pci-dma.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. ** PARISC 1.1 Dynamic DMA mapping support.
  4. ** This implementation is for PA-RISC platforms that do not support
  5. ** I/O TLBs (aka DMA address translation hardware).
  6. ** See Documentation/DMA-API-HOWTO.txt for interface definitions.
  7. **
  8. ** (c) Copyright 1999,2000 Hewlett-Packard Company
  9. ** (c) Copyright 2000 Grant Grundler
  10. ** (c) Copyright 2000 Philipp Rumpf <prumpf@tux.org>
  11. ** (c) Copyright 2000 John Marvin
  12. **
  13. ** "leveraged" from 2.3.47: arch/ia64/kernel/pci-dma.c.
  14. ** (I assume it's from David Mosberger-Tang but there was no Copyright)
  15. **
  16. ** AFAIK, all PA7100LC and PA7300LC platforms can use this code.
  17. **
  18. ** - ggg
  19. */
  20. #include <linux/init.h>
  21. #include <linux/gfp.h>
  22. #include <linux/mm.h>
  23. #include <linux/pci.h>
  24. #include <linux/proc_fs.h>
  25. #include <linux/seq_file.h>
  26. #include <linux/string.h>
  27. #include <linux/types.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/export.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/dma.h> /* for DMA_CHUNK_SIZE */
  32. #include <asm/io.h>
  33. #include <asm/page.h> /* get_order */
  34. #include <asm/pgalloc.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/tlbflush.h> /* for purge_tlb_*() macros */
  37. static struct proc_dir_entry * proc_gsc_root __read_mostly = NULL;
  38. static unsigned long pcxl_used_bytes __read_mostly = 0;
  39. static unsigned long pcxl_used_pages __read_mostly = 0;
  40. extern unsigned long pcxl_dma_start; /* Start of pcxl dma mapping area */
  41. static DEFINE_SPINLOCK(pcxl_res_lock);
  42. static char *pcxl_res_map;
  43. static int pcxl_res_hint;
  44. static int pcxl_res_size;
  45. #ifdef DEBUG_PCXL_RESOURCE
  46. #define DBG_RES(x...) printk(x)
  47. #else
  48. #define DBG_RES(x...)
  49. #endif
  50. /*
  51. ** Dump a hex representation of the resource map.
  52. */
  53. #ifdef DUMP_RESMAP
  54. static
  55. void dump_resmap(void)
  56. {
  57. u_long *res_ptr = (unsigned long *)pcxl_res_map;
  58. u_long i = 0;
  59. printk("res_map: ");
  60. for(; i < (pcxl_res_size / sizeof(unsigned long)); ++i, ++res_ptr)
  61. printk("%08lx ", *res_ptr);
  62. printk("\n");
  63. }
  64. #else
  65. static inline void dump_resmap(void) {;}
  66. #endif
  67. static inline int map_pte_uncached(pte_t * pte,
  68. unsigned long vaddr,
  69. unsigned long size, unsigned long *paddr_ptr)
  70. {
  71. unsigned long end;
  72. unsigned long orig_vaddr = vaddr;
  73. vaddr &= ~PMD_MASK;
  74. end = vaddr + size;
  75. if (end > PMD_SIZE)
  76. end = PMD_SIZE;
  77. do {
  78. unsigned long flags;
  79. if (!pte_none(*pte))
  80. printk(KERN_ERR "map_pte_uncached: page already exists\n");
  81. purge_tlb_start(flags);
  82. set_pte(pte, __mk_pte(*paddr_ptr, PAGE_KERNEL_UNC));
  83. pdtlb_kernel(orig_vaddr);
  84. purge_tlb_end(flags);
  85. vaddr += PAGE_SIZE;
  86. orig_vaddr += PAGE_SIZE;
  87. (*paddr_ptr) += PAGE_SIZE;
  88. pte++;
  89. } while (vaddr < end);
  90. return 0;
  91. }
  92. static inline int map_pmd_uncached(pmd_t * pmd, unsigned long vaddr,
  93. unsigned long size, unsigned long *paddr_ptr)
  94. {
  95. unsigned long end;
  96. unsigned long orig_vaddr = vaddr;
  97. vaddr &= ~PGDIR_MASK;
  98. end = vaddr + size;
  99. if (end > PGDIR_SIZE)
  100. end = PGDIR_SIZE;
  101. do {
  102. pte_t * pte = pte_alloc_kernel(pmd, vaddr);
  103. if (!pte)
  104. return -ENOMEM;
  105. if (map_pte_uncached(pte, orig_vaddr, end - vaddr, paddr_ptr))
  106. return -ENOMEM;
  107. vaddr = (vaddr + PMD_SIZE) & PMD_MASK;
  108. orig_vaddr += PMD_SIZE;
  109. pmd++;
  110. } while (vaddr < end);
  111. return 0;
  112. }
  113. static inline int map_uncached_pages(unsigned long vaddr, unsigned long size,
  114. unsigned long paddr)
  115. {
  116. pgd_t * dir;
  117. unsigned long end = vaddr + size;
  118. dir = pgd_offset_k(vaddr);
  119. do {
  120. pmd_t *pmd;
  121. pmd = pmd_alloc(NULL, dir, vaddr);
  122. if (!pmd)
  123. return -ENOMEM;
  124. if (map_pmd_uncached(pmd, vaddr, end - vaddr, &paddr))
  125. return -ENOMEM;
  126. vaddr = vaddr + PGDIR_SIZE;
  127. dir++;
  128. } while (vaddr && (vaddr < end));
  129. return 0;
  130. }
  131. static inline void unmap_uncached_pte(pmd_t * pmd, unsigned long vaddr,
  132. unsigned long size)
  133. {
  134. pte_t * pte;
  135. unsigned long end;
  136. unsigned long orig_vaddr = vaddr;
  137. if (pmd_none(*pmd))
  138. return;
  139. if (pmd_bad(*pmd)) {
  140. pmd_ERROR(*pmd);
  141. pmd_clear(pmd);
  142. return;
  143. }
  144. pte = pte_offset_map(pmd, vaddr);
  145. vaddr &= ~PMD_MASK;
  146. end = vaddr + size;
  147. if (end > PMD_SIZE)
  148. end = PMD_SIZE;
  149. do {
  150. unsigned long flags;
  151. pte_t page = *pte;
  152. pte_clear(&init_mm, vaddr, pte);
  153. purge_tlb_start(flags);
  154. pdtlb_kernel(orig_vaddr);
  155. purge_tlb_end(flags);
  156. vaddr += PAGE_SIZE;
  157. orig_vaddr += PAGE_SIZE;
  158. pte++;
  159. if (pte_none(page) || pte_present(page))
  160. continue;
  161. printk(KERN_CRIT "Whee.. Swapped out page in kernel page table\n");
  162. } while (vaddr < end);
  163. }
  164. static inline void unmap_uncached_pmd(pgd_t * dir, unsigned long vaddr,
  165. unsigned long size)
  166. {
  167. pmd_t * pmd;
  168. unsigned long end;
  169. unsigned long orig_vaddr = vaddr;
  170. if (pgd_none(*dir))
  171. return;
  172. if (pgd_bad(*dir)) {
  173. pgd_ERROR(*dir);
  174. pgd_clear(dir);
  175. return;
  176. }
  177. pmd = pmd_offset(dir, vaddr);
  178. vaddr &= ~PGDIR_MASK;
  179. end = vaddr + size;
  180. if (end > PGDIR_SIZE)
  181. end = PGDIR_SIZE;
  182. do {
  183. unmap_uncached_pte(pmd, orig_vaddr, end - vaddr);
  184. vaddr = (vaddr + PMD_SIZE) & PMD_MASK;
  185. orig_vaddr += PMD_SIZE;
  186. pmd++;
  187. } while (vaddr < end);
  188. }
  189. static void unmap_uncached_pages(unsigned long vaddr, unsigned long size)
  190. {
  191. pgd_t * dir;
  192. unsigned long end = vaddr + size;
  193. dir = pgd_offset_k(vaddr);
  194. do {
  195. unmap_uncached_pmd(dir, vaddr, end - vaddr);
  196. vaddr = vaddr + PGDIR_SIZE;
  197. dir++;
  198. } while (vaddr && (vaddr < end));
  199. }
  200. #define PCXL_SEARCH_LOOP(idx, mask, size) \
  201. for(; res_ptr < res_end; ++res_ptr) \
  202. { \
  203. if(0 == ((*res_ptr) & mask)) { \
  204. *res_ptr |= mask; \
  205. idx = (int)((u_long)res_ptr - (u_long)pcxl_res_map); \
  206. pcxl_res_hint = idx + (size >> 3); \
  207. goto resource_found; \
  208. } \
  209. }
  210. #define PCXL_FIND_FREE_MAPPING(idx, mask, size) { \
  211. u##size *res_ptr = (u##size *)&(pcxl_res_map[pcxl_res_hint & ~((size >> 3) - 1)]); \
  212. u##size *res_end = (u##size *)&pcxl_res_map[pcxl_res_size]; \
  213. PCXL_SEARCH_LOOP(idx, mask, size); \
  214. res_ptr = (u##size *)&pcxl_res_map[0]; \
  215. PCXL_SEARCH_LOOP(idx, mask, size); \
  216. }
  217. unsigned long
  218. pcxl_alloc_range(size_t size)
  219. {
  220. int res_idx;
  221. u_long mask, flags;
  222. unsigned int pages_needed = size >> PAGE_SHIFT;
  223. mask = (u_long) -1L;
  224. mask >>= BITS_PER_LONG - pages_needed;
  225. DBG_RES("pcxl_alloc_range() size: %d pages_needed %d pages_mask 0x%08lx\n",
  226. size, pages_needed, mask);
  227. spin_lock_irqsave(&pcxl_res_lock, flags);
  228. if(pages_needed <= 8) {
  229. PCXL_FIND_FREE_MAPPING(res_idx, mask, 8);
  230. } else if(pages_needed <= 16) {
  231. PCXL_FIND_FREE_MAPPING(res_idx, mask, 16);
  232. } else if(pages_needed <= 32) {
  233. PCXL_FIND_FREE_MAPPING(res_idx, mask, 32);
  234. } else {
  235. panic("%s: pcxl_alloc_range() Too many pages to map.\n",
  236. __FILE__);
  237. }
  238. dump_resmap();
  239. panic("%s: pcxl_alloc_range() out of dma mapping resources\n",
  240. __FILE__);
  241. resource_found:
  242. DBG_RES("pcxl_alloc_range() res_idx %d mask 0x%08lx res_hint: %d\n",
  243. res_idx, mask, pcxl_res_hint);
  244. pcxl_used_pages += pages_needed;
  245. pcxl_used_bytes += ((pages_needed >> 3) ? (pages_needed >> 3) : 1);
  246. spin_unlock_irqrestore(&pcxl_res_lock, flags);
  247. dump_resmap();
  248. /*
  249. ** return the corresponding vaddr in the pcxl dma map
  250. */
  251. return (pcxl_dma_start + (res_idx << (PAGE_SHIFT + 3)));
  252. }
  253. #define PCXL_FREE_MAPPINGS(idx, m, size) \
  254. u##size *res_ptr = (u##size *)&(pcxl_res_map[(idx) + (((size >> 3) - 1) & (~((size >> 3) - 1)))]); \
  255. /* BUG_ON((*res_ptr & m) != m); */ \
  256. *res_ptr &= ~m;
  257. /*
  258. ** clear bits in the pcxl resource map
  259. */
  260. static void
  261. pcxl_free_range(unsigned long vaddr, size_t size)
  262. {
  263. u_long mask, flags;
  264. unsigned int res_idx = (vaddr - pcxl_dma_start) >> (PAGE_SHIFT + 3);
  265. unsigned int pages_mapped = size >> PAGE_SHIFT;
  266. mask = (u_long) -1L;
  267. mask >>= BITS_PER_LONG - pages_mapped;
  268. DBG_RES("pcxl_free_range() res_idx: %d size: %d pages_mapped %d mask 0x%08lx\n",
  269. res_idx, size, pages_mapped, mask);
  270. spin_lock_irqsave(&pcxl_res_lock, flags);
  271. if(pages_mapped <= 8) {
  272. PCXL_FREE_MAPPINGS(res_idx, mask, 8);
  273. } else if(pages_mapped <= 16) {
  274. PCXL_FREE_MAPPINGS(res_idx, mask, 16);
  275. } else if(pages_mapped <= 32) {
  276. PCXL_FREE_MAPPINGS(res_idx, mask, 32);
  277. } else {
  278. panic("%s: pcxl_free_range() Too many pages to unmap.\n",
  279. __FILE__);
  280. }
  281. pcxl_used_pages -= (pages_mapped ? pages_mapped : 1);
  282. pcxl_used_bytes -= ((pages_mapped >> 3) ? (pages_mapped >> 3) : 1);
  283. spin_unlock_irqrestore(&pcxl_res_lock, flags);
  284. dump_resmap();
  285. }
  286. static int proc_pcxl_dma_show(struct seq_file *m, void *v)
  287. {
  288. #if 0
  289. u_long i = 0;
  290. unsigned long *res_ptr = (u_long *)pcxl_res_map;
  291. #endif
  292. unsigned long total_pages = pcxl_res_size << 3; /* 8 bits per byte */
  293. seq_printf(m, "\nDMA Mapping Area size : %d bytes (%ld pages)\n",
  294. PCXL_DMA_MAP_SIZE, total_pages);
  295. seq_printf(m, "Resource bitmap : %d bytes\n", pcxl_res_size);
  296. seq_puts(m, " total: free: used: % used:\n");
  297. seq_printf(m, "blocks %8d %8ld %8ld %8ld%%\n", pcxl_res_size,
  298. pcxl_res_size - pcxl_used_bytes, pcxl_used_bytes,
  299. (pcxl_used_bytes * 100) / pcxl_res_size);
  300. seq_printf(m, "pages %8ld %8ld %8ld %8ld%%\n", total_pages,
  301. total_pages - pcxl_used_pages, pcxl_used_pages,
  302. (pcxl_used_pages * 100 / total_pages));
  303. #if 0
  304. seq_puts(m, "\nResource bitmap:");
  305. for(; i < (pcxl_res_size / sizeof(u_long)); ++i, ++res_ptr) {
  306. if ((i & 7) == 0)
  307. seq_puts(m,"\n ");
  308. seq_printf(m, "%s %08lx", buf, *res_ptr);
  309. }
  310. #endif
  311. seq_putc(m, '\n');
  312. return 0;
  313. }
  314. static int __init
  315. pcxl_dma_init(void)
  316. {
  317. if (pcxl_dma_start == 0)
  318. return 0;
  319. pcxl_res_size = PCXL_DMA_MAP_SIZE >> (PAGE_SHIFT + 3);
  320. pcxl_res_hint = 0;
  321. pcxl_res_map = (char *)__get_free_pages(GFP_KERNEL,
  322. get_order(pcxl_res_size));
  323. memset(pcxl_res_map, 0, pcxl_res_size);
  324. proc_gsc_root = proc_mkdir("gsc", NULL);
  325. if (!proc_gsc_root)
  326. printk(KERN_WARNING
  327. "pcxl_dma_init: Unable to create gsc /proc dir entry\n");
  328. else {
  329. struct proc_dir_entry* ent;
  330. ent = proc_create_single("pcxl_dma", 0, proc_gsc_root,
  331. proc_pcxl_dma_show);
  332. if (!ent)
  333. printk(KERN_WARNING
  334. "pci-dma.c: Unable to create pcxl_dma /proc entry.\n");
  335. }
  336. return 0;
  337. }
  338. __initcall(pcxl_dma_init);
  339. static void *pa11_dma_alloc(struct device *dev, size_t size,
  340. dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs)
  341. {
  342. unsigned long vaddr;
  343. unsigned long paddr;
  344. int order;
  345. order = get_order(size);
  346. size = 1 << (order + PAGE_SHIFT);
  347. vaddr = pcxl_alloc_range(size);
  348. paddr = __get_free_pages(flag, order);
  349. flush_kernel_dcache_range(paddr, size);
  350. paddr = __pa(paddr);
  351. map_uncached_pages(vaddr, size, paddr);
  352. *dma_handle = (dma_addr_t) paddr;
  353. #if 0
  354. /* This probably isn't needed to support EISA cards.
  355. ** ISA cards will certainly only support 24-bit DMA addressing.
  356. ** Not clear if we can, want, or need to support ISA.
  357. */
  358. if (!dev || *dev->coherent_dma_mask < 0xffffffff)
  359. gfp |= GFP_DMA;
  360. #endif
  361. return (void *)vaddr;
  362. }
  363. static void pa11_dma_free(struct device *dev, size_t size, void *vaddr,
  364. dma_addr_t dma_handle, unsigned long attrs)
  365. {
  366. int order;
  367. order = get_order(size);
  368. size = 1 << (order + PAGE_SHIFT);
  369. unmap_uncached_pages((unsigned long)vaddr, size);
  370. pcxl_free_range((unsigned long)vaddr, size);
  371. free_pages((unsigned long)__va(dma_handle), order);
  372. }
  373. static dma_addr_t pa11_dma_map_page(struct device *dev, struct page *page,
  374. unsigned long offset, size_t size,
  375. enum dma_data_direction direction, unsigned long attrs)
  376. {
  377. void *addr = page_address(page) + offset;
  378. BUG_ON(direction == DMA_NONE);
  379. if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
  380. flush_kernel_dcache_range((unsigned long) addr, size);
  381. return virt_to_phys(addr);
  382. }
  383. static void pa11_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
  384. size_t size, enum dma_data_direction direction,
  385. unsigned long attrs)
  386. {
  387. BUG_ON(direction == DMA_NONE);
  388. if (attrs & DMA_ATTR_SKIP_CPU_SYNC)
  389. return;
  390. if (direction == DMA_TO_DEVICE)
  391. return;
  392. /*
  393. * For PCI_DMA_FROMDEVICE this flush is not necessary for the
  394. * simple map/unmap case. However, it IS necessary if if
  395. * pci_dma_sync_single_* has been called and the buffer reused.
  396. */
  397. flush_kernel_dcache_range((unsigned long) phys_to_virt(dma_handle), size);
  398. }
  399. static int pa11_dma_map_sg(struct device *dev, struct scatterlist *sglist,
  400. int nents, enum dma_data_direction direction,
  401. unsigned long attrs)
  402. {
  403. int i;
  404. struct scatterlist *sg;
  405. BUG_ON(direction == DMA_NONE);
  406. for_each_sg(sglist, sg, nents, i) {
  407. unsigned long vaddr = (unsigned long)sg_virt(sg);
  408. sg_dma_address(sg) = (dma_addr_t) virt_to_phys(vaddr);
  409. sg_dma_len(sg) = sg->length;
  410. if (attrs & DMA_ATTR_SKIP_CPU_SYNC)
  411. continue;
  412. flush_kernel_dcache_range(vaddr, sg->length);
  413. }
  414. return nents;
  415. }
  416. static void pa11_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
  417. int nents, enum dma_data_direction direction,
  418. unsigned long attrs)
  419. {
  420. int i;
  421. struct scatterlist *sg;
  422. BUG_ON(direction == DMA_NONE);
  423. if (attrs & DMA_ATTR_SKIP_CPU_SYNC)
  424. return;
  425. if (direction == DMA_TO_DEVICE)
  426. return;
  427. /* once we do combining we'll need to use phys_to_virt(sg_dma_address(sglist)) */
  428. for_each_sg(sglist, sg, nents, i)
  429. flush_kernel_vmap_range(sg_virt(sg), sg->length);
  430. }
  431. static void pa11_dma_sync_single_for_cpu(struct device *dev,
  432. dma_addr_t dma_handle, size_t size,
  433. enum dma_data_direction direction)
  434. {
  435. BUG_ON(direction == DMA_NONE);
  436. flush_kernel_dcache_range((unsigned long) phys_to_virt(dma_handle),
  437. size);
  438. }
  439. static void pa11_dma_sync_single_for_device(struct device *dev,
  440. dma_addr_t dma_handle, size_t size,
  441. enum dma_data_direction direction)
  442. {
  443. BUG_ON(direction == DMA_NONE);
  444. flush_kernel_dcache_range((unsigned long) phys_to_virt(dma_handle),
  445. size);
  446. }
  447. static void pa11_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction)
  448. {
  449. int i;
  450. struct scatterlist *sg;
  451. /* once we do combining we'll need to use phys_to_virt(sg_dma_address(sglist)) */
  452. for_each_sg(sglist, sg, nents, i)
  453. flush_kernel_vmap_range(sg_virt(sg), sg->length);
  454. }
  455. static void pa11_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction)
  456. {
  457. int i;
  458. struct scatterlist *sg;
  459. /* once we do combining we'll need to use phys_to_virt(sg_dma_address(sglist)) */
  460. for_each_sg(sglist, sg, nents, i)
  461. flush_kernel_vmap_range(sg_virt(sg), sg->length);
  462. }
  463. static void pa11_dma_cache_sync(struct device *dev, void *vaddr, size_t size,
  464. enum dma_data_direction direction)
  465. {
  466. flush_kernel_dcache_range((unsigned long)vaddr, size);
  467. }
  468. const struct dma_map_ops pcxl_dma_ops = {
  469. .alloc = pa11_dma_alloc,
  470. .free = pa11_dma_free,
  471. .map_page = pa11_dma_map_page,
  472. .unmap_page = pa11_dma_unmap_page,
  473. .map_sg = pa11_dma_map_sg,
  474. .unmap_sg = pa11_dma_unmap_sg,
  475. .sync_single_for_cpu = pa11_dma_sync_single_for_cpu,
  476. .sync_single_for_device = pa11_dma_sync_single_for_device,
  477. .sync_sg_for_cpu = pa11_dma_sync_sg_for_cpu,
  478. .sync_sg_for_device = pa11_dma_sync_sg_for_device,
  479. .cache_sync = pa11_dma_cache_sync,
  480. };
  481. static void *pcx_dma_alloc(struct device *dev, size_t size,
  482. dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs)
  483. {
  484. void *addr;
  485. if ((attrs & DMA_ATTR_NON_CONSISTENT) == 0)
  486. return NULL;
  487. addr = (void *)__get_free_pages(flag, get_order(size));
  488. if (addr)
  489. *dma_handle = (dma_addr_t)virt_to_phys(addr);
  490. return addr;
  491. }
  492. static void pcx_dma_free(struct device *dev, size_t size, void *vaddr,
  493. dma_addr_t iova, unsigned long attrs)
  494. {
  495. free_pages((unsigned long)vaddr, get_order(size));
  496. return;
  497. }
  498. const struct dma_map_ops pcx_dma_ops = {
  499. .alloc = pcx_dma_alloc,
  500. .free = pcx_dma_free,
  501. .map_page = pa11_dma_map_page,
  502. .unmap_page = pa11_dma_unmap_page,
  503. .map_sg = pa11_dma_map_sg,
  504. .unmap_sg = pa11_dma_unmap_sg,
  505. .sync_single_for_cpu = pa11_dma_sync_single_for_cpu,
  506. .sync_single_for_device = pa11_dma_sync_single_for_device,
  507. .sync_sg_for_cpu = pa11_dma_sync_sg_for_cpu,
  508. .sync_sg_for_device = pa11_dma_sync_sg_for_device,
  509. .cache_sync = pa11_dma_cache_sync,
  510. };