gmc_v8_0.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include "drmP.h"
  25. #include "amdgpu.h"
  26. #include "gmc_v8_0.h"
  27. #include "amdgpu_ucode.h"
  28. #include "gmc/gmc_8_1_d.h"
  29. #include "gmc/gmc_8_1_sh_mask.h"
  30. #include "bif/bif_5_0_d.h"
  31. #include "bif/bif_5_0_sh_mask.h"
  32. #include "oss/oss_3_0_d.h"
  33. #include "oss/oss_3_0_sh_mask.h"
  34. #include "vid.h"
  35. #include "vi.h"
  36. #include "amdgpu_atombios.h"
  37. static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev);
  38. static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev);
  39. static int gmc_v8_0_wait_for_idle(void *handle);
  40. MODULE_FIRMWARE("amdgpu/tonga_mc.bin");
  41. MODULE_FIRMWARE("amdgpu/polaris11_mc.bin");
  42. MODULE_FIRMWARE("amdgpu/polaris10_mc.bin");
  43. MODULE_FIRMWARE("amdgpu/polaris12_mc.bin");
  44. static const u32 golden_settings_tonga_a11[] =
  45. {
  46. mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
  47. mmMC_HUB_RDREQ_DMIF_LIMIT, 0x0000007f, 0x00000028,
  48. mmMC_HUB_WDP_UMC, 0x00007fb6, 0x00000991,
  49. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  50. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  51. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  52. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  53. };
  54. static const u32 tonga_mgcg_cgcg_init[] =
  55. {
  56. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  57. };
  58. static const u32 golden_settings_fiji_a10[] =
  59. {
  60. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  61. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  62. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  63. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  64. };
  65. static const u32 fiji_mgcg_cgcg_init[] =
  66. {
  67. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  68. };
  69. static const u32 golden_settings_polaris11_a11[] =
  70. {
  71. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  72. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  73. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  74. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
  75. };
  76. static const u32 golden_settings_polaris10_a11[] =
  77. {
  78. mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
  79. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  80. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  81. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  82. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
  83. };
  84. static const u32 cz_mgcg_cgcg_init[] =
  85. {
  86. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  87. };
  88. static const u32 stoney_mgcg_cgcg_init[] =
  89. {
  90. mmATC_MISC_CG, 0xffffffff, 0x000c0200,
  91. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  92. };
  93. static const u32 golden_settings_stoney_common[] =
  94. {
  95. mmMC_HUB_RDREQ_UVD, MC_HUB_RDREQ_UVD__PRESCALE_MASK, 0x00000004,
  96. mmMC_RD_GRP_OTH, MC_RD_GRP_OTH__UVD_MASK, 0x00600000
  97. };
  98. static void gmc_v8_0_init_golden_registers(struct amdgpu_device *adev)
  99. {
  100. switch (adev->asic_type) {
  101. case CHIP_FIJI:
  102. amdgpu_program_register_sequence(adev,
  103. fiji_mgcg_cgcg_init,
  104. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  105. amdgpu_program_register_sequence(adev,
  106. golden_settings_fiji_a10,
  107. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  108. break;
  109. case CHIP_TONGA:
  110. amdgpu_program_register_sequence(adev,
  111. tonga_mgcg_cgcg_init,
  112. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  113. amdgpu_program_register_sequence(adev,
  114. golden_settings_tonga_a11,
  115. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  116. break;
  117. case CHIP_POLARIS11:
  118. case CHIP_POLARIS12:
  119. amdgpu_program_register_sequence(adev,
  120. golden_settings_polaris11_a11,
  121. (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
  122. break;
  123. case CHIP_POLARIS10:
  124. amdgpu_program_register_sequence(adev,
  125. golden_settings_polaris10_a11,
  126. (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
  127. break;
  128. case CHIP_CARRIZO:
  129. amdgpu_program_register_sequence(adev,
  130. cz_mgcg_cgcg_init,
  131. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  132. break;
  133. case CHIP_STONEY:
  134. amdgpu_program_register_sequence(adev,
  135. stoney_mgcg_cgcg_init,
  136. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  137. amdgpu_program_register_sequence(adev,
  138. golden_settings_stoney_common,
  139. (const u32)ARRAY_SIZE(golden_settings_stoney_common));
  140. break;
  141. default:
  142. break;
  143. }
  144. }
  145. static void gmc_v8_0_mc_stop(struct amdgpu_device *adev,
  146. struct amdgpu_mode_mc_save *save)
  147. {
  148. u32 blackout;
  149. if (adev->mode_info.num_crtc)
  150. amdgpu_display_stop_mc_access(adev, save);
  151. gmc_v8_0_wait_for_idle(adev);
  152. blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
  153. if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) {
  154. /* Block CPU access */
  155. WREG32(mmBIF_FB_EN, 0);
  156. /* blackout the MC */
  157. blackout = REG_SET_FIELD(blackout,
  158. MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 1);
  159. WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout);
  160. }
  161. /* wait for the MC to settle */
  162. udelay(100);
  163. }
  164. static void gmc_v8_0_mc_resume(struct amdgpu_device *adev,
  165. struct amdgpu_mode_mc_save *save)
  166. {
  167. u32 tmp;
  168. /* unblackout the MC */
  169. tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
  170. tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0);
  171. WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp);
  172. /* allow CPU access */
  173. tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1);
  174. tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1);
  175. WREG32(mmBIF_FB_EN, tmp);
  176. if (adev->mode_info.num_crtc)
  177. amdgpu_display_resume_mc_access(adev, save);
  178. }
  179. /**
  180. * gmc_v8_0_init_microcode - load ucode images from disk
  181. *
  182. * @adev: amdgpu_device pointer
  183. *
  184. * Use the firmware interface to load the ucode images into
  185. * the driver (not loaded into hw).
  186. * Returns 0 on success, error on failure.
  187. */
  188. static int gmc_v8_0_init_microcode(struct amdgpu_device *adev)
  189. {
  190. const char *chip_name;
  191. char fw_name[30];
  192. int err;
  193. DRM_DEBUG("\n");
  194. switch (adev->asic_type) {
  195. case CHIP_TONGA:
  196. chip_name = "tonga";
  197. break;
  198. case CHIP_POLARIS11:
  199. chip_name = "polaris11";
  200. break;
  201. case CHIP_POLARIS10:
  202. chip_name = "polaris10";
  203. break;
  204. case CHIP_POLARIS12:
  205. chip_name = "polaris12";
  206. break;
  207. case CHIP_FIJI:
  208. case CHIP_CARRIZO:
  209. case CHIP_STONEY:
  210. return 0;
  211. default: BUG();
  212. }
  213. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name);
  214. err = request_firmware(&adev->mc.fw, fw_name, adev->dev);
  215. if (err)
  216. goto out;
  217. err = amdgpu_ucode_validate(adev->mc.fw);
  218. out:
  219. if (err) {
  220. pr_err("mc: Failed to load firmware \"%s\"\n", fw_name);
  221. release_firmware(adev->mc.fw);
  222. adev->mc.fw = NULL;
  223. }
  224. return err;
  225. }
  226. /**
  227. * gmc_v8_0_tonga_mc_load_microcode - load tonga MC ucode into the hw
  228. *
  229. * @adev: amdgpu_device pointer
  230. *
  231. * Load the GDDR MC ucode into the hw (CIK).
  232. * Returns 0 on success, error on failure.
  233. */
  234. static int gmc_v8_0_tonga_mc_load_microcode(struct amdgpu_device *adev)
  235. {
  236. const struct mc_firmware_header_v1_0 *hdr;
  237. const __le32 *fw_data = NULL;
  238. const __le32 *io_mc_regs = NULL;
  239. u32 running;
  240. int i, ucode_size, regs_size;
  241. /* Skip MC ucode loading on SR-IOV capable boards.
  242. * vbios does this for us in asic_init in that case.
  243. * Skip MC ucode loading on VF, because hypervisor will do that
  244. * for this adaptor.
  245. */
  246. if (amdgpu_sriov_bios(adev))
  247. return 0;
  248. if (!adev->mc.fw)
  249. return -EINVAL;
  250. hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
  251. amdgpu_ucode_print_mc_hdr(&hdr->header);
  252. adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
  253. regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
  254. io_mc_regs = (const __le32 *)
  255. (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
  256. ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  257. fw_data = (const __le32 *)
  258. (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  259. running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN);
  260. if (running == 0) {
  261. /* reset the engine and set to writable */
  262. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  263. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
  264. /* load mc io regs */
  265. for (i = 0; i < regs_size; i++) {
  266. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
  267. WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
  268. }
  269. /* load the MC ucode */
  270. for (i = 0; i < ucode_size; i++)
  271. WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
  272. /* put the engine back into the active state */
  273. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  274. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
  275. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
  276. /* wait for training to complete */
  277. for (i = 0; i < adev->usec_timeout; i++) {
  278. if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
  279. MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0))
  280. break;
  281. udelay(1);
  282. }
  283. for (i = 0; i < adev->usec_timeout; i++) {
  284. if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
  285. MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1))
  286. break;
  287. udelay(1);
  288. }
  289. }
  290. return 0;
  291. }
  292. static int gmc_v8_0_polaris_mc_load_microcode(struct amdgpu_device *adev)
  293. {
  294. const struct mc_firmware_header_v1_0 *hdr;
  295. const __le32 *fw_data = NULL;
  296. const __le32 *io_mc_regs = NULL;
  297. u32 data, vbios_version;
  298. int i, ucode_size, regs_size;
  299. /* Skip MC ucode loading on SR-IOV capable boards.
  300. * vbios does this for us in asic_init in that case.
  301. * Skip MC ucode loading on VF, because hypervisor will do that
  302. * for this adaptor.
  303. */
  304. if (amdgpu_sriov_bios(adev))
  305. return 0;
  306. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
  307. data = RREG32(mmMC_SEQ_IO_DEBUG_DATA);
  308. vbios_version = data & 0xf;
  309. if (vbios_version == 0)
  310. return 0;
  311. if (!adev->mc.fw)
  312. return -EINVAL;
  313. hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
  314. amdgpu_ucode_print_mc_hdr(&hdr->header);
  315. adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
  316. regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
  317. io_mc_regs = (const __le32 *)
  318. (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
  319. ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  320. fw_data = (const __le32 *)
  321. (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  322. data = RREG32(mmMC_SEQ_MISC0);
  323. data &= ~(0x40);
  324. WREG32(mmMC_SEQ_MISC0, data);
  325. /* load mc io regs */
  326. for (i = 0; i < regs_size; i++) {
  327. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
  328. WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
  329. }
  330. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  331. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
  332. /* load the MC ucode */
  333. for (i = 0; i < ucode_size; i++)
  334. WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
  335. /* put the engine back into the active state */
  336. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  337. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
  338. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
  339. /* wait for training to complete */
  340. for (i = 0; i < adev->usec_timeout; i++) {
  341. data = RREG32(mmMC_SEQ_MISC0);
  342. if (data & 0x80)
  343. break;
  344. udelay(1);
  345. }
  346. return 0;
  347. }
  348. static void gmc_v8_0_vram_gtt_location(struct amdgpu_device *adev,
  349. struct amdgpu_mc *mc)
  350. {
  351. if (mc->mc_vram_size > 0xFFC0000000ULL) {
  352. /* leave room for at least 1024M GTT */
  353. dev_warn(adev->dev, "limiting VRAM\n");
  354. mc->real_vram_size = 0xFFC0000000ULL;
  355. mc->mc_vram_size = 0xFFC0000000ULL;
  356. }
  357. amdgpu_vram_location(adev, &adev->mc, 0);
  358. adev->mc.gtt_base_align = 0;
  359. amdgpu_gtt_location(adev, mc);
  360. }
  361. /**
  362. * gmc_v8_0_mc_program - program the GPU memory controller
  363. *
  364. * @adev: amdgpu_device pointer
  365. *
  366. * Set the location of vram, gart, and AGP in the GPU's
  367. * physical address space (CIK).
  368. */
  369. static void gmc_v8_0_mc_program(struct amdgpu_device *adev)
  370. {
  371. struct amdgpu_mode_mc_save save;
  372. u32 tmp;
  373. int i, j;
  374. /* Initialize HDP */
  375. for (i = 0, j = 0; i < 32; i++, j += 0x6) {
  376. WREG32((0xb05 + j), 0x00000000);
  377. WREG32((0xb06 + j), 0x00000000);
  378. WREG32((0xb07 + j), 0x00000000);
  379. WREG32((0xb08 + j), 0x00000000);
  380. WREG32((0xb09 + j), 0x00000000);
  381. }
  382. WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0);
  383. if (adev->mode_info.num_crtc)
  384. amdgpu_display_set_vga_render_state(adev, false);
  385. gmc_v8_0_mc_stop(adev, &save);
  386. if (gmc_v8_0_wait_for_idle((void *)adev)) {
  387. dev_warn(adev->dev, "Wait for MC idle timedout !\n");
  388. }
  389. /* Update configuration */
  390. WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR,
  391. adev->mc.vram_start >> 12);
  392. WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR,
  393. adev->mc.vram_end >> 12);
  394. WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
  395. adev->vram_scratch.gpu_addr >> 12);
  396. tmp = ((adev->mc.vram_end >> 24) & 0xFFFF) << 16;
  397. tmp |= ((adev->mc.vram_start >> 24) & 0xFFFF);
  398. WREG32(mmMC_VM_FB_LOCATION, tmp);
  399. /* XXX double check these! */
  400. WREG32(mmHDP_NONSURFACE_BASE, (adev->mc.vram_start >> 8));
  401. WREG32(mmHDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
  402. WREG32(mmHDP_NONSURFACE_SIZE, 0x3FFFFFFF);
  403. WREG32(mmMC_VM_AGP_BASE, 0);
  404. WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF);
  405. WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF);
  406. if (gmc_v8_0_wait_for_idle((void *)adev)) {
  407. dev_warn(adev->dev, "Wait for MC idle timedout !\n");
  408. }
  409. gmc_v8_0_mc_resume(adev, &save);
  410. WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK);
  411. tmp = RREG32(mmHDP_MISC_CNTL);
  412. tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 0);
  413. WREG32(mmHDP_MISC_CNTL, tmp);
  414. tmp = RREG32(mmHDP_HOST_PATH_CNTL);
  415. WREG32(mmHDP_HOST_PATH_CNTL, tmp);
  416. }
  417. /**
  418. * gmc_v8_0_mc_init - initialize the memory controller driver params
  419. *
  420. * @adev: amdgpu_device pointer
  421. *
  422. * Look up the amount of vram, vram width, and decide how to place
  423. * vram and gart within the GPU's physical address space (CIK).
  424. * Returns 0 for success.
  425. */
  426. static int gmc_v8_0_mc_init(struct amdgpu_device *adev)
  427. {
  428. adev->mc.vram_width = amdgpu_atombios_get_vram_width(adev);
  429. if (!adev->mc.vram_width) {
  430. u32 tmp;
  431. int chansize, numchan;
  432. /* Get VRAM informations */
  433. tmp = RREG32(mmMC_ARB_RAMCFG);
  434. if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) {
  435. chansize = 64;
  436. } else {
  437. chansize = 32;
  438. }
  439. tmp = RREG32(mmMC_SHARED_CHMAP);
  440. switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) {
  441. case 0:
  442. default:
  443. numchan = 1;
  444. break;
  445. case 1:
  446. numchan = 2;
  447. break;
  448. case 2:
  449. numchan = 4;
  450. break;
  451. case 3:
  452. numchan = 8;
  453. break;
  454. case 4:
  455. numchan = 3;
  456. break;
  457. case 5:
  458. numchan = 6;
  459. break;
  460. case 6:
  461. numchan = 10;
  462. break;
  463. case 7:
  464. numchan = 12;
  465. break;
  466. case 8:
  467. numchan = 16;
  468. break;
  469. }
  470. adev->mc.vram_width = numchan * chansize;
  471. }
  472. /* Could aper size report 0 ? */
  473. adev->mc.aper_base = pci_resource_start(adev->pdev, 0);
  474. adev->mc.aper_size = pci_resource_len(adev->pdev, 0);
  475. /* size in MB on si */
  476. adev->mc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
  477. adev->mc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
  478. #ifdef CONFIG_X86_64
  479. if (adev->flags & AMD_IS_APU) {
  480. adev->mc.aper_base = ((u64)RREG32(mmMC_VM_FB_OFFSET)) << 22;
  481. adev->mc.aper_size = adev->mc.real_vram_size;
  482. }
  483. #endif
  484. /* In case the PCI BAR is larger than the actual amount of vram */
  485. adev->mc.visible_vram_size = adev->mc.aper_size;
  486. if (adev->mc.visible_vram_size > adev->mc.real_vram_size)
  487. adev->mc.visible_vram_size = adev->mc.real_vram_size;
  488. /* unless the user had overridden it, set the gart
  489. * size equal to the 1024 or vram, whichever is larger.
  490. */
  491. if (amdgpu_gart_size == -1)
  492. adev->mc.gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
  493. adev->mc.mc_vram_size);
  494. else
  495. adev->mc.gtt_size = (uint64_t)amdgpu_gart_size << 20;
  496. gmc_v8_0_vram_gtt_location(adev, &adev->mc);
  497. return 0;
  498. }
  499. /*
  500. * GART
  501. * VMID 0 is the physical GPU addresses as used by the kernel.
  502. * VMIDs 1-15 are used for userspace clients and are handled
  503. * by the amdgpu vm/hsa code.
  504. */
  505. /**
  506. * gmc_v8_0_gart_flush_gpu_tlb - gart tlb flush callback
  507. *
  508. * @adev: amdgpu_device pointer
  509. * @vmid: vm instance to flush
  510. *
  511. * Flush the TLB for the requested page table (CIK).
  512. */
  513. static void gmc_v8_0_gart_flush_gpu_tlb(struct amdgpu_device *adev,
  514. uint32_t vmid)
  515. {
  516. /* flush hdp cache */
  517. WREG32(mmHDP_MEM_COHERENCY_FLUSH_CNTL, 0);
  518. /* bits 0-15 are the VM contexts0-15 */
  519. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  520. }
  521. /**
  522. * gmc_v8_0_gart_set_pte_pde - update the page tables using MMIO
  523. *
  524. * @adev: amdgpu_device pointer
  525. * @cpu_pt_addr: cpu address of the page table
  526. * @gpu_page_idx: entry in the page table to update
  527. * @addr: dst addr to write into pte/pde
  528. * @flags: access flags
  529. *
  530. * Update the page tables using the CPU.
  531. */
  532. static int gmc_v8_0_gart_set_pte_pde(struct amdgpu_device *adev,
  533. void *cpu_pt_addr,
  534. uint32_t gpu_page_idx,
  535. uint64_t addr,
  536. uint64_t flags)
  537. {
  538. void __iomem *ptr = (void *)cpu_pt_addr;
  539. uint64_t value;
  540. /*
  541. * PTE format on VI:
  542. * 63:40 reserved
  543. * 39:12 4k physical page base address
  544. * 11:7 fragment
  545. * 6 write
  546. * 5 read
  547. * 4 exe
  548. * 3 reserved
  549. * 2 snooped
  550. * 1 system
  551. * 0 valid
  552. *
  553. * PDE format on VI:
  554. * 63:59 block fragment size
  555. * 58:40 reserved
  556. * 39:1 physical base address of PTE
  557. * bits 5:1 must be 0.
  558. * 0 valid
  559. */
  560. value = addr & 0x000000FFFFFFF000ULL;
  561. value |= flags;
  562. writeq(value, ptr + (gpu_page_idx * 8));
  563. return 0;
  564. }
  565. static uint64_t gmc_v8_0_get_vm_pte_flags(struct amdgpu_device *adev,
  566. uint32_t flags)
  567. {
  568. uint64_t pte_flag = 0;
  569. if (flags & AMDGPU_VM_PAGE_EXECUTABLE)
  570. pte_flag |= AMDGPU_PTE_EXECUTABLE;
  571. if (flags & AMDGPU_VM_PAGE_READABLE)
  572. pte_flag |= AMDGPU_PTE_READABLE;
  573. if (flags & AMDGPU_VM_PAGE_WRITEABLE)
  574. pte_flag |= AMDGPU_PTE_WRITEABLE;
  575. if (flags & AMDGPU_VM_PAGE_PRT)
  576. pte_flag |= AMDGPU_PTE_PRT;
  577. return pte_flag;
  578. }
  579. /**
  580. * gmc_v8_0_set_fault_enable_default - update VM fault handling
  581. *
  582. * @adev: amdgpu_device pointer
  583. * @value: true redirects VM faults to the default page
  584. */
  585. static void gmc_v8_0_set_fault_enable_default(struct amdgpu_device *adev,
  586. bool value)
  587. {
  588. u32 tmp;
  589. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  590. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  591. RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  592. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  593. DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  594. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  595. PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  596. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  597. VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  598. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  599. READ_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  600. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  601. WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  602. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  603. EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  604. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  605. }
  606. /**
  607. * gmc_v8_0_set_prt - set PRT VM fault
  608. *
  609. * @adev: amdgpu_device pointer
  610. * @enable: enable/disable VM fault handling for PRT
  611. */
  612. static void gmc_v8_0_set_prt(struct amdgpu_device *adev, bool enable)
  613. {
  614. u32 tmp;
  615. if (enable && !adev->mc.prt_warning) {
  616. dev_warn(adev->dev, "Disabling VM faults because of PRT request!\n");
  617. adev->mc.prt_warning = true;
  618. }
  619. tmp = RREG32(mmVM_PRT_CNTL);
  620. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  621. CB_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
  622. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  623. CB_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
  624. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  625. TC_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
  626. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  627. TC_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
  628. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  629. L2_CACHE_STORE_INVALID_ENTRIES, enable);
  630. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  631. L1_TLB_STORE_INVALID_ENTRIES, enable);
  632. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  633. MASK_PDE0_FAULT, enable);
  634. WREG32(mmVM_PRT_CNTL, tmp);
  635. if (enable) {
  636. uint32_t low = AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT;
  637. uint32_t high = adev->vm_manager.max_pfn;
  638. WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, low);
  639. WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, low);
  640. WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, low);
  641. WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, low);
  642. WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, high);
  643. WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, high);
  644. WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, high);
  645. WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, high);
  646. } else {
  647. WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, 0xfffffff);
  648. WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, 0xfffffff);
  649. WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, 0xfffffff);
  650. WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, 0xfffffff);
  651. WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, 0x0);
  652. WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, 0x0);
  653. WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, 0x0);
  654. WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, 0x0);
  655. }
  656. }
  657. /**
  658. * gmc_v8_0_gart_enable - gart enable
  659. *
  660. * @adev: amdgpu_device pointer
  661. *
  662. * This sets up the TLBs, programs the page tables for VMID0,
  663. * sets up the hw for VMIDs 1-15 which are allocated on
  664. * demand, and sets up the global locations for the LDS, GDS,
  665. * and GPUVM for FSA64 clients (CIK).
  666. * Returns 0 for success, errors for failure.
  667. */
  668. static int gmc_v8_0_gart_enable(struct amdgpu_device *adev)
  669. {
  670. int r, i;
  671. u32 tmp;
  672. if (adev->gart.robj == NULL) {
  673. dev_err(adev->dev, "No VRAM object for PCIE GART.\n");
  674. return -EINVAL;
  675. }
  676. r = amdgpu_gart_table_vram_pin(adev);
  677. if (r)
  678. return r;
  679. /* Setup TLB control */
  680. tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
  681. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1);
  682. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1);
  683. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3);
  684. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1);
  685. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0);
  686. WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
  687. /* Setup L2 cache */
  688. tmp = RREG32(mmVM_L2_CNTL);
  689. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1);
  690. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1);
  691. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1);
  692. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1);
  693. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7);
  694. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1);
  695. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_DEFAULT_PAGE_OUT_TO_SYSTEM_MEMORY, 1);
  696. WREG32(mmVM_L2_CNTL, tmp);
  697. tmp = RREG32(mmVM_L2_CNTL2);
  698. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1);
  699. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1);
  700. WREG32(mmVM_L2_CNTL2, tmp);
  701. tmp = RREG32(mmVM_L2_CNTL3);
  702. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1);
  703. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, 4);
  704. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, 4);
  705. WREG32(mmVM_L2_CNTL3, tmp);
  706. /* XXX: set to enable PTE/PDE in system memory */
  707. tmp = RREG32(mmVM_L2_CNTL4);
  708. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_PHYSICAL, 0);
  709. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SHARED, 0);
  710. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SNOOP, 0);
  711. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_PHYSICAL, 0);
  712. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SHARED, 0);
  713. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SNOOP, 0);
  714. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_PHYSICAL, 0);
  715. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SHARED, 0);
  716. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SNOOP, 0);
  717. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_PHYSICAL, 0);
  718. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SHARED, 0);
  719. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SNOOP, 0);
  720. WREG32(mmVM_L2_CNTL4, tmp);
  721. /* setup context0 */
  722. WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->mc.gtt_start >> 12);
  723. WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, adev->mc.gtt_end >> 12);
  724. WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, adev->gart.table_addr >> 12);
  725. WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
  726. (u32)(adev->dummy_page.addr >> 12));
  727. WREG32(mmVM_CONTEXT0_CNTL2, 0);
  728. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  729. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1);
  730. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0);
  731. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  732. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  733. WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR, 0);
  734. WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR, 0);
  735. WREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET, 0);
  736. /* empty context1-15 */
  737. /* FIXME start with 4G, once using 2 level pt switch to full
  738. * vm size space
  739. */
  740. /* set vm size, must be a multiple of 4 */
  741. WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
  742. WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1);
  743. for (i = 1; i < 16; i++) {
  744. if (i < 8)
  745. WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i,
  746. adev->gart.table_addr >> 12);
  747. else
  748. WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8,
  749. adev->gart.table_addr >> 12);
  750. }
  751. /* enable context1-15 */
  752. WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
  753. (u32)(adev->dummy_page.addr >> 12));
  754. WREG32(mmVM_CONTEXT1_CNTL2, 4);
  755. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  756. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1);
  757. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1);
  758. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  759. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  760. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  761. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  762. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  763. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  764. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  765. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE,
  766. adev->vm_manager.block_size - 9);
  767. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  768. if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS)
  769. gmc_v8_0_set_fault_enable_default(adev, false);
  770. else
  771. gmc_v8_0_set_fault_enable_default(adev, true);
  772. gmc_v8_0_gart_flush_gpu_tlb(adev, 0);
  773. DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
  774. (unsigned)(adev->mc.gtt_size >> 20),
  775. (unsigned long long)adev->gart.table_addr);
  776. adev->gart.ready = true;
  777. return 0;
  778. }
  779. static int gmc_v8_0_gart_init(struct amdgpu_device *adev)
  780. {
  781. int r;
  782. if (adev->gart.robj) {
  783. WARN(1, "R600 PCIE GART already initialized\n");
  784. return 0;
  785. }
  786. /* Initialize common gart structure */
  787. r = amdgpu_gart_init(adev);
  788. if (r)
  789. return r;
  790. adev->gart.table_size = adev->gart.num_gpu_pages * 8;
  791. adev->gart.gart_pte_flags = AMDGPU_PTE_EXECUTABLE;
  792. return amdgpu_gart_table_vram_alloc(adev);
  793. }
  794. /**
  795. * gmc_v8_0_gart_disable - gart disable
  796. *
  797. * @adev: amdgpu_device pointer
  798. *
  799. * This disables all VM page table (CIK).
  800. */
  801. static void gmc_v8_0_gart_disable(struct amdgpu_device *adev)
  802. {
  803. u32 tmp;
  804. /* Disable all tables */
  805. WREG32(mmVM_CONTEXT0_CNTL, 0);
  806. WREG32(mmVM_CONTEXT1_CNTL, 0);
  807. /* Setup TLB control */
  808. tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
  809. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0);
  810. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0);
  811. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0);
  812. WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
  813. /* Setup L2 cache */
  814. tmp = RREG32(mmVM_L2_CNTL);
  815. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0);
  816. WREG32(mmVM_L2_CNTL, tmp);
  817. WREG32(mmVM_L2_CNTL2, 0);
  818. amdgpu_gart_table_vram_unpin(adev);
  819. }
  820. /**
  821. * gmc_v8_0_gart_fini - vm fini callback
  822. *
  823. * @adev: amdgpu_device pointer
  824. *
  825. * Tears down the driver GART/VM setup (CIK).
  826. */
  827. static void gmc_v8_0_gart_fini(struct amdgpu_device *adev)
  828. {
  829. amdgpu_gart_table_vram_free(adev);
  830. amdgpu_gart_fini(adev);
  831. }
  832. /*
  833. * vm
  834. * VMID 0 is the physical GPU addresses as used by the kernel.
  835. * VMIDs 1-15 are used for userspace clients and are handled
  836. * by the amdgpu vm/hsa code.
  837. */
  838. /**
  839. * gmc_v8_0_vm_init - cik vm init callback
  840. *
  841. * @adev: amdgpu_device pointer
  842. *
  843. * Inits cik specific vm parameters (number of VMs, base of vram for
  844. * VMIDs 1-15) (CIK).
  845. * Returns 0 for success.
  846. */
  847. static int gmc_v8_0_vm_init(struct amdgpu_device *adev)
  848. {
  849. /*
  850. * number of VMs
  851. * VMID 0 is reserved for System
  852. * amdgpu graphics/compute will use VMIDs 1-7
  853. * amdkfd will use VMIDs 8-15
  854. */
  855. adev->vm_manager.id_mgr[0].num_ids = AMDGPU_NUM_OF_VMIDS;
  856. adev->vm_manager.num_level = 1;
  857. amdgpu_vm_manager_init(adev);
  858. /* base offset of vram pages */
  859. if (adev->flags & AMD_IS_APU) {
  860. u64 tmp = RREG32(mmMC_VM_FB_OFFSET);
  861. tmp <<= 22;
  862. adev->vm_manager.vram_base_offset = tmp;
  863. } else
  864. adev->vm_manager.vram_base_offset = 0;
  865. return 0;
  866. }
  867. /**
  868. * gmc_v8_0_vm_fini - cik vm fini callback
  869. *
  870. * @adev: amdgpu_device pointer
  871. *
  872. * Tear down any asic specific VM setup (CIK).
  873. */
  874. static void gmc_v8_0_vm_fini(struct amdgpu_device *adev)
  875. {
  876. }
  877. /**
  878. * gmc_v8_0_vm_decode_fault - print human readable fault info
  879. *
  880. * @adev: amdgpu_device pointer
  881. * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value
  882. * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value
  883. *
  884. * Print human readable fault information (CIK).
  885. */
  886. static void gmc_v8_0_vm_decode_fault(struct amdgpu_device *adev,
  887. u32 status, u32 addr, u32 mc_client)
  888. {
  889. u32 mc_id;
  890. u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
  891. u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  892. PROTECTIONS);
  893. char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff,
  894. (mc_client >> 8) & 0xff, mc_client & 0xff, 0 };
  895. mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  896. MEMORY_CLIENT_ID);
  897. dev_err(adev->dev, "VM fault (0x%02x, vmid %d) at page %u, %s from '%s' (0x%08x) (%d)\n",
  898. protections, vmid, addr,
  899. REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  900. MEMORY_CLIENT_RW) ?
  901. "write" : "read", block, mc_client, mc_id);
  902. }
  903. static int gmc_v8_0_convert_vram_type(int mc_seq_vram_type)
  904. {
  905. switch (mc_seq_vram_type) {
  906. case MC_SEQ_MISC0__MT__GDDR1:
  907. return AMDGPU_VRAM_TYPE_GDDR1;
  908. case MC_SEQ_MISC0__MT__DDR2:
  909. return AMDGPU_VRAM_TYPE_DDR2;
  910. case MC_SEQ_MISC0__MT__GDDR3:
  911. return AMDGPU_VRAM_TYPE_GDDR3;
  912. case MC_SEQ_MISC0__MT__GDDR4:
  913. return AMDGPU_VRAM_TYPE_GDDR4;
  914. case MC_SEQ_MISC0__MT__GDDR5:
  915. return AMDGPU_VRAM_TYPE_GDDR5;
  916. case MC_SEQ_MISC0__MT__HBM:
  917. return AMDGPU_VRAM_TYPE_HBM;
  918. case MC_SEQ_MISC0__MT__DDR3:
  919. return AMDGPU_VRAM_TYPE_DDR3;
  920. default:
  921. return AMDGPU_VRAM_TYPE_UNKNOWN;
  922. }
  923. }
  924. static int gmc_v8_0_early_init(void *handle)
  925. {
  926. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  927. gmc_v8_0_set_gart_funcs(adev);
  928. gmc_v8_0_set_irq_funcs(adev);
  929. adev->mc.shared_aperture_start = 0x2000000000000000ULL;
  930. adev->mc.shared_aperture_end =
  931. adev->mc.shared_aperture_start + (4ULL << 30) - 1;
  932. adev->mc.private_aperture_start =
  933. adev->mc.shared_aperture_end + 1;
  934. adev->mc.private_aperture_end =
  935. adev->mc.private_aperture_start + (4ULL << 30) - 1;
  936. return 0;
  937. }
  938. static int gmc_v8_0_late_init(void *handle)
  939. {
  940. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  941. if (amdgpu_vm_fault_stop != AMDGPU_VM_FAULT_STOP_ALWAYS)
  942. return amdgpu_irq_get(adev, &adev->mc.vm_fault, 0);
  943. else
  944. return 0;
  945. }
  946. #define mmMC_SEQ_MISC0_FIJI 0xA71
  947. static int gmc_v8_0_sw_init(void *handle)
  948. {
  949. int r;
  950. int dma_bits;
  951. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  952. if (adev->flags & AMD_IS_APU) {
  953. adev->mc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
  954. } else {
  955. u32 tmp;
  956. if (adev->asic_type == CHIP_FIJI)
  957. tmp = RREG32(mmMC_SEQ_MISC0_FIJI);
  958. else
  959. tmp = RREG32(mmMC_SEQ_MISC0);
  960. tmp &= MC_SEQ_MISC0__MT__MASK;
  961. adev->mc.vram_type = gmc_v8_0_convert_vram_type(tmp);
  962. }
  963. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 146, &adev->mc.vm_fault);
  964. if (r)
  965. return r;
  966. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 147, &adev->mc.vm_fault);
  967. if (r)
  968. return r;
  969. /* Adjust VM size here.
  970. * Currently set to 4GB ((1 << 20) 4k pages).
  971. * Max GPUVM size for cayman and SI is 40 bits.
  972. */
  973. amdgpu_vm_adjust_size(adev, 64);
  974. adev->vm_manager.max_pfn = adev->vm_manager.vm_size << 18;
  975. /* Set the internal MC address mask
  976. * This is the max address of the GPU's
  977. * internal address space.
  978. */
  979. adev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
  980. /* set DMA mask + need_dma32 flags.
  981. * PCIE - can handle 40-bits.
  982. * IGP - can handle 40-bits
  983. * PCI - dma32 for legacy pci gart, 40 bits on newer asics
  984. */
  985. adev->need_dma32 = false;
  986. dma_bits = adev->need_dma32 ? 32 : 40;
  987. r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
  988. if (r) {
  989. adev->need_dma32 = true;
  990. dma_bits = 32;
  991. pr_warn("amdgpu: No suitable DMA available\n");
  992. }
  993. r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
  994. if (r) {
  995. pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32));
  996. pr_warn("amdgpu: No coherent DMA available\n");
  997. }
  998. r = gmc_v8_0_init_microcode(adev);
  999. if (r) {
  1000. DRM_ERROR("Failed to load mc firmware!\n");
  1001. return r;
  1002. }
  1003. r = gmc_v8_0_mc_init(adev);
  1004. if (r)
  1005. return r;
  1006. /* Memory manager */
  1007. r = amdgpu_bo_init(adev);
  1008. if (r)
  1009. return r;
  1010. r = gmc_v8_0_gart_init(adev);
  1011. if (r)
  1012. return r;
  1013. if (!adev->vm_manager.enabled) {
  1014. r = gmc_v8_0_vm_init(adev);
  1015. if (r) {
  1016. dev_err(adev->dev, "vm manager initialization failed (%d).\n", r);
  1017. return r;
  1018. }
  1019. adev->vm_manager.enabled = true;
  1020. }
  1021. return r;
  1022. }
  1023. static int gmc_v8_0_sw_fini(void *handle)
  1024. {
  1025. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1026. if (adev->vm_manager.enabled) {
  1027. amdgpu_vm_manager_fini(adev);
  1028. gmc_v8_0_vm_fini(adev);
  1029. adev->vm_manager.enabled = false;
  1030. }
  1031. gmc_v8_0_gart_fini(adev);
  1032. amdgpu_gem_force_release(adev);
  1033. amdgpu_bo_fini(adev);
  1034. return 0;
  1035. }
  1036. static int gmc_v8_0_hw_init(void *handle)
  1037. {
  1038. int r;
  1039. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1040. gmc_v8_0_init_golden_registers(adev);
  1041. gmc_v8_0_mc_program(adev);
  1042. if (adev->asic_type == CHIP_TONGA) {
  1043. r = gmc_v8_0_tonga_mc_load_microcode(adev);
  1044. if (r) {
  1045. DRM_ERROR("Failed to load MC firmware!\n");
  1046. return r;
  1047. }
  1048. } else if (adev->asic_type == CHIP_POLARIS11 ||
  1049. adev->asic_type == CHIP_POLARIS10 ||
  1050. adev->asic_type == CHIP_POLARIS12) {
  1051. r = gmc_v8_0_polaris_mc_load_microcode(adev);
  1052. if (r) {
  1053. DRM_ERROR("Failed to load MC firmware!\n");
  1054. return r;
  1055. }
  1056. }
  1057. r = gmc_v8_0_gart_enable(adev);
  1058. if (r)
  1059. return r;
  1060. return r;
  1061. }
  1062. static int gmc_v8_0_hw_fini(void *handle)
  1063. {
  1064. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1065. amdgpu_irq_put(adev, &adev->mc.vm_fault, 0);
  1066. gmc_v8_0_gart_disable(adev);
  1067. return 0;
  1068. }
  1069. static int gmc_v8_0_suspend(void *handle)
  1070. {
  1071. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1072. if (adev->vm_manager.enabled) {
  1073. gmc_v8_0_vm_fini(adev);
  1074. adev->vm_manager.enabled = false;
  1075. }
  1076. gmc_v8_0_hw_fini(adev);
  1077. return 0;
  1078. }
  1079. static int gmc_v8_0_resume(void *handle)
  1080. {
  1081. int r;
  1082. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1083. r = gmc_v8_0_hw_init(adev);
  1084. if (r)
  1085. return r;
  1086. if (!adev->vm_manager.enabled) {
  1087. r = gmc_v8_0_vm_init(adev);
  1088. if (r) {
  1089. dev_err(adev->dev, "vm manager initialization failed (%d).\n", r);
  1090. return r;
  1091. }
  1092. adev->vm_manager.enabled = true;
  1093. }
  1094. return r;
  1095. }
  1096. static bool gmc_v8_0_is_idle(void *handle)
  1097. {
  1098. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1099. u32 tmp = RREG32(mmSRBM_STATUS);
  1100. if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1101. SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK))
  1102. return false;
  1103. return true;
  1104. }
  1105. static int gmc_v8_0_wait_for_idle(void *handle)
  1106. {
  1107. unsigned i;
  1108. u32 tmp;
  1109. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1110. for (i = 0; i < adev->usec_timeout; i++) {
  1111. /* read MC_STATUS */
  1112. tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK |
  1113. SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1114. SRBM_STATUS__MCC_BUSY_MASK |
  1115. SRBM_STATUS__MCD_BUSY_MASK |
  1116. SRBM_STATUS__VMC_BUSY_MASK |
  1117. SRBM_STATUS__VMC1_BUSY_MASK);
  1118. if (!tmp)
  1119. return 0;
  1120. udelay(1);
  1121. }
  1122. return -ETIMEDOUT;
  1123. }
  1124. static bool gmc_v8_0_check_soft_reset(void *handle)
  1125. {
  1126. u32 srbm_soft_reset = 0;
  1127. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1128. u32 tmp = RREG32(mmSRBM_STATUS);
  1129. if (tmp & SRBM_STATUS__VMC_BUSY_MASK)
  1130. srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
  1131. SRBM_SOFT_RESET, SOFT_RESET_VMC, 1);
  1132. if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1133. SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) {
  1134. if (!(adev->flags & AMD_IS_APU))
  1135. srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
  1136. SRBM_SOFT_RESET, SOFT_RESET_MC, 1);
  1137. }
  1138. if (srbm_soft_reset) {
  1139. adev->mc.srbm_soft_reset = srbm_soft_reset;
  1140. return true;
  1141. } else {
  1142. adev->mc.srbm_soft_reset = 0;
  1143. return false;
  1144. }
  1145. }
  1146. static int gmc_v8_0_pre_soft_reset(void *handle)
  1147. {
  1148. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1149. if (!adev->mc.srbm_soft_reset)
  1150. return 0;
  1151. gmc_v8_0_mc_stop(adev, &adev->mc.save);
  1152. if (gmc_v8_0_wait_for_idle(adev)) {
  1153. dev_warn(adev->dev, "Wait for GMC idle timed out !\n");
  1154. }
  1155. return 0;
  1156. }
  1157. static int gmc_v8_0_soft_reset(void *handle)
  1158. {
  1159. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1160. u32 srbm_soft_reset;
  1161. if (!adev->mc.srbm_soft_reset)
  1162. return 0;
  1163. srbm_soft_reset = adev->mc.srbm_soft_reset;
  1164. if (srbm_soft_reset) {
  1165. u32 tmp;
  1166. tmp = RREG32(mmSRBM_SOFT_RESET);
  1167. tmp |= srbm_soft_reset;
  1168. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1169. WREG32(mmSRBM_SOFT_RESET, tmp);
  1170. tmp = RREG32(mmSRBM_SOFT_RESET);
  1171. udelay(50);
  1172. tmp &= ~srbm_soft_reset;
  1173. WREG32(mmSRBM_SOFT_RESET, tmp);
  1174. tmp = RREG32(mmSRBM_SOFT_RESET);
  1175. /* Wait a little for things to settle down */
  1176. udelay(50);
  1177. }
  1178. return 0;
  1179. }
  1180. static int gmc_v8_0_post_soft_reset(void *handle)
  1181. {
  1182. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1183. if (!adev->mc.srbm_soft_reset)
  1184. return 0;
  1185. gmc_v8_0_mc_resume(adev, &adev->mc.save);
  1186. return 0;
  1187. }
  1188. static int gmc_v8_0_vm_fault_interrupt_state(struct amdgpu_device *adev,
  1189. struct amdgpu_irq_src *src,
  1190. unsigned type,
  1191. enum amdgpu_interrupt_state state)
  1192. {
  1193. u32 tmp;
  1194. u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1195. VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1196. VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1197. VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1198. VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1199. VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1200. VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK);
  1201. switch (state) {
  1202. case AMDGPU_IRQ_STATE_DISABLE:
  1203. /* system context */
  1204. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  1205. tmp &= ~bits;
  1206. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  1207. /* VMs */
  1208. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  1209. tmp &= ~bits;
  1210. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  1211. break;
  1212. case AMDGPU_IRQ_STATE_ENABLE:
  1213. /* system context */
  1214. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  1215. tmp |= bits;
  1216. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  1217. /* VMs */
  1218. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  1219. tmp |= bits;
  1220. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  1221. break;
  1222. default:
  1223. break;
  1224. }
  1225. return 0;
  1226. }
  1227. static int gmc_v8_0_process_interrupt(struct amdgpu_device *adev,
  1228. struct amdgpu_irq_src *source,
  1229. struct amdgpu_iv_entry *entry)
  1230. {
  1231. u32 addr, status, mc_client;
  1232. if (amdgpu_sriov_vf(adev)) {
  1233. dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
  1234. entry->src_id, entry->src_data[0]);
  1235. dev_err(adev->dev, " Can't decode VM fault info here on SRIOV VF\n");
  1236. return 0;
  1237. }
  1238. addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR);
  1239. status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
  1240. mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT);
  1241. /* reset addr and status */
  1242. WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1);
  1243. if (!addr && !status)
  1244. return 0;
  1245. if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_FIRST)
  1246. gmc_v8_0_set_fault_enable_default(adev, false);
  1247. if (printk_ratelimit()) {
  1248. dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
  1249. entry->src_id, entry->src_data[0]);
  1250. dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n",
  1251. addr);
  1252. dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
  1253. status);
  1254. gmc_v8_0_vm_decode_fault(adev, status, addr, mc_client);
  1255. }
  1256. return 0;
  1257. }
  1258. static void fiji_update_mc_medium_grain_clock_gating(struct amdgpu_device *adev,
  1259. bool enable)
  1260. {
  1261. uint32_t data;
  1262. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_MGCG)) {
  1263. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1264. data |= MC_HUB_MISC_HUB_CG__ENABLE_MASK;
  1265. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1266. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1267. data |= MC_HUB_MISC_SIP_CG__ENABLE_MASK;
  1268. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1269. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1270. data |= MC_HUB_MISC_VM_CG__ENABLE_MASK;
  1271. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1272. data = RREG32(mmMC_XPB_CLK_GAT);
  1273. data |= MC_XPB_CLK_GAT__ENABLE_MASK;
  1274. WREG32(mmMC_XPB_CLK_GAT, data);
  1275. data = RREG32(mmATC_MISC_CG);
  1276. data |= ATC_MISC_CG__ENABLE_MASK;
  1277. WREG32(mmATC_MISC_CG, data);
  1278. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1279. data |= MC_CITF_MISC_WR_CG__ENABLE_MASK;
  1280. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1281. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1282. data |= MC_CITF_MISC_RD_CG__ENABLE_MASK;
  1283. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1284. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1285. data |= MC_CITF_MISC_VM_CG__ENABLE_MASK;
  1286. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1287. data = RREG32(mmVM_L2_CG);
  1288. data |= VM_L2_CG__ENABLE_MASK;
  1289. WREG32(mmVM_L2_CG, data);
  1290. } else {
  1291. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1292. data &= ~MC_HUB_MISC_HUB_CG__ENABLE_MASK;
  1293. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1294. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1295. data &= ~MC_HUB_MISC_SIP_CG__ENABLE_MASK;
  1296. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1297. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1298. data &= ~MC_HUB_MISC_VM_CG__ENABLE_MASK;
  1299. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1300. data = RREG32(mmMC_XPB_CLK_GAT);
  1301. data &= ~MC_XPB_CLK_GAT__ENABLE_MASK;
  1302. WREG32(mmMC_XPB_CLK_GAT, data);
  1303. data = RREG32(mmATC_MISC_CG);
  1304. data &= ~ATC_MISC_CG__ENABLE_MASK;
  1305. WREG32(mmATC_MISC_CG, data);
  1306. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1307. data &= ~MC_CITF_MISC_WR_CG__ENABLE_MASK;
  1308. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1309. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1310. data &= ~MC_CITF_MISC_RD_CG__ENABLE_MASK;
  1311. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1312. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1313. data &= ~MC_CITF_MISC_VM_CG__ENABLE_MASK;
  1314. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1315. data = RREG32(mmVM_L2_CG);
  1316. data &= ~VM_L2_CG__ENABLE_MASK;
  1317. WREG32(mmVM_L2_CG, data);
  1318. }
  1319. }
  1320. static void fiji_update_mc_light_sleep(struct amdgpu_device *adev,
  1321. bool enable)
  1322. {
  1323. uint32_t data;
  1324. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_LS)) {
  1325. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1326. data |= MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
  1327. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1328. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1329. data |= MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
  1330. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1331. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1332. data |= MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1333. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1334. data = RREG32(mmMC_XPB_CLK_GAT);
  1335. data |= MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
  1336. WREG32(mmMC_XPB_CLK_GAT, data);
  1337. data = RREG32(mmATC_MISC_CG);
  1338. data |= ATC_MISC_CG__MEM_LS_ENABLE_MASK;
  1339. WREG32(mmATC_MISC_CG, data);
  1340. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1341. data |= MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
  1342. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1343. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1344. data |= MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
  1345. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1346. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1347. data |= MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1348. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1349. data = RREG32(mmVM_L2_CG);
  1350. data |= VM_L2_CG__MEM_LS_ENABLE_MASK;
  1351. WREG32(mmVM_L2_CG, data);
  1352. } else {
  1353. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1354. data &= ~MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
  1355. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1356. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1357. data &= ~MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
  1358. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1359. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1360. data &= ~MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1361. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1362. data = RREG32(mmMC_XPB_CLK_GAT);
  1363. data &= ~MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
  1364. WREG32(mmMC_XPB_CLK_GAT, data);
  1365. data = RREG32(mmATC_MISC_CG);
  1366. data &= ~ATC_MISC_CG__MEM_LS_ENABLE_MASK;
  1367. WREG32(mmATC_MISC_CG, data);
  1368. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1369. data &= ~MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
  1370. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1371. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1372. data &= ~MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
  1373. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1374. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1375. data &= ~MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1376. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1377. data = RREG32(mmVM_L2_CG);
  1378. data &= ~VM_L2_CG__MEM_LS_ENABLE_MASK;
  1379. WREG32(mmVM_L2_CG, data);
  1380. }
  1381. }
  1382. static int gmc_v8_0_set_clockgating_state(void *handle,
  1383. enum amd_clockgating_state state)
  1384. {
  1385. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1386. if (amdgpu_sriov_vf(adev))
  1387. return 0;
  1388. switch (adev->asic_type) {
  1389. case CHIP_FIJI:
  1390. fiji_update_mc_medium_grain_clock_gating(adev,
  1391. state == AMD_CG_STATE_GATE);
  1392. fiji_update_mc_light_sleep(adev,
  1393. state == AMD_CG_STATE_GATE);
  1394. break;
  1395. default:
  1396. break;
  1397. }
  1398. return 0;
  1399. }
  1400. static int gmc_v8_0_set_powergating_state(void *handle,
  1401. enum amd_powergating_state state)
  1402. {
  1403. return 0;
  1404. }
  1405. static void gmc_v8_0_get_clockgating_state(void *handle, u32 *flags)
  1406. {
  1407. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1408. int data;
  1409. if (amdgpu_sriov_vf(adev))
  1410. *flags = 0;
  1411. /* AMD_CG_SUPPORT_MC_MGCG */
  1412. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1413. if (data & MC_HUB_MISC_HUB_CG__ENABLE_MASK)
  1414. *flags |= AMD_CG_SUPPORT_MC_MGCG;
  1415. /* AMD_CG_SUPPORT_MC_LS */
  1416. if (data & MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK)
  1417. *flags |= AMD_CG_SUPPORT_MC_LS;
  1418. }
  1419. static const struct amd_ip_funcs gmc_v8_0_ip_funcs = {
  1420. .name = "gmc_v8_0",
  1421. .early_init = gmc_v8_0_early_init,
  1422. .late_init = gmc_v8_0_late_init,
  1423. .sw_init = gmc_v8_0_sw_init,
  1424. .sw_fini = gmc_v8_0_sw_fini,
  1425. .hw_init = gmc_v8_0_hw_init,
  1426. .hw_fini = gmc_v8_0_hw_fini,
  1427. .suspend = gmc_v8_0_suspend,
  1428. .resume = gmc_v8_0_resume,
  1429. .is_idle = gmc_v8_0_is_idle,
  1430. .wait_for_idle = gmc_v8_0_wait_for_idle,
  1431. .check_soft_reset = gmc_v8_0_check_soft_reset,
  1432. .pre_soft_reset = gmc_v8_0_pre_soft_reset,
  1433. .soft_reset = gmc_v8_0_soft_reset,
  1434. .post_soft_reset = gmc_v8_0_post_soft_reset,
  1435. .set_clockgating_state = gmc_v8_0_set_clockgating_state,
  1436. .set_powergating_state = gmc_v8_0_set_powergating_state,
  1437. .get_clockgating_state = gmc_v8_0_get_clockgating_state,
  1438. };
  1439. static const struct amdgpu_gart_funcs gmc_v8_0_gart_funcs = {
  1440. .flush_gpu_tlb = gmc_v8_0_gart_flush_gpu_tlb,
  1441. .set_pte_pde = gmc_v8_0_gart_set_pte_pde,
  1442. .set_prt = gmc_v8_0_set_prt,
  1443. .get_vm_pte_flags = gmc_v8_0_get_vm_pte_flags
  1444. };
  1445. static const struct amdgpu_irq_src_funcs gmc_v8_0_irq_funcs = {
  1446. .set = gmc_v8_0_vm_fault_interrupt_state,
  1447. .process = gmc_v8_0_process_interrupt,
  1448. };
  1449. static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev)
  1450. {
  1451. if (adev->gart.gart_funcs == NULL)
  1452. adev->gart.gart_funcs = &gmc_v8_0_gart_funcs;
  1453. }
  1454. static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev)
  1455. {
  1456. adev->mc.vm_fault.num_types = 1;
  1457. adev->mc.vm_fault.funcs = &gmc_v8_0_irq_funcs;
  1458. }
  1459. const struct amdgpu_ip_block_version gmc_v8_0_ip_block =
  1460. {
  1461. .type = AMD_IP_BLOCK_TYPE_GMC,
  1462. .major = 8,
  1463. .minor = 0,
  1464. .rev = 0,
  1465. .funcs = &gmc_v8_0_ip_funcs,
  1466. };
  1467. const struct amdgpu_ip_block_version gmc_v8_1_ip_block =
  1468. {
  1469. .type = AMD_IP_BLOCK_TYPE_GMC,
  1470. .major = 8,
  1471. .minor = 1,
  1472. .rev = 0,
  1473. .funcs = &gmc_v8_0_ip_funcs,
  1474. };
  1475. const struct amdgpu_ip_block_version gmc_v8_5_ip_block =
  1476. {
  1477. .type = AMD_IP_BLOCK_TYPE_GMC,
  1478. .major = 8,
  1479. .minor = 5,
  1480. .rev = 0,
  1481. .funcs = &gmc_v8_0_ip_funcs,
  1482. };