dmaengine.h 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165
  1. /*
  2. * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 2 of the License, or (at your option)
  7. * any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc., 59
  16. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called COPYING.
  20. */
  21. #ifndef LINUX_DMAENGINE_H
  22. #define LINUX_DMAENGINE_H
  23. #include <linux/device.h>
  24. #include <linux/err.h>
  25. #include <linux/uio.h>
  26. #include <linux/bug.h>
  27. #include <linux/scatterlist.h>
  28. #include <linux/bitmap.h>
  29. #include <linux/types.h>
  30. #include <asm/page.h>
  31. /**
  32. * typedef dma_cookie_t - an opaque DMA cookie
  33. *
  34. * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  35. */
  36. typedef s32 dma_cookie_t;
  37. #define DMA_MIN_COOKIE 1
  38. static inline int dma_submit_error(dma_cookie_t cookie)
  39. {
  40. return cookie < 0 ? cookie : 0;
  41. }
  42. /**
  43. * enum dma_status - DMA transaction status
  44. * @DMA_COMPLETE: transaction completed
  45. * @DMA_IN_PROGRESS: transaction not yet processed
  46. * @DMA_PAUSED: transaction is paused
  47. * @DMA_ERROR: transaction failed
  48. */
  49. enum dma_status {
  50. DMA_COMPLETE,
  51. DMA_IN_PROGRESS,
  52. DMA_PAUSED,
  53. DMA_ERROR,
  54. };
  55. /**
  56. * enum dma_transaction_type - DMA transaction types/indexes
  57. *
  58. * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
  59. * automatically set as dma devices are registered.
  60. */
  61. enum dma_transaction_type {
  62. DMA_MEMCPY,
  63. DMA_XOR,
  64. DMA_PQ,
  65. DMA_XOR_VAL,
  66. DMA_PQ_VAL,
  67. DMA_INTERRUPT,
  68. DMA_SG,
  69. DMA_PRIVATE,
  70. DMA_ASYNC_TX,
  71. DMA_SLAVE,
  72. DMA_CYCLIC,
  73. DMA_INTERLEAVE,
  74. /* last transaction type for creation of the capabilities mask */
  75. DMA_TX_TYPE_END,
  76. };
  77. /**
  78. * enum dma_transfer_direction - dma transfer mode and direction indicator
  79. * @DMA_MEM_TO_MEM: Async/Memcpy mode
  80. * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
  81. * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
  82. * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
  83. */
  84. enum dma_transfer_direction {
  85. DMA_MEM_TO_MEM,
  86. DMA_MEM_TO_DEV,
  87. DMA_DEV_TO_MEM,
  88. DMA_DEV_TO_DEV,
  89. DMA_TRANS_NONE,
  90. };
  91. /**
  92. * Interleaved Transfer Request
  93. * ----------------------------
  94. * A chunk is collection of contiguous bytes to be transfered.
  95. * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
  96. * ICGs may or maynot change between chunks.
  97. * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
  98. * that when repeated an integral number of times, specifies the transfer.
  99. * A transfer template is specification of a Frame, the number of times
  100. * it is to be repeated and other per-transfer attributes.
  101. *
  102. * Practically, a client driver would have ready a template for each
  103. * type of transfer it is going to need during its lifetime and
  104. * set only 'src_start' and 'dst_start' before submitting the requests.
  105. *
  106. *
  107. * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
  108. * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
  109. *
  110. * == Chunk size
  111. * ... ICG
  112. */
  113. /**
  114. * struct data_chunk - Element of scatter-gather list that makes a frame.
  115. * @size: Number of bytes to read from source.
  116. * size_dst := fn(op, size_src), so doesn't mean much for destination.
  117. * @icg: Number of bytes to jump after last src/dst address of this
  118. * chunk and before first src/dst address for next chunk.
  119. * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
  120. * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
  121. */
  122. struct data_chunk {
  123. size_t size;
  124. size_t icg;
  125. };
  126. /**
  127. * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
  128. * and attributes.
  129. * @src_start: Bus address of source for the first chunk.
  130. * @dst_start: Bus address of destination for the first chunk.
  131. * @dir: Specifies the type of Source and Destination.
  132. * @src_inc: If the source address increments after reading from it.
  133. * @dst_inc: If the destination address increments after writing to it.
  134. * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
  135. * Otherwise, source is read contiguously (icg ignored).
  136. * Ignored if src_inc is false.
  137. * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
  138. * Otherwise, destination is filled contiguously (icg ignored).
  139. * Ignored if dst_inc is false.
  140. * @numf: Number of frames in this template.
  141. * @frame_size: Number of chunks in a frame i.e, size of sgl[].
  142. * @sgl: Array of {chunk,icg} pairs that make up a frame.
  143. */
  144. struct dma_interleaved_template {
  145. dma_addr_t src_start;
  146. dma_addr_t dst_start;
  147. enum dma_transfer_direction dir;
  148. bool src_inc;
  149. bool dst_inc;
  150. bool src_sgl;
  151. bool dst_sgl;
  152. size_t numf;
  153. size_t frame_size;
  154. struct data_chunk sgl[0];
  155. };
  156. /**
  157. * enum dma_ctrl_flags - DMA flags to augment operation preparation,
  158. * control completion, and communicate status.
  159. * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
  160. * this transaction
  161. * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
  162. * acknowledges receipt, i.e. has has a chance to establish any dependency
  163. * chains
  164. * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
  165. * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
  166. * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
  167. * sources that were the result of a previous operation, in the case of a PQ
  168. * operation it continues the calculation with new sources
  169. * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
  170. * on the result of this operation
  171. */
  172. enum dma_ctrl_flags {
  173. DMA_PREP_INTERRUPT = (1 << 0),
  174. DMA_CTRL_ACK = (1 << 1),
  175. DMA_PREP_PQ_DISABLE_P = (1 << 2),
  176. DMA_PREP_PQ_DISABLE_Q = (1 << 3),
  177. DMA_PREP_CONTINUE = (1 << 4),
  178. DMA_PREP_FENCE = (1 << 5),
  179. };
  180. /**
  181. * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
  182. * on a running channel.
  183. * @DMA_TERMINATE_ALL: terminate all ongoing transfers
  184. * @DMA_PAUSE: pause ongoing transfers
  185. * @DMA_RESUME: resume paused transfer
  186. * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
  187. * that need to runtime reconfigure the slave channels (as opposed to passing
  188. * configuration data in statically from the platform). An additional
  189. * argument of struct dma_slave_config must be passed in with this
  190. * command.
  191. */
  192. enum dma_ctrl_cmd {
  193. DMA_TERMINATE_ALL,
  194. DMA_PAUSE,
  195. DMA_RESUME,
  196. DMA_SLAVE_CONFIG,
  197. };
  198. /**
  199. * enum sum_check_bits - bit position of pq_check_flags
  200. */
  201. enum sum_check_bits {
  202. SUM_CHECK_P = 0,
  203. SUM_CHECK_Q = 1,
  204. };
  205. /**
  206. * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
  207. * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
  208. * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
  209. */
  210. enum sum_check_flags {
  211. SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
  212. SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
  213. };
  214. /**
  215. * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
  216. * See linux/cpumask.h
  217. */
  218. typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
  219. /**
  220. * struct dma_chan_percpu - the per-CPU part of struct dma_chan
  221. * @memcpy_count: transaction counter
  222. * @bytes_transferred: byte counter
  223. */
  224. struct dma_chan_percpu {
  225. /* stats */
  226. unsigned long memcpy_count;
  227. unsigned long bytes_transferred;
  228. };
  229. /**
  230. * struct dma_chan - devices supply DMA channels, clients use them
  231. * @device: ptr to the dma device who supplies this channel, always !%NULL
  232. * @cookie: last cookie value returned to client
  233. * @completed_cookie: last completed cookie for this channel
  234. * @chan_id: channel ID for sysfs
  235. * @dev: class device for sysfs
  236. * @device_node: used to add this to the device chan list
  237. * @local: per-cpu pointer to a struct dma_chan_percpu
  238. * @client_count: how many clients are using this channel
  239. * @table_count: number of appearances in the mem-to-mem allocation table
  240. * @private: private data for certain client-channel associations
  241. */
  242. struct dma_chan {
  243. struct dma_device *device;
  244. dma_cookie_t cookie;
  245. dma_cookie_t completed_cookie;
  246. /* sysfs */
  247. int chan_id;
  248. struct dma_chan_dev *dev;
  249. struct list_head device_node;
  250. struct dma_chan_percpu __percpu *local;
  251. int client_count;
  252. int table_count;
  253. void *private;
  254. };
  255. /**
  256. * struct dma_chan_dev - relate sysfs device node to backing channel device
  257. * @chan: driver channel device
  258. * @device: sysfs device
  259. * @dev_id: parent dma_device dev_id
  260. * @idr_ref: reference count to gate release of dma_device dev_id
  261. */
  262. struct dma_chan_dev {
  263. struct dma_chan *chan;
  264. struct device device;
  265. int dev_id;
  266. atomic_t *idr_ref;
  267. };
  268. /**
  269. * enum dma_slave_buswidth - defines bus width of the DMA slave
  270. * device, source or target buses
  271. */
  272. enum dma_slave_buswidth {
  273. DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
  274. DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
  275. DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
  276. DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
  277. DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
  278. DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
  279. };
  280. /**
  281. * struct dma_slave_config - dma slave channel runtime config
  282. * @direction: whether the data shall go in or out on this slave
  283. * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
  284. * legal values. DEPRECATED, drivers should use the direction argument
  285. * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
  286. * the dir field in the dma_interleaved_template structure.
  287. * @src_addr: this is the physical address where DMA slave data
  288. * should be read (RX), if the source is memory this argument is
  289. * ignored.
  290. * @dst_addr: this is the physical address where DMA slave data
  291. * should be written (TX), if the source is memory this argument
  292. * is ignored.
  293. * @src_addr_width: this is the width in bytes of the source (RX)
  294. * register where DMA data shall be read. If the source
  295. * is memory this may be ignored depending on architecture.
  296. * Legal values: 1, 2, 4, 8.
  297. * @dst_addr_width: same as src_addr_width but for destination
  298. * target (TX) mutatis mutandis.
  299. * @src_maxburst: the maximum number of words (note: words, as in
  300. * units of the src_addr_width member, not bytes) that can be sent
  301. * in one burst to the device. Typically something like half the
  302. * FIFO depth on I/O peripherals so you don't overflow it. This
  303. * may or may not be applicable on memory sources.
  304. * @dst_maxburst: same as src_maxburst but for destination target
  305. * mutatis mutandis.
  306. * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
  307. * with 'true' if peripheral should be flow controller. Direction will be
  308. * selected at Runtime.
  309. * @slave_id: Slave requester id. Only valid for slave channels. The dma
  310. * slave peripheral will have unique id as dma requester which need to be
  311. * pass as slave config.
  312. *
  313. * This struct is passed in as configuration data to a DMA engine
  314. * in order to set up a certain channel for DMA transport at runtime.
  315. * The DMA device/engine has to provide support for an additional
  316. * command in the channel config interface, DMA_SLAVE_CONFIG
  317. * and this struct will then be passed in as an argument to the
  318. * DMA engine device_control() function.
  319. *
  320. * The rationale for adding configuration information to this struct is as
  321. * follows: if it is likely that more than one DMA slave controllers in
  322. * the world will support the configuration option, then make it generic.
  323. * If not: if it is fixed so that it be sent in static from the platform
  324. * data, then prefer to do that.
  325. */
  326. struct dma_slave_config {
  327. enum dma_transfer_direction direction;
  328. dma_addr_t src_addr;
  329. dma_addr_t dst_addr;
  330. enum dma_slave_buswidth src_addr_width;
  331. enum dma_slave_buswidth dst_addr_width;
  332. u32 src_maxburst;
  333. u32 dst_maxburst;
  334. bool device_fc;
  335. unsigned int slave_id;
  336. };
  337. /**
  338. * enum dma_residue_granularity - Granularity of the reported transfer residue
  339. * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
  340. * DMA channel is only able to tell whether a descriptor has been completed or
  341. * not, which means residue reporting is not supported by this channel. The
  342. * residue field of the dma_tx_state field will always be 0.
  343. * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
  344. * completed segment of the transfer (For cyclic transfers this is after each
  345. * period). This is typically implemented by having the hardware generate an
  346. * interrupt after each transferred segment and then the drivers updates the
  347. * outstanding residue by the size of the segment. Another possibility is if
  348. * the hardware supports scatter-gather and the segment descriptor has a field
  349. * which gets set after the segment has been completed. The driver then counts
  350. * the number of segments without the flag set to compute the residue.
  351. * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
  352. * burst. This is typically only supported if the hardware has a progress
  353. * register of some sort (E.g. a register with the current read/write address
  354. * or a register with the amount of bursts/beats/bytes that have been
  355. * transferred or still need to be transferred).
  356. */
  357. enum dma_residue_granularity {
  358. DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
  359. DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
  360. DMA_RESIDUE_GRANULARITY_BURST = 2,
  361. };
  362. /* struct dma_slave_caps - expose capabilities of a slave channel only
  363. *
  364. * @src_addr_widths: bit mask of src addr widths the channel supports
  365. * @dstn_addr_widths: bit mask of dstn addr widths the channel supports
  366. * @directions: bit mask of slave direction the channel supported
  367. * since the enum dma_transfer_direction is not defined as bits for each
  368. * type of direction, the dma controller should fill (1 << <TYPE>) and same
  369. * should be checked by controller as well
  370. * @cmd_pause: true, if pause and thereby resume is supported
  371. * @cmd_terminate: true, if terminate cmd is supported
  372. * @residue_granularity: granularity of the reported transfer residue
  373. */
  374. struct dma_slave_caps {
  375. u32 src_addr_widths;
  376. u32 dstn_addr_widths;
  377. u32 directions;
  378. bool cmd_pause;
  379. bool cmd_terminate;
  380. enum dma_residue_granularity residue_granularity;
  381. };
  382. static inline const char *dma_chan_name(struct dma_chan *chan)
  383. {
  384. return dev_name(&chan->dev->device);
  385. }
  386. void dma_chan_cleanup(struct kref *kref);
  387. /**
  388. * typedef dma_filter_fn - callback filter for dma_request_channel
  389. * @chan: channel to be reviewed
  390. * @filter_param: opaque parameter passed through dma_request_channel
  391. *
  392. * When this optional parameter is specified in a call to dma_request_channel a
  393. * suitable channel is passed to this routine for further dispositioning before
  394. * being returned. Where 'suitable' indicates a non-busy channel that
  395. * satisfies the given capability mask. It returns 'true' to indicate that the
  396. * channel is suitable.
  397. */
  398. typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
  399. typedef void (*dma_async_tx_callback)(void *dma_async_param);
  400. struct dmaengine_unmap_data {
  401. u8 map_cnt;
  402. u8 to_cnt;
  403. u8 from_cnt;
  404. u8 bidi_cnt;
  405. struct device *dev;
  406. struct kref kref;
  407. size_t len;
  408. dma_addr_t addr[0];
  409. };
  410. /**
  411. * struct dma_async_tx_descriptor - async transaction descriptor
  412. * ---dma generic offload fields---
  413. * @cookie: tracking cookie for this transaction, set to -EBUSY if
  414. * this tx is sitting on a dependency list
  415. * @flags: flags to augment operation preparation, control completion, and
  416. * communicate status
  417. * @phys: physical address of the descriptor
  418. * @chan: target channel for this operation
  419. * @tx_submit: set the prepared descriptor(s) to be executed by the engine
  420. * @callback: routine to call after this operation is complete
  421. * @callback_param: general parameter to pass to the callback routine
  422. * ---async_tx api specific fields---
  423. * @next: at completion submit this descriptor
  424. * @parent: pointer to the next level up in the dependency chain
  425. * @lock: protect the parent and next pointers
  426. */
  427. struct dma_async_tx_descriptor {
  428. dma_cookie_t cookie;
  429. enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
  430. dma_addr_t phys;
  431. struct dma_chan *chan;
  432. dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
  433. dma_async_tx_callback callback;
  434. void *callback_param;
  435. struct dmaengine_unmap_data *unmap;
  436. #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  437. struct dma_async_tx_descriptor *next;
  438. struct dma_async_tx_descriptor *parent;
  439. spinlock_t lock;
  440. #endif
  441. };
  442. #ifdef CONFIG_DMA_ENGINE
  443. static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
  444. struct dmaengine_unmap_data *unmap)
  445. {
  446. kref_get(&unmap->kref);
  447. tx->unmap = unmap;
  448. }
  449. struct dmaengine_unmap_data *
  450. dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
  451. void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
  452. #else
  453. static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
  454. struct dmaengine_unmap_data *unmap)
  455. {
  456. }
  457. static inline struct dmaengine_unmap_data *
  458. dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
  459. {
  460. return NULL;
  461. }
  462. static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
  463. {
  464. }
  465. #endif
  466. static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
  467. {
  468. if (tx->unmap) {
  469. dmaengine_unmap_put(tx->unmap);
  470. tx->unmap = NULL;
  471. }
  472. }
  473. #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  474. static inline void txd_lock(struct dma_async_tx_descriptor *txd)
  475. {
  476. }
  477. static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
  478. {
  479. }
  480. static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
  481. {
  482. BUG();
  483. }
  484. static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
  485. {
  486. }
  487. static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
  488. {
  489. }
  490. static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
  491. {
  492. return NULL;
  493. }
  494. static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
  495. {
  496. return NULL;
  497. }
  498. #else
  499. static inline void txd_lock(struct dma_async_tx_descriptor *txd)
  500. {
  501. spin_lock_bh(&txd->lock);
  502. }
  503. static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
  504. {
  505. spin_unlock_bh(&txd->lock);
  506. }
  507. static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
  508. {
  509. txd->next = next;
  510. next->parent = txd;
  511. }
  512. static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
  513. {
  514. txd->parent = NULL;
  515. }
  516. static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
  517. {
  518. txd->next = NULL;
  519. }
  520. static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
  521. {
  522. return txd->parent;
  523. }
  524. static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
  525. {
  526. return txd->next;
  527. }
  528. #endif
  529. /**
  530. * struct dma_tx_state - filled in to report the status of
  531. * a transfer.
  532. * @last: last completed DMA cookie
  533. * @used: last issued DMA cookie (i.e. the one in progress)
  534. * @residue: the remaining number of bytes left to transmit
  535. * on the selected transfer for states DMA_IN_PROGRESS and
  536. * DMA_PAUSED if this is implemented in the driver, else 0
  537. */
  538. struct dma_tx_state {
  539. dma_cookie_t last;
  540. dma_cookie_t used;
  541. u32 residue;
  542. };
  543. /**
  544. * struct dma_device - info on the entity supplying DMA services
  545. * @chancnt: how many DMA channels are supported
  546. * @privatecnt: how many DMA channels are requested by dma_request_channel
  547. * @channels: the list of struct dma_chan
  548. * @global_node: list_head for global dma_device_list
  549. * @cap_mask: one or more dma_capability flags
  550. * @max_xor: maximum number of xor sources, 0 if no capability
  551. * @max_pq: maximum number of PQ sources and PQ-continue capability
  552. * @copy_align: alignment shift for memcpy operations
  553. * @xor_align: alignment shift for xor operations
  554. * @pq_align: alignment shift for pq operations
  555. * @fill_align: alignment shift for memset operations
  556. * @dev_id: unique device ID
  557. * @dev: struct device reference for dma mapping api
  558. * @device_alloc_chan_resources: allocate resources and return the
  559. * number of allocated descriptors
  560. * @device_free_chan_resources: release DMA channel's resources
  561. * @device_prep_dma_memcpy: prepares a memcpy operation
  562. * @device_prep_dma_xor: prepares a xor operation
  563. * @device_prep_dma_xor_val: prepares a xor validation operation
  564. * @device_prep_dma_pq: prepares a pq operation
  565. * @device_prep_dma_pq_val: prepares a pqzero_sum operation
  566. * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
  567. * @device_prep_slave_sg: prepares a slave dma operation
  568. * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
  569. * The function takes a buffer of size buf_len. The callback function will
  570. * be called after period_len bytes have been transferred.
  571. * @device_prep_interleaved_dma: Transfer expression in a generic way.
  572. * @device_control: manipulate all pending operations on a channel, returns
  573. * zero or error code
  574. * @device_tx_status: poll for transaction completion, the optional
  575. * txstate parameter can be supplied with a pointer to get a
  576. * struct with auxiliary transfer status information, otherwise the call
  577. * will just return a simple status code
  578. * @device_issue_pending: push pending transactions to hardware
  579. * @device_slave_caps: return the slave channel capabilities
  580. */
  581. struct dma_device {
  582. unsigned int chancnt;
  583. unsigned int privatecnt;
  584. struct list_head channels;
  585. struct list_head global_node;
  586. dma_cap_mask_t cap_mask;
  587. unsigned short max_xor;
  588. unsigned short max_pq;
  589. u8 copy_align;
  590. u8 xor_align;
  591. u8 pq_align;
  592. u8 fill_align;
  593. #define DMA_HAS_PQ_CONTINUE (1 << 15)
  594. int dev_id;
  595. struct device *dev;
  596. int (*device_alloc_chan_resources)(struct dma_chan *chan);
  597. void (*device_free_chan_resources)(struct dma_chan *chan);
  598. struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
  599. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  600. size_t len, unsigned long flags);
  601. struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
  602. struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
  603. unsigned int src_cnt, size_t len, unsigned long flags);
  604. struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
  605. struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
  606. size_t len, enum sum_check_flags *result, unsigned long flags);
  607. struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
  608. struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  609. unsigned int src_cnt, const unsigned char *scf,
  610. size_t len, unsigned long flags);
  611. struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
  612. struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  613. unsigned int src_cnt, const unsigned char *scf, size_t len,
  614. enum sum_check_flags *pqres, unsigned long flags);
  615. struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
  616. struct dma_chan *chan, unsigned long flags);
  617. struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
  618. struct dma_chan *chan,
  619. struct scatterlist *dst_sg, unsigned int dst_nents,
  620. struct scatterlist *src_sg, unsigned int src_nents,
  621. unsigned long flags);
  622. struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
  623. struct dma_chan *chan, struct scatterlist *sgl,
  624. unsigned int sg_len, enum dma_transfer_direction direction,
  625. unsigned long flags, void *context);
  626. struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
  627. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  628. size_t period_len, enum dma_transfer_direction direction,
  629. unsigned long flags);
  630. struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
  631. struct dma_chan *chan, struct dma_interleaved_template *xt,
  632. unsigned long flags);
  633. int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  634. unsigned long arg);
  635. enum dma_status (*device_tx_status)(struct dma_chan *chan,
  636. dma_cookie_t cookie,
  637. struct dma_tx_state *txstate);
  638. void (*device_issue_pending)(struct dma_chan *chan);
  639. int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
  640. };
  641. static inline int dmaengine_device_control(struct dma_chan *chan,
  642. enum dma_ctrl_cmd cmd,
  643. unsigned long arg)
  644. {
  645. if (chan->device->device_control)
  646. return chan->device->device_control(chan, cmd, arg);
  647. return -ENOSYS;
  648. }
  649. static inline int dmaengine_slave_config(struct dma_chan *chan,
  650. struct dma_slave_config *config)
  651. {
  652. return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
  653. (unsigned long)config);
  654. }
  655. static inline bool is_slave_direction(enum dma_transfer_direction direction)
  656. {
  657. return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
  658. }
  659. static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
  660. struct dma_chan *chan, dma_addr_t buf, size_t len,
  661. enum dma_transfer_direction dir, unsigned long flags)
  662. {
  663. struct scatterlist sg;
  664. sg_init_table(&sg, 1);
  665. sg_dma_address(&sg) = buf;
  666. sg_dma_len(&sg) = len;
  667. return chan->device->device_prep_slave_sg(chan, &sg, 1,
  668. dir, flags, NULL);
  669. }
  670. static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
  671. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  672. enum dma_transfer_direction dir, unsigned long flags)
  673. {
  674. return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
  675. dir, flags, NULL);
  676. }
  677. #ifdef CONFIG_RAPIDIO_DMA_ENGINE
  678. struct rio_dma_ext;
  679. static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
  680. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  681. enum dma_transfer_direction dir, unsigned long flags,
  682. struct rio_dma_ext *rio_ext)
  683. {
  684. return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
  685. dir, flags, rio_ext);
  686. }
  687. #endif
  688. static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
  689. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  690. size_t period_len, enum dma_transfer_direction dir,
  691. unsigned long flags)
  692. {
  693. return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
  694. period_len, dir, flags);
  695. }
  696. static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
  697. struct dma_chan *chan, struct dma_interleaved_template *xt,
  698. unsigned long flags)
  699. {
  700. return chan->device->device_prep_interleaved_dma(chan, xt, flags);
  701. }
  702. static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
  703. struct dma_chan *chan,
  704. struct scatterlist *dst_sg, unsigned int dst_nents,
  705. struct scatterlist *src_sg, unsigned int src_nents,
  706. unsigned long flags)
  707. {
  708. return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
  709. src_sg, src_nents, flags);
  710. }
  711. static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
  712. {
  713. if (!chan || !caps)
  714. return -EINVAL;
  715. /* check if the channel supports slave transactions */
  716. if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits))
  717. return -ENXIO;
  718. if (chan->device->device_slave_caps)
  719. return chan->device->device_slave_caps(chan, caps);
  720. return -ENXIO;
  721. }
  722. static inline int dmaengine_terminate_all(struct dma_chan *chan)
  723. {
  724. return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
  725. }
  726. static inline int dmaengine_pause(struct dma_chan *chan)
  727. {
  728. return dmaengine_device_control(chan, DMA_PAUSE, 0);
  729. }
  730. static inline int dmaengine_resume(struct dma_chan *chan)
  731. {
  732. return dmaengine_device_control(chan, DMA_RESUME, 0);
  733. }
  734. static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
  735. dma_cookie_t cookie, struct dma_tx_state *state)
  736. {
  737. return chan->device->device_tx_status(chan, cookie, state);
  738. }
  739. static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
  740. {
  741. return desc->tx_submit(desc);
  742. }
  743. static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
  744. {
  745. size_t mask;
  746. if (!align)
  747. return true;
  748. mask = (1 << align) - 1;
  749. if (mask & (off1 | off2 | len))
  750. return false;
  751. return true;
  752. }
  753. static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
  754. size_t off2, size_t len)
  755. {
  756. return dmaengine_check_align(dev->copy_align, off1, off2, len);
  757. }
  758. static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
  759. size_t off2, size_t len)
  760. {
  761. return dmaengine_check_align(dev->xor_align, off1, off2, len);
  762. }
  763. static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
  764. size_t off2, size_t len)
  765. {
  766. return dmaengine_check_align(dev->pq_align, off1, off2, len);
  767. }
  768. static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
  769. size_t off2, size_t len)
  770. {
  771. return dmaengine_check_align(dev->fill_align, off1, off2, len);
  772. }
  773. static inline void
  774. dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
  775. {
  776. dma->max_pq = maxpq;
  777. if (has_pq_continue)
  778. dma->max_pq |= DMA_HAS_PQ_CONTINUE;
  779. }
  780. static inline bool dmaf_continue(enum dma_ctrl_flags flags)
  781. {
  782. return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
  783. }
  784. static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
  785. {
  786. enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
  787. return (flags & mask) == mask;
  788. }
  789. static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
  790. {
  791. return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
  792. }
  793. static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
  794. {
  795. return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
  796. }
  797. /* dma_maxpq - reduce maxpq in the face of continued operations
  798. * @dma - dma device with PQ capability
  799. * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
  800. *
  801. * When an engine does not support native continuation we need 3 extra
  802. * source slots to reuse P and Q with the following coefficients:
  803. * 1/ {00} * P : remove P from Q', but use it as a source for P'
  804. * 2/ {01} * Q : use Q to continue Q' calculation
  805. * 3/ {00} * Q : subtract Q from P' to cancel (2)
  806. *
  807. * In the case where P is disabled we only need 1 extra source:
  808. * 1/ {01} * Q : use Q to continue Q' calculation
  809. */
  810. static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
  811. {
  812. if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
  813. return dma_dev_to_maxpq(dma);
  814. else if (dmaf_p_disabled_continue(flags))
  815. return dma_dev_to_maxpq(dma) - 1;
  816. else if (dmaf_continue(flags))
  817. return dma_dev_to_maxpq(dma) - 3;
  818. BUG();
  819. }
  820. /* --- public DMA engine API --- */
  821. #ifdef CONFIG_DMA_ENGINE
  822. void dmaengine_get(void);
  823. void dmaengine_put(void);
  824. #else
  825. static inline void dmaengine_get(void)
  826. {
  827. }
  828. static inline void dmaengine_put(void)
  829. {
  830. }
  831. #endif
  832. #ifdef CONFIG_NET_DMA
  833. #define net_dmaengine_get() dmaengine_get()
  834. #define net_dmaengine_put() dmaengine_put()
  835. #else
  836. static inline void net_dmaengine_get(void)
  837. {
  838. }
  839. static inline void net_dmaengine_put(void)
  840. {
  841. }
  842. #endif
  843. #ifdef CONFIG_ASYNC_TX_DMA
  844. #define async_dmaengine_get() dmaengine_get()
  845. #define async_dmaengine_put() dmaengine_put()
  846. #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  847. #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
  848. #else
  849. #define async_dma_find_channel(type) dma_find_channel(type)
  850. #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
  851. #else
  852. static inline void async_dmaengine_get(void)
  853. {
  854. }
  855. static inline void async_dmaengine_put(void)
  856. {
  857. }
  858. static inline struct dma_chan *
  859. async_dma_find_channel(enum dma_transaction_type type)
  860. {
  861. return NULL;
  862. }
  863. #endif /* CONFIG_ASYNC_TX_DMA */
  864. dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
  865. void *dest, void *src, size_t len);
  866. dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
  867. struct page *page, unsigned int offset, void *kdata, size_t len);
  868. dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
  869. struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
  870. unsigned int src_off, size_t len);
  871. void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
  872. struct dma_chan *chan);
  873. static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
  874. {
  875. tx->flags |= DMA_CTRL_ACK;
  876. }
  877. static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
  878. {
  879. tx->flags &= ~DMA_CTRL_ACK;
  880. }
  881. static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
  882. {
  883. return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
  884. }
  885. #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
  886. static inline void
  887. __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
  888. {
  889. set_bit(tx_type, dstp->bits);
  890. }
  891. #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
  892. static inline void
  893. __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
  894. {
  895. clear_bit(tx_type, dstp->bits);
  896. }
  897. #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
  898. static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
  899. {
  900. bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
  901. }
  902. #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
  903. static inline int
  904. __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
  905. {
  906. return test_bit(tx_type, srcp->bits);
  907. }
  908. #define for_each_dma_cap_mask(cap, mask) \
  909. for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
  910. /**
  911. * dma_async_issue_pending - flush pending transactions to HW
  912. * @chan: target DMA channel
  913. *
  914. * This allows drivers to push copies to HW in batches,
  915. * reducing MMIO writes where possible.
  916. */
  917. static inline void dma_async_issue_pending(struct dma_chan *chan)
  918. {
  919. chan->device->device_issue_pending(chan);
  920. }
  921. /**
  922. * dma_async_is_tx_complete - poll for transaction completion
  923. * @chan: DMA channel
  924. * @cookie: transaction identifier to check status of
  925. * @last: returns last completed cookie, can be NULL
  926. * @used: returns last issued cookie, can be NULL
  927. *
  928. * If @last and @used are passed in, upon return they reflect the driver
  929. * internal state and can be used with dma_async_is_complete() to check
  930. * the status of multiple cookies without re-checking hardware state.
  931. */
  932. static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
  933. dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
  934. {
  935. struct dma_tx_state state;
  936. enum dma_status status;
  937. status = chan->device->device_tx_status(chan, cookie, &state);
  938. if (last)
  939. *last = state.last;
  940. if (used)
  941. *used = state.used;
  942. return status;
  943. }
  944. /**
  945. * dma_async_is_complete - test a cookie against chan state
  946. * @cookie: transaction identifier to test status of
  947. * @last_complete: last know completed transaction
  948. * @last_used: last cookie value handed out
  949. *
  950. * dma_async_is_complete() is used in dma_async_is_tx_complete()
  951. * the test logic is separated for lightweight testing of multiple cookies
  952. */
  953. static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
  954. dma_cookie_t last_complete, dma_cookie_t last_used)
  955. {
  956. if (last_complete <= last_used) {
  957. if ((cookie <= last_complete) || (cookie > last_used))
  958. return DMA_COMPLETE;
  959. } else {
  960. if ((cookie <= last_complete) && (cookie > last_used))
  961. return DMA_COMPLETE;
  962. }
  963. return DMA_IN_PROGRESS;
  964. }
  965. static inline void
  966. dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
  967. {
  968. if (st) {
  969. st->last = last;
  970. st->used = used;
  971. st->residue = residue;
  972. }
  973. }
  974. #ifdef CONFIG_DMA_ENGINE
  975. struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
  976. enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
  977. enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
  978. void dma_issue_pending_all(void);
  979. struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
  980. dma_filter_fn fn, void *fn_param);
  981. struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
  982. const char *name);
  983. struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
  984. void dma_release_channel(struct dma_chan *chan);
  985. #else
  986. static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
  987. {
  988. return NULL;
  989. }
  990. static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
  991. {
  992. return DMA_COMPLETE;
  993. }
  994. static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
  995. {
  996. return DMA_COMPLETE;
  997. }
  998. static inline void dma_issue_pending_all(void)
  999. {
  1000. }
  1001. static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
  1002. dma_filter_fn fn, void *fn_param)
  1003. {
  1004. return NULL;
  1005. }
  1006. static inline struct dma_chan *dma_request_slave_channel_reason(
  1007. struct device *dev, const char *name)
  1008. {
  1009. return ERR_PTR(-ENODEV);
  1010. }
  1011. static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
  1012. const char *name)
  1013. {
  1014. return NULL;
  1015. }
  1016. static inline void dma_release_channel(struct dma_chan *chan)
  1017. {
  1018. }
  1019. #endif
  1020. /* --- DMA device --- */
  1021. int dma_async_device_register(struct dma_device *device);
  1022. void dma_async_device_unregister(struct dma_device *device);
  1023. void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
  1024. struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
  1025. struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
  1026. struct dma_chan *net_dma_find_channel(void);
  1027. #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
  1028. #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
  1029. __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
  1030. static inline struct dma_chan
  1031. *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
  1032. dma_filter_fn fn, void *fn_param,
  1033. struct device *dev, char *name)
  1034. {
  1035. struct dma_chan *chan;
  1036. chan = dma_request_slave_channel(dev, name);
  1037. if (chan)
  1038. return chan;
  1039. return __dma_request_channel(mask, fn, fn_param);
  1040. }
  1041. /* --- Helper iov-locking functions --- */
  1042. struct dma_page_list {
  1043. char __user *base_address;
  1044. int nr_pages;
  1045. struct page **pages;
  1046. };
  1047. struct dma_pinned_list {
  1048. int nr_iovecs;
  1049. struct dma_page_list page_list[0];
  1050. };
  1051. struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
  1052. void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
  1053. dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
  1054. struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
  1055. dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
  1056. struct dma_pinned_list *pinned_list, struct page *page,
  1057. unsigned int offset, size_t len);
  1058. #endif /* DMAENGINE_H */