sparse.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * sparse memory mappings.
  4. */
  5. #include <linux/mm.h>
  6. #include <linux/slab.h>
  7. #include <linux/mmzone.h>
  8. #include <linux/bootmem.h>
  9. #include <linux/compiler.h>
  10. #include <linux/highmem.h>
  11. #include <linux/export.h>
  12. #include <linux/spinlock.h>
  13. #include <linux/vmalloc.h>
  14. #include "internal.h"
  15. #include <asm/dma.h>
  16. #include <asm/pgalloc.h>
  17. #include <asm/pgtable.h>
  18. /*
  19. * Permanent SPARSEMEM data:
  20. *
  21. * 1) mem_section - memory sections, mem_map's for valid memory
  22. */
  23. #ifdef CONFIG_SPARSEMEM_EXTREME
  24. struct mem_section **mem_section;
  25. #else
  26. struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
  27. ____cacheline_internodealigned_in_smp;
  28. #endif
  29. EXPORT_SYMBOL(mem_section);
  30. #ifdef NODE_NOT_IN_PAGE_FLAGS
  31. /*
  32. * If we did not store the node number in the page then we have to
  33. * do a lookup in the section_to_node_table in order to find which
  34. * node the page belongs to.
  35. */
  36. #if MAX_NUMNODES <= 256
  37. static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
  38. #else
  39. static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
  40. #endif
  41. int page_to_nid(const struct page *page)
  42. {
  43. return section_to_node_table[page_to_section(page)];
  44. }
  45. EXPORT_SYMBOL(page_to_nid);
  46. static void set_section_nid(unsigned long section_nr, int nid)
  47. {
  48. section_to_node_table[section_nr] = nid;
  49. }
  50. #else /* !NODE_NOT_IN_PAGE_FLAGS */
  51. static inline void set_section_nid(unsigned long section_nr, int nid)
  52. {
  53. }
  54. #endif
  55. #ifdef CONFIG_SPARSEMEM_EXTREME
  56. static noinline struct mem_section __ref *sparse_index_alloc(int nid)
  57. {
  58. struct mem_section *section = NULL;
  59. unsigned long array_size = SECTIONS_PER_ROOT *
  60. sizeof(struct mem_section);
  61. if (slab_is_available())
  62. section = kzalloc_node(array_size, GFP_KERNEL, nid);
  63. else
  64. section = memblock_virt_alloc_node(array_size, nid);
  65. return section;
  66. }
  67. static int __meminit sparse_index_init(unsigned long section_nr, int nid)
  68. {
  69. unsigned long root = SECTION_NR_TO_ROOT(section_nr);
  70. struct mem_section *section;
  71. if (mem_section[root])
  72. return -EEXIST;
  73. section = sparse_index_alloc(nid);
  74. if (!section)
  75. return -ENOMEM;
  76. mem_section[root] = section;
  77. return 0;
  78. }
  79. #else /* !SPARSEMEM_EXTREME */
  80. static inline int sparse_index_init(unsigned long section_nr, int nid)
  81. {
  82. return 0;
  83. }
  84. #endif
  85. #ifdef CONFIG_SPARSEMEM_EXTREME
  86. int __section_nr(struct mem_section* ms)
  87. {
  88. unsigned long root_nr;
  89. struct mem_section *root = NULL;
  90. for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
  91. root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
  92. if (!root)
  93. continue;
  94. if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
  95. break;
  96. }
  97. VM_BUG_ON(!root);
  98. return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
  99. }
  100. #else
  101. int __section_nr(struct mem_section* ms)
  102. {
  103. return (int)(ms - mem_section[0]);
  104. }
  105. #endif
  106. /*
  107. * During early boot, before section_mem_map is used for an actual
  108. * mem_map, we use section_mem_map to store the section's NUMA
  109. * node. This keeps us from having to use another data structure. The
  110. * node information is cleared just before we store the real mem_map.
  111. */
  112. static inline unsigned long sparse_encode_early_nid(int nid)
  113. {
  114. return (nid << SECTION_NID_SHIFT);
  115. }
  116. static inline int sparse_early_nid(struct mem_section *section)
  117. {
  118. return (section->section_mem_map >> SECTION_NID_SHIFT);
  119. }
  120. /* Validate the physical addressing limitations of the model */
  121. void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
  122. unsigned long *end_pfn)
  123. {
  124. unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
  125. /*
  126. * Sanity checks - do not allow an architecture to pass
  127. * in larger pfns than the maximum scope of sparsemem:
  128. */
  129. if (*start_pfn > max_sparsemem_pfn) {
  130. mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
  131. "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
  132. *start_pfn, *end_pfn, max_sparsemem_pfn);
  133. WARN_ON_ONCE(1);
  134. *start_pfn = max_sparsemem_pfn;
  135. *end_pfn = max_sparsemem_pfn;
  136. } else if (*end_pfn > max_sparsemem_pfn) {
  137. mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
  138. "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
  139. *start_pfn, *end_pfn, max_sparsemem_pfn);
  140. WARN_ON_ONCE(1);
  141. *end_pfn = max_sparsemem_pfn;
  142. }
  143. }
  144. /*
  145. * There are a number of times that we loop over NR_MEM_SECTIONS,
  146. * looking for section_present() on each. But, when we have very
  147. * large physical address spaces, NR_MEM_SECTIONS can also be
  148. * very large which makes the loops quite long.
  149. *
  150. * Keeping track of this gives us an easy way to break out of
  151. * those loops early.
  152. */
  153. int __highest_present_section_nr;
  154. static void section_mark_present(struct mem_section *ms)
  155. {
  156. int section_nr = __section_nr(ms);
  157. if (section_nr > __highest_present_section_nr)
  158. __highest_present_section_nr = section_nr;
  159. ms->section_mem_map |= SECTION_MARKED_PRESENT;
  160. }
  161. static inline int next_present_section_nr(int section_nr)
  162. {
  163. do {
  164. section_nr++;
  165. if (present_section_nr(section_nr))
  166. return section_nr;
  167. } while ((section_nr < NR_MEM_SECTIONS) &&
  168. (section_nr <= __highest_present_section_nr));
  169. return -1;
  170. }
  171. #define for_each_present_section_nr(start, section_nr) \
  172. for (section_nr = next_present_section_nr(start-1); \
  173. ((section_nr >= 0) && \
  174. (section_nr < NR_MEM_SECTIONS) && \
  175. (section_nr <= __highest_present_section_nr)); \
  176. section_nr = next_present_section_nr(section_nr))
  177. /* Record a memory area against a node. */
  178. void __init memory_present(int nid, unsigned long start, unsigned long end)
  179. {
  180. unsigned long pfn;
  181. #ifdef CONFIG_SPARSEMEM_EXTREME
  182. if (unlikely(!mem_section)) {
  183. unsigned long size, align;
  184. size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
  185. align = 1 << (INTERNODE_CACHE_SHIFT);
  186. mem_section = memblock_virt_alloc(size, align);
  187. }
  188. #endif
  189. start &= PAGE_SECTION_MASK;
  190. mminit_validate_memmodel_limits(&start, &end);
  191. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
  192. unsigned long section = pfn_to_section_nr(pfn);
  193. struct mem_section *ms;
  194. sparse_index_init(section, nid);
  195. set_section_nid(section, nid);
  196. ms = __nr_to_section(section);
  197. if (!ms->section_mem_map) {
  198. ms->section_mem_map = sparse_encode_early_nid(nid) |
  199. SECTION_IS_ONLINE;
  200. section_mark_present(ms);
  201. }
  202. }
  203. }
  204. /*
  205. * Only used by the i386 NUMA architecures, but relatively
  206. * generic code.
  207. */
  208. unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
  209. unsigned long end_pfn)
  210. {
  211. unsigned long pfn;
  212. unsigned long nr_pages = 0;
  213. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  214. for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
  215. if (nid != early_pfn_to_nid(pfn))
  216. continue;
  217. if (pfn_present(pfn))
  218. nr_pages += PAGES_PER_SECTION;
  219. }
  220. return nr_pages * sizeof(struct page);
  221. }
  222. /*
  223. * Subtle, we encode the real pfn into the mem_map such that
  224. * the identity pfn - section_mem_map will return the actual
  225. * physical page frame number.
  226. */
  227. static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
  228. {
  229. return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
  230. }
  231. /*
  232. * Decode mem_map from the coded memmap
  233. */
  234. struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
  235. {
  236. /* mask off the extra low bits of information */
  237. coded_mem_map &= SECTION_MAP_MASK;
  238. return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
  239. }
  240. static int __meminit sparse_init_one_section(struct mem_section *ms,
  241. unsigned long pnum, struct page *mem_map,
  242. unsigned long *pageblock_bitmap)
  243. {
  244. if (!present_section(ms))
  245. return -EINVAL;
  246. ms->section_mem_map &= ~SECTION_MAP_MASK;
  247. ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
  248. SECTION_HAS_MEM_MAP;
  249. ms->pageblock_flags = pageblock_bitmap;
  250. return 1;
  251. }
  252. unsigned long usemap_size(void)
  253. {
  254. return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
  255. }
  256. #ifdef CONFIG_MEMORY_HOTPLUG
  257. static unsigned long *__kmalloc_section_usemap(void)
  258. {
  259. return kmalloc(usemap_size(), GFP_KERNEL);
  260. }
  261. #endif /* CONFIG_MEMORY_HOTPLUG */
  262. #ifdef CONFIG_MEMORY_HOTREMOVE
  263. static unsigned long * __init
  264. sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
  265. unsigned long size)
  266. {
  267. unsigned long goal, limit;
  268. unsigned long *p;
  269. int nid;
  270. /*
  271. * A page may contain usemaps for other sections preventing the
  272. * page being freed and making a section unremovable while
  273. * other sections referencing the usemap remain active. Similarly,
  274. * a pgdat can prevent a section being removed. If section A
  275. * contains a pgdat and section B contains the usemap, both
  276. * sections become inter-dependent. This allocates usemaps
  277. * from the same section as the pgdat where possible to avoid
  278. * this problem.
  279. */
  280. goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
  281. limit = goal + (1UL << PA_SECTION_SHIFT);
  282. nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
  283. again:
  284. p = memblock_virt_alloc_try_nid_nopanic(size,
  285. SMP_CACHE_BYTES, goal, limit,
  286. nid);
  287. if (!p && limit) {
  288. limit = 0;
  289. goto again;
  290. }
  291. return p;
  292. }
  293. static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
  294. {
  295. unsigned long usemap_snr, pgdat_snr;
  296. static unsigned long old_usemap_snr;
  297. static unsigned long old_pgdat_snr;
  298. struct pglist_data *pgdat = NODE_DATA(nid);
  299. int usemap_nid;
  300. /* First call */
  301. if (!old_usemap_snr) {
  302. old_usemap_snr = NR_MEM_SECTIONS;
  303. old_pgdat_snr = NR_MEM_SECTIONS;
  304. }
  305. usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
  306. pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
  307. if (usemap_snr == pgdat_snr)
  308. return;
  309. if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
  310. /* skip redundant message */
  311. return;
  312. old_usemap_snr = usemap_snr;
  313. old_pgdat_snr = pgdat_snr;
  314. usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
  315. if (usemap_nid != nid) {
  316. pr_info("node %d must be removed before remove section %ld\n",
  317. nid, usemap_snr);
  318. return;
  319. }
  320. /*
  321. * There is a circular dependency.
  322. * Some platforms allow un-removable section because they will just
  323. * gather other removable sections for dynamic partitioning.
  324. * Just notify un-removable section's number here.
  325. */
  326. pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
  327. usemap_snr, pgdat_snr, nid);
  328. }
  329. #else
  330. static unsigned long * __init
  331. sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
  332. unsigned long size)
  333. {
  334. return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
  335. }
  336. static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
  337. {
  338. }
  339. #endif /* CONFIG_MEMORY_HOTREMOVE */
  340. static void __init sparse_early_usemaps_alloc_node(void *data,
  341. unsigned long pnum_begin,
  342. unsigned long pnum_end,
  343. unsigned long usemap_count, int nodeid)
  344. {
  345. void *usemap;
  346. unsigned long pnum;
  347. unsigned long **usemap_map = (unsigned long **)data;
  348. int size = usemap_size();
  349. usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
  350. size * usemap_count);
  351. if (!usemap) {
  352. pr_warn("%s: allocation failed\n", __func__);
  353. return;
  354. }
  355. for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
  356. if (!present_section_nr(pnum))
  357. continue;
  358. usemap_map[pnum] = usemap;
  359. usemap += size;
  360. check_usemap_section_nr(nodeid, usemap_map[pnum]);
  361. }
  362. }
  363. #ifndef CONFIG_SPARSEMEM_VMEMMAP
  364. struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
  365. {
  366. struct page *map;
  367. unsigned long size;
  368. map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
  369. if (map)
  370. return map;
  371. size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
  372. map = memblock_virt_alloc_try_nid(size,
  373. PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
  374. BOOTMEM_ALLOC_ACCESSIBLE, nid);
  375. return map;
  376. }
  377. void __init sparse_mem_maps_populate_node(struct page **map_map,
  378. unsigned long pnum_begin,
  379. unsigned long pnum_end,
  380. unsigned long map_count, int nodeid)
  381. {
  382. void *map;
  383. unsigned long pnum;
  384. unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
  385. map = alloc_remap(nodeid, size * map_count);
  386. if (map) {
  387. for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
  388. if (!present_section_nr(pnum))
  389. continue;
  390. map_map[pnum] = map;
  391. map += size;
  392. }
  393. return;
  394. }
  395. size = PAGE_ALIGN(size);
  396. map = memblock_virt_alloc_try_nid_raw(size * map_count,
  397. PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
  398. BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
  399. if (map) {
  400. for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
  401. if (!present_section_nr(pnum))
  402. continue;
  403. map_map[pnum] = map;
  404. map += size;
  405. }
  406. return;
  407. }
  408. /* fallback */
  409. for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
  410. struct mem_section *ms;
  411. if (!present_section_nr(pnum))
  412. continue;
  413. map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
  414. if (map_map[pnum])
  415. continue;
  416. ms = __nr_to_section(pnum);
  417. pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
  418. __func__);
  419. ms->section_mem_map = 0;
  420. }
  421. }
  422. #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
  423. #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  424. static void __init sparse_early_mem_maps_alloc_node(void *data,
  425. unsigned long pnum_begin,
  426. unsigned long pnum_end,
  427. unsigned long map_count, int nodeid)
  428. {
  429. struct page **map_map = (struct page **)data;
  430. sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
  431. map_count, nodeid);
  432. }
  433. #else
  434. static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
  435. {
  436. struct page *map;
  437. struct mem_section *ms = __nr_to_section(pnum);
  438. int nid = sparse_early_nid(ms);
  439. map = sparse_mem_map_populate(pnum, nid);
  440. if (map)
  441. return map;
  442. pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
  443. __func__);
  444. ms->section_mem_map = 0;
  445. return NULL;
  446. }
  447. #endif
  448. void __weak __meminit vmemmap_populate_print_last(void)
  449. {
  450. }
  451. /**
  452. * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
  453. * @map: usemap_map for pageblock flags or mmap_map for vmemmap
  454. */
  455. static void __init alloc_usemap_and_memmap(void (*alloc_func)
  456. (void *, unsigned long, unsigned long,
  457. unsigned long, int), void *data)
  458. {
  459. unsigned long pnum;
  460. unsigned long map_count;
  461. int nodeid_begin = 0;
  462. unsigned long pnum_begin = 0;
  463. for_each_present_section_nr(0, pnum) {
  464. struct mem_section *ms;
  465. ms = __nr_to_section(pnum);
  466. nodeid_begin = sparse_early_nid(ms);
  467. pnum_begin = pnum;
  468. break;
  469. }
  470. map_count = 1;
  471. for_each_present_section_nr(pnum_begin + 1, pnum) {
  472. struct mem_section *ms;
  473. int nodeid;
  474. ms = __nr_to_section(pnum);
  475. nodeid = sparse_early_nid(ms);
  476. if (nodeid == nodeid_begin) {
  477. map_count++;
  478. continue;
  479. }
  480. /* ok, we need to take cake of from pnum_begin to pnum - 1*/
  481. alloc_func(data, pnum_begin, pnum,
  482. map_count, nodeid_begin);
  483. /* new start, update count etc*/
  484. nodeid_begin = nodeid;
  485. pnum_begin = pnum;
  486. map_count = 1;
  487. }
  488. /* ok, last chunk */
  489. alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
  490. map_count, nodeid_begin);
  491. }
  492. /*
  493. * Allocate the accumulated non-linear sections, allocate a mem_map
  494. * for each and record the physical to section mapping.
  495. */
  496. void __init sparse_init(void)
  497. {
  498. unsigned long pnum;
  499. struct page *map;
  500. unsigned long *usemap;
  501. unsigned long **usemap_map;
  502. int size;
  503. #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  504. int size2;
  505. struct page **map_map;
  506. #endif
  507. /* see include/linux/mmzone.h 'struct mem_section' definition */
  508. BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
  509. /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
  510. set_pageblock_order();
  511. /*
  512. * map is using big page (aka 2M in x86 64 bit)
  513. * usemap is less one page (aka 24 bytes)
  514. * so alloc 2M (with 2M align) and 24 bytes in turn will
  515. * make next 2M slip to one more 2M later.
  516. * then in big system, the memory will have a lot of holes...
  517. * here try to allocate 2M pages continuously.
  518. *
  519. * powerpc need to call sparse_init_one_section right after each
  520. * sparse_early_mem_map_alloc, so allocate usemap_map at first.
  521. */
  522. size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
  523. usemap_map = memblock_virt_alloc(size, 0);
  524. if (!usemap_map)
  525. panic("can not allocate usemap_map\n");
  526. alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
  527. (void *)usemap_map);
  528. #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  529. size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
  530. map_map = memblock_virt_alloc(size2, 0);
  531. if (!map_map)
  532. panic("can not allocate map_map\n");
  533. alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
  534. (void *)map_map);
  535. #endif
  536. for_each_present_section_nr(0, pnum) {
  537. usemap = usemap_map[pnum];
  538. if (!usemap)
  539. continue;
  540. #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  541. map = map_map[pnum];
  542. #else
  543. map = sparse_early_mem_map_alloc(pnum);
  544. #endif
  545. if (!map)
  546. continue;
  547. sparse_init_one_section(__nr_to_section(pnum), pnum, map,
  548. usemap);
  549. }
  550. vmemmap_populate_print_last();
  551. #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  552. memblock_free_early(__pa(map_map), size2);
  553. #endif
  554. memblock_free_early(__pa(usemap_map), size);
  555. }
  556. #ifdef CONFIG_MEMORY_HOTPLUG
  557. /* Mark all memory sections within the pfn range as online */
  558. void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
  559. {
  560. unsigned long pfn;
  561. for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
  562. unsigned long section_nr = pfn_to_section_nr(pfn);
  563. struct mem_section *ms;
  564. /* onlining code should never touch invalid ranges */
  565. if (WARN_ON(!valid_section_nr(section_nr)))
  566. continue;
  567. ms = __nr_to_section(section_nr);
  568. ms->section_mem_map |= SECTION_IS_ONLINE;
  569. }
  570. }
  571. #ifdef CONFIG_MEMORY_HOTREMOVE
  572. /* Mark all memory sections within the pfn range as online */
  573. void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
  574. {
  575. unsigned long pfn;
  576. for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
  577. unsigned long section_nr = pfn_to_section_nr(start_pfn);
  578. struct mem_section *ms;
  579. /*
  580. * TODO this needs some double checking. Offlining code makes
  581. * sure to check pfn_valid but those checks might be just bogus
  582. */
  583. if (WARN_ON(!valid_section_nr(section_nr)))
  584. continue;
  585. ms = __nr_to_section(section_nr);
  586. ms->section_mem_map &= ~SECTION_IS_ONLINE;
  587. }
  588. }
  589. #endif
  590. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  591. static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
  592. {
  593. /* This will make the necessary allocations eventually. */
  594. return sparse_mem_map_populate(pnum, nid);
  595. }
  596. static void __kfree_section_memmap(struct page *memmap)
  597. {
  598. unsigned long start = (unsigned long)memmap;
  599. unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
  600. vmemmap_free(start, end);
  601. }
  602. #ifdef CONFIG_MEMORY_HOTREMOVE
  603. static void free_map_bootmem(struct page *memmap)
  604. {
  605. unsigned long start = (unsigned long)memmap;
  606. unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
  607. vmemmap_free(start, end);
  608. }
  609. #endif /* CONFIG_MEMORY_HOTREMOVE */
  610. #else
  611. static struct page *__kmalloc_section_memmap(void)
  612. {
  613. struct page *page, *ret;
  614. unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
  615. page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
  616. if (page)
  617. goto got_map_page;
  618. ret = vmalloc(memmap_size);
  619. if (ret)
  620. goto got_map_ptr;
  621. return NULL;
  622. got_map_page:
  623. ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
  624. got_map_ptr:
  625. return ret;
  626. }
  627. static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
  628. {
  629. return __kmalloc_section_memmap();
  630. }
  631. static void __kfree_section_memmap(struct page *memmap)
  632. {
  633. if (is_vmalloc_addr(memmap))
  634. vfree(memmap);
  635. else
  636. free_pages((unsigned long)memmap,
  637. get_order(sizeof(struct page) * PAGES_PER_SECTION));
  638. }
  639. #ifdef CONFIG_MEMORY_HOTREMOVE
  640. static void free_map_bootmem(struct page *memmap)
  641. {
  642. unsigned long maps_section_nr, removing_section_nr, i;
  643. unsigned long magic, nr_pages;
  644. struct page *page = virt_to_page(memmap);
  645. nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
  646. >> PAGE_SHIFT;
  647. for (i = 0; i < nr_pages; i++, page++) {
  648. magic = (unsigned long) page->freelist;
  649. BUG_ON(magic == NODE_INFO);
  650. maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
  651. removing_section_nr = page_private(page);
  652. /*
  653. * When this function is called, the removing section is
  654. * logical offlined state. This means all pages are isolated
  655. * from page allocator. If removing section's memmap is placed
  656. * on the same section, it must not be freed.
  657. * If it is freed, page allocator may allocate it which will
  658. * be removed physically soon.
  659. */
  660. if (maps_section_nr != removing_section_nr)
  661. put_page_bootmem(page);
  662. }
  663. }
  664. #endif /* CONFIG_MEMORY_HOTREMOVE */
  665. #endif /* CONFIG_SPARSEMEM_VMEMMAP */
  666. /*
  667. * returns the number of sections whose mem_maps were properly
  668. * set. If this is <=0, then that means that the passed-in
  669. * map was not consumed and must be freed.
  670. */
  671. int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn)
  672. {
  673. unsigned long section_nr = pfn_to_section_nr(start_pfn);
  674. struct mem_section *ms;
  675. struct page *memmap;
  676. unsigned long *usemap;
  677. unsigned long flags;
  678. int ret;
  679. /*
  680. * no locking for this, because it does its own
  681. * plus, it does a kmalloc
  682. */
  683. ret = sparse_index_init(section_nr, pgdat->node_id);
  684. if (ret < 0 && ret != -EEXIST)
  685. return ret;
  686. memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
  687. if (!memmap)
  688. return -ENOMEM;
  689. usemap = __kmalloc_section_usemap();
  690. if (!usemap) {
  691. __kfree_section_memmap(memmap);
  692. return -ENOMEM;
  693. }
  694. pgdat_resize_lock(pgdat, &flags);
  695. ms = __pfn_to_section(start_pfn);
  696. if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
  697. ret = -EEXIST;
  698. goto out;
  699. }
  700. memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
  701. section_mark_present(ms);
  702. ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
  703. out:
  704. pgdat_resize_unlock(pgdat, &flags);
  705. if (ret <= 0) {
  706. kfree(usemap);
  707. __kfree_section_memmap(memmap);
  708. }
  709. return ret;
  710. }
  711. #ifdef CONFIG_MEMORY_HOTREMOVE
  712. #ifdef CONFIG_MEMORY_FAILURE
  713. static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
  714. {
  715. int i;
  716. if (!memmap)
  717. return;
  718. for (i = 0; i < nr_pages; i++) {
  719. if (PageHWPoison(&memmap[i])) {
  720. atomic_long_sub(1, &num_poisoned_pages);
  721. ClearPageHWPoison(&memmap[i]);
  722. }
  723. }
  724. }
  725. #else
  726. static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
  727. {
  728. }
  729. #endif
  730. static void free_section_usemap(struct page *memmap, unsigned long *usemap)
  731. {
  732. struct page *usemap_page;
  733. if (!usemap)
  734. return;
  735. usemap_page = virt_to_page(usemap);
  736. /*
  737. * Check to see if allocation came from hot-plug-add
  738. */
  739. if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
  740. kfree(usemap);
  741. if (memmap)
  742. __kfree_section_memmap(memmap);
  743. return;
  744. }
  745. /*
  746. * The usemap came from bootmem. This is packed with other usemaps
  747. * on the section which has pgdat at boot time. Just keep it as is now.
  748. */
  749. if (memmap)
  750. free_map_bootmem(memmap);
  751. }
  752. void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
  753. unsigned long map_offset)
  754. {
  755. struct page *memmap = NULL;
  756. unsigned long *usemap = NULL, flags;
  757. struct pglist_data *pgdat = zone->zone_pgdat;
  758. pgdat_resize_lock(pgdat, &flags);
  759. if (ms->section_mem_map) {
  760. usemap = ms->pageblock_flags;
  761. memmap = sparse_decode_mem_map(ms->section_mem_map,
  762. __section_nr(ms));
  763. ms->section_mem_map = 0;
  764. ms->pageblock_flags = NULL;
  765. }
  766. pgdat_resize_unlock(pgdat, &flags);
  767. clear_hwpoisoned_pages(memmap + map_offset,
  768. PAGES_PER_SECTION - map_offset);
  769. free_section_usemap(memmap, usemap);
  770. }
  771. #endif /* CONFIG_MEMORY_HOTREMOVE */
  772. #endif /* CONFIG_MEMORY_HOTPLUG */