xfrm_input.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381
  1. /*
  2. * xfrm_input.c
  3. *
  4. * Changes:
  5. * YOSHIFUJI Hideaki @USAGI
  6. * Split up af-specific portion
  7. *
  8. */
  9. #include <linux/slab.h>
  10. #include <linux/module.h>
  11. #include <linux/netdevice.h>
  12. #include <net/dst.h>
  13. #include <net/ip.h>
  14. #include <net/xfrm.h>
  15. static struct kmem_cache *secpath_cachep __read_mostly;
  16. static DEFINE_SPINLOCK(xfrm_input_afinfo_lock);
  17. static struct xfrm_input_afinfo __rcu *xfrm_input_afinfo[NPROTO];
  18. int xfrm_input_register_afinfo(struct xfrm_input_afinfo *afinfo)
  19. {
  20. int err = 0;
  21. if (unlikely(afinfo == NULL))
  22. return -EINVAL;
  23. if (unlikely(afinfo->family >= NPROTO))
  24. return -EAFNOSUPPORT;
  25. spin_lock_bh(&xfrm_input_afinfo_lock);
  26. if (unlikely(xfrm_input_afinfo[afinfo->family] != NULL))
  27. err = -ENOBUFS;
  28. else
  29. rcu_assign_pointer(xfrm_input_afinfo[afinfo->family], afinfo);
  30. spin_unlock_bh(&xfrm_input_afinfo_lock);
  31. return err;
  32. }
  33. EXPORT_SYMBOL(xfrm_input_register_afinfo);
  34. int xfrm_input_unregister_afinfo(struct xfrm_input_afinfo *afinfo)
  35. {
  36. int err = 0;
  37. if (unlikely(afinfo == NULL))
  38. return -EINVAL;
  39. if (unlikely(afinfo->family >= NPROTO))
  40. return -EAFNOSUPPORT;
  41. spin_lock_bh(&xfrm_input_afinfo_lock);
  42. if (likely(xfrm_input_afinfo[afinfo->family] != NULL)) {
  43. if (unlikely(xfrm_input_afinfo[afinfo->family] != afinfo))
  44. err = -EINVAL;
  45. else
  46. RCU_INIT_POINTER(xfrm_input_afinfo[afinfo->family], NULL);
  47. }
  48. spin_unlock_bh(&xfrm_input_afinfo_lock);
  49. synchronize_rcu();
  50. return err;
  51. }
  52. EXPORT_SYMBOL(xfrm_input_unregister_afinfo);
  53. static struct xfrm_input_afinfo *xfrm_input_get_afinfo(unsigned int family)
  54. {
  55. struct xfrm_input_afinfo *afinfo;
  56. if (unlikely(family >= NPROTO))
  57. return NULL;
  58. rcu_read_lock();
  59. afinfo = rcu_dereference(xfrm_input_afinfo[family]);
  60. if (unlikely(!afinfo))
  61. rcu_read_unlock();
  62. return afinfo;
  63. }
  64. static void xfrm_input_put_afinfo(struct xfrm_input_afinfo *afinfo)
  65. {
  66. rcu_read_unlock();
  67. }
  68. static int xfrm_rcv_cb(struct sk_buff *skb, unsigned int family, u8 protocol,
  69. int err)
  70. {
  71. int ret;
  72. struct xfrm_input_afinfo *afinfo = xfrm_input_get_afinfo(family);
  73. if (!afinfo)
  74. return -EAFNOSUPPORT;
  75. ret = afinfo->callback(skb, protocol, err);
  76. xfrm_input_put_afinfo(afinfo);
  77. return ret;
  78. }
  79. void __secpath_destroy(struct sec_path *sp)
  80. {
  81. int i;
  82. for (i = 0; i < sp->len; i++)
  83. xfrm_state_put(sp->xvec[i]);
  84. kmem_cache_free(secpath_cachep, sp);
  85. }
  86. EXPORT_SYMBOL(__secpath_destroy);
  87. struct sec_path *secpath_dup(struct sec_path *src)
  88. {
  89. struct sec_path *sp;
  90. sp = kmem_cache_alloc(secpath_cachep, GFP_ATOMIC);
  91. if (!sp)
  92. return NULL;
  93. sp->len = 0;
  94. if (src) {
  95. int i;
  96. memcpy(sp, src, sizeof(*sp));
  97. for (i = 0; i < sp->len; i++)
  98. xfrm_state_hold(sp->xvec[i]);
  99. }
  100. atomic_set(&sp->refcnt, 1);
  101. return sp;
  102. }
  103. EXPORT_SYMBOL(secpath_dup);
  104. /* Fetch spi and seq from ipsec header */
  105. int xfrm_parse_spi(struct sk_buff *skb, u8 nexthdr, __be32 *spi, __be32 *seq)
  106. {
  107. int offset, offset_seq;
  108. int hlen;
  109. switch (nexthdr) {
  110. case IPPROTO_AH:
  111. hlen = sizeof(struct ip_auth_hdr);
  112. offset = offsetof(struct ip_auth_hdr, spi);
  113. offset_seq = offsetof(struct ip_auth_hdr, seq_no);
  114. break;
  115. case IPPROTO_ESP:
  116. hlen = sizeof(struct ip_esp_hdr);
  117. offset = offsetof(struct ip_esp_hdr, spi);
  118. offset_seq = offsetof(struct ip_esp_hdr, seq_no);
  119. break;
  120. case IPPROTO_COMP:
  121. if (!pskb_may_pull(skb, sizeof(struct ip_comp_hdr)))
  122. return -EINVAL;
  123. *spi = htonl(ntohs(*(__be16 *)(skb_transport_header(skb) + 2)));
  124. *seq = 0;
  125. return 0;
  126. default:
  127. return 1;
  128. }
  129. if (!pskb_may_pull(skb, hlen))
  130. return -EINVAL;
  131. *spi = *(__be32 *)(skb_transport_header(skb) + offset);
  132. *seq = *(__be32 *)(skb_transport_header(skb) + offset_seq);
  133. return 0;
  134. }
  135. int xfrm_prepare_input(struct xfrm_state *x, struct sk_buff *skb)
  136. {
  137. struct xfrm_mode *inner_mode = x->inner_mode;
  138. int err;
  139. err = x->outer_mode->afinfo->extract_input(x, skb);
  140. if (err)
  141. return err;
  142. if (x->sel.family == AF_UNSPEC) {
  143. inner_mode = xfrm_ip2inner_mode(x, XFRM_MODE_SKB_CB(skb)->protocol);
  144. if (inner_mode == NULL)
  145. return -EAFNOSUPPORT;
  146. }
  147. skb->protocol = inner_mode->afinfo->eth_proto;
  148. return inner_mode->input2(x, skb);
  149. }
  150. EXPORT_SYMBOL(xfrm_prepare_input);
  151. int xfrm_input(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type)
  152. {
  153. struct net *net = dev_net(skb->dev);
  154. int err;
  155. __be32 seq;
  156. __be32 seq_hi;
  157. struct xfrm_state *x = NULL;
  158. xfrm_address_t *daddr;
  159. struct xfrm_mode *inner_mode;
  160. unsigned int family;
  161. int decaps = 0;
  162. int async = 0;
  163. /* A negative encap_type indicates async resumption. */
  164. if (encap_type < 0) {
  165. async = 1;
  166. x = xfrm_input_state(skb);
  167. seq = XFRM_SKB_CB(skb)->seq.input.low;
  168. family = x->outer_mode->afinfo->family;
  169. goto resume;
  170. }
  171. daddr = (xfrm_address_t *)(skb_network_header(skb) +
  172. XFRM_SPI_SKB_CB(skb)->daddroff);
  173. family = XFRM_SPI_SKB_CB(skb)->family;
  174. /* Allocate new secpath or COW existing one. */
  175. if (!skb->sp || atomic_read(&skb->sp->refcnt) != 1) {
  176. struct sec_path *sp;
  177. sp = secpath_dup(skb->sp);
  178. if (!sp) {
  179. XFRM_INC_STATS(net, LINUX_MIB_XFRMINERROR);
  180. goto drop;
  181. }
  182. if (skb->sp)
  183. secpath_put(skb->sp);
  184. skb->sp = sp;
  185. }
  186. seq = 0;
  187. if (!spi && (err = xfrm_parse_spi(skb, nexthdr, &spi, &seq)) != 0) {
  188. XFRM_INC_STATS(net, LINUX_MIB_XFRMINHDRERROR);
  189. goto drop;
  190. }
  191. do {
  192. if (skb->sp->len == XFRM_MAX_DEPTH) {
  193. XFRM_INC_STATS(net, LINUX_MIB_XFRMINBUFFERERROR);
  194. goto drop;
  195. }
  196. x = xfrm_state_lookup(net, skb->mark, daddr, spi, nexthdr, family);
  197. if (x == NULL) {
  198. XFRM_INC_STATS(net, LINUX_MIB_XFRMINNOSTATES);
  199. xfrm_audit_state_notfound(skb, family, spi, seq);
  200. goto drop;
  201. }
  202. skb->sp->xvec[skb->sp->len++] = x;
  203. if (xfrm_tunnel_check(skb, x, family)) {
  204. XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEMODEERROR);
  205. goto drop;
  206. }
  207. spin_lock(&x->lock);
  208. if (unlikely(x->km.state == XFRM_STATE_ACQ)) {
  209. XFRM_INC_STATS(net, LINUX_MIB_XFRMACQUIREERROR);
  210. goto drop_unlock;
  211. }
  212. if (unlikely(x->km.state != XFRM_STATE_VALID)) {
  213. XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEINVALID);
  214. goto drop_unlock;
  215. }
  216. if ((x->encap ? x->encap->encap_type : 0) != encap_type) {
  217. XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEMISMATCH);
  218. goto drop_unlock;
  219. }
  220. if (x->repl->check(x, skb, seq)) {
  221. XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATESEQERROR);
  222. goto drop_unlock;
  223. }
  224. if (xfrm_state_check_expire(x)) {
  225. XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEEXPIRED);
  226. goto drop_unlock;
  227. }
  228. spin_unlock(&x->lock);
  229. seq_hi = htonl(xfrm_replay_seqhi(x, seq));
  230. XFRM_SKB_CB(skb)->seq.input.low = seq;
  231. XFRM_SKB_CB(skb)->seq.input.hi = seq_hi;
  232. skb_dst_force(skb);
  233. nexthdr = x->type->input(x, skb);
  234. if (nexthdr == -EINPROGRESS)
  235. return 0;
  236. resume:
  237. spin_lock(&x->lock);
  238. if (nexthdr <= 0) {
  239. if (nexthdr == -EBADMSG) {
  240. xfrm_audit_state_icvfail(x, skb,
  241. x->type->proto);
  242. x->stats.integrity_failed++;
  243. }
  244. XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEPROTOERROR);
  245. goto drop_unlock;
  246. }
  247. /* only the first xfrm gets the encap type */
  248. encap_type = 0;
  249. if (async && x->repl->recheck(x, skb, seq)) {
  250. XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATESEQERROR);
  251. goto drop_unlock;
  252. }
  253. x->repl->advance(x, seq);
  254. x->curlft.bytes += skb->len;
  255. x->curlft.packets++;
  256. spin_unlock(&x->lock);
  257. XFRM_MODE_SKB_CB(skb)->protocol = nexthdr;
  258. inner_mode = x->inner_mode;
  259. if (x->sel.family == AF_UNSPEC) {
  260. inner_mode = xfrm_ip2inner_mode(x, XFRM_MODE_SKB_CB(skb)->protocol);
  261. if (inner_mode == NULL)
  262. goto drop;
  263. }
  264. if (inner_mode->input(x, skb)) {
  265. XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEMODEERROR);
  266. goto drop;
  267. }
  268. if (x->outer_mode->flags & XFRM_MODE_FLAG_TUNNEL) {
  269. decaps = 1;
  270. break;
  271. }
  272. /*
  273. * We need the inner address. However, we only get here for
  274. * transport mode so the outer address is identical.
  275. */
  276. daddr = &x->id.daddr;
  277. family = x->outer_mode->afinfo->family;
  278. err = xfrm_parse_spi(skb, nexthdr, &spi, &seq);
  279. if (err < 0) {
  280. XFRM_INC_STATS(net, LINUX_MIB_XFRMINHDRERROR);
  281. goto drop;
  282. }
  283. } while (!err);
  284. err = xfrm_rcv_cb(skb, family, x->type->proto, 0);
  285. if (err)
  286. goto drop;
  287. nf_reset(skb);
  288. if (decaps) {
  289. skb_dst_drop(skb);
  290. netif_rx(skb);
  291. return 0;
  292. } else {
  293. return x->inner_mode->afinfo->transport_finish(skb, async);
  294. }
  295. drop_unlock:
  296. spin_unlock(&x->lock);
  297. drop:
  298. xfrm_rcv_cb(skb, family, x && x->type ? x->type->proto : nexthdr, -1);
  299. kfree_skb(skb);
  300. return 0;
  301. }
  302. EXPORT_SYMBOL(xfrm_input);
  303. int xfrm_input_resume(struct sk_buff *skb, int nexthdr)
  304. {
  305. return xfrm_input(skb, nexthdr, 0, -1);
  306. }
  307. EXPORT_SYMBOL(xfrm_input_resume);
  308. void __init xfrm_input_init(void)
  309. {
  310. secpath_cachep = kmem_cache_create("secpath_cache",
  311. sizeof(struct sec_path),
  312. 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC,
  313. NULL);
  314. }