direct.c 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * DMA operations that map physical memory directly without using an IOMMU or
  4. * flushing caches.
  5. */
  6. #include <linux/export.h>
  7. #include <linux/mm.h>
  8. #include <linux/dma-direct.h>
  9. #include <linux/scatterlist.h>
  10. #include <linux/dma-contiguous.h>
  11. #include <linux/pfn.h>
  12. #include <linux/set_memory.h>
  13. #define DIRECT_MAPPING_ERROR 0
  14. /*
  15. * Most architectures use ZONE_DMA for the first 16 Megabytes, but
  16. * some use it for entirely different regions:
  17. */
  18. #ifndef ARCH_ZONE_DMA_BITS
  19. #define ARCH_ZONE_DMA_BITS 24
  20. #endif
  21. /*
  22. * For AMD SEV all DMA must be to unencrypted addresses.
  23. */
  24. static inline bool force_dma_unencrypted(void)
  25. {
  26. return sev_active();
  27. }
  28. static bool
  29. check_addr(struct device *dev, dma_addr_t dma_addr, size_t size,
  30. const char *caller)
  31. {
  32. if (unlikely(dev && !dma_capable(dev, dma_addr, size))) {
  33. if (!dev->dma_mask) {
  34. dev_err(dev,
  35. "%s: call on device without dma_mask\n",
  36. caller);
  37. return false;
  38. }
  39. if (*dev->dma_mask >= DMA_BIT_MASK(32)) {
  40. dev_err(dev,
  41. "%s: overflow %pad+%zu of device mask %llx\n",
  42. caller, &dma_addr, size, *dev->dma_mask);
  43. }
  44. return false;
  45. }
  46. return true;
  47. }
  48. static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
  49. {
  50. dma_addr_t addr = force_dma_unencrypted() ?
  51. __phys_to_dma(dev, phys) : phys_to_dma(dev, phys);
  52. return addr + size - 1 <= dev->coherent_dma_mask;
  53. }
  54. void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
  55. gfp_t gfp, unsigned long attrs)
  56. {
  57. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  58. int page_order = get_order(size);
  59. struct page *page = NULL;
  60. void *ret;
  61. /* we always manually zero the memory once we are done: */
  62. gfp &= ~__GFP_ZERO;
  63. /* GFP_DMA32 and GFP_DMA are no ops without the corresponding zones: */
  64. if (dev->coherent_dma_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
  65. gfp |= GFP_DMA;
  66. if (dev->coherent_dma_mask <= DMA_BIT_MASK(32) && !(gfp & GFP_DMA))
  67. gfp |= GFP_DMA32;
  68. again:
  69. /* CMA can be used only in the context which permits sleeping */
  70. if (gfpflags_allow_blocking(gfp)) {
  71. page = dma_alloc_from_contiguous(dev, count, page_order, gfp);
  72. if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
  73. dma_release_from_contiguous(dev, page, count);
  74. page = NULL;
  75. }
  76. }
  77. if (!page)
  78. page = alloc_pages_node(dev_to_node(dev), gfp, page_order);
  79. if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
  80. __free_pages(page, page_order);
  81. page = NULL;
  82. if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
  83. dev->coherent_dma_mask < DMA_BIT_MASK(64) &&
  84. !(gfp & (GFP_DMA32 | GFP_DMA))) {
  85. gfp |= GFP_DMA32;
  86. goto again;
  87. }
  88. if (IS_ENABLED(CONFIG_ZONE_DMA) &&
  89. dev->coherent_dma_mask < DMA_BIT_MASK(32) &&
  90. !(gfp & GFP_DMA)) {
  91. gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
  92. goto again;
  93. }
  94. }
  95. if (!page)
  96. return NULL;
  97. ret = page_address(page);
  98. if (force_dma_unencrypted()) {
  99. set_memory_decrypted((unsigned long)ret, 1 << page_order);
  100. *dma_handle = __phys_to_dma(dev, page_to_phys(page));
  101. } else {
  102. *dma_handle = phys_to_dma(dev, page_to_phys(page));
  103. }
  104. memset(ret, 0, size);
  105. return ret;
  106. }
  107. /*
  108. * NOTE: this function must never look at the dma_addr argument, because we want
  109. * to be able to use it as a helper for iommu implementations as well.
  110. */
  111. void dma_direct_free(struct device *dev, size_t size, void *cpu_addr,
  112. dma_addr_t dma_addr, unsigned long attrs)
  113. {
  114. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  115. unsigned int page_order = get_order(size);
  116. if (force_dma_unencrypted())
  117. set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
  118. if (!dma_release_from_contiguous(dev, virt_to_page(cpu_addr), count))
  119. free_pages((unsigned long)cpu_addr, page_order);
  120. }
  121. dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
  122. unsigned long offset, size_t size, enum dma_data_direction dir,
  123. unsigned long attrs)
  124. {
  125. dma_addr_t dma_addr = phys_to_dma(dev, page_to_phys(page)) + offset;
  126. if (!check_addr(dev, dma_addr, size, __func__))
  127. return DIRECT_MAPPING_ERROR;
  128. return dma_addr;
  129. }
  130. int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
  131. enum dma_data_direction dir, unsigned long attrs)
  132. {
  133. int i;
  134. struct scatterlist *sg;
  135. for_each_sg(sgl, sg, nents, i) {
  136. BUG_ON(!sg_page(sg));
  137. sg_dma_address(sg) = phys_to_dma(dev, sg_phys(sg));
  138. if (!check_addr(dev, sg_dma_address(sg), sg->length, __func__))
  139. return 0;
  140. sg_dma_len(sg) = sg->length;
  141. }
  142. return nents;
  143. }
  144. int dma_direct_supported(struct device *dev, u64 mask)
  145. {
  146. #ifdef CONFIG_ZONE_DMA
  147. if (mask < DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
  148. return 0;
  149. #else
  150. /*
  151. * Because 32-bit DMA masks are so common we expect every architecture
  152. * to be able to satisfy them - either by not supporting more physical
  153. * memory, or by providing a ZONE_DMA32. If neither is the case, the
  154. * architecture needs to use an IOMMU instead of the direct mapping.
  155. */
  156. if (mask < DMA_BIT_MASK(32))
  157. return 0;
  158. #endif
  159. /*
  160. * Various PCI/PCIe bridges have broken support for > 32bit DMA even
  161. * if the device itself might support it.
  162. */
  163. if (dev->dma_32bit_limit && mask > DMA_BIT_MASK(32))
  164. return 0;
  165. return 1;
  166. }
  167. int dma_direct_mapping_error(struct device *dev, dma_addr_t dma_addr)
  168. {
  169. return dma_addr == DIRECT_MAPPING_ERROR;
  170. }
  171. const struct dma_map_ops dma_direct_ops = {
  172. .alloc = dma_direct_alloc,
  173. .free = dma_direct_free,
  174. .map_page = dma_direct_map_page,
  175. .map_sg = dma_direct_map_sg,
  176. .dma_supported = dma_direct_supported,
  177. .mapping_error = dma_direct_mapping_error,
  178. };
  179. EXPORT_SYMBOL(dma_direct_ops);