fib_frontend.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * IPv4 Forwarding Information Base: FIB frontend.
  7. *
  8. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. */
  15. #include <linux/module.h>
  16. #include <asm/uaccess.h>
  17. #include <linux/bitops.h>
  18. #include <linux/capability.h>
  19. #include <linux/types.h>
  20. #include <linux/kernel.h>
  21. #include <linux/mm.h>
  22. #include <linux/string.h>
  23. #include <linux/socket.h>
  24. #include <linux/sockios.h>
  25. #include <linux/errno.h>
  26. #include <linux/in.h>
  27. #include <linux/inet.h>
  28. #include <linux/inetdevice.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/if_addr.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/cache.h>
  34. #include <linux/init.h>
  35. #include <linux/list.h>
  36. #include <linux/slab.h>
  37. #include <net/ip.h>
  38. #include <net/protocol.h>
  39. #include <net/route.h>
  40. #include <net/tcp.h>
  41. #include <net/sock.h>
  42. #include <net/arp.h>
  43. #include <net/ip_fib.h>
  44. #include <net/rtnetlink.h>
  45. #include <net/xfrm.h>
  46. #ifndef CONFIG_IP_MULTIPLE_TABLES
  47. static int __net_init fib4_rules_init(struct net *net)
  48. {
  49. struct fib_table *local_table, *main_table;
  50. local_table = fib_trie_table(RT_TABLE_LOCAL);
  51. if (local_table == NULL)
  52. return -ENOMEM;
  53. main_table = fib_trie_table(RT_TABLE_MAIN);
  54. if (main_table == NULL)
  55. goto fail;
  56. hlist_add_head_rcu(&local_table->tb_hlist,
  57. &net->ipv4.fib_table_hash[TABLE_LOCAL_INDEX]);
  58. hlist_add_head_rcu(&main_table->tb_hlist,
  59. &net->ipv4.fib_table_hash[TABLE_MAIN_INDEX]);
  60. return 0;
  61. fail:
  62. fib_free_table(local_table);
  63. return -ENOMEM;
  64. }
  65. #else
  66. struct fib_table *fib_new_table(struct net *net, u32 id)
  67. {
  68. struct fib_table *tb;
  69. unsigned int h;
  70. if (id == 0)
  71. id = RT_TABLE_MAIN;
  72. tb = fib_get_table(net, id);
  73. if (tb)
  74. return tb;
  75. tb = fib_trie_table(id);
  76. if (!tb)
  77. return NULL;
  78. switch (id) {
  79. case RT_TABLE_LOCAL:
  80. net->ipv4.fib_local = tb;
  81. break;
  82. case RT_TABLE_MAIN:
  83. net->ipv4.fib_main = tb;
  84. break;
  85. case RT_TABLE_DEFAULT:
  86. net->ipv4.fib_default = tb;
  87. break;
  88. default:
  89. break;
  90. }
  91. h = id & (FIB_TABLE_HASHSZ - 1);
  92. hlist_add_head_rcu(&tb->tb_hlist, &net->ipv4.fib_table_hash[h]);
  93. return tb;
  94. }
  95. /* caller must hold either rtnl or rcu read lock */
  96. struct fib_table *fib_get_table(struct net *net, u32 id)
  97. {
  98. struct fib_table *tb;
  99. struct hlist_head *head;
  100. unsigned int h;
  101. if (id == 0)
  102. id = RT_TABLE_MAIN;
  103. h = id & (FIB_TABLE_HASHSZ - 1);
  104. head = &net->ipv4.fib_table_hash[h];
  105. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  106. if (tb->tb_id == id)
  107. return tb;
  108. }
  109. return NULL;
  110. }
  111. #endif /* CONFIG_IP_MULTIPLE_TABLES */
  112. static void fib_flush(struct net *net)
  113. {
  114. int flushed = 0;
  115. struct fib_table *tb;
  116. struct hlist_head *head;
  117. unsigned int h;
  118. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  119. head = &net->ipv4.fib_table_hash[h];
  120. hlist_for_each_entry(tb, head, tb_hlist)
  121. flushed += fib_table_flush(tb);
  122. }
  123. if (flushed)
  124. rt_cache_flush(net);
  125. }
  126. /*
  127. * Find address type as if only "dev" was present in the system. If
  128. * on_dev is NULL then all interfaces are taken into consideration.
  129. */
  130. static inline unsigned int __inet_dev_addr_type(struct net *net,
  131. const struct net_device *dev,
  132. __be32 addr)
  133. {
  134. struct flowi4 fl4 = { .daddr = addr };
  135. struct fib_result res;
  136. unsigned int ret = RTN_BROADCAST;
  137. struct fib_table *local_table;
  138. if (ipv4_is_zeronet(addr) || ipv4_is_lbcast(addr))
  139. return RTN_BROADCAST;
  140. if (ipv4_is_multicast(addr))
  141. return RTN_MULTICAST;
  142. rcu_read_lock();
  143. local_table = fib_get_table(net, RT_TABLE_LOCAL);
  144. if (local_table) {
  145. ret = RTN_UNICAST;
  146. if (!fib_table_lookup(local_table, &fl4, &res, FIB_LOOKUP_NOREF)) {
  147. if (!dev || dev == res.fi->fib_dev)
  148. ret = res.type;
  149. }
  150. }
  151. rcu_read_unlock();
  152. return ret;
  153. }
  154. unsigned int inet_addr_type(struct net *net, __be32 addr)
  155. {
  156. return __inet_dev_addr_type(net, NULL, addr);
  157. }
  158. EXPORT_SYMBOL(inet_addr_type);
  159. unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev,
  160. __be32 addr)
  161. {
  162. return __inet_dev_addr_type(net, dev, addr);
  163. }
  164. EXPORT_SYMBOL(inet_dev_addr_type);
  165. __be32 fib_compute_spec_dst(struct sk_buff *skb)
  166. {
  167. struct net_device *dev = skb->dev;
  168. struct in_device *in_dev;
  169. struct fib_result res;
  170. struct rtable *rt;
  171. struct flowi4 fl4;
  172. struct net *net;
  173. int scope;
  174. rt = skb_rtable(skb);
  175. if ((rt->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST | RTCF_LOCAL)) ==
  176. RTCF_LOCAL)
  177. return ip_hdr(skb)->daddr;
  178. in_dev = __in_dev_get_rcu(dev);
  179. BUG_ON(!in_dev);
  180. net = dev_net(dev);
  181. scope = RT_SCOPE_UNIVERSE;
  182. if (!ipv4_is_zeronet(ip_hdr(skb)->saddr)) {
  183. fl4.flowi4_oif = 0;
  184. fl4.flowi4_iif = LOOPBACK_IFINDEX;
  185. fl4.daddr = ip_hdr(skb)->saddr;
  186. fl4.saddr = 0;
  187. fl4.flowi4_tos = RT_TOS(ip_hdr(skb)->tos);
  188. fl4.flowi4_scope = scope;
  189. fl4.flowi4_mark = IN_DEV_SRC_VMARK(in_dev) ? skb->mark : 0;
  190. if (!fib_lookup(net, &fl4, &res))
  191. return FIB_RES_PREFSRC(net, res);
  192. } else {
  193. scope = RT_SCOPE_LINK;
  194. }
  195. return inet_select_addr(dev, ip_hdr(skb)->saddr, scope);
  196. }
  197. /* Given (packet source, input interface) and optional (dst, oif, tos):
  198. * - (main) check, that source is valid i.e. not broadcast or our local
  199. * address.
  200. * - figure out what "logical" interface this packet arrived
  201. * and calculate "specific destination" address.
  202. * - check, that packet arrived from expected physical interface.
  203. * called with rcu_read_lock()
  204. */
  205. static int __fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst,
  206. u8 tos, int oif, struct net_device *dev,
  207. int rpf, struct in_device *idev, u32 *itag)
  208. {
  209. int ret, no_addr;
  210. struct fib_result res;
  211. struct flowi4 fl4;
  212. struct net *net;
  213. bool dev_match;
  214. fl4.flowi4_oif = 0;
  215. fl4.flowi4_iif = oif ? : LOOPBACK_IFINDEX;
  216. fl4.daddr = src;
  217. fl4.saddr = dst;
  218. fl4.flowi4_tos = tos;
  219. fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
  220. no_addr = idev->ifa_list == NULL;
  221. fl4.flowi4_mark = IN_DEV_SRC_VMARK(idev) ? skb->mark : 0;
  222. net = dev_net(dev);
  223. if (fib_lookup(net, &fl4, &res))
  224. goto last_resort;
  225. if (res.type != RTN_UNICAST &&
  226. (res.type != RTN_LOCAL || !IN_DEV_ACCEPT_LOCAL(idev)))
  227. goto e_inval;
  228. if (!rpf && !fib_num_tclassid_users(dev_net(dev)) &&
  229. (dev->ifindex != oif || !IN_DEV_TX_REDIRECTS(idev)))
  230. goto last_resort;
  231. fib_combine_itag(itag, &res);
  232. dev_match = false;
  233. #ifdef CONFIG_IP_ROUTE_MULTIPATH
  234. for (ret = 0; ret < res.fi->fib_nhs; ret++) {
  235. struct fib_nh *nh = &res.fi->fib_nh[ret];
  236. if (nh->nh_dev == dev) {
  237. dev_match = true;
  238. break;
  239. }
  240. }
  241. #else
  242. if (FIB_RES_DEV(res) == dev)
  243. dev_match = true;
  244. #endif
  245. if (dev_match) {
  246. ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
  247. return ret;
  248. }
  249. if (no_addr)
  250. goto last_resort;
  251. if (rpf == 1)
  252. goto e_rpf;
  253. fl4.flowi4_oif = dev->ifindex;
  254. ret = 0;
  255. if (fib_lookup(net, &fl4, &res) == 0) {
  256. if (res.type == RTN_UNICAST)
  257. ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
  258. }
  259. return ret;
  260. last_resort:
  261. if (rpf)
  262. goto e_rpf;
  263. *itag = 0;
  264. return 0;
  265. e_inval:
  266. return -EINVAL;
  267. e_rpf:
  268. return -EXDEV;
  269. }
  270. /* Ignore rp_filter for packets protected by IPsec. */
  271. int fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst,
  272. u8 tos, int oif, struct net_device *dev,
  273. struct in_device *idev, u32 *itag)
  274. {
  275. int r = secpath_exists(skb) ? 0 : IN_DEV_RPFILTER(idev);
  276. if (!r && !fib_num_tclassid_users(dev_net(dev)) &&
  277. IN_DEV_ACCEPT_LOCAL(idev) &&
  278. (dev->ifindex != oif || !IN_DEV_TX_REDIRECTS(idev))) {
  279. *itag = 0;
  280. return 0;
  281. }
  282. return __fib_validate_source(skb, src, dst, tos, oif, dev, r, idev, itag);
  283. }
  284. static inline __be32 sk_extract_addr(struct sockaddr *addr)
  285. {
  286. return ((struct sockaddr_in *) addr)->sin_addr.s_addr;
  287. }
  288. static int put_rtax(struct nlattr *mx, int len, int type, u32 value)
  289. {
  290. struct nlattr *nla;
  291. nla = (struct nlattr *) ((char *) mx + len);
  292. nla->nla_type = type;
  293. nla->nla_len = nla_attr_size(4);
  294. *(u32 *) nla_data(nla) = value;
  295. return len + nla_total_size(4);
  296. }
  297. static int rtentry_to_fib_config(struct net *net, int cmd, struct rtentry *rt,
  298. struct fib_config *cfg)
  299. {
  300. __be32 addr;
  301. int plen;
  302. memset(cfg, 0, sizeof(*cfg));
  303. cfg->fc_nlinfo.nl_net = net;
  304. if (rt->rt_dst.sa_family != AF_INET)
  305. return -EAFNOSUPPORT;
  306. /*
  307. * Check mask for validity:
  308. * a) it must be contiguous.
  309. * b) destination must have all host bits clear.
  310. * c) if application forgot to set correct family (AF_INET),
  311. * reject request unless it is absolutely clear i.e.
  312. * both family and mask are zero.
  313. */
  314. plen = 32;
  315. addr = sk_extract_addr(&rt->rt_dst);
  316. if (!(rt->rt_flags & RTF_HOST)) {
  317. __be32 mask = sk_extract_addr(&rt->rt_genmask);
  318. if (rt->rt_genmask.sa_family != AF_INET) {
  319. if (mask || rt->rt_genmask.sa_family)
  320. return -EAFNOSUPPORT;
  321. }
  322. if (bad_mask(mask, addr))
  323. return -EINVAL;
  324. plen = inet_mask_len(mask);
  325. }
  326. cfg->fc_dst_len = plen;
  327. cfg->fc_dst = addr;
  328. if (cmd != SIOCDELRT) {
  329. cfg->fc_nlflags = NLM_F_CREATE;
  330. cfg->fc_protocol = RTPROT_BOOT;
  331. }
  332. if (rt->rt_metric)
  333. cfg->fc_priority = rt->rt_metric - 1;
  334. if (rt->rt_flags & RTF_REJECT) {
  335. cfg->fc_scope = RT_SCOPE_HOST;
  336. cfg->fc_type = RTN_UNREACHABLE;
  337. return 0;
  338. }
  339. cfg->fc_scope = RT_SCOPE_NOWHERE;
  340. cfg->fc_type = RTN_UNICAST;
  341. if (rt->rt_dev) {
  342. char *colon;
  343. struct net_device *dev;
  344. char devname[IFNAMSIZ];
  345. if (copy_from_user(devname, rt->rt_dev, IFNAMSIZ-1))
  346. return -EFAULT;
  347. devname[IFNAMSIZ-1] = 0;
  348. colon = strchr(devname, ':');
  349. if (colon)
  350. *colon = 0;
  351. dev = __dev_get_by_name(net, devname);
  352. if (!dev)
  353. return -ENODEV;
  354. cfg->fc_oif = dev->ifindex;
  355. if (colon) {
  356. struct in_ifaddr *ifa;
  357. struct in_device *in_dev = __in_dev_get_rtnl(dev);
  358. if (!in_dev)
  359. return -ENODEV;
  360. *colon = ':';
  361. for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next)
  362. if (strcmp(ifa->ifa_label, devname) == 0)
  363. break;
  364. if (ifa == NULL)
  365. return -ENODEV;
  366. cfg->fc_prefsrc = ifa->ifa_local;
  367. }
  368. }
  369. addr = sk_extract_addr(&rt->rt_gateway);
  370. if (rt->rt_gateway.sa_family == AF_INET && addr) {
  371. cfg->fc_gw = addr;
  372. if (rt->rt_flags & RTF_GATEWAY &&
  373. inet_addr_type(net, addr) == RTN_UNICAST)
  374. cfg->fc_scope = RT_SCOPE_UNIVERSE;
  375. }
  376. if (cmd == SIOCDELRT)
  377. return 0;
  378. if (rt->rt_flags & RTF_GATEWAY && !cfg->fc_gw)
  379. return -EINVAL;
  380. if (cfg->fc_scope == RT_SCOPE_NOWHERE)
  381. cfg->fc_scope = RT_SCOPE_LINK;
  382. if (rt->rt_flags & (RTF_MTU | RTF_WINDOW | RTF_IRTT)) {
  383. struct nlattr *mx;
  384. int len = 0;
  385. mx = kzalloc(3 * nla_total_size(4), GFP_KERNEL);
  386. if (mx == NULL)
  387. return -ENOMEM;
  388. if (rt->rt_flags & RTF_MTU)
  389. len = put_rtax(mx, len, RTAX_ADVMSS, rt->rt_mtu - 40);
  390. if (rt->rt_flags & RTF_WINDOW)
  391. len = put_rtax(mx, len, RTAX_WINDOW, rt->rt_window);
  392. if (rt->rt_flags & RTF_IRTT)
  393. len = put_rtax(mx, len, RTAX_RTT, rt->rt_irtt << 3);
  394. cfg->fc_mx = mx;
  395. cfg->fc_mx_len = len;
  396. }
  397. return 0;
  398. }
  399. /*
  400. * Handle IP routing ioctl calls.
  401. * These are used to manipulate the routing tables
  402. */
  403. int ip_rt_ioctl(struct net *net, unsigned int cmd, void __user *arg)
  404. {
  405. struct fib_config cfg;
  406. struct rtentry rt;
  407. int err;
  408. switch (cmd) {
  409. case SIOCADDRT: /* Add a route */
  410. case SIOCDELRT: /* Delete a route */
  411. if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
  412. return -EPERM;
  413. if (copy_from_user(&rt, arg, sizeof(rt)))
  414. return -EFAULT;
  415. rtnl_lock();
  416. err = rtentry_to_fib_config(net, cmd, &rt, &cfg);
  417. if (err == 0) {
  418. struct fib_table *tb;
  419. if (cmd == SIOCDELRT) {
  420. tb = fib_get_table(net, cfg.fc_table);
  421. if (tb)
  422. err = fib_table_delete(tb, &cfg);
  423. else
  424. err = -ESRCH;
  425. } else {
  426. tb = fib_new_table(net, cfg.fc_table);
  427. if (tb)
  428. err = fib_table_insert(tb, &cfg);
  429. else
  430. err = -ENOBUFS;
  431. }
  432. /* allocated by rtentry_to_fib_config() */
  433. kfree(cfg.fc_mx);
  434. }
  435. rtnl_unlock();
  436. return err;
  437. }
  438. return -EINVAL;
  439. }
  440. const struct nla_policy rtm_ipv4_policy[RTA_MAX + 1] = {
  441. [RTA_DST] = { .type = NLA_U32 },
  442. [RTA_SRC] = { .type = NLA_U32 },
  443. [RTA_IIF] = { .type = NLA_U32 },
  444. [RTA_OIF] = { .type = NLA_U32 },
  445. [RTA_GATEWAY] = { .type = NLA_U32 },
  446. [RTA_PRIORITY] = { .type = NLA_U32 },
  447. [RTA_PREFSRC] = { .type = NLA_U32 },
  448. [RTA_METRICS] = { .type = NLA_NESTED },
  449. [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
  450. [RTA_FLOW] = { .type = NLA_U32 },
  451. };
  452. static int rtm_to_fib_config(struct net *net, struct sk_buff *skb,
  453. struct nlmsghdr *nlh, struct fib_config *cfg)
  454. {
  455. struct nlattr *attr;
  456. int err, remaining;
  457. struct rtmsg *rtm;
  458. err = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipv4_policy);
  459. if (err < 0)
  460. goto errout;
  461. memset(cfg, 0, sizeof(*cfg));
  462. rtm = nlmsg_data(nlh);
  463. cfg->fc_dst_len = rtm->rtm_dst_len;
  464. cfg->fc_tos = rtm->rtm_tos;
  465. cfg->fc_table = rtm->rtm_table;
  466. cfg->fc_protocol = rtm->rtm_protocol;
  467. cfg->fc_scope = rtm->rtm_scope;
  468. cfg->fc_type = rtm->rtm_type;
  469. cfg->fc_flags = rtm->rtm_flags;
  470. cfg->fc_nlflags = nlh->nlmsg_flags;
  471. cfg->fc_nlinfo.portid = NETLINK_CB(skb).portid;
  472. cfg->fc_nlinfo.nlh = nlh;
  473. cfg->fc_nlinfo.nl_net = net;
  474. if (cfg->fc_type > RTN_MAX) {
  475. err = -EINVAL;
  476. goto errout;
  477. }
  478. nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), remaining) {
  479. switch (nla_type(attr)) {
  480. case RTA_DST:
  481. cfg->fc_dst = nla_get_be32(attr);
  482. break;
  483. case RTA_OIF:
  484. cfg->fc_oif = nla_get_u32(attr);
  485. break;
  486. case RTA_GATEWAY:
  487. cfg->fc_gw = nla_get_be32(attr);
  488. break;
  489. case RTA_PRIORITY:
  490. cfg->fc_priority = nla_get_u32(attr);
  491. break;
  492. case RTA_PREFSRC:
  493. cfg->fc_prefsrc = nla_get_be32(attr);
  494. break;
  495. case RTA_METRICS:
  496. cfg->fc_mx = nla_data(attr);
  497. cfg->fc_mx_len = nla_len(attr);
  498. break;
  499. case RTA_MULTIPATH:
  500. cfg->fc_mp = nla_data(attr);
  501. cfg->fc_mp_len = nla_len(attr);
  502. break;
  503. case RTA_FLOW:
  504. cfg->fc_flow = nla_get_u32(attr);
  505. break;
  506. case RTA_TABLE:
  507. cfg->fc_table = nla_get_u32(attr);
  508. break;
  509. }
  510. }
  511. return 0;
  512. errout:
  513. return err;
  514. }
  515. static int inet_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh)
  516. {
  517. struct net *net = sock_net(skb->sk);
  518. struct fib_config cfg;
  519. struct fib_table *tb;
  520. int err;
  521. err = rtm_to_fib_config(net, skb, nlh, &cfg);
  522. if (err < 0)
  523. goto errout;
  524. tb = fib_get_table(net, cfg.fc_table);
  525. if (tb == NULL) {
  526. err = -ESRCH;
  527. goto errout;
  528. }
  529. err = fib_table_delete(tb, &cfg);
  530. errout:
  531. return err;
  532. }
  533. static int inet_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh)
  534. {
  535. struct net *net = sock_net(skb->sk);
  536. struct fib_config cfg;
  537. struct fib_table *tb;
  538. int err;
  539. err = rtm_to_fib_config(net, skb, nlh, &cfg);
  540. if (err < 0)
  541. goto errout;
  542. tb = fib_new_table(net, cfg.fc_table);
  543. if (tb == NULL) {
  544. err = -ENOBUFS;
  545. goto errout;
  546. }
  547. err = fib_table_insert(tb, &cfg);
  548. errout:
  549. return err;
  550. }
  551. static int inet_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
  552. {
  553. struct net *net = sock_net(skb->sk);
  554. unsigned int h, s_h;
  555. unsigned int e = 0, s_e;
  556. struct fib_table *tb;
  557. struct hlist_head *head;
  558. int dumped = 0;
  559. if (nlmsg_len(cb->nlh) >= sizeof(struct rtmsg) &&
  560. ((struct rtmsg *) nlmsg_data(cb->nlh))->rtm_flags & RTM_F_CLONED)
  561. return skb->len;
  562. s_h = cb->args[0];
  563. s_e = cb->args[1];
  564. for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
  565. e = 0;
  566. head = &net->ipv4.fib_table_hash[h];
  567. hlist_for_each_entry(tb, head, tb_hlist) {
  568. if (e < s_e)
  569. goto next;
  570. if (dumped)
  571. memset(&cb->args[2], 0, sizeof(cb->args) -
  572. 2 * sizeof(cb->args[0]));
  573. if (fib_table_dump(tb, skb, cb) < 0)
  574. goto out;
  575. dumped = 1;
  576. next:
  577. e++;
  578. }
  579. }
  580. out:
  581. cb->args[1] = e;
  582. cb->args[0] = h;
  583. return skb->len;
  584. }
  585. /* Prepare and feed intra-kernel routing request.
  586. * Really, it should be netlink message, but :-( netlink
  587. * can be not configured, so that we feed it directly
  588. * to fib engine. It is legal, because all events occur
  589. * only when netlink is already locked.
  590. */
  591. static void fib_magic(int cmd, int type, __be32 dst, int dst_len, struct in_ifaddr *ifa)
  592. {
  593. struct net *net = dev_net(ifa->ifa_dev->dev);
  594. struct fib_table *tb;
  595. struct fib_config cfg = {
  596. .fc_protocol = RTPROT_KERNEL,
  597. .fc_type = type,
  598. .fc_dst = dst,
  599. .fc_dst_len = dst_len,
  600. .fc_prefsrc = ifa->ifa_local,
  601. .fc_oif = ifa->ifa_dev->dev->ifindex,
  602. .fc_nlflags = NLM_F_CREATE | NLM_F_APPEND,
  603. .fc_nlinfo = {
  604. .nl_net = net,
  605. },
  606. };
  607. if (type == RTN_UNICAST)
  608. tb = fib_new_table(net, RT_TABLE_MAIN);
  609. else
  610. tb = fib_new_table(net, RT_TABLE_LOCAL);
  611. if (tb == NULL)
  612. return;
  613. cfg.fc_table = tb->tb_id;
  614. if (type != RTN_LOCAL)
  615. cfg.fc_scope = RT_SCOPE_LINK;
  616. else
  617. cfg.fc_scope = RT_SCOPE_HOST;
  618. if (cmd == RTM_NEWROUTE)
  619. fib_table_insert(tb, &cfg);
  620. else
  621. fib_table_delete(tb, &cfg);
  622. }
  623. void fib_add_ifaddr(struct in_ifaddr *ifa)
  624. {
  625. struct in_device *in_dev = ifa->ifa_dev;
  626. struct net_device *dev = in_dev->dev;
  627. struct in_ifaddr *prim = ifa;
  628. __be32 mask = ifa->ifa_mask;
  629. __be32 addr = ifa->ifa_local;
  630. __be32 prefix = ifa->ifa_address & mask;
  631. if (ifa->ifa_flags & IFA_F_SECONDARY) {
  632. prim = inet_ifa_byprefix(in_dev, prefix, mask);
  633. if (prim == NULL) {
  634. pr_warn("%s: bug: prim == NULL\n", __func__);
  635. return;
  636. }
  637. }
  638. fib_magic(RTM_NEWROUTE, RTN_LOCAL, addr, 32, prim);
  639. if (!(dev->flags & IFF_UP))
  640. return;
  641. /* Add broadcast address, if it is explicitly assigned. */
  642. if (ifa->ifa_broadcast && ifa->ifa_broadcast != htonl(0xFFFFFFFF))
  643. fib_magic(RTM_NEWROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
  644. if (!ipv4_is_zeronet(prefix) && !(ifa->ifa_flags & IFA_F_SECONDARY) &&
  645. (prefix != addr || ifa->ifa_prefixlen < 32)) {
  646. fib_magic(RTM_NEWROUTE,
  647. dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST,
  648. prefix, ifa->ifa_prefixlen, prim);
  649. /* Add network specific broadcasts, when it takes a sense */
  650. if (ifa->ifa_prefixlen < 31) {
  651. fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix, 32, prim);
  652. fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix | ~mask,
  653. 32, prim);
  654. }
  655. }
  656. }
  657. /* Delete primary or secondary address.
  658. * Optionally, on secondary address promotion consider the addresses
  659. * from subnet iprim as deleted, even if they are in device list.
  660. * In this case the secondary ifa can be in device list.
  661. */
  662. void fib_del_ifaddr(struct in_ifaddr *ifa, struct in_ifaddr *iprim)
  663. {
  664. struct in_device *in_dev = ifa->ifa_dev;
  665. struct net_device *dev = in_dev->dev;
  666. struct in_ifaddr *ifa1;
  667. struct in_ifaddr *prim = ifa, *prim1 = NULL;
  668. __be32 brd = ifa->ifa_address | ~ifa->ifa_mask;
  669. __be32 any = ifa->ifa_address & ifa->ifa_mask;
  670. #define LOCAL_OK 1
  671. #define BRD_OK 2
  672. #define BRD0_OK 4
  673. #define BRD1_OK 8
  674. unsigned int ok = 0;
  675. int subnet = 0; /* Primary network */
  676. int gone = 1; /* Address is missing */
  677. int same_prefsrc = 0; /* Another primary with same IP */
  678. if (ifa->ifa_flags & IFA_F_SECONDARY) {
  679. prim = inet_ifa_byprefix(in_dev, any, ifa->ifa_mask);
  680. if (prim == NULL) {
  681. pr_warn("%s: bug: prim == NULL\n", __func__);
  682. return;
  683. }
  684. if (iprim && iprim != prim) {
  685. pr_warn("%s: bug: iprim != prim\n", __func__);
  686. return;
  687. }
  688. } else if (!ipv4_is_zeronet(any) &&
  689. (any != ifa->ifa_local || ifa->ifa_prefixlen < 32)) {
  690. fib_magic(RTM_DELROUTE,
  691. dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST,
  692. any, ifa->ifa_prefixlen, prim);
  693. subnet = 1;
  694. }
  695. /* Deletion is more complicated than add.
  696. * We should take care of not to delete too much :-)
  697. *
  698. * Scan address list to be sure that addresses are really gone.
  699. */
  700. for (ifa1 = in_dev->ifa_list; ifa1; ifa1 = ifa1->ifa_next) {
  701. if (ifa1 == ifa) {
  702. /* promotion, keep the IP */
  703. gone = 0;
  704. continue;
  705. }
  706. /* Ignore IFAs from our subnet */
  707. if (iprim && ifa1->ifa_mask == iprim->ifa_mask &&
  708. inet_ifa_match(ifa1->ifa_address, iprim))
  709. continue;
  710. /* Ignore ifa1 if it uses different primary IP (prefsrc) */
  711. if (ifa1->ifa_flags & IFA_F_SECONDARY) {
  712. /* Another address from our subnet? */
  713. if (ifa1->ifa_mask == prim->ifa_mask &&
  714. inet_ifa_match(ifa1->ifa_address, prim))
  715. prim1 = prim;
  716. else {
  717. /* We reached the secondaries, so
  718. * same_prefsrc should be determined.
  719. */
  720. if (!same_prefsrc)
  721. continue;
  722. /* Search new prim1 if ifa1 is not
  723. * using the current prim1
  724. */
  725. if (!prim1 ||
  726. ifa1->ifa_mask != prim1->ifa_mask ||
  727. !inet_ifa_match(ifa1->ifa_address, prim1))
  728. prim1 = inet_ifa_byprefix(in_dev,
  729. ifa1->ifa_address,
  730. ifa1->ifa_mask);
  731. if (!prim1)
  732. continue;
  733. if (prim1->ifa_local != prim->ifa_local)
  734. continue;
  735. }
  736. } else {
  737. if (prim->ifa_local != ifa1->ifa_local)
  738. continue;
  739. prim1 = ifa1;
  740. if (prim != prim1)
  741. same_prefsrc = 1;
  742. }
  743. if (ifa->ifa_local == ifa1->ifa_local)
  744. ok |= LOCAL_OK;
  745. if (ifa->ifa_broadcast == ifa1->ifa_broadcast)
  746. ok |= BRD_OK;
  747. if (brd == ifa1->ifa_broadcast)
  748. ok |= BRD1_OK;
  749. if (any == ifa1->ifa_broadcast)
  750. ok |= BRD0_OK;
  751. /* primary has network specific broadcasts */
  752. if (prim1 == ifa1 && ifa1->ifa_prefixlen < 31) {
  753. __be32 brd1 = ifa1->ifa_address | ~ifa1->ifa_mask;
  754. __be32 any1 = ifa1->ifa_address & ifa1->ifa_mask;
  755. if (!ipv4_is_zeronet(any1)) {
  756. if (ifa->ifa_broadcast == brd1 ||
  757. ifa->ifa_broadcast == any1)
  758. ok |= BRD_OK;
  759. if (brd == brd1 || brd == any1)
  760. ok |= BRD1_OK;
  761. if (any == brd1 || any == any1)
  762. ok |= BRD0_OK;
  763. }
  764. }
  765. }
  766. if (!(ok & BRD_OK))
  767. fib_magic(RTM_DELROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
  768. if (subnet && ifa->ifa_prefixlen < 31) {
  769. if (!(ok & BRD1_OK))
  770. fib_magic(RTM_DELROUTE, RTN_BROADCAST, brd, 32, prim);
  771. if (!(ok & BRD0_OK))
  772. fib_magic(RTM_DELROUTE, RTN_BROADCAST, any, 32, prim);
  773. }
  774. if (!(ok & LOCAL_OK)) {
  775. fib_magic(RTM_DELROUTE, RTN_LOCAL, ifa->ifa_local, 32, prim);
  776. /* Check, that this local address finally disappeared. */
  777. if (gone &&
  778. inet_addr_type(dev_net(dev), ifa->ifa_local) != RTN_LOCAL) {
  779. /* And the last, but not the least thing.
  780. * We must flush stray FIB entries.
  781. *
  782. * First of all, we scan fib_info list searching
  783. * for stray nexthop entries, then ignite fib_flush.
  784. */
  785. if (fib_sync_down_addr(dev_net(dev), ifa->ifa_local))
  786. fib_flush(dev_net(dev));
  787. }
  788. }
  789. #undef LOCAL_OK
  790. #undef BRD_OK
  791. #undef BRD0_OK
  792. #undef BRD1_OK
  793. }
  794. static void nl_fib_lookup(struct net *net, struct fib_result_nl *frn)
  795. {
  796. struct fib_result res;
  797. struct flowi4 fl4 = {
  798. .flowi4_mark = frn->fl_mark,
  799. .daddr = frn->fl_addr,
  800. .flowi4_tos = frn->fl_tos,
  801. .flowi4_scope = frn->fl_scope,
  802. };
  803. struct fib_table *tb;
  804. rcu_read_lock();
  805. tb = fib_get_table(net, frn->tb_id_in);
  806. frn->err = -ENOENT;
  807. if (tb) {
  808. local_bh_disable();
  809. frn->tb_id = tb->tb_id;
  810. frn->err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
  811. if (!frn->err) {
  812. frn->prefixlen = res.prefixlen;
  813. frn->nh_sel = res.nh_sel;
  814. frn->type = res.type;
  815. frn->scope = res.scope;
  816. }
  817. local_bh_enable();
  818. }
  819. rcu_read_unlock();
  820. }
  821. static void nl_fib_input(struct sk_buff *skb)
  822. {
  823. struct net *net;
  824. struct fib_result_nl *frn;
  825. struct nlmsghdr *nlh;
  826. u32 portid;
  827. net = sock_net(skb->sk);
  828. nlh = nlmsg_hdr(skb);
  829. if (skb->len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len ||
  830. nlmsg_len(nlh) < sizeof(*frn))
  831. return;
  832. skb = netlink_skb_clone(skb, GFP_KERNEL);
  833. if (skb == NULL)
  834. return;
  835. nlh = nlmsg_hdr(skb);
  836. frn = (struct fib_result_nl *) nlmsg_data(nlh);
  837. nl_fib_lookup(net, frn);
  838. portid = NETLINK_CB(skb).portid; /* netlink portid */
  839. NETLINK_CB(skb).portid = 0; /* from kernel */
  840. NETLINK_CB(skb).dst_group = 0; /* unicast */
  841. netlink_unicast(net->ipv4.fibnl, skb, portid, MSG_DONTWAIT);
  842. }
  843. static int __net_init nl_fib_lookup_init(struct net *net)
  844. {
  845. struct sock *sk;
  846. struct netlink_kernel_cfg cfg = {
  847. .input = nl_fib_input,
  848. };
  849. sk = netlink_kernel_create(net, NETLINK_FIB_LOOKUP, &cfg);
  850. if (sk == NULL)
  851. return -EAFNOSUPPORT;
  852. net->ipv4.fibnl = sk;
  853. return 0;
  854. }
  855. static void nl_fib_lookup_exit(struct net *net)
  856. {
  857. netlink_kernel_release(net->ipv4.fibnl);
  858. net->ipv4.fibnl = NULL;
  859. }
  860. static void fib_disable_ip(struct net_device *dev, int force)
  861. {
  862. if (fib_sync_down_dev(dev, force))
  863. fib_flush(dev_net(dev));
  864. rt_cache_flush(dev_net(dev));
  865. arp_ifdown(dev);
  866. }
  867. static int fib_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
  868. {
  869. struct in_ifaddr *ifa = (struct in_ifaddr *)ptr;
  870. struct net_device *dev = ifa->ifa_dev->dev;
  871. struct net *net = dev_net(dev);
  872. switch (event) {
  873. case NETDEV_UP:
  874. fib_add_ifaddr(ifa);
  875. #ifdef CONFIG_IP_ROUTE_MULTIPATH
  876. fib_sync_up(dev);
  877. #endif
  878. atomic_inc(&net->ipv4.dev_addr_genid);
  879. rt_cache_flush(dev_net(dev));
  880. break;
  881. case NETDEV_DOWN:
  882. fib_del_ifaddr(ifa, NULL);
  883. atomic_inc(&net->ipv4.dev_addr_genid);
  884. if (ifa->ifa_dev->ifa_list == NULL) {
  885. /* Last address was deleted from this interface.
  886. * Disable IP.
  887. */
  888. fib_disable_ip(dev, 1);
  889. } else {
  890. rt_cache_flush(dev_net(dev));
  891. }
  892. break;
  893. }
  894. return NOTIFY_DONE;
  895. }
  896. static int fib_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
  897. {
  898. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  899. struct in_device *in_dev;
  900. struct net *net = dev_net(dev);
  901. if (event == NETDEV_UNREGISTER) {
  902. fib_disable_ip(dev, 2);
  903. rt_flush_dev(dev);
  904. return NOTIFY_DONE;
  905. }
  906. in_dev = __in_dev_get_rtnl(dev);
  907. if (!in_dev)
  908. return NOTIFY_DONE;
  909. switch (event) {
  910. case NETDEV_UP:
  911. for_ifa(in_dev) {
  912. fib_add_ifaddr(ifa);
  913. } endfor_ifa(in_dev);
  914. #ifdef CONFIG_IP_ROUTE_MULTIPATH
  915. fib_sync_up(dev);
  916. #endif
  917. atomic_inc(&net->ipv4.dev_addr_genid);
  918. rt_cache_flush(net);
  919. break;
  920. case NETDEV_DOWN:
  921. fib_disable_ip(dev, 0);
  922. break;
  923. case NETDEV_CHANGEMTU:
  924. case NETDEV_CHANGE:
  925. rt_cache_flush(net);
  926. break;
  927. }
  928. return NOTIFY_DONE;
  929. }
  930. static struct notifier_block fib_inetaddr_notifier = {
  931. .notifier_call = fib_inetaddr_event,
  932. };
  933. static struct notifier_block fib_netdev_notifier = {
  934. .notifier_call = fib_netdev_event,
  935. };
  936. static int __net_init ip_fib_net_init(struct net *net)
  937. {
  938. int err;
  939. size_t size = sizeof(struct hlist_head) * FIB_TABLE_HASHSZ;
  940. /* Avoid false sharing : Use at least a full cache line */
  941. size = max_t(size_t, size, L1_CACHE_BYTES);
  942. net->ipv4.fib_table_hash = kzalloc(size, GFP_KERNEL);
  943. if (net->ipv4.fib_table_hash == NULL)
  944. return -ENOMEM;
  945. err = fib4_rules_init(net);
  946. if (err < 0)
  947. goto fail;
  948. return 0;
  949. fail:
  950. kfree(net->ipv4.fib_table_hash);
  951. return err;
  952. }
  953. static void ip_fib_net_exit(struct net *net)
  954. {
  955. unsigned int i;
  956. #ifdef CONFIG_IP_MULTIPLE_TABLES
  957. fib4_rules_exit(net);
  958. #endif
  959. rtnl_lock();
  960. for (i = 0; i < FIB_TABLE_HASHSZ; i++) {
  961. struct fib_table *tb;
  962. struct hlist_head *head;
  963. struct hlist_node *tmp;
  964. head = &net->ipv4.fib_table_hash[i];
  965. hlist_for_each_entry_safe(tb, tmp, head, tb_hlist) {
  966. hlist_del(&tb->tb_hlist);
  967. fib_table_flush(tb);
  968. fib_free_table(tb);
  969. }
  970. }
  971. rtnl_unlock();
  972. kfree(net->ipv4.fib_table_hash);
  973. }
  974. static int __net_init fib_net_init(struct net *net)
  975. {
  976. int error;
  977. #ifdef CONFIG_IP_ROUTE_CLASSID
  978. net->ipv4.fib_num_tclassid_users = 0;
  979. #endif
  980. error = ip_fib_net_init(net);
  981. if (error < 0)
  982. goto out;
  983. error = nl_fib_lookup_init(net);
  984. if (error < 0)
  985. goto out_nlfl;
  986. error = fib_proc_init(net);
  987. if (error < 0)
  988. goto out_proc;
  989. out:
  990. return error;
  991. out_proc:
  992. nl_fib_lookup_exit(net);
  993. out_nlfl:
  994. ip_fib_net_exit(net);
  995. goto out;
  996. }
  997. static void __net_exit fib_net_exit(struct net *net)
  998. {
  999. fib_proc_exit(net);
  1000. nl_fib_lookup_exit(net);
  1001. ip_fib_net_exit(net);
  1002. }
  1003. static struct pernet_operations fib_net_ops = {
  1004. .init = fib_net_init,
  1005. .exit = fib_net_exit,
  1006. };
  1007. void __init ip_fib_init(void)
  1008. {
  1009. rtnl_register(PF_INET, RTM_NEWROUTE, inet_rtm_newroute, NULL, NULL);
  1010. rtnl_register(PF_INET, RTM_DELROUTE, inet_rtm_delroute, NULL, NULL);
  1011. rtnl_register(PF_INET, RTM_GETROUTE, NULL, inet_dump_fib, NULL);
  1012. register_pernet_subsys(&fib_net_ops);
  1013. register_netdevice_notifier(&fib_netdev_notifier);
  1014. register_inetaddr_notifier(&fib_inetaddr_notifier);
  1015. fib_trie_init();
  1016. }