  648. static void gmc_v8_0_set_prt(struct amdgpu_device *adev, bool enable)
  649. {
  650. u32 tmp;
  651. if (enable && !adev->gmc.prt_warning) {
  652. dev_warn(adev->dev, "Disabling VM faults because of PRT request!\n");
  653. adev->gmc.prt_warning = true;
  654. }
  655. tmp = RREG32(mmVM_PRT_CNTL);
  656. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  657. CB_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
  658. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  659. CB_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
  660. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  661. TC_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
  662. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  663. TC_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
  664. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  665. L2_CACHE_STORE_INVALID_ENTRIES, enable);
  666. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  667. L1_TLB_STORE_INVALID_ENTRIES, enable);
  668. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  669. MASK_PDE0_FAULT, enable);
  670. WREG32(mmVM_PRT_CNTL, tmp);
  671. if (enable) {
  672. uint32_t low = AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT;
  673. uint32_t high = adev->vm_manager.max_pfn -
  674. (AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT);
  675. WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, low);
  676. WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, low);
  677. WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, low);
  678. WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, low);
  679. WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, high);
  680. WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, high);
  681. WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, high);
  682. WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, high);
  683. } else {
  684. WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, 0xfffffff);
  685. WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, 0xfffffff);
  686. WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, 0xfffffff);
  687. WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, 0xfffffff);
  688. WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, 0x0);
  689. WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, 0x0);
  690. WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, 0x0);
  691. WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, 0x0);
  692. }
  693. }
  694. /**
  695. * gmc_v8_0_gart_enable - gart enable
  696. *
  697. * @adev: amdgpu_device pointer
  698. *
  699. * This sets up the TLBs, programs the page tables for VMID0,
  700. * sets up the hw for VMIDs 1-15 which are allocated on
  701. * demand, and sets up the global locations for the LDS, GDS,
  702. * and GPUVM for FSA64 clients (CIK).
  703. * Returns 0 for success, errors for failure.
  704. */
  705. static int gmc_v8_0_gart_enable(struct amdgpu_device *adev)
  706. {
  707. int r, i;
  708. u32 tmp, field;
  709. if (adev->gart.robj == NULL) {
  710. dev_err(adev->dev, "No VRAM object for PCIE GART.\n");
  711. return -EINVAL;
  712. }
  713. r = amdgpu_gart_table_vram_pin(adev);
  714. if (r)
  715. return r;
  716. /* Setup TLB control */
  717. tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
  718. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1);
  719. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1);
  720. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3);
  721. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1);
  722. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0);
  723. WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
  724. /* Setup L2 cache */
  725. tmp = RREG32(mmVM_L2_CNTL);
  726. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1);
  727. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1);
  728. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1);
  729. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1);
  730. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7);
  731. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1);
  732. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_DEFAULT_PAGE_OUT_TO_SYSTEM_MEMORY, 1);
  733. WREG32(mmVM_L2_CNTL, tmp);
  734. tmp = RREG32(mmVM_L2_CNTL2);
  735. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1);
  736. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1);
  737. WREG32(mmVM_L2_CNTL2, tmp);
  738. field = adev->vm_manager.fragment_size;
  739. tmp = RREG32(mmVM_L2_CNTL3);
  740. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1);
  741. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, field);
  742. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, field);
  743. WREG32(mmVM_L2_CNTL3, tmp);
  744. /* XXX: set to enable PTE/PDE in system memory */
  745. tmp = RREG32(mmVM_L2_CNTL4);
  746. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_PHYSICAL, 0);
  747. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SHARED, 0);
  748. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SNOOP, 0);
  749. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_PHYSICAL, 0);
  750. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SHARED, 0);
  751. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SNOOP, 0);
  752. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_PHYSICAL, 0);
  753. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SHARED, 0);
  754. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SNOOP, 0);
  755. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_PHYSICAL, 0);
  756. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SHARED, 0);
  757. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SNOOP, 0);
  758. WREG32(mmVM_L2_CNTL4, tmp);
  759. /* setup context0 */
  760. WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->gmc.gart_start >> 12);
  761. WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, adev->gmc.gart_end >> 12);
  762. WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, adev->gart.table_addr >> 12);
  763. WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
  764. (u32)(adev->dummy_page_addr >> 12));
  765. WREG32(mmVM_CONTEXT0_CNTL2, 0);
  766. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  767. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1);
  768. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0);
  769. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  770. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  771. WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR, 0);
  772. WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR, 0);
  773. WREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET, 0);
  774. /* empty context1-15 */
  775. /* FIXME start with 4G, once using 2 level pt switch to full
  776. * vm size space
  777. */
  778. /* set vm size, must be a multiple of 4 */
  779. WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
  780. WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1);
  781. for (i = 1; i < 16; i++) {
  782. if (i < 8)
  783. WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i,
  784. adev->gart.table_addr >> 12);
  785. else
  786. WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8,
  787. adev->gart.table_addr >> 12);
  788. }
  789. /* enable context1-15 */
  790. WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
  791. (u32)(adev->dummy_page_addr >> 12));
  792. WREG32(mmVM_CONTEXT1_CNTL2, 4);
  793. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  794. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1);
  795. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1);
  796. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  797. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  798. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  799. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  800. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  801. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  802. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  803. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE,
  804. adev->vm_manager.block_size - 9);
  805. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  806. if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS)
  807. gmc_v8_0_set_fault_enable_default(adev, false);
  808. else
  809. gmc_v8_0_set_fault_enable_default(adev, true);
  810. gmc_v8_0_flush_gpu_tlb(adev, 0);
  811. DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
  812. (unsigned)(adev->gmc.gart_size >> 20),
  813. (unsigned long long)adev->gart.table_addr);
  814. adev->gart.ready = true;
  815. return 0;
  816. }
  817. static int gmc_v8_0_gart_init(struct amdgpu_device *adev)
  818. {
  819. int r;
  820. if (adev->gart.robj) {
  821. WARN(1, "R600 PCIE GART already initialized\n");
  822. return 0;
  823. }
  824. /* Initialize common gart structure */
  825. r = amdgpu_gart_init(adev);
  826. if (r)
  827. return r;
  828. adev->gart.table_size = adev->gart.num_gpu_pages * 8;
  829. adev->gart.gart_pte_flags = AMDGPU_PTE_EXECUTABLE;
  830. return amdgpu_gart_table_vram_alloc(adev);
  831. }
  832. /**
  833. * gmc_v8_0_gart_disable - gart disable
  834. *
  835. * @adev: amdgpu_device pointer
  836. *
  837. * This disables all VM page table (CIK).
  838. */
  839. static void gmc_v8_0_gart_disable(struct amdgpu_device *adev)
  840. {
  841. u32 tmp;
  842. /* Disable all tables */
  843. WREG32(mmVM_CONTEXT0_CNTL, 0);
  844. WREG32(mmVM_CONTEXT1_CNTL, 0);
  845. /* Setup TLB control */
  846. tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
  847. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0);
  848. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0);
  849. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0);
  850. WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
  851. /* Setup L2 cache */
  852. tmp = RREG32(mmVM_L2_CNTL);
  853. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0);
  854. WREG32(mmVM_L2_CNTL, tmp);
  855. WREG32(mmVM_L2_CNTL2, 0);
  856. amdgpu_gart_table_vram_unpin(adev);
  857. }
  858. /**
  859. * gmc_v8_0_gart_fini - vm fini callback
  860. *
  861. * @adev: amdgpu_device pointer
  862. *
  863. * Tears down the driver GART/VM setup (CIK).
  864. */
  865. static void gmc_v8_0_gart_fini(struct amdgpu_device *adev)
  866. {
  867. amdgpu_gart_table_vram_free(adev);
  868. amdgpu_gart_fini(adev);
  869. }
  870. /**
  871. * gmc_v8_0_vm_decode_fault - print human readable fault info
  872. *
  873. * @adev: amdgpu_device pointer
  874. * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value
  875. * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value
  876. *
  877. * Print human readable fault information (CIK).
  878. */
  879. static void gmc_v8_0_vm_decode_fault(struct amdgpu_device *adev, u32 status,
  880. u32 addr, u32 mc_client, unsigned pasid)
  881. {
  882. u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
  883. u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  884. PROTECTIONS);
  885. char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff,
  886. (mc_client >> 8) & 0xff, mc_client & 0xff, 0 };
  887. u32 mc_id;
  888. mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  889. MEMORY_CLIENT_ID);
  890. dev_err(adev->dev, "VM fault (0x%02x, vmid %d, pasid %d) at page %u, %s from '%s' (0x%08x) (%d)\n",
  891. protections, vmid, pasid, addr,
  892. REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  893. MEMORY_CLIENT_RW) ?
  894. "write" : "read", block, mc_client, mc_id);
  895. }
  896. static int gmc_v8_0_convert_vram_type(int mc_seq_vram_type)
  897. {
  898. switch (mc_seq_vram_type) {
  899. case MC_SEQ_MISC0__MT__GDDR1:
  900. return AMDGPU_VRAM_TYPE_GDDR1;
  901. case MC_SEQ_MISC0__MT__DDR2:
  902. return AMDGPU_VRAM_TYPE_DDR2;
  903. case MC_SEQ_MISC0__MT__GDDR3:
  904. return AMDGPU_VRAM_TYPE_GDDR3;
  905. case MC_SEQ_MISC0__MT__GDDR4:
  906. return AMDGPU_VRAM_TYPE_GDDR4;
  907. case MC_SEQ_MISC0__MT__GDDR5:
  908. return AMDGPU_VRAM_TYPE_GDDR5;
  909. case MC_SEQ_MISC0__MT__HBM:
  910. return AMDGPU_VRAM_TYPE_HBM;
  911. case MC_SEQ_MISC0__MT__DDR3:
  912. return AMDGPU_VRAM_TYPE_DDR3;
  913. default:
  914. return AMDGPU_VRAM_TYPE_UNKNOWN;
  915. }
  916. }
  917. static int gmc_v8_0_early_init(void *handle)
  918. {
  919. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  920. gmc_v8_0_set_gmc_funcs(adev);
  921. gmc_v8_0_set_irq_funcs(adev);
  922. adev->gmc.shared_aperture_start = 0x2000000000000000ULL;
  923. adev->gmc.shared_aperture_end =
  924. adev->gmc.shared_aperture_start + (4ULL << 30) - 1;
  925. adev->gmc.private_aperture_start =
  926. adev->gmc.shared_aperture_end + 1;
  927. adev->gmc.private_aperture_end =
  928. adev->gmc.private_aperture_start + (4ULL << 30) - 1;
  929. return 0;
  930. }
  931. static int gmc_v8_0_late_init(void *handle)
  932. {
  933. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  934. if (amdgpu_vm_fault_stop != AMDGPU_VM_FAULT_STOP_ALWAYS)
  935. return amdgpu_irq_get(adev, &adev->gmc.vm_fault, 0);
  936. else
  937. return 0;
  938. }
  939. #define mmMC_SEQ_MISC0_FIJI 0xA71
  940. static int gmc_v8_0_sw_init(void *handle)
  941. {
  942. int r;
  943. int dma_bits;
  944. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  945. if (adev->flags & AMD_IS_APU) {
  946. adev->gmc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
  947. } else {
  948. u32 tmp;
  949. if (adev->asic_type == CHIP_FIJI)
  950. tmp = RREG32(mmMC_SEQ_MISC0_FIJI);
  951. else
  952. tmp = RREG32(mmMC_SEQ_MISC0);
  953. tmp &= MC_SEQ_MISC0__MT__MASK;
  954. adev->gmc.vram_type = gmc_v8_0_convert_vram_type(tmp);
  955. }
  956. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 146, &adev->gmc.vm_fault);
  957. if (r)
  958. return r;
  959. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 147, &adev->gmc.vm_fault);
  960. if (r)
  961. return r;
  962. /* Adjust VM size here.
  963. * Currently set to 4GB ((1 << 20) 4k pages).
  964. * Max GPUVM size for cayman and SI is 40 bits.
  965. */
  966. amdgpu_vm_adjust_size(adev, 64, 9, 1, 40);
  967. /* Set the internal MC address mask
  968. * This is the max address of the GPU's
  969. * internal address space.
  970. */
  971. adev->gmc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
  972. adev->gmc.stolen_size = 256 * 1024;
  973. /* set DMA mask + need_dma32 flags.
  974. * PCIE - can handle 40-bits.
  975. * IGP - can handle 40-bits
  976. * PCI - dma32 for legacy pci gart, 40 bits on newer asics
  977. */
  978. adev->need_dma32 = false;
  979. dma_bits = adev->need_dma32 ? 32 : 40;
  980. r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
  981. if (r) {
  982. adev->need_dma32 = true;
  983. dma_bits = 32;
  984. pr_warn("amdgpu: No suitable DMA available\n");
  985. }
  986. r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
  987. if (r) {
  988. pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32));
  989. pr_warn("amdgpu: No coherent DMA available\n");
  990. }
  991. adev->need_swiotlb = drm_get_max_iomem() > ((u64)1 << dma_bits);
  992. r = gmc_v8_0_init_microcode(adev);
  993. if (r) {
  994. DRM_ERROR("Failed to load mc firmware!\n");
  995. return r;
  996. }
  997. r = gmc_v8_0_mc_init(adev);
  998. if (r)
  999. return r;
  1000. /* Memory manager */
  1001. r = amdgpu_bo_init(adev);
  1002. if (r)
  1003. return r;
  1004. r = gmc_v8_0_gart_init(adev);
  1005. if (r)
  1006. return r;
  1007. /*
  1008. * number of VMs
  1009. * VMID 0 is reserved for System
  1010. * amdgpu graphics/compute will use VMIDs 1-7
  1011. * amdkfd will use VMIDs 8-15
  1012. */
  1013. adev->vm_manager.id_mgr[0].num_ids = AMDGPU_NUM_OF_VMIDS;
  1014. amdgpu_vm_manager_init(adev);
  1015. /* base offset of vram pages */
  1016. if (adev->flags & AMD_IS_APU) {
  1017. u64 tmp = RREG32(mmMC_VM_FB_OFFSET);
  1018. tmp <<= 22;
  1019. adev->vm_manager.vram_base_offset = tmp;
  1020. } else {
  1021. adev->vm_manager.vram_base_offset = 0;
  1022. }
  1023. return 0;
  1024. }
  1025. static int gmc_v8_0_sw_fini(void *handle)
  1026. {
  1027. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1028. amdgpu_gem_force_release(adev);
  1029. amdgpu_vm_manager_fini(adev);
  1030. gmc_v8_0_gart_fini(adev);
  1031. amdgpu_bo_fini(adev);
  1032. release_firmware(adev->gmc.fw);
  1033. adev->gmc.fw = NULL;
  1034. return 0;
  1035. }
  1036. static int gmc_v8_0_hw_init(void *handle)
  1037. {
  1038. int r;
  1039. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1040. gmc_v8_0_init_golden_registers(adev);
  1041. gmc_v8_0_mc_program(adev);
  1042. if (adev->asic_type == CHIP_TONGA) {
  1043. r = gmc_v8_0_tonga_mc_load_microcode(adev);
  1044. if (r) {
  1045. DRM_ERROR("Failed to load MC firmware!\n");
  1046. return r;
  1047. }
  1048. } else if (adev->asic_type == CHIP_POLARIS11 ||
  1049. adev->asic_type == CHIP_POLARIS10 ||
  1050. adev->asic_type == CHIP_POLARIS12) {
  1051. r = gmc_v8_0_polaris_mc_load_microcode(adev);
  1052. if (r) {
  1053. DRM_ERROR("Failed to load MC firmware!\n");
  1054. return r;
  1055. }
  1056. }
  1057. r = gmc_v8_0_gart_enable(adev);
  1058. if (r)
  1059. return r;
  1060. return r;
  1061. }
  1062. static int gmc_v8_0_hw_fini(void *handle)
  1063. {
  1064. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1065. amdgpu_irq_put(adev, &adev->gmc.vm_fault, 0);
  1066. gmc_v8_0_gart_disable(adev);
  1067. return 0;
  1068. }
  1069. static int gmc_v8_0_suspend(void *handle)
  1070. {
  1071. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1072. gmc_v8_0_hw_fini(adev);
  1073. return 0;
  1074. }
  1075. static int gmc_v8_0_resume(void *handle)
  1076. {
  1077. int r;
  1078. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1079. r = gmc_v8_0_hw_init(adev);
  1080. if (r)
  1081. return r;
  1082. amdgpu_vmid_reset_all(adev);
  1083. return 0;
  1084. }
  1085. static bool gmc_v8_0_is_idle(void *handle)
  1086. {
  1087. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1088. u32 tmp = RREG32(mmSRBM_STATUS);
  1089. if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1090. SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK))
  1091. return false;
  1092. return true;
  1093. }
  1094. static int gmc_v8_0_wait_for_idle(void *handle)
  1095. {
  1096. unsigned i;
  1097. u32 tmp;
  1098. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1099. for (i = 0; i < adev->usec_timeout; i++) {
  1100. /* read MC_STATUS */
  1101. tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK |
  1102. SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1103. SRBM_STATUS__MCC_BUSY_MASK |
  1104. SRBM_STATUS__MCD_BUSY_MASK |
  1105. SRBM_STATUS__VMC_BUSY_MASK |
  1106. SRBM_STATUS__VMC1_BUSY_MASK);
  1107. if (!tmp)
  1108. return 0;
  1109. udelay(1);
  1110. }
  1111. return -ETIMEDOUT;
  1112. }
  1113. static bool gmc_v8_0_check_soft_reset(void *handle)
  1114. {
  1115. u32 srbm_soft_reset = 0;
  1116. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1117. u32 tmp = RREG32(mmSRBM_STATUS);
  1118. if (tmp & SRBM_STATUS__VMC_BUSY_MASK)
  1119. srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
  1120. SRBM_SOFT_RESET, SOFT_RESET_VMC, 1);
  1121. if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1122. SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) {
  1123. if (!(adev->flags & AMD_IS_APU))
  1124. srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
  1125. SRBM_SOFT_RESET, SOFT_RESET_MC, 1);
  1126. }
  1127. if (srbm_soft_reset) {
  1128. adev->gmc.srbm_soft_reset = srbm_soft_reset;
  1129. return true;
  1130. } else {
  1131. adev->gmc.srbm_soft_reset = 0;
  1132. return false;
  1133. }
  1134. }
  1135. static int gmc_v8_0_pre_soft_reset(void *handle)
  1136. {
  1137. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1138. if (!adev->gmc.srbm_soft_reset)
  1139. return 0;
  1140. gmc_v8_0_mc_stop(adev);
  1141. if (gmc_v8_0_wait_for_idle(adev)) {
  1142. dev_warn(adev->dev, "Wait for GMC idle timed out !\n");
  1143. }
  1144. return 0;
  1145. }
  1146. static int gmc_v8_0_soft_reset(void *handle)
  1147. {
  1148. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1149. u32 srbm_soft_reset;
  1150. if (!adev->gmc.srbm_soft_reset)
  1151. return 0;
  1152. srbm_soft_reset = adev->gmc.srbm_soft_reset;
  1153. if (srbm_soft_reset) {
  1154. u32 tmp;
  1155. tmp = RREG32(mmSRBM_SOFT_RESET);
  1156. tmp |= srbm_soft_reset;
  1157. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1158. WREG32(mmSRBM_SOFT_RESET, tmp);
  1159. tmp = RREG32(mmSRBM_SOFT_RESET);
  1160. udelay(50);
  1161. tmp &= ~srbm_soft_reset;
  1162. WREG32(mmSRBM_SOFT_RESET, tmp);
  1163. tmp = RREG32(mmSRBM_SOFT_RESET);
  1164. /* Wait a little for things to settle down */
  1165. udelay(50);
  1166. }
  1167. return 0;
  1168. }
  1169. static int gmc_v8_0_post_soft_reset(void *handle)
  1170. {
  1171. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1172. if (!adev->gmc.srbm_soft_reset)
  1173. return 0;
  1174. gmc_v8_0_mc_resume(adev);
  1175. return 0;
  1176. }
  1177. static int gmc_v8_0_vm_fault_interrupt_state(struct amdgpu_device *adev,
  1178. struct amdgpu_irq_src *src,
  1179. unsigned type,
  1180. enum amdgpu_interrupt_state state)
  1181. {
  1182. u32 tmp;
  1183. u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1184. VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1185. VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1186. VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1187. VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1188. VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1189. VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK);
  1190. switch (state) {
  1191. case AMDGPU_IRQ_STATE_DISABLE:
  1192. /* system context */
  1193. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  1194. tmp &= ~bits;
  1195. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  1196. /* VMs */
  1197. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  1198. tmp &= ~bits;
  1199. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  1200. break;
  1201. case AMDGPU_IRQ_STATE_ENABLE:
  1202. /* system context */
  1203. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  1204. tmp |= bits;
  1205. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  1206. /* VMs */
  1207. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  1208. tmp |= bits;
  1209. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  1210. break;
  1211. default:
  1212. break;
  1213. }
  1214. return 0;
  1215. }
  1216. static int gmc_v8_0_process_interrupt(struct amdgpu_device *adev,
  1217. struct amdgpu_irq_src *source,
  1218. struct amdgpu_iv_entry *entry)
  1219. {
  1220. u32 addr, status, mc_client;
  1221. if (amdgpu_sriov_vf(adev)) {
  1222. dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
  1223. entry->src_id, entry->src_data[0]);
  1224. dev_err(adev->dev, " Can't decode VM fault info here on SRIOV VF\n");
  1225. return 0;
  1226. }
  1227. addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR);
  1228. status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
  1229. mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT);
  1230. /* reset addr and status */
  1231. WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1);
  1232. if (!addr && !status)
  1233. return 0;
  1234. if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_FIRST)
  1235. gmc_v8_0_set_fault_enable_default(adev, false);
  1236. if (printk_ratelimit()) {
  1237. dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
  1238. entry->src_id, entry->src_data[0]);
  1239. dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n",
  1240. addr);
  1241. dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
  1242. status);
  1243. gmc_v8_0_vm_decode_fault(adev, status, addr, mc_client,
  1244. entry->pasid);
  1245. }
  1246. return 0;
  1247. }
  1248. static void fiji_update_mc_medium_grain_clock_gating(struct amdgpu_device *adev,
  1249. bool enable)
  1250. {
  1251. uint32_t data;
  1252. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_MGCG)) {
  1253. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1254. data |= MC_HUB_MISC_HUB_CG__ENABLE_MASK;
  1255. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1256. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1257. data |= MC_HUB_MISC_SIP_CG__ENABLE_MASK;
  1258. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1259. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1260. data |= MC_HUB_MISC_VM_CG__ENABLE_MASK;
  1261. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1262. data = RREG32(mmMC_XPB_CLK_GAT);
  1263. data |= MC_XPB_CLK_GAT__ENABLE_MASK;
  1264. WREG32(mmMC_XPB_CLK_GAT, data);
  1265. data = RREG32(mmATC_MISC_CG);
  1266. data |= ATC_MISC_CG__ENABLE_MASK;
  1267. WREG32(mmATC_MISC_CG, data);
  1268. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1269. data |= MC_CITF_MISC_WR_CG__ENABLE_MASK;
  1270. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1271. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1272. data |= MC_CITF_MISC_RD_CG__ENABLE_MASK;
  1273. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1274. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1275. data |= MC_CITF_MISC_VM_CG__ENABLE_MASK;
  1276. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1277. data = RREG32(mmVM_L2_CG);
  1278. data |= VM_L2_CG__ENABLE_MASK;
  1279. WREG32(mmVM_L2_CG, data);
  1280. } else {
  1281. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1282. data &= ~MC_HUB_MISC_HUB_CG__ENABLE_MASK;
  1283. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1284. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1285. data &= ~MC_HUB_MISC_SIP_CG__ENABLE_MASK;
  1286. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1287. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1288. data &= ~MC_HUB_MISC_VM_CG__ENABLE_MASK;
  1289. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1290. data = RREG32(mmMC_XPB_CLK_GAT);
  1291. data &= ~MC_XPB_CLK_GAT__ENABLE_MASK;
  1292. WREG32(mmMC_XPB_CLK_GAT, data);
  1293. data = RREG32(mmATC_MISC_CG);
  1294. data &= ~ATC_MISC_CG__ENABLE_MASK;
  1295. WREG32(mmATC_MISC_CG, data);
  1296. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1297. data &= ~MC_CITF_MISC_WR_CG__ENABLE_MASK;
  1298. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1299. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1300. data &= ~MC_CITF_MISC_RD_CG__ENABLE_MASK;
  1301. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1302. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1303. data &= ~MC_CITF_MISC_VM_CG__ENABLE_MASK;
  1304. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1305. data = RREG32(mmVM_L2_CG);
  1306. data &= ~VM_L2_CG__ENABLE_MASK;
  1307. WREG32(mmVM_L2_CG, data);
  1308. }
  1309. }
  1310. static void fiji_update_mc_light_sleep(struct amdgpu_device *adev,
  1311. bool enable)
  1312. {
  1313. uint32_t data;
  1314. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_LS)) {
  1315. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1316. data |= MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
  1317. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1318. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1319. data |= MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
  1320. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1321. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1322. data |= MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1323. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1324. data = RREG32(mmMC_XPB_CLK_GAT);
  1325. data |= MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
  1326. WREG32(mmMC_XPB_CLK_GAT, data);
  1327. data = RREG32(mmATC_MISC_CG);
  1328. data |= ATC_MISC_CG__MEM_LS_ENABLE_MASK;
  1329. WREG32(mmATC_MISC_CG, data);
  1330. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1331. data |= MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
  1332. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1333. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1334. data |= MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
  1335. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1336. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1337. data |= MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1338. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1339. data = RREG32(mmVM_L2_CG);
  1340. data |= VM_L2_CG__MEM_LS_ENABLE_MASK;
  1341. WREG32(mmVM_L2_CG, data);
  1342. } else {
  1343. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1344. data &= ~MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
  1345. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1346. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1347. data &= ~MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
  1348. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1349. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1350. data &= ~MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1351. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1352. data = RREG32(mmMC_XPB_CLK_GAT);
  1353. data &= ~MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
  1354. WREG32(mmMC_XPB_CLK_GAT, data);
  1355. data = RREG32(mmATC_MISC_CG);
  1356. data &= ~ATC_MISC_CG__MEM_LS_ENABLE_MASK;
  1357. WREG32(mmATC_MISC_CG, data);
  1358. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1359. data &= ~MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
  1360. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1361. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1362. data &= ~MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
  1363. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1364. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1365. data &= ~MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1366. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1367. data = RREG32(mmVM_L2_CG);
  1368. data &= ~VM_L2_CG__MEM_LS_ENABLE_MASK;
  1369. WREG32(mmVM_L2_CG, data);
  1370. }
  1371. }
  1372. static int gmc_v8_0_set_clockgating_state(void *handle,
  1373. enum amd_clockgating_state state)
  1374. {
  1375. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1376. if (amdgpu_sriov_vf(adev))
  1377. return 0;
  1378. switch (adev->asic_type) {
  1379. case CHIP_FIJI:
  1380. fiji_update_mc_medium_grain_clock_gating(adev,
  1381. state == AMD_CG_STATE_GATE);
  1382. fiji_update_mc_light_sleep(adev,
  1383. state == AMD_CG_STATE_GATE);
  1384. break;
  1385. default:
  1386. break;
  1387. }
  1388. return 0;
  1389. }
  1390. static int gmc_v8_0_set_powergating_state(void *handle,
  1391. enum amd_powergating_state state)
  1392. {
  1393. return 0;
  1394. }
  1395. static void gmc_v8_0_get_clockgating_state(void *handle, u32 *flags)
  1396. {
  1397. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1398. int data;
  1399. if (amdgpu_sriov_vf(adev))
  1400. *flags = 0;
  1401. /* AMD_CG_SUPPORT_MC_MGCG */
  1402. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1403. if (data & MC_HUB_MISC_HUB_CG__ENABLE_MASK)
  1404. *flags |= AMD_CG_SUPPORT_MC_MGCG;
  1405. /* AMD_CG_SUPPORT_MC_LS */
  1406. if (data & MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK)
  1407. *flags |= AMD_CG_SUPPORT_MC_LS;
  1408. }
  1409. static const struct amd_ip_funcs gmc_v8_0_ip_funcs = {
  1410. .name = "gmc_v8_0",
  1411. .early_init = gmc_v8_0_early_init,
  1412. .late_init = gmc_v8_0_late_init,
  1413. .sw_init = gmc_v8_0_sw_init,
  1414. .sw_fini = gmc_v8_0_sw_fini,
  1415. .hw_init = gmc_v8_0_hw_init,
  1416. .hw_fini = gmc_v8_0_hw_fini,
  1417. .suspend = gmc_v8_0_suspend,
  1418. .resume = gmc_v8_0_resume,
  1419. .is_idle = gmc_v8_0_is_idle,
  1420. .wait_for_idle = gmc_v8_0_wait_for_idle,
  1421. .check_soft_reset = gmc_v8_0_check_soft_reset,
  1422. .pre_soft_reset = gmc_v8_0_pre_soft_reset,
  1423. .soft_reset = gmc_v8_0_soft_reset,
  1424. .post_soft_reset = gmc_v8_0_post_soft_reset,
  1425. .set_clockgating_state = gmc_v8_0_set_clockgating_state,
  1426. .set_powergating_state = gmc_v8_0_set_powergating_state,
  1427. .get_clockgating_state = gmc_v8_0_get_clockgating_state,
  1428. };
  1429. static const struct amdgpu_gmc_funcs gmc_v8_0_gmc_funcs = {
  1430. .flush_gpu_tlb = gmc_v8_0_flush_gpu_tlb,
  1431. .emit_flush_gpu_tlb = gmc_v8_0_emit_flush_gpu_tlb,
  1432. .emit_pasid_mapping = gmc_v8_0_emit_pasid_mapping,
  1433. .set_pte_pde = gmc_v8_0_set_pte_pde,
  1434. .set_prt = gmc_v8_0_set_prt,
  1435. .get_vm_pte_flags = gmc_v8_0_get_vm_pte_flags,
  1436. .get_vm_pde = gmc_v8_0_get_vm_pde
  1437. };
  1438. static const struct amdgpu_irq_src_funcs gmc_v8_0_irq_funcs = {
  1439. .set = gmc_v8_0_vm_fault_interrupt_state,
  1440. .process = gmc_v8_0_process_interrupt,
  1441. };
  1442. static void gmc_v8_0_set_gmc_funcs(struct amdgpu_device *adev)
  1443. {
  1444. if (adev->gmc.gmc_funcs == NULL)
  1445. adev->gmc.gmc_funcs = &gmc_v8_0_gmc_funcs;
  1446. }
  1447. static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev)
  1448. {
  1449. adev->gmc.vm_fault.num_types = 1;
  1450. adev->gmc.vm_fault.funcs = &gmc_v8_0_irq_funcs;
  1451. }
  1452. const struct amdgpu_ip_block_version gmc_v8_0_ip_block =
  1453. {
  1454. .type = AMD_IP_BLOCK_TYPE_GMC,
  1455. .major = 8,
  1456. .minor = 0,
  1457. .rev = 0,
  1458. .funcs = &gmc_v8_0_ip_funcs,
  1459. };
  1460. const struct amdgpu_ip_block_version gmc_v8_1_ip_block =
  1461. {
  1462. .type = AMD_IP_BLOCK_TYPE_GMC,
  1463. .major = 8,
  1464. .minor = 1,
  1465. .rev = 0,
  1466. .funcs = &gmc_v8_0_ip_funcs,
  1467. };
  1468. const struct amdgpu_ip_block_version gmc_v8_5_ip_block =
  1469. {
  1470. .type = AMD_IP_BLOCK_TYPE_GMC,
  1471. .major = 8,
  1472. .minor = 5,
  1473. .rev = 0,
  1474. .funcs = &gmc_v8_0_ip_funcs,
  1475. };