sdma_v2_4.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_2_4_d.h"
  32. #include "oss/oss_2_4_sh_mask.h"
  33. #include "gmc/gmc_7_1_d.h"
  34. #include "gmc/gmc_7_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "iceland_sdma_pkt_open.h"
  41. static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/topaz_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/topaz_sdma1.bin");
  47. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  48. {
  49. SDMA0_REGISTER_OFFSET,
  50. SDMA1_REGISTER_OFFSET
  51. };
  52. static const u32 golden_settings_iceland_a11[] =
  53. {
  54. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  55. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  56. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  57. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  58. };
  59. static const u32 iceland_mgcg_cgcg_init[] =
  60. {
  61. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  62. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  63. };
  64. /*
  65. * sDMA - System DMA
  66. * Starting with CIK, the GPU has new asynchronous
  67. * DMA engines. These engines are used for compute
  68. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  69. * and each one supports 1 ring buffer used for gfx
  70. * and 2 queues used for compute.
  71. *
  72. * The programming model is very similar to the CP
  73. * (ring buffer, IBs, etc.), but sDMA has it's own
  74. * packet format that is different from the PM4 format
  75. * used by the CP. sDMA supports copying data, writing
  76. * embedded data, solid fills, and a number of other
  77. * things. It also has support for tiling/detiling of
  78. * buffers.
  79. */
  80. static void sdma_v2_4_init_golden_registers(struct amdgpu_device *adev)
  81. {
  82. switch (adev->asic_type) {
  83. case CHIP_TOPAZ:
  84. amdgpu_program_register_sequence(adev,
  85. iceland_mgcg_cgcg_init,
  86. (const u32)ARRAY_SIZE(iceland_mgcg_cgcg_init));
  87. amdgpu_program_register_sequence(adev,
  88. golden_settings_iceland_a11,
  89. (const u32)ARRAY_SIZE(golden_settings_iceland_a11));
  90. break;
  91. default:
  92. break;
  93. }
  94. }
  95. static void sdma_v2_4_free_microcode(struct amdgpu_device *adev)
  96. {
  97. int i;
  98. for (i = 0; i < adev->sdma.num_instances; i++) {
  99. release_firmware(adev->sdma.instance[i].fw);
  100. adev->sdma.instance[i].fw = NULL;
  101. }
  102. }
  103. /**
  104. * sdma_v2_4_init_microcode - load ucode images from disk
  105. *
  106. * @adev: amdgpu_device pointer
  107. *
  108. * Use the firmware interface to load the ucode images into
  109. * the driver (not loaded into hw).
  110. * Returns 0 on success, error on failure.
  111. */
  112. static int sdma_v2_4_init_microcode(struct amdgpu_device *adev)
  113. {
  114. const char *chip_name;
  115. char fw_name[30];
  116. int err = 0, i;
  117. struct amdgpu_firmware_info *info = NULL;
  118. const struct common_firmware_header *header = NULL;
  119. const struct sdma_firmware_header_v1_0 *hdr;
  120. DRM_DEBUG("\n");
  121. switch (adev->asic_type) {
  122. case CHIP_TOPAZ:
  123. chip_name = "topaz";
  124. break;
  125. default: BUG();
  126. }
  127. for (i = 0; i < adev->sdma.num_instances; i++) {
  128. if (i == 0)
  129. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  130. else
  131. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  132. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  133. if (err)
  134. goto out;
  135. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  136. if (err)
  137. goto out;
  138. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  139. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  140. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  141. if (adev->sdma.instance[i].feature_version >= 20)
  142. adev->sdma.instance[i].burst_nop = true;
  143. if (adev->firmware.smu_load) {
  144. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  145. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  146. info->fw = adev->sdma.instance[i].fw;
  147. header = (const struct common_firmware_header *)info->fw->data;
  148. adev->firmware.fw_size +=
  149. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  150. }
  151. }
  152. out:
  153. if (err) {
  154. printk(KERN_ERR
  155. "sdma_v2_4: Failed to load firmware \"%s\"\n",
  156. fw_name);
  157. for (i = 0; i < adev->sdma.num_instances; i++) {
  158. release_firmware(adev->sdma.instance[i].fw);
  159. adev->sdma.instance[i].fw = NULL;
  160. }
  161. }
  162. return err;
  163. }
  164. /**
  165. * sdma_v2_4_ring_get_rptr - get the current read pointer
  166. *
  167. * @ring: amdgpu ring pointer
  168. *
  169. * Get the current rptr from the hardware (VI+).
  170. */
  171. static uint32_t sdma_v2_4_ring_get_rptr(struct amdgpu_ring *ring)
  172. {
  173. u32 rptr;
  174. /* XXX check if swapping is necessary on BE */
  175. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  176. return rptr;
  177. }
  178. /**
  179. * sdma_v2_4_ring_get_wptr - get the current write pointer
  180. *
  181. * @ring: amdgpu ring pointer
  182. *
  183. * Get the current wptr from the hardware (VI+).
  184. */
  185. static uint32_t sdma_v2_4_ring_get_wptr(struct amdgpu_ring *ring)
  186. {
  187. struct amdgpu_device *adev = ring->adev;
  188. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  189. u32 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  190. return wptr;
  191. }
  192. /**
  193. * sdma_v2_4_ring_set_wptr - commit the write pointer
  194. *
  195. * @ring: amdgpu ring pointer
  196. *
  197. * Write the wptr back to the hardware (VI+).
  198. */
  199. static void sdma_v2_4_ring_set_wptr(struct amdgpu_ring *ring)
  200. {
  201. struct amdgpu_device *adev = ring->adev;
  202. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  203. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  204. }
  205. static void sdma_v2_4_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  206. {
  207. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  208. int i;
  209. for (i = 0; i < count; i++)
  210. if (sdma && sdma->burst_nop && (i == 0))
  211. amdgpu_ring_write(ring, ring->nop |
  212. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  213. else
  214. amdgpu_ring_write(ring, ring->nop);
  215. }
  216. /**
  217. * sdma_v2_4_ring_emit_ib - Schedule an IB on the DMA engine
  218. *
  219. * @ring: amdgpu ring pointer
  220. * @ib: IB object to schedule
  221. *
  222. * Schedule an IB in the DMA ring (VI).
  223. */
  224. static void sdma_v2_4_ring_emit_ib(struct amdgpu_ring *ring,
  225. struct amdgpu_ib *ib,
  226. unsigned vm_id, bool ctx_switch)
  227. {
  228. u32 vmid = vm_id & 0xf;
  229. /* IB packet must end on a 8 DW boundary */
  230. sdma_v2_4_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
  231. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  232. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  233. /* base must be 32 byte aligned */
  234. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  235. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  236. amdgpu_ring_write(ring, ib->length_dw);
  237. amdgpu_ring_write(ring, 0);
  238. amdgpu_ring_write(ring, 0);
  239. }
  240. /**
  241. * sdma_v2_4_hdp_flush_ring_emit - emit an hdp flush on the DMA ring
  242. *
  243. * @ring: amdgpu ring pointer
  244. *
  245. * Emit an hdp flush packet on the requested DMA ring.
  246. */
  247. static void sdma_v2_4_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  248. {
  249. u32 ref_and_mask = 0;
  250. if (ring == &ring->adev->sdma.instance[0].ring)
  251. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  252. else
  253. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  254. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  255. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  256. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  257. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  258. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  259. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  260. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  261. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  262. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  263. }
  264. static void sdma_v2_4_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  265. {
  266. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  267. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  268. amdgpu_ring_write(ring, mmHDP_DEBUG0);
  269. amdgpu_ring_write(ring, 1);
  270. }
  271. /**
  272. * sdma_v2_4_ring_emit_fence - emit a fence on the DMA ring
  273. *
  274. * @ring: amdgpu ring pointer
  275. * @fence: amdgpu fence object
  276. *
  277. * Add a DMA fence packet to the ring to write
  278. * the fence seq number and DMA trap packet to generate
  279. * an interrupt if needed (VI).
  280. */
  281. static void sdma_v2_4_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  282. unsigned flags)
  283. {
  284. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  285. /* write the fence */
  286. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  287. amdgpu_ring_write(ring, lower_32_bits(addr));
  288. amdgpu_ring_write(ring, upper_32_bits(addr));
  289. amdgpu_ring_write(ring, lower_32_bits(seq));
  290. /* optionally write high bits as well */
  291. if (write64bit) {
  292. addr += 4;
  293. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  294. amdgpu_ring_write(ring, lower_32_bits(addr));
  295. amdgpu_ring_write(ring, upper_32_bits(addr));
  296. amdgpu_ring_write(ring, upper_32_bits(seq));
  297. }
  298. /* generate an interrupt */
  299. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  300. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  301. }
  302. /**
  303. * sdma_v2_4_gfx_stop - stop the gfx async dma engines
  304. *
  305. * @adev: amdgpu_device pointer
  306. *
  307. * Stop the gfx async dma ring buffers (VI).
  308. */
  309. static void sdma_v2_4_gfx_stop(struct amdgpu_device *adev)
  310. {
  311. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  312. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  313. u32 rb_cntl, ib_cntl;
  314. int i;
  315. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  316. (adev->mman.buffer_funcs_ring == sdma1))
  317. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  318. for (i = 0; i < adev->sdma.num_instances; i++) {
  319. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  320. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  321. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  322. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  323. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  324. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  325. }
  326. sdma0->ready = false;
  327. sdma1->ready = false;
  328. }
  329. /**
  330. * sdma_v2_4_rlc_stop - stop the compute async dma engines
  331. *
  332. * @adev: amdgpu_device pointer
  333. *
  334. * Stop the compute async dma queues (VI).
  335. */
  336. static void sdma_v2_4_rlc_stop(struct amdgpu_device *adev)
  337. {
  338. /* XXX todo */
  339. }
  340. /**
  341. * sdma_v2_4_enable - stop the async dma engines
  342. *
  343. * @adev: amdgpu_device pointer
  344. * @enable: enable/disable the DMA MEs.
  345. *
  346. * Halt or unhalt the async dma engines (VI).
  347. */
  348. static void sdma_v2_4_enable(struct amdgpu_device *adev, bool enable)
  349. {
  350. u32 f32_cntl;
  351. int i;
  352. if (!enable) {
  353. sdma_v2_4_gfx_stop(adev);
  354. sdma_v2_4_rlc_stop(adev);
  355. }
  356. for (i = 0; i < adev->sdma.num_instances; i++) {
  357. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  358. if (enable)
  359. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  360. else
  361. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  362. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  363. }
  364. }
  365. /**
  366. * sdma_v2_4_gfx_resume - setup and start the async dma engines
  367. *
  368. * @adev: amdgpu_device pointer
  369. *
  370. * Set up the gfx DMA ring buffers and enable them (VI).
  371. * Returns 0 for success, error for failure.
  372. */
  373. static int sdma_v2_4_gfx_resume(struct amdgpu_device *adev)
  374. {
  375. struct amdgpu_ring *ring;
  376. u32 rb_cntl, ib_cntl;
  377. u32 rb_bufsz;
  378. u32 wb_offset;
  379. int i, j, r;
  380. for (i = 0; i < adev->sdma.num_instances; i++) {
  381. ring = &adev->sdma.instance[i].ring;
  382. wb_offset = (ring->rptr_offs * 4);
  383. mutex_lock(&adev->srbm_mutex);
  384. for (j = 0; j < 16; j++) {
  385. vi_srbm_select(adev, 0, 0, 0, j);
  386. /* SDMA GFX */
  387. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  388. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  389. }
  390. vi_srbm_select(adev, 0, 0, 0, 0);
  391. mutex_unlock(&adev->srbm_mutex);
  392. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  393. adev->gfx.config.gb_addr_config & 0x70);
  394. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  395. /* Set ring buffer size in dwords */
  396. rb_bufsz = order_base_2(ring->ring_size / 4);
  397. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  398. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  399. #ifdef __BIG_ENDIAN
  400. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  401. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  402. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  403. #endif
  404. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  405. /* Initialize the ring buffer's read and write pointers */
  406. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  407. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  408. WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
  409. WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
  410. /* set the wb address whether it's enabled or not */
  411. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  412. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  413. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  414. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  415. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  416. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  417. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  418. ring->wptr = 0;
  419. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  420. /* enable DMA RB */
  421. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  422. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  423. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  424. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  425. #ifdef __BIG_ENDIAN
  426. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  427. #endif
  428. /* enable DMA IBs */
  429. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  430. ring->ready = true;
  431. }
  432. sdma_v2_4_enable(adev, true);
  433. for (i = 0; i < adev->sdma.num_instances; i++) {
  434. ring = &adev->sdma.instance[i].ring;
  435. r = amdgpu_ring_test_ring(ring);
  436. if (r) {
  437. ring->ready = false;
  438. return r;
  439. }
  440. if (adev->mman.buffer_funcs_ring == ring)
  441. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  442. }
  443. return 0;
  444. }
  445. /**
  446. * sdma_v2_4_rlc_resume - setup and start the async dma engines
  447. *
  448. * @adev: amdgpu_device pointer
  449. *
  450. * Set up the compute DMA queues and enable them (VI).
  451. * Returns 0 for success, error for failure.
  452. */
  453. static int sdma_v2_4_rlc_resume(struct amdgpu_device *adev)
  454. {
  455. /* XXX todo */
  456. return 0;
  457. }
  458. /**
  459. * sdma_v2_4_load_microcode - load the sDMA ME ucode
  460. *
  461. * @adev: amdgpu_device pointer
  462. *
  463. * Loads the sDMA0/1 ucode.
  464. * Returns 0 for success, -EINVAL if the ucode is not available.
  465. */
  466. static int sdma_v2_4_load_microcode(struct amdgpu_device *adev)
  467. {
  468. const struct sdma_firmware_header_v1_0 *hdr;
  469. const __le32 *fw_data;
  470. u32 fw_size;
  471. int i, j;
  472. /* halt the MEs */
  473. sdma_v2_4_enable(adev, false);
  474. for (i = 0; i < adev->sdma.num_instances; i++) {
  475. if (!adev->sdma.instance[i].fw)
  476. return -EINVAL;
  477. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  478. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  479. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  480. fw_data = (const __le32 *)
  481. (adev->sdma.instance[i].fw->data +
  482. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  483. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  484. for (j = 0; j < fw_size; j++)
  485. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  486. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  487. }
  488. return 0;
  489. }
  490. /**
  491. * sdma_v2_4_start - setup and start the async dma engines
  492. *
  493. * @adev: amdgpu_device pointer
  494. *
  495. * Set up the DMA engines and enable them (VI).
  496. * Returns 0 for success, error for failure.
  497. */
  498. static int sdma_v2_4_start(struct amdgpu_device *adev)
  499. {
  500. int r;
  501. if (!adev->pp_enabled) {
  502. if (!adev->firmware.smu_load) {
  503. r = sdma_v2_4_load_microcode(adev);
  504. if (r)
  505. return r;
  506. } else {
  507. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  508. AMDGPU_UCODE_ID_SDMA0);
  509. if (r)
  510. return -EINVAL;
  511. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  512. AMDGPU_UCODE_ID_SDMA1);
  513. if (r)
  514. return -EINVAL;
  515. }
  516. }
  517. /* halt the engine before programing */
  518. sdma_v2_4_enable(adev, false);
  519. /* start the gfx rings and rlc compute queues */
  520. r = sdma_v2_4_gfx_resume(adev);
  521. if (r)
  522. return r;
  523. r = sdma_v2_4_rlc_resume(adev);
  524. if (r)
  525. return r;
  526. return 0;
  527. }
  528. /**
  529. * sdma_v2_4_ring_test_ring - simple async dma engine test
  530. *
  531. * @ring: amdgpu_ring structure holding ring information
  532. *
  533. * Test the DMA engine by writing using it to write an
  534. * value to memory. (VI).
  535. * Returns 0 for success, error for failure.
  536. */
  537. static int sdma_v2_4_ring_test_ring(struct amdgpu_ring *ring)
  538. {
  539. struct amdgpu_device *adev = ring->adev;
  540. unsigned i;
  541. unsigned index;
  542. int r;
  543. u32 tmp;
  544. u64 gpu_addr;
  545. r = amdgpu_wb_get(adev, &index);
  546. if (r) {
  547. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  548. return r;
  549. }
  550. gpu_addr = adev->wb.gpu_addr + (index * 4);
  551. tmp = 0xCAFEDEAD;
  552. adev->wb.wb[index] = cpu_to_le32(tmp);
  553. r = amdgpu_ring_alloc(ring, 5);
  554. if (r) {
  555. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  556. amdgpu_wb_free(adev, index);
  557. return r;
  558. }
  559. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  560. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  561. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  562. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  563. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  564. amdgpu_ring_write(ring, 0xDEADBEEF);
  565. amdgpu_ring_commit(ring);
  566. for (i = 0; i < adev->usec_timeout; i++) {
  567. tmp = le32_to_cpu(adev->wb.wb[index]);
  568. if (tmp == 0xDEADBEEF)
  569. break;
  570. DRM_UDELAY(1);
  571. }
  572. if (i < adev->usec_timeout) {
  573. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  574. } else {
  575. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  576. ring->idx, tmp);
  577. r = -EINVAL;
  578. }
  579. amdgpu_wb_free(adev, index);
  580. return r;
  581. }
  582. /**
  583. * sdma_v2_4_ring_test_ib - test an IB on the DMA engine
  584. *
  585. * @ring: amdgpu_ring structure holding ring information
  586. *
  587. * Test a simple IB in the DMA ring (VI).
  588. * Returns 0 on success, error on failure.
  589. */
  590. static int sdma_v2_4_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  591. {
  592. struct amdgpu_device *adev = ring->adev;
  593. struct amdgpu_ib ib;
  594. struct fence *f = NULL;
  595. unsigned index;
  596. u32 tmp = 0;
  597. u64 gpu_addr;
  598. long r;
  599. r = amdgpu_wb_get(adev, &index);
  600. if (r) {
  601. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  602. return r;
  603. }
  604. gpu_addr = adev->wb.gpu_addr + (index * 4);
  605. tmp = 0xCAFEDEAD;
  606. adev->wb.wb[index] = cpu_to_le32(tmp);
  607. memset(&ib, 0, sizeof(ib));
  608. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  609. if (r) {
  610. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  611. goto err0;
  612. }
  613. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  614. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  615. ib.ptr[1] = lower_32_bits(gpu_addr);
  616. ib.ptr[2] = upper_32_bits(gpu_addr);
  617. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  618. ib.ptr[4] = 0xDEADBEEF;
  619. ib.ptr[5] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  620. ib.ptr[6] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  621. ib.ptr[7] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  622. ib.length_dw = 8;
  623. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
  624. if (r)
  625. goto err1;
  626. r = fence_wait_timeout(f, false, timeout);
  627. if (r == 0) {
  628. DRM_ERROR("amdgpu: IB test timed out\n");
  629. r = -ETIMEDOUT;
  630. goto err1;
  631. } else if (r) {
  632. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  633. goto err1;
  634. }
  635. tmp = le32_to_cpu(adev->wb.wb[index]);
  636. if (tmp == 0xDEADBEEF) {
  637. DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
  638. r = 0;
  639. } else {
  640. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  641. r = -EINVAL;
  642. }
  643. err1:
  644. amdgpu_ib_free(adev, &ib, NULL);
  645. fence_put(f);
  646. err0:
  647. amdgpu_wb_free(adev, index);
  648. return r;
  649. }
  650. /**
  651. * sdma_v2_4_vm_copy_pte - update PTEs by copying them from the GART
  652. *
  653. * @ib: indirect buffer to fill with commands
  654. * @pe: addr of the page entry
  655. * @src: src addr to copy from
  656. * @count: number of page entries to update
  657. *
  658. * Update PTEs by copying them from the GART using sDMA (CIK).
  659. */
  660. static void sdma_v2_4_vm_copy_pte(struct amdgpu_ib *ib,
  661. uint64_t pe, uint64_t src,
  662. unsigned count)
  663. {
  664. while (count) {
  665. unsigned bytes = count * 8;
  666. if (bytes > 0x1FFFF8)
  667. bytes = 0x1FFFF8;
  668. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  669. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  670. ib->ptr[ib->length_dw++] = bytes;
  671. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  672. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  673. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  674. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  675. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  676. pe += bytes;
  677. src += bytes;
  678. count -= bytes / 8;
  679. }
  680. }
  681. /**
  682. * sdma_v2_4_vm_write_pte - update PTEs by writing them manually
  683. *
  684. * @ib: indirect buffer to fill with commands
  685. * @pe: addr of the page entry
  686. * @addr: dst addr to write into pe
  687. * @count: number of page entries to update
  688. * @incr: increase next addr by incr bytes
  689. * @flags: access flags
  690. *
  691. * Update PTEs by writing them manually using sDMA (CIK).
  692. */
  693. static void sdma_v2_4_vm_write_pte(struct amdgpu_ib *ib,
  694. const dma_addr_t *pages_addr, uint64_t pe,
  695. uint64_t addr, unsigned count,
  696. uint32_t incr, uint32_t flags)
  697. {
  698. uint64_t value;
  699. unsigned ndw;
  700. while (count) {
  701. ndw = count * 2;
  702. if (ndw > 0xFFFFE)
  703. ndw = 0xFFFFE;
  704. /* for non-physically contiguous pages (system) */
  705. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  706. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  707. ib->ptr[ib->length_dw++] = pe;
  708. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  709. ib->ptr[ib->length_dw++] = ndw;
  710. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  711. value = amdgpu_vm_map_gart(pages_addr, addr);
  712. addr += incr;
  713. value |= flags;
  714. ib->ptr[ib->length_dw++] = value;
  715. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  716. }
  717. }
  718. }
  719. /**
  720. * sdma_v2_4_vm_set_pte_pde - update the page tables using sDMA
  721. *
  722. * @ib: indirect buffer to fill with commands
  723. * @pe: addr of the page entry
  724. * @addr: dst addr to write into pe
  725. * @count: number of page entries to update
  726. * @incr: increase next addr by incr bytes
  727. * @flags: access flags
  728. *
  729. * Update the page tables using sDMA (CIK).
  730. */
  731. static void sdma_v2_4_vm_set_pte_pde(struct amdgpu_ib *ib,
  732. uint64_t pe,
  733. uint64_t addr, unsigned count,
  734. uint32_t incr, uint32_t flags)
  735. {
  736. uint64_t value;
  737. unsigned ndw;
  738. while (count) {
  739. ndw = count;
  740. if (ndw > 0x7FFFF)
  741. ndw = 0x7FFFF;
  742. if (flags & AMDGPU_PTE_VALID)
  743. value = addr;
  744. else
  745. value = 0;
  746. /* for physically contiguous pages (vram) */
  747. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  748. ib->ptr[ib->length_dw++] = pe; /* dst addr */
  749. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  750. ib->ptr[ib->length_dw++] = flags; /* mask */
  751. ib->ptr[ib->length_dw++] = 0;
  752. ib->ptr[ib->length_dw++] = value; /* value */
  753. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  754. ib->ptr[ib->length_dw++] = incr; /* increment size */
  755. ib->ptr[ib->length_dw++] = 0;
  756. ib->ptr[ib->length_dw++] = ndw; /* number of entries */
  757. pe += ndw * 8;
  758. addr += ndw * incr;
  759. count -= ndw;
  760. }
  761. }
  762. /**
  763. * sdma_v2_4_ring_pad_ib - pad the IB to the required number of dw
  764. *
  765. * @ib: indirect buffer to fill with padding
  766. *
  767. */
  768. static void sdma_v2_4_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  769. {
  770. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  771. u32 pad_count;
  772. int i;
  773. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  774. for (i = 0; i < pad_count; i++)
  775. if (sdma && sdma->burst_nop && (i == 0))
  776. ib->ptr[ib->length_dw++] =
  777. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  778. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  779. else
  780. ib->ptr[ib->length_dw++] =
  781. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  782. }
  783. /**
  784. * sdma_v2_4_ring_emit_pipeline_sync - sync the pipeline
  785. *
  786. * @ring: amdgpu_ring pointer
  787. *
  788. * Make sure all previous operations are completed (CIK).
  789. */
  790. static void sdma_v2_4_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  791. {
  792. uint32_t seq = ring->fence_drv.sync_seq;
  793. uint64_t addr = ring->fence_drv.gpu_addr;
  794. /* wait for idle */
  795. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  796. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  797. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  798. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  799. amdgpu_ring_write(ring, addr & 0xfffffffc);
  800. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  801. amdgpu_ring_write(ring, seq); /* reference */
  802. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  803. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  804. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  805. }
  806. /**
  807. * sdma_v2_4_ring_emit_vm_flush - cik vm flush using sDMA
  808. *
  809. * @ring: amdgpu_ring pointer
  810. * @vm: amdgpu_vm pointer
  811. *
  812. * Update the page table base and flush the VM TLB
  813. * using sDMA (VI).
  814. */
  815. static void sdma_v2_4_ring_emit_vm_flush(struct amdgpu_ring *ring,
  816. unsigned vm_id, uint64_t pd_addr)
  817. {
  818. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  819. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  820. if (vm_id < 8) {
  821. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  822. } else {
  823. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  824. }
  825. amdgpu_ring_write(ring, pd_addr >> 12);
  826. /* flush TLB */
  827. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  828. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  829. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  830. amdgpu_ring_write(ring, 1 << vm_id);
  831. /* wait for flush */
  832. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  833. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  834. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  835. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  836. amdgpu_ring_write(ring, 0);
  837. amdgpu_ring_write(ring, 0); /* reference */
  838. amdgpu_ring_write(ring, 0); /* mask */
  839. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  840. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  841. }
  842. static int sdma_v2_4_early_init(void *handle)
  843. {
  844. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  845. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  846. sdma_v2_4_set_ring_funcs(adev);
  847. sdma_v2_4_set_buffer_funcs(adev);
  848. sdma_v2_4_set_vm_pte_funcs(adev);
  849. sdma_v2_4_set_irq_funcs(adev);
  850. return 0;
  851. }
  852. static int sdma_v2_4_sw_init(void *handle)
  853. {
  854. struct amdgpu_ring *ring;
  855. int r, i;
  856. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  857. /* SDMA trap event */
  858. r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
  859. if (r)
  860. return r;
  861. /* SDMA Privileged inst */
  862. r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
  863. if (r)
  864. return r;
  865. /* SDMA Privileged inst */
  866. r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
  867. if (r)
  868. return r;
  869. r = sdma_v2_4_init_microcode(adev);
  870. if (r) {
  871. DRM_ERROR("Failed to load sdma firmware!\n");
  872. return r;
  873. }
  874. for (i = 0; i < adev->sdma.num_instances; i++) {
  875. ring = &adev->sdma.instance[i].ring;
  876. ring->ring_obj = NULL;
  877. ring->use_doorbell = false;
  878. sprintf(ring->name, "sdma%d", i);
  879. r = amdgpu_ring_init(adev, ring, 1024,
  880. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  881. &adev->sdma.trap_irq,
  882. (i == 0) ?
  883. AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
  884. AMDGPU_RING_TYPE_SDMA);
  885. if (r)
  886. return r;
  887. }
  888. return r;
  889. }
  890. static int sdma_v2_4_sw_fini(void *handle)
  891. {
  892. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  893. int i;
  894. for (i = 0; i < adev->sdma.num_instances; i++)
  895. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  896. sdma_v2_4_free_microcode(adev);
  897. return 0;
  898. }
  899. static int sdma_v2_4_hw_init(void *handle)
  900. {
  901. int r;
  902. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  903. sdma_v2_4_init_golden_registers(adev);
  904. r = sdma_v2_4_start(adev);
  905. if (r)
  906. return r;
  907. return r;
  908. }
  909. static int sdma_v2_4_hw_fini(void *handle)
  910. {
  911. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  912. sdma_v2_4_enable(adev, false);
  913. return 0;
  914. }
  915. static int sdma_v2_4_suspend(void *handle)
  916. {
  917. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  918. return sdma_v2_4_hw_fini(adev);
  919. }
  920. static int sdma_v2_4_resume(void *handle)
  921. {
  922. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  923. return sdma_v2_4_hw_init(adev);
  924. }
  925. static bool sdma_v2_4_is_idle(void *handle)
  926. {
  927. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  928. u32 tmp = RREG32(mmSRBM_STATUS2);
  929. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  930. SRBM_STATUS2__SDMA1_BUSY_MASK))
  931. return false;
  932. return true;
  933. }
  934. static int sdma_v2_4_wait_for_idle(void *handle)
  935. {
  936. unsigned i;
  937. u32 tmp;
  938. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  939. for (i = 0; i < adev->usec_timeout; i++) {
  940. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  941. SRBM_STATUS2__SDMA1_BUSY_MASK);
  942. if (!tmp)
  943. return 0;
  944. udelay(1);
  945. }
  946. return -ETIMEDOUT;
  947. }
  948. static int sdma_v2_4_soft_reset(void *handle)
  949. {
  950. u32 srbm_soft_reset = 0;
  951. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  952. u32 tmp = RREG32(mmSRBM_STATUS2);
  953. if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
  954. /* sdma0 */
  955. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
  956. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  957. WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
  958. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  959. }
  960. if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
  961. /* sdma1 */
  962. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
  963. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  964. WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
  965. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  966. }
  967. if (srbm_soft_reset) {
  968. tmp = RREG32(mmSRBM_SOFT_RESET);
  969. tmp |= srbm_soft_reset;
  970. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  971. WREG32(mmSRBM_SOFT_RESET, tmp);
  972. tmp = RREG32(mmSRBM_SOFT_RESET);
  973. udelay(50);
  974. tmp &= ~srbm_soft_reset;
  975. WREG32(mmSRBM_SOFT_RESET, tmp);
  976. tmp = RREG32(mmSRBM_SOFT_RESET);
  977. /* Wait a little for things to settle down */
  978. udelay(50);
  979. }
  980. return 0;
  981. }
  982. static int sdma_v2_4_set_trap_irq_state(struct amdgpu_device *adev,
  983. struct amdgpu_irq_src *src,
  984. unsigned type,
  985. enum amdgpu_interrupt_state state)
  986. {
  987. u32 sdma_cntl;
  988. switch (type) {
  989. case AMDGPU_SDMA_IRQ_TRAP0:
  990. switch (state) {
  991. case AMDGPU_IRQ_STATE_DISABLE:
  992. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  993. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  994. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  995. break;
  996. case AMDGPU_IRQ_STATE_ENABLE:
  997. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  998. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  999. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1000. break;
  1001. default:
  1002. break;
  1003. }
  1004. break;
  1005. case AMDGPU_SDMA_IRQ_TRAP1:
  1006. switch (state) {
  1007. case AMDGPU_IRQ_STATE_DISABLE:
  1008. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1009. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1010. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1011. break;
  1012. case AMDGPU_IRQ_STATE_ENABLE:
  1013. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1014. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1015. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1016. break;
  1017. default:
  1018. break;
  1019. }
  1020. break;
  1021. default:
  1022. break;
  1023. }
  1024. return 0;
  1025. }
  1026. static int sdma_v2_4_process_trap_irq(struct amdgpu_device *adev,
  1027. struct amdgpu_irq_src *source,
  1028. struct amdgpu_iv_entry *entry)
  1029. {
  1030. u8 instance_id, queue_id;
  1031. instance_id = (entry->ring_id & 0x3) >> 0;
  1032. queue_id = (entry->ring_id & 0xc) >> 2;
  1033. DRM_DEBUG("IH: SDMA trap\n");
  1034. switch (instance_id) {
  1035. case 0:
  1036. switch (queue_id) {
  1037. case 0:
  1038. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1039. break;
  1040. case 1:
  1041. /* XXX compute */
  1042. break;
  1043. case 2:
  1044. /* XXX compute */
  1045. break;
  1046. }
  1047. break;
  1048. case 1:
  1049. switch (queue_id) {
  1050. case 0:
  1051. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1052. break;
  1053. case 1:
  1054. /* XXX compute */
  1055. break;
  1056. case 2:
  1057. /* XXX compute */
  1058. break;
  1059. }
  1060. break;
  1061. }
  1062. return 0;
  1063. }
  1064. static int sdma_v2_4_process_illegal_inst_irq(struct amdgpu_device *adev,
  1065. struct amdgpu_irq_src *source,
  1066. struct amdgpu_iv_entry *entry)
  1067. {
  1068. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1069. schedule_work(&adev->reset_work);
  1070. return 0;
  1071. }
  1072. static int sdma_v2_4_set_clockgating_state(void *handle,
  1073. enum amd_clockgating_state state)
  1074. {
  1075. /* XXX handled via the smc on VI */
  1076. return 0;
  1077. }
  1078. static int sdma_v2_4_set_powergating_state(void *handle,
  1079. enum amd_powergating_state state)
  1080. {
  1081. return 0;
  1082. }
  1083. const struct amd_ip_funcs sdma_v2_4_ip_funcs = {
  1084. .name = "sdma_v2_4",
  1085. .early_init = sdma_v2_4_early_init,
  1086. .late_init = NULL,
  1087. .sw_init = sdma_v2_4_sw_init,
  1088. .sw_fini = sdma_v2_4_sw_fini,
  1089. .hw_init = sdma_v2_4_hw_init,
  1090. .hw_fini = sdma_v2_4_hw_fini,
  1091. .suspend = sdma_v2_4_suspend,
  1092. .resume = sdma_v2_4_resume,
  1093. .is_idle = sdma_v2_4_is_idle,
  1094. .wait_for_idle = sdma_v2_4_wait_for_idle,
  1095. .soft_reset = sdma_v2_4_soft_reset,
  1096. .set_clockgating_state = sdma_v2_4_set_clockgating_state,
  1097. .set_powergating_state = sdma_v2_4_set_powergating_state,
  1098. };
  1099. static const struct amdgpu_ring_funcs sdma_v2_4_ring_funcs = {
  1100. .get_rptr = sdma_v2_4_ring_get_rptr,
  1101. .get_wptr = sdma_v2_4_ring_get_wptr,
  1102. .set_wptr = sdma_v2_4_ring_set_wptr,
  1103. .parse_cs = NULL,
  1104. .emit_ib = sdma_v2_4_ring_emit_ib,
  1105. .emit_fence = sdma_v2_4_ring_emit_fence,
  1106. .emit_pipeline_sync = sdma_v2_4_ring_emit_pipeline_sync,
  1107. .emit_vm_flush = sdma_v2_4_ring_emit_vm_flush,
  1108. .emit_hdp_flush = sdma_v2_4_ring_emit_hdp_flush,
  1109. .emit_hdp_invalidate = sdma_v2_4_ring_emit_hdp_invalidate,
  1110. .test_ring = sdma_v2_4_ring_test_ring,
  1111. .test_ib = sdma_v2_4_ring_test_ib,
  1112. .insert_nop = sdma_v2_4_ring_insert_nop,
  1113. .pad_ib = sdma_v2_4_ring_pad_ib,
  1114. };
  1115. static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev)
  1116. {
  1117. int i;
  1118. for (i = 0; i < adev->sdma.num_instances; i++)
  1119. adev->sdma.instance[i].ring.funcs = &sdma_v2_4_ring_funcs;
  1120. }
  1121. static const struct amdgpu_irq_src_funcs sdma_v2_4_trap_irq_funcs = {
  1122. .set = sdma_v2_4_set_trap_irq_state,
  1123. .process = sdma_v2_4_process_trap_irq,
  1124. };
  1125. static const struct amdgpu_irq_src_funcs sdma_v2_4_illegal_inst_irq_funcs = {
  1126. .process = sdma_v2_4_process_illegal_inst_irq,
  1127. };
  1128. static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev)
  1129. {
  1130. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1131. adev->sdma.trap_irq.funcs = &sdma_v2_4_trap_irq_funcs;
  1132. adev->sdma.illegal_inst_irq.funcs = &sdma_v2_4_illegal_inst_irq_funcs;
  1133. }
  1134. /**
  1135. * sdma_v2_4_emit_copy_buffer - copy buffer using the sDMA engine
  1136. *
  1137. * @ring: amdgpu_ring structure holding ring information
  1138. * @src_offset: src GPU address
  1139. * @dst_offset: dst GPU address
  1140. * @byte_count: number of bytes to xfer
  1141. *
  1142. * Copy GPU buffers using the DMA engine (VI).
  1143. * Used by the amdgpu ttm implementation to move pages if
  1144. * registered as the asic copy callback.
  1145. */
  1146. static void sdma_v2_4_emit_copy_buffer(struct amdgpu_ib *ib,
  1147. uint64_t src_offset,
  1148. uint64_t dst_offset,
  1149. uint32_t byte_count)
  1150. {
  1151. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1152. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1153. ib->ptr[ib->length_dw++] = byte_count;
  1154. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1155. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1156. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1157. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1158. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1159. }
  1160. /**
  1161. * sdma_v2_4_emit_fill_buffer - fill buffer using the sDMA engine
  1162. *
  1163. * @ring: amdgpu_ring structure holding ring information
  1164. * @src_data: value to write to buffer
  1165. * @dst_offset: dst GPU address
  1166. * @byte_count: number of bytes to xfer
  1167. *
  1168. * Fill GPU buffers using the DMA engine (VI).
  1169. */
  1170. static void sdma_v2_4_emit_fill_buffer(struct amdgpu_ib *ib,
  1171. uint32_t src_data,
  1172. uint64_t dst_offset,
  1173. uint32_t byte_count)
  1174. {
  1175. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1176. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1177. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1178. ib->ptr[ib->length_dw++] = src_data;
  1179. ib->ptr[ib->length_dw++] = byte_count;
  1180. }
  1181. static const struct amdgpu_buffer_funcs sdma_v2_4_buffer_funcs = {
  1182. .copy_max_bytes = 0x1fffff,
  1183. .copy_num_dw = 7,
  1184. .emit_copy_buffer = sdma_v2_4_emit_copy_buffer,
  1185. .fill_max_bytes = 0x1fffff,
  1186. .fill_num_dw = 7,
  1187. .emit_fill_buffer = sdma_v2_4_emit_fill_buffer,
  1188. };
  1189. static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev)
  1190. {
  1191. if (adev->mman.buffer_funcs == NULL) {
  1192. adev->mman.buffer_funcs = &sdma_v2_4_buffer_funcs;
  1193. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1194. }
  1195. }
  1196. static const struct amdgpu_vm_pte_funcs sdma_v2_4_vm_pte_funcs = {
  1197. .copy_pte = sdma_v2_4_vm_copy_pte,
  1198. .write_pte = sdma_v2_4_vm_write_pte,
  1199. .set_pte_pde = sdma_v2_4_vm_set_pte_pde,
  1200. };
  1201. static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev)
  1202. {
  1203. unsigned i;
  1204. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1205. adev->vm_manager.vm_pte_funcs = &sdma_v2_4_vm_pte_funcs;
  1206. for (i = 0; i < adev->sdma.num_instances; i++)
  1207. adev->vm_manager.vm_pte_rings[i] =
  1208. &adev->sdma.instance[i].ring;
  1209. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1210. }
  1211. }