rtnetlink.c 79 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Routing netlink socket interface: protocol independent part.
  7. *
  8. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Fixes:
  16. * Vitaly E. Lavrov RTA_OK arithmetics was wrong.
  17. */
  18. #include <linux/errno.h>
  19. #include <linux/module.h>
  20. #include <linux/types.h>
  21. #include <linux/socket.h>
  22. #include <linux/kernel.h>
  23. #include <linux/timer.h>
  24. #include <linux/string.h>
  25. #include <linux/sockios.h>
  26. #include <linux/net.h>
  27. #include <linux/fcntl.h>
  28. #include <linux/mm.h>
  29. #include <linux/slab.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/capability.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/init.h>
  34. #include <linux/security.h>
  35. #include <linux/mutex.h>
  36. #include <linux/if_addr.h>
  37. #include <linux/if_bridge.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/pci.h>
  40. #include <linux/etherdevice.h>
  41. #include <asm/uaccess.h>
  42. #include <linux/inet.h>
  43. #include <linux/netdevice.h>
  44. #include <net/switchdev.h>
  45. #include <net/ip.h>
  46. #include <net/protocol.h>
  47. #include <net/arp.h>
  48. #include <net/route.h>
  49. #include <net/udp.h>
  50. #include <net/tcp.h>
  51. #include <net/sock.h>
  52. #include <net/pkt_sched.h>
  53. #include <net/fib_rules.h>
  54. #include <net/rtnetlink.h>
  55. #include <net/net_namespace.h>
  56. struct rtnl_link {
  57. rtnl_doit_func doit;
  58. rtnl_dumpit_func dumpit;
  59. rtnl_calcit_func calcit;
  60. };
  61. static DEFINE_MUTEX(rtnl_mutex);
  62. void rtnl_lock(void)
  63. {
  64. mutex_lock(&rtnl_mutex);
  65. }
  66. EXPORT_SYMBOL(rtnl_lock);
  67. void __rtnl_unlock(void)
  68. {
  69. mutex_unlock(&rtnl_mutex);
  70. }
  71. void rtnl_unlock(void)
  72. {
  73. /* This fellow will unlock it for us. */
  74. netdev_run_todo();
  75. }
  76. EXPORT_SYMBOL(rtnl_unlock);
  77. int rtnl_trylock(void)
  78. {
  79. return mutex_trylock(&rtnl_mutex);
  80. }
  81. EXPORT_SYMBOL(rtnl_trylock);
  82. int rtnl_is_locked(void)
  83. {
  84. return mutex_is_locked(&rtnl_mutex);
  85. }
  86. EXPORT_SYMBOL(rtnl_is_locked);
  87. #ifdef CONFIG_PROVE_LOCKING
  88. int lockdep_rtnl_is_held(void)
  89. {
  90. return lockdep_is_held(&rtnl_mutex);
  91. }
  92. EXPORT_SYMBOL(lockdep_rtnl_is_held);
  93. #endif /* #ifdef CONFIG_PROVE_LOCKING */
  94. static struct rtnl_link *rtnl_msg_handlers[RTNL_FAMILY_MAX + 1];
  95. static inline int rtm_msgindex(int msgtype)
  96. {
  97. int msgindex = msgtype - RTM_BASE;
  98. /*
  99. * msgindex < 0 implies someone tried to register a netlink
  100. * control code. msgindex >= RTM_NR_MSGTYPES may indicate that
  101. * the message type has not been added to linux/rtnetlink.h
  102. */
  103. BUG_ON(msgindex < 0 || msgindex >= RTM_NR_MSGTYPES);
  104. return msgindex;
  105. }
  106. static rtnl_doit_func rtnl_get_doit(int protocol, int msgindex)
  107. {
  108. struct rtnl_link *tab;
  109. if (protocol <= RTNL_FAMILY_MAX)
  110. tab = rtnl_msg_handlers[protocol];
  111. else
  112. tab = NULL;
  113. if (tab == NULL || tab[msgindex].doit == NULL)
  114. tab = rtnl_msg_handlers[PF_UNSPEC];
  115. return tab[msgindex].doit;
  116. }
  117. static rtnl_dumpit_func rtnl_get_dumpit(int protocol, int msgindex)
  118. {
  119. struct rtnl_link *tab;
  120. if (protocol <= RTNL_FAMILY_MAX)
  121. tab = rtnl_msg_handlers[protocol];
  122. else
  123. tab = NULL;
  124. if (tab == NULL || tab[msgindex].dumpit == NULL)
  125. tab = rtnl_msg_handlers[PF_UNSPEC];
  126. return tab[msgindex].dumpit;
  127. }
  128. static rtnl_calcit_func rtnl_get_calcit(int protocol, int msgindex)
  129. {
  130. struct rtnl_link *tab;
  131. if (protocol <= RTNL_FAMILY_MAX)
  132. tab = rtnl_msg_handlers[protocol];
  133. else
  134. tab = NULL;
  135. if (tab == NULL || tab[msgindex].calcit == NULL)
  136. tab = rtnl_msg_handlers[PF_UNSPEC];
  137. return tab[msgindex].calcit;
  138. }
  139. /**
  140. * __rtnl_register - Register a rtnetlink message type
  141. * @protocol: Protocol family or PF_UNSPEC
  142. * @msgtype: rtnetlink message type
  143. * @doit: Function pointer called for each request message
  144. * @dumpit: Function pointer called for each dump request (NLM_F_DUMP) message
  145. * @calcit: Function pointer to calc size of dump message
  146. *
  147. * Registers the specified function pointers (at least one of them has
  148. * to be non-NULL) to be called whenever a request message for the
  149. * specified protocol family and message type is received.
  150. *
  151. * The special protocol family PF_UNSPEC may be used to define fallback
  152. * function pointers for the case when no entry for the specific protocol
  153. * family exists.
  154. *
  155. * Returns 0 on success or a negative error code.
  156. */
  157. int __rtnl_register(int protocol, int msgtype,
  158. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  159. rtnl_calcit_func calcit)
  160. {
  161. struct rtnl_link *tab;
  162. int msgindex;
  163. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  164. msgindex = rtm_msgindex(msgtype);
  165. tab = rtnl_msg_handlers[protocol];
  166. if (tab == NULL) {
  167. tab = kcalloc(RTM_NR_MSGTYPES, sizeof(*tab), GFP_KERNEL);
  168. if (tab == NULL)
  169. return -ENOBUFS;
  170. rtnl_msg_handlers[protocol] = tab;
  171. }
  172. if (doit)
  173. tab[msgindex].doit = doit;
  174. if (dumpit)
  175. tab[msgindex].dumpit = dumpit;
  176. if (calcit)
  177. tab[msgindex].calcit = calcit;
  178. return 0;
  179. }
  180. EXPORT_SYMBOL_GPL(__rtnl_register);
  181. /**
  182. * rtnl_register - Register a rtnetlink message type
  183. *
  184. * Identical to __rtnl_register() but panics on failure. This is useful
  185. * as failure of this function is very unlikely, it can only happen due
  186. * to lack of memory when allocating the chain to store all message
  187. * handlers for a protocol. Meant for use in init functions where lack
  188. * of memory implies no sense in continuing.
  189. */
  190. void rtnl_register(int protocol, int msgtype,
  191. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  192. rtnl_calcit_func calcit)
  193. {
  194. if (__rtnl_register(protocol, msgtype, doit, dumpit, calcit) < 0)
  195. panic("Unable to register rtnetlink message handler, "
  196. "protocol = %d, message type = %d\n",
  197. protocol, msgtype);
  198. }
  199. EXPORT_SYMBOL_GPL(rtnl_register);
  200. /**
  201. * rtnl_unregister - Unregister a rtnetlink message type
  202. * @protocol: Protocol family or PF_UNSPEC
  203. * @msgtype: rtnetlink message type
  204. *
  205. * Returns 0 on success or a negative error code.
  206. */
  207. int rtnl_unregister(int protocol, int msgtype)
  208. {
  209. int msgindex;
  210. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  211. msgindex = rtm_msgindex(msgtype);
  212. if (rtnl_msg_handlers[protocol] == NULL)
  213. return -ENOENT;
  214. rtnl_msg_handlers[protocol][msgindex].doit = NULL;
  215. rtnl_msg_handlers[protocol][msgindex].dumpit = NULL;
  216. return 0;
  217. }
  218. EXPORT_SYMBOL_GPL(rtnl_unregister);
  219. /**
  220. * rtnl_unregister_all - Unregister all rtnetlink message type of a protocol
  221. * @protocol : Protocol family or PF_UNSPEC
  222. *
  223. * Identical to calling rtnl_unregster() for all registered message types
  224. * of a certain protocol family.
  225. */
  226. void rtnl_unregister_all(int protocol)
  227. {
  228. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  229. kfree(rtnl_msg_handlers[protocol]);
  230. rtnl_msg_handlers[protocol] = NULL;
  231. }
  232. EXPORT_SYMBOL_GPL(rtnl_unregister_all);
  233. static LIST_HEAD(link_ops);
  234. static const struct rtnl_link_ops *rtnl_link_ops_get(const char *kind)
  235. {
  236. const struct rtnl_link_ops *ops;
  237. list_for_each_entry(ops, &link_ops, list) {
  238. if (!strcmp(ops->kind, kind))
  239. return ops;
  240. }
  241. return NULL;
  242. }
  243. /**
  244. * __rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  245. * @ops: struct rtnl_link_ops * to register
  246. *
  247. * The caller must hold the rtnl_mutex. This function should be used
  248. * by drivers that create devices during module initialization. It
  249. * must be called before registering the devices.
  250. *
  251. * Returns 0 on success or a negative error code.
  252. */
  253. int __rtnl_link_register(struct rtnl_link_ops *ops)
  254. {
  255. if (rtnl_link_ops_get(ops->kind))
  256. return -EEXIST;
  257. /* The check for setup is here because if ops
  258. * does not have that filled up, it is not possible
  259. * to use the ops for creating device. So do not
  260. * fill up dellink as well. That disables rtnl_dellink.
  261. */
  262. if (ops->setup && !ops->dellink)
  263. ops->dellink = unregister_netdevice_queue;
  264. list_add_tail(&ops->list, &link_ops);
  265. return 0;
  266. }
  267. EXPORT_SYMBOL_GPL(__rtnl_link_register);
  268. /**
  269. * rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  270. * @ops: struct rtnl_link_ops * to register
  271. *
  272. * Returns 0 on success or a negative error code.
  273. */
  274. int rtnl_link_register(struct rtnl_link_ops *ops)
  275. {
  276. int err;
  277. rtnl_lock();
  278. err = __rtnl_link_register(ops);
  279. rtnl_unlock();
  280. return err;
  281. }
  282. EXPORT_SYMBOL_GPL(rtnl_link_register);
  283. static void __rtnl_kill_links(struct net *net, struct rtnl_link_ops *ops)
  284. {
  285. struct net_device *dev;
  286. LIST_HEAD(list_kill);
  287. for_each_netdev(net, dev) {
  288. if (dev->rtnl_link_ops == ops)
  289. ops->dellink(dev, &list_kill);
  290. }
  291. unregister_netdevice_many(&list_kill);
  292. }
  293. /**
  294. * __rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  295. * @ops: struct rtnl_link_ops * to unregister
  296. *
  297. * The caller must hold the rtnl_mutex.
  298. */
  299. void __rtnl_link_unregister(struct rtnl_link_ops *ops)
  300. {
  301. struct net *net;
  302. for_each_net(net) {
  303. __rtnl_kill_links(net, ops);
  304. }
  305. list_del(&ops->list);
  306. }
  307. EXPORT_SYMBOL_GPL(__rtnl_link_unregister);
  308. /* Return with the rtnl_lock held when there are no network
  309. * devices unregistering in any network namespace.
  310. */
  311. static void rtnl_lock_unregistering_all(void)
  312. {
  313. struct net *net;
  314. bool unregistering;
  315. DEFINE_WAIT_FUNC(wait, woken_wake_function);
  316. add_wait_queue(&netdev_unregistering_wq, &wait);
  317. for (;;) {
  318. unregistering = false;
  319. rtnl_lock();
  320. for_each_net(net) {
  321. if (net->dev_unreg_count > 0) {
  322. unregistering = true;
  323. break;
  324. }
  325. }
  326. if (!unregistering)
  327. break;
  328. __rtnl_unlock();
  329. wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  330. }
  331. remove_wait_queue(&netdev_unregistering_wq, &wait);
  332. }
  333. /**
  334. * rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  335. * @ops: struct rtnl_link_ops * to unregister
  336. */
  337. void rtnl_link_unregister(struct rtnl_link_ops *ops)
  338. {
  339. /* Close the race with cleanup_net() */
  340. mutex_lock(&net_mutex);
  341. rtnl_lock_unregistering_all();
  342. __rtnl_link_unregister(ops);
  343. rtnl_unlock();
  344. mutex_unlock(&net_mutex);
  345. }
  346. EXPORT_SYMBOL_GPL(rtnl_link_unregister);
  347. static size_t rtnl_link_get_slave_info_data_size(const struct net_device *dev)
  348. {
  349. struct net_device *master_dev;
  350. const struct rtnl_link_ops *ops;
  351. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  352. if (!master_dev)
  353. return 0;
  354. ops = master_dev->rtnl_link_ops;
  355. if (!ops || !ops->get_slave_size)
  356. return 0;
  357. /* IFLA_INFO_SLAVE_DATA + nested data */
  358. return nla_total_size(sizeof(struct nlattr)) +
  359. ops->get_slave_size(master_dev, dev);
  360. }
  361. static size_t rtnl_link_get_size(const struct net_device *dev)
  362. {
  363. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  364. size_t size;
  365. if (!ops)
  366. return 0;
  367. size = nla_total_size(sizeof(struct nlattr)) + /* IFLA_LINKINFO */
  368. nla_total_size(strlen(ops->kind) + 1); /* IFLA_INFO_KIND */
  369. if (ops->get_size)
  370. /* IFLA_INFO_DATA + nested data */
  371. size += nla_total_size(sizeof(struct nlattr)) +
  372. ops->get_size(dev);
  373. if (ops->get_xstats_size)
  374. /* IFLA_INFO_XSTATS */
  375. size += nla_total_size(ops->get_xstats_size(dev));
  376. size += rtnl_link_get_slave_info_data_size(dev);
  377. return size;
  378. }
  379. static LIST_HEAD(rtnl_af_ops);
  380. static const struct rtnl_af_ops *rtnl_af_lookup(const int family)
  381. {
  382. const struct rtnl_af_ops *ops;
  383. list_for_each_entry(ops, &rtnl_af_ops, list) {
  384. if (ops->family == family)
  385. return ops;
  386. }
  387. return NULL;
  388. }
  389. /**
  390. * rtnl_af_register - Register rtnl_af_ops with rtnetlink.
  391. * @ops: struct rtnl_af_ops * to register
  392. *
  393. * Returns 0 on success or a negative error code.
  394. */
  395. void rtnl_af_register(struct rtnl_af_ops *ops)
  396. {
  397. rtnl_lock();
  398. list_add_tail(&ops->list, &rtnl_af_ops);
  399. rtnl_unlock();
  400. }
  401. EXPORT_SYMBOL_GPL(rtnl_af_register);
  402. /**
  403. * __rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  404. * @ops: struct rtnl_af_ops * to unregister
  405. *
  406. * The caller must hold the rtnl_mutex.
  407. */
  408. void __rtnl_af_unregister(struct rtnl_af_ops *ops)
  409. {
  410. list_del(&ops->list);
  411. }
  412. EXPORT_SYMBOL_GPL(__rtnl_af_unregister);
  413. /**
  414. * rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  415. * @ops: struct rtnl_af_ops * to unregister
  416. */
  417. void rtnl_af_unregister(struct rtnl_af_ops *ops)
  418. {
  419. rtnl_lock();
  420. __rtnl_af_unregister(ops);
  421. rtnl_unlock();
  422. }
  423. EXPORT_SYMBOL_GPL(rtnl_af_unregister);
  424. static size_t rtnl_link_get_af_size(const struct net_device *dev)
  425. {
  426. struct rtnl_af_ops *af_ops;
  427. size_t size;
  428. /* IFLA_AF_SPEC */
  429. size = nla_total_size(sizeof(struct nlattr));
  430. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  431. if (af_ops->get_link_af_size) {
  432. /* AF_* + nested data */
  433. size += nla_total_size(sizeof(struct nlattr)) +
  434. af_ops->get_link_af_size(dev);
  435. }
  436. }
  437. return size;
  438. }
  439. static bool rtnl_have_link_slave_info(const struct net_device *dev)
  440. {
  441. struct net_device *master_dev;
  442. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  443. if (master_dev && master_dev->rtnl_link_ops)
  444. return true;
  445. return false;
  446. }
  447. static int rtnl_link_slave_info_fill(struct sk_buff *skb,
  448. const struct net_device *dev)
  449. {
  450. struct net_device *master_dev;
  451. const struct rtnl_link_ops *ops;
  452. struct nlattr *slave_data;
  453. int err;
  454. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  455. if (!master_dev)
  456. return 0;
  457. ops = master_dev->rtnl_link_ops;
  458. if (!ops)
  459. return 0;
  460. if (nla_put_string(skb, IFLA_INFO_SLAVE_KIND, ops->kind) < 0)
  461. return -EMSGSIZE;
  462. if (ops->fill_slave_info) {
  463. slave_data = nla_nest_start(skb, IFLA_INFO_SLAVE_DATA);
  464. if (!slave_data)
  465. return -EMSGSIZE;
  466. err = ops->fill_slave_info(skb, master_dev, dev);
  467. if (err < 0)
  468. goto err_cancel_slave_data;
  469. nla_nest_end(skb, slave_data);
  470. }
  471. return 0;
  472. err_cancel_slave_data:
  473. nla_nest_cancel(skb, slave_data);
  474. return err;
  475. }
  476. static int rtnl_link_info_fill(struct sk_buff *skb,
  477. const struct net_device *dev)
  478. {
  479. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  480. struct nlattr *data;
  481. int err;
  482. if (!ops)
  483. return 0;
  484. if (nla_put_string(skb, IFLA_INFO_KIND, ops->kind) < 0)
  485. return -EMSGSIZE;
  486. if (ops->fill_xstats) {
  487. err = ops->fill_xstats(skb, dev);
  488. if (err < 0)
  489. return err;
  490. }
  491. if (ops->fill_info) {
  492. data = nla_nest_start(skb, IFLA_INFO_DATA);
  493. if (data == NULL)
  494. return -EMSGSIZE;
  495. err = ops->fill_info(skb, dev);
  496. if (err < 0)
  497. goto err_cancel_data;
  498. nla_nest_end(skb, data);
  499. }
  500. return 0;
  501. err_cancel_data:
  502. nla_nest_cancel(skb, data);
  503. return err;
  504. }
  505. static int rtnl_link_fill(struct sk_buff *skb, const struct net_device *dev)
  506. {
  507. struct nlattr *linkinfo;
  508. int err = -EMSGSIZE;
  509. linkinfo = nla_nest_start(skb, IFLA_LINKINFO);
  510. if (linkinfo == NULL)
  511. goto out;
  512. err = rtnl_link_info_fill(skb, dev);
  513. if (err < 0)
  514. goto err_cancel_link;
  515. err = rtnl_link_slave_info_fill(skb, dev);
  516. if (err < 0)
  517. goto err_cancel_link;
  518. nla_nest_end(skb, linkinfo);
  519. return 0;
  520. err_cancel_link:
  521. nla_nest_cancel(skb, linkinfo);
  522. out:
  523. return err;
  524. }
  525. int rtnetlink_send(struct sk_buff *skb, struct net *net, u32 pid, unsigned int group, int echo)
  526. {
  527. struct sock *rtnl = net->rtnl;
  528. int err = 0;
  529. NETLINK_CB(skb).dst_group = group;
  530. if (echo)
  531. atomic_inc(&skb->users);
  532. netlink_broadcast(rtnl, skb, pid, group, GFP_KERNEL);
  533. if (echo)
  534. err = netlink_unicast(rtnl, skb, pid, MSG_DONTWAIT);
  535. return err;
  536. }
  537. int rtnl_unicast(struct sk_buff *skb, struct net *net, u32 pid)
  538. {
  539. struct sock *rtnl = net->rtnl;
  540. return nlmsg_unicast(rtnl, skb, pid);
  541. }
  542. EXPORT_SYMBOL(rtnl_unicast);
  543. void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group,
  544. struct nlmsghdr *nlh, gfp_t flags)
  545. {
  546. struct sock *rtnl = net->rtnl;
  547. int report = 0;
  548. if (nlh)
  549. report = nlmsg_report(nlh);
  550. nlmsg_notify(rtnl, skb, pid, group, report, flags);
  551. }
  552. EXPORT_SYMBOL(rtnl_notify);
  553. void rtnl_set_sk_err(struct net *net, u32 group, int error)
  554. {
  555. struct sock *rtnl = net->rtnl;
  556. netlink_set_err(rtnl, 0, group, error);
  557. }
  558. EXPORT_SYMBOL(rtnl_set_sk_err);
  559. int rtnetlink_put_metrics(struct sk_buff *skb, u32 *metrics)
  560. {
  561. struct nlattr *mx;
  562. int i, valid = 0;
  563. mx = nla_nest_start(skb, RTA_METRICS);
  564. if (mx == NULL)
  565. return -ENOBUFS;
  566. for (i = 0; i < RTAX_MAX; i++) {
  567. if (metrics[i]) {
  568. if (i == RTAX_CC_ALGO - 1) {
  569. char tmp[TCP_CA_NAME_MAX], *name;
  570. name = tcp_ca_get_name_by_key(metrics[i], tmp);
  571. if (!name)
  572. continue;
  573. if (nla_put_string(skb, i + 1, name))
  574. goto nla_put_failure;
  575. } else {
  576. if (nla_put_u32(skb, i + 1, metrics[i]))
  577. goto nla_put_failure;
  578. }
  579. valid++;
  580. }
  581. }
  582. if (!valid) {
  583. nla_nest_cancel(skb, mx);
  584. return 0;
  585. }
  586. return nla_nest_end(skb, mx);
  587. nla_put_failure:
  588. nla_nest_cancel(skb, mx);
  589. return -EMSGSIZE;
  590. }
  591. EXPORT_SYMBOL(rtnetlink_put_metrics);
  592. int rtnl_put_cacheinfo(struct sk_buff *skb, struct dst_entry *dst, u32 id,
  593. long expires, u32 error)
  594. {
  595. struct rta_cacheinfo ci = {
  596. .rta_lastuse = jiffies_delta_to_clock_t(jiffies - dst->lastuse),
  597. .rta_used = dst->__use,
  598. .rta_clntref = atomic_read(&(dst->__refcnt)),
  599. .rta_error = error,
  600. .rta_id = id,
  601. };
  602. if (expires) {
  603. unsigned long clock;
  604. clock = jiffies_to_clock_t(abs(expires));
  605. clock = min_t(unsigned long, clock, INT_MAX);
  606. ci.rta_expires = (expires > 0) ? clock : -clock;
  607. }
  608. return nla_put(skb, RTA_CACHEINFO, sizeof(ci), &ci);
  609. }
  610. EXPORT_SYMBOL_GPL(rtnl_put_cacheinfo);
  611. static void set_operstate(struct net_device *dev, unsigned char transition)
  612. {
  613. unsigned char operstate = dev->operstate;
  614. switch (transition) {
  615. case IF_OPER_UP:
  616. if ((operstate == IF_OPER_DORMANT ||
  617. operstate == IF_OPER_UNKNOWN) &&
  618. !netif_dormant(dev))
  619. operstate = IF_OPER_UP;
  620. break;
  621. case IF_OPER_DORMANT:
  622. if (operstate == IF_OPER_UP ||
  623. operstate == IF_OPER_UNKNOWN)
  624. operstate = IF_OPER_DORMANT;
  625. break;
  626. }
  627. if (dev->operstate != operstate) {
  628. write_lock_bh(&dev_base_lock);
  629. dev->operstate = operstate;
  630. write_unlock_bh(&dev_base_lock);
  631. netdev_state_change(dev);
  632. }
  633. }
  634. static unsigned int rtnl_dev_get_flags(const struct net_device *dev)
  635. {
  636. return (dev->flags & ~(IFF_PROMISC | IFF_ALLMULTI)) |
  637. (dev->gflags & (IFF_PROMISC | IFF_ALLMULTI));
  638. }
  639. static unsigned int rtnl_dev_combine_flags(const struct net_device *dev,
  640. const struct ifinfomsg *ifm)
  641. {
  642. unsigned int flags = ifm->ifi_flags;
  643. /* bugwards compatibility: ifi_change == 0 is treated as ~0 */
  644. if (ifm->ifi_change)
  645. flags = (flags & ifm->ifi_change) |
  646. (rtnl_dev_get_flags(dev) & ~ifm->ifi_change);
  647. return flags;
  648. }
  649. static void copy_rtnl_link_stats(struct rtnl_link_stats *a,
  650. const struct rtnl_link_stats64 *b)
  651. {
  652. a->rx_packets = b->rx_packets;
  653. a->tx_packets = b->tx_packets;
  654. a->rx_bytes = b->rx_bytes;
  655. a->tx_bytes = b->tx_bytes;
  656. a->rx_errors = b->rx_errors;
  657. a->tx_errors = b->tx_errors;
  658. a->rx_dropped = b->rx_dropped;
  659. a->tx_dropped = b->tx_dropped;
  660. a->multicast = b->multicast;
  661. a->collisions = b->collisions;
  662. a->rx_length_errors = b->rx_length_errors;
  663. a->rx_over_errors = b->rx_over_errors;
  664. a->rx_crc_errors = b->rx_crc_errors;
  665. a->rx_frame_errors = b->rx_frame_errors;
  666. a->rx_fifo_errors = b->rx_fifo_errors;
  667. a->rx_missed_errors = b->rx_missed_errors;
  668. a->tx_aborted_errors = b->tx_aborted_errors;
  669. a->tx_carrier_errors = b->tx_carrier_errors;
  670. a->tx_fifo_errors = b->tx_fifo_errors;
  671. a->tx_heartbeat_errors = b->tx_heartbeat_errors;
  672. a->tx_window_errors = b->tx_window_errors;
  673. a->rx_compressed = b->rx_compressed;
  674. a->tx_compressed = b->tx_compressed;
  675. }
  676. static void copy_rtnl_link_stats64(void *v, const struct rtnl_link_stats64 *b)
  677. {
  678. memcpy(v, b, sizeof(*b));
  679. }
  680. /* All VF info */
  681. static inline int rtnl_vfinfo_size(const struct net_device *dev,
  682. u32 ext_filter_mask)
  683. {
  684. if (dev->dev.parent && dev_is_pci(dev->dev.parent) &&
  685. (ext_filter_mask & RTEXT_FILTER_VF)) {
  686. int num_vfs = dev_num_vf(dev->dev.parent);
  687. size_t size = nla_total_size(sizeof(struct nlattr));
  688. size += nla_total_size(num_vfs * sizeof(struct nlattr));
  689. size += num_vfs *
  690. (nla_total_size(sizeof(struct ifla_vf_mac)) +
  691. nla_total_size(sizeof(struct ifla_vf_vlan)) +
  692. nla_total_size(sizeof(struct ifla_vf_spoofchk)) +
  693. nla_total_size(sizeof(struct ifla_vf_rate)) +
  694. nla_total_size(sizeof(struct ifla_vf_link_state)));
  695. return size;
  696. } else
  697. return 0;
  698. }
  699. static size_t rtnl_port_size(const struct net_device *dev,
  700. u32 ext_filter_mask)
  701. {
  702. size_t port_size = nla_total_size(4) /* PORT_VF */
  703. + nla_total_size(PORT_PROFILE_MAX) /* PORT_PROFILE */
  704. + nla_total_size(sizeof(struct ifla_port_vsi))
  705. /* PORT_VSI_TYPE */
  706. + nla_total_size(PORT_UUID_MAX) /* PORT_INSTANCE_UUID */
  707. + nla_total_size(PORT_UUID_MAX) /* PORT_HOST_UUID */
  708. + nla_total_size(1) /* PROT_VDP_REQUEST */
  709. + nla_total_size(2); /* PORT_VDP_RESPONSE */
  710. size_t vf_ports_size = nla_total_size(sizeof(struct nlattr));
  711. size_t vf_port_size = nla_total_size(sizeof(struct nlattr))
  712. + port_size;
  713. size_t port_self_size = nla_total_size(sizeof(struct nlattr))
  714. + port_size;
  715. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent ||
  716. !(ext_filter_mask & RTEXT_FILTER_VF))
  717. return 0;
  718. if (dev_num_vf(dev->dev.parent))
  719. return port_self_size + vf_ports_size +
  720. vf_port_size * dev_num_vf(dev->dev.parent);
  721. else
  722. return port_self_size;
  723. }
  724. static noinline size_t if_nlmsg_size(const struct net_device *dev,
  725. u32 ext_filter_mask)
  726. {
  727. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  728. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  729. + nla_total_size(IFALIASZ) /* IFLA_IFALIAS */
  730. + nla_total_size(IFNAMSIZ) /* IFLA_QDISC */
  731. + nla_total_size(sizeof(struct rtnl_link_ifmap))
  732. + nla_total_size(sizeof(struct rtnl_link_stats))
  733. + nla_total_size(sizeof(struct rtnl_link_stats64))
  734. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  735. + nla_total_size(MAX_ADDR_LEN) /* IFLA_BROADCAST */
  736. + nla_total_size(4) /* IFLA_TXQLEN */
  737. + nla_total_size(4) /* IFLA_WEIGHT */
  738. + nla_total_size(4) /* IFLA_MTU */
  739. + nla_total_size(4) /* IFLA_LINK */
  740. + nla_total_size(4) /* IFLA_MASTER */
  741. + nla_total_size(1) /* IFLA_CARRIER */
  742. + nla_total_size(4) /* IFLA_PROMISCUITY */
  743. + nla_total_size(4) /* IFLA_NUM_TX_QUEUES */
  744. + nla_total_size(4) /* IFLA_NUM_RX_QUEUES */
  745. + nla_total_size(1) /* IFLA_OPERSTATE */
  746. + nla_total_size(1) /* IFLA_LINKMODE */
  747. + nla_total_size(4) /* IFLA_CARRIER_CHANGES */
  748. + nla_total_size(4) /* IFLA_LINK_NETNSID */
  749. + nla_total_size(ext_filter_mask
  750. & RTEXT_FILTER_VF ? 4 : 0) /* IFLA_NUM_VF */
  751. + rtnl_vfinfo_size(dev, ext_filter_mask) /* IFLA_VFINFO_LIST */
  752. + rtnl_port_size(dev, ext_filter_mask) /* IFLA_VF_PORTS + IFLA_PORT_SELF */
  753. + rtnl_link_get_size(dev) /* IFLA_LINKINFO */
  754. + rtnl_link_get_af_size(dev) /* IFLA_AF_SPEC */
  755. + nla_total_size(MAX_PHYS_ITEM_ID_LEN) /* IFLA_PHYS_PORT_ID */
  756. + nla_total_size(MAX_PHYS_ITEM_ID_LEN); /* IFLA_PHYS_SWITCH_ID */
  757. }
  758. static int rtnl_vf_ports_fill(struct sk_buff *skb, struct net_device *dev)
  759. {
  760. struct nlattr *vf_ports;
  761. struct nlattr *vf_port;
  762. int vf;
  763. int err;
  764. vf_ports = nla_nest_start(skb, IFLA_VF_PORTS);
  765. if (!vf_ports)
  766. return -EMSGSIZE;
  767. for (vf = 0; vf < dev_num_vf(dev->dev.parent); vf++) {
  768. vf_port = nla_nest_start(skb, IFLA_VF_PORT);
  769. if (!vf_port)
  770. goto nla_put_failure;
  771. if (nla_put_u32(skb, IFLA_PORT_VF, vf))
  772. goto nla_put_failure;
  773. err = dev->netdev_ops->ndo_get_vf_port(dev, vf, skb);
  774. if (err == -EMSGSIZE)
  775. goto nla_put_failure;
  776. if (err) {
  777. nla_nest_cancel(skb, vf_port);
  778. continue;
  779. }
  780. nla_nest_end(skb, vf_port);
  781. }
  782. nla_nest_end(skb, vf_ports);
  783. return 0;
  784. nla_put_failure:
  785. nla_nest_cancel(skb, vf_ports);
  786. return -EMSGSIZE;
  787. }
  788. static int rtnl_port_self_fill(struct sk_buff *skb, struct net_device *dev)
  789. {
  790. struct nlattr *port_self;
  791. int err;
  792. port_self = nla_nest_start(skb, IFLA_PORT_SELF);
  793. if (!port_self)
  794. return -EMSGSIZE;
  795. err = dev->netdev_ops->ndo_get_vf_port(dev, PORT_SELF_VF, skb);
  796. if (err) {
  797. nla_nest_cancel(skb, port_self);
  798. return (err == -EMSGSIZE) ? err : 0;
  799. }
  800. nla_nest_end(skb, port_self);
  801. return 0;
  802. }
  803. static int rtnl_port_fill(struct sk_buff *skb, struct net_device *dev,
  804. u32 ext_filter_mask)
  805. {
  806. int err;
  807. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent ||
  808. !(ext_filter_mask & RTEXT_FILTER_VF))
  809. return 0;
  810. err = rtnl_port_self_fill(skb, dev);
  811. if (err)
  812. return err;
  813. if (dev_num_vf(dev->dev.parent)) {
  814. err = rtnl_vf_ports_fill(skb, dev);
  815. if (err)
  816. return err;
  817. }
  818. return 0;
  819. }
  820. static int rtnl_phys_port_id_fill(struct sk_buff *skb, struct net_device *dev)
  821. {
  822. int err;
  823. struct netdev_phys_item_id ppid;
  824. err = dev_get_phys_port_id(dev, &ppid);
  825. if (err) {
  826. if (err == -EOPNOTSUPP)
  827. return 0;
  828. return err;
  829. }
  830. if (nla_put(skb, IFLA_PHYS_PORT_ID, ppid.id_len, ppid.id))
  831. return -EMSGSIZE;
  832. return 0;
  833. }
  834. static int rtnl_phys_switch_id_fill(struct sk_buff *skb, struct net_device *dev)
  835. {
  836. int err;
  837. struct netdev_phys_item_id psid;
  838. err = netdev_switch_parent_id_get(dev, &psid);
  839. if (err) {
  840. if (err == -EOPNOTSUPP)
  841. return 0;
  842. return err;
  843. }
  844. if (nla_put(skb, IFLA_PHYS_SWITCH_ID, psid.id_len, psid.id))
  845. return -EMSGSIZE;
  846. return 0;
  847. }
  848. static int rtnl_fill_ifinfo(struct sk_buff *skb, struct net_device *dev,
  849. int type, u32 pid, u32 seq, u32 change,
  850. unsigned int flags, u32 ext_filter_mask)
  851. {
  852. struct ifinfomsg *ifm;
  853. struct nlmsghdr *nlh;
  854. struct rtnl_link_stats64 temp;
  855. const struct rtnl_link_stats64 *stats;
  856. struct nlattr *attr, *af_spec;
  857. struct rtnl_af_ops *af_ops;
  858. struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
  859. ASSERT_RTNL();
  860. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ifm), flags);
  861. if (nlh == NULL)
  862. return -EMSGSIZE;
  863. ifm = nlmsg_data(nlh);
  864. ifm->ifi_family = AF_UNSPEC;
  865. ifm->__ifi_pad = 0;
  866. ifm->ifi_type = dev->type;
  867. ifm->ifi_index = dev->ifindex;
  868. ifm->ifi_flags = dev_get_flags(dev);
  869. ifm->ifi_change = change;
  870. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  871. nla_put_u32(skb, IFLA_TXQLEN, dev->tx_queue_len) ||
  872. nla_put_u8(skb, IFLA_OPERSTATE,
  873. netif_running(dev) ? dev->operstate : IF_OPER_DOWN) ||
  874. nla_put_u8(skb, IFLA_LINKMODE, dev->link_mode) ||
  875. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  876. nla_put_u32(skb, IFLA_GROUP, dev->group) ||
  877. nla_put_u32(skb, IFLA_PROMISCUITY, dev->promiscuity) ||
  878. nla_put_u32(skb, IFLA_NUM_TX_QUEUES, dev->num_tx_queues) ||
  879. #ifdef CONFIG_RPS
  880. nla_put_u32(skb, IFLA_NUM_RX_QUEUES, dev->num_rx_queues) ||
  881. #endif
  882. (dev->ifindex != dev->iflink &&
  883. nla_put_u32(skb, IFLA_LINK, dev->iflink)) ||
  884. (upper_dev &&
  885. nla_put_u32(skb, IFLA_MASTER, upper_dev->ifindex)) ||
  886. nla_put_u8(skb, IFLA_CARRIER, netif_carrier_ok(dev)) ||
  887. (dev->qdisc &&
  888. nla_put_string(skb, IFLA_QDISC, dev->qdisc->ops->id)) ||
  889. (dev->ifalias &&
  890. nla_put_string(skb, IFLA_IFALIAS, dev->ifalias)) ||
  891. nla_put_u32(skb, IFLA_CARRIER_CHANGES,
  892. atomic_read(&dev->carrier_changes)))
  893. goto nla_put_failure;
  894. if (1) {
  895. struct rtnl_link_ifmap map = {
  896. .mem_start = dev->mem_start,
  897. .mem_end = dev->mem_end,
  898. .base_addr = dev->base_addr,
  899. .irq = dev->irq,
  900. .dma = dev->dma,
  901. .port = dev->if_port,
  902. };
  903. if (nla_put(skb, IFLA_MAP, sizeof(map), &map))
  904. goto nla_put_failure;
  905. }
  906. if (dev->addr_len) {
  907. if (nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr) ||
  908. nla_put(skb, IFLA_BROADCAST, dev->addr_len, dev->broadcast))
  909. goto nla_put_failure;
  910. }
  911. if (rtnl_phys_port_id_fill(skb, dev))
  912. goto nla_put_failure;
  913. if (rtnl_phys_switch_id_fill(skb, dev))
  914. goto nla_put_failure;
  915. attr = nla_reserve(skb, IFLA_STATS,
  916. sizeof(struct rtnl_link_stats));
  917. if (attr == NULL)
  918. goto nla_put_failure;
  919. stats = dev_get_stats(dev, &temp);
  920. copy_rtnl_link_stats(nla_data(attr), stats);
  921. attr = nla_reserve(skb, IFLA_STATS64,
  922. sizeof(struct rtnl_link_stats64));
  923. if (attr == NULL)
  924. goto nla_put_failure;
  925. copy_rtnl_link_stats64(nla_data(attr), stats);
  926. if (dev->dev.parent && (ext_filter_mask & RTEXT_FILTER_VF) &&
  927. nla_put_u32(skb, IFLA_NUM_VF, dev_num_vf(dev->dev.parent)))
  928. goto nla_put_failure;
  929. if (dev->netdev_ops->ndo_get_vf_config && dev->dev.parent
  930. && (ext_filter_mask & RTEXT_FILTER_VF)) {
  931. int i;
  932. struct nlattr *vfinfo, *vf;
  933. int num_vfs = dev_num_vf(dev->dev.parent);
  934. vfinfo = nla_nest_start(skb, IFLA_VFINFO_LIST);
  935. if (!vfinfo)
  936. goto nla_put_failure;
  937. for (i = 0; i < num_vfs; i++) {
  938. struct ifla_vf_info ivi;
  939. struct ifla_vf_mac vf_mac;
  940. struct ifla_vf_vlan vf_vlan;
  941. struct ifla_vf_rate vf_rate;
  942. struct ifla_vf_tx_rate vf_tx_rate;
  943. struct ifla_vf_spoofchk vf_spoofchk;
  944. struct ifla_vf_link_state vf_linkstate;
  945. /*
  946. * Not all SR-IOV capable drivers support the
  947. * spoofcheck query. Preset to -1 so the user
  948. * space tool can detect that the driver didn't
  949. * report anything.
  950. */
  951. ivi.spoofchk = -1;
  952. memset(ivi.mac, 0, sizeof(ivi.mac));
  953. /* The default value for VF link state is "auto"
  954. * IFLA_VF_LINK_STATE_AUTO which equals zero
  955. */
  956. ivi.linkstate = 0;
  957. if (dev->netdev_ops->ndo_get_vf_config(dev, i, &ivi))
  958. break;
  959. vf_mac.vf =
  960. vf_vlan.vf =
  961. vf_rate.vf =
  962. vf_tx_rate.vf =
  963. vf_spoofchk.vf =
  964. vf_linkstate.vf = ivi.vf;
  965. memcpy(vf_mac.mac, ivi.mac, sizeof(ivi.mac));
  966. vf_vlan.vlan = ivi.vlan;
  967. vf_vlan.qos = ivi.qos;
  968. vf_tx_rate.rate = ivi.max_tx_rate;
  969. vf_rate.min_tx_rate = ivi.min_tx_rate;
  970. vf_rate.max_tx_rate = ivi.max_tx_rate;
  971. vf_spoofchk.setting = ivi.spoofchk;
  972. vf_linkstate.link_state = ivi.linkstate;
  973. vf = nla_nest_start(skb, IFLA_VF_INFO);
  974. if (!vf) {
  975. nla_nest_cancel(skb, vfinfo);
  976. goto nla_put_failure;
  977. }
  978. if (nla_put(skb, IFLA_VF_MAC, sizeof(vf_mac), &vf_mac) ||
  979. nla_put(skb, IFLA_VF_VLAN, sizeof(vf_vlan), &vf_vlan) ||
  980. nla_put(skb, IFLA_VF_RATE, sizeof(vf_rate),
  981. &vf_rate) ||
  982. nla_put(skb, IFLA_VF_TX_RATE, sizeof(vf_tx_rate),
  983. &vf_tx_rate) ||
  984. nla_put(skb, IFLA_VF_SPOOFCHK, sizeof(vf_spoofchk),
  985. &vf_spoofchk) ||
  986. nla_put(skb, IFLA_VF_LINK_STATE, sizeof(vf_linkstate),
  987. &vf_linkstate))
  988. goto nla_put_failure;
  989. nla_nest_end(skb, vf);
  990. }
  991. nla_nest_end(skb, vfinfo);
  992. }
  993. if (rtnl_port_fill(skb, dev, ext_filter_mask))
  994. goto nla_put_failure;
  995. if (dev->rtnl_link_ops || rtnl_have_link_slave_info(dev)) {
  996. if (rtnl_link_fill(skb, dev) < 0)
  997. goto nla_put_failure;
  998. }
  999. if (dev->rtnl_link_ops &&
  1000. dev->rtnl_link_ops->get_link_net) {
  1001. struct net *link_net = dev->rtnl_link_ops->get_link_net(dev);
  1002. if (!net_eq(dev_net(dev), link_net)) {
  1003. int id = peernet2id(dev_net(dev), link_net);
  1004. if (nla_put_s32(skb, IFLA_LINK_NETNSID, id))
  1005. goto nla_put_failure;
  1006. }
  1007. }
  1008. if (!(af_spec = nla_nest_start(skb, IFLA_AF_SPEC)))
  1009. goto nla_put_failure;
  1010. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  1011. if (af_ops->fill_link_af) {
  1012. struct nlattr *af;
  1013. int err;
  1014. if (!(af = nla_nest_start(skb, af_ops->family)))
  1015. goto nla_put_failure;
  1016. err = af_ops->fill_link_af(skb, dev);
  1017. /*
  1018. * Caller may return ENODATA to indicate that there
  1019. * was no data to be dumped. This is not an error, it
  1020. * means we should trim the attribute header and
  1021. * continue.
  1022. */
  1023. if (err == -ENODATA)
  1024. nla_nest_cancel(skb, af);
  1025. else if (err < 0)
  1026. goto nla_put_failure;
  1027. nla_nest_end(skb, af);
  1028. }
  1029. }
  1030. nla_nest_end(skb, af_spec);
  1031. nlmsg_end(skb, nlh);
  1032. return 0;
  1033. nla_put_failure:
  1034. nlmsg_cancel(skb, nlh);
  1035. return -EMSGSIZE;
  1036. }
  1037. static const struct nla_policy ifla_policy[IFLA_MAX+1] = {
  1038. [IFLA_IFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ-1 },
  1039. [IFLA_ADDRESS] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  1040. [IFLA_BROADCAST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  1041. [IFLA_MAP] = { .len = sizeof(struct rtnl_link_ifmap) },
  1042. [IFLA_MTU] = { .type = NLA_U32 },
  1043. [IFLA_LINK] = { .type = NLA_U32 },
  1044. [IFLA_MASTER] = { .type = NLA_U32 },
  1045. [IFLA_CARRIER] = { .type = NLA_U8 },
  1046. [IFLA_TXQLEN] = { .type = NLA_U32 },
  1047. [IFLA_WEIGHT] = { .type = NLA_U32 },
  1048. [IFLA_OPERSTATE] = { .type = NLA_U8 },
  1049. [IFLA_LINKMODE] = { .type = NLA_U8 },
  1050. [IFLA_LINKINFO] = { .type = NLA_NESTED },
  1051. [IFLA_NET_NS_PID] = { .type = NLA_U32 },
  1052. [IFLA_NET_NS_FD] = { .type = NLA_U32 },
  1053. [IFLA_IFALIAS] = { .type = NLA_STRING, .len = IFALIASZ-1 },
  1054. [IFLA_VFINFO_LIST] = {. type = NLA_NESTED },
  1055. [IFLA_VF_PORTS] = { .type = NLA_NESTED },
  1056. [IFLA_PORT_SELF] = { .type = NLA_NESTED },
  1057. [IFLA_AF_SPEC] = { .type = NLA_NESTED },
  1058. [IFLA_EXT_MASK] = { .type = NLA_U32 },
  1059. [IFLA_PROMISCUITY] = { .type = NLA_U32 },
  1060. [IFLA_NUM_TX_QUEUES] = { .type = NLA_U32 },
  1061. [IFLA_NUM_RX_QUEUES] = { .type = NLA_U32 },
  1062. [IFLA_PHYS_PORT_ID] = { .type = NLA_BINARY, .len = MAX_PHYS_ITEM_ID_LEN },
  1063. [IFLA_CARRIER_CHANGES] = { .type = NLA_U32 }, /* ignored */
  1064. [IFLA_PHYS_SWITCH_ID] = { .type = NLA_BINARY, .len = MAX_PHYS_ITEM_ID_LEN },
  1065. [IFLA_LINK_NETNSID] = { .type = NLA_S32 },
  1066. };
  1067. static const struct nla_policy ifla_info_policy[IFLA_INFO_MAX+1] = {
  1068. [IFLA_INFO_KIND] = { .type = NLA_STRING },
  1069. [IFLA_INFO_DATA] = { .type = NLA_NESTED },
  1070. [IFLA_INFO_SLAVE_KIND] = { .type = NLA_STRING },
  1071. [IFLA_INFO_SLAVE_DATA] = { .type = NLA_NESTED },
  1072. };
  1073. static const struct nla_policy ifla_vfinfo_policy[IFLA_VF_INFO_MAX+1] = {
  1074. [IFLA_VF_INFO] = { .type = NLA_NESTED },
  1075. };
  1076. static const struct nla_policy ifla_vf_policy[IFLA_VF_MAX+1] = {
  1077. [IFLA_VF_MAC] = { .len = sizeof(struct ifla_vf_mac) },
  1078. [IFLA_VF_VLAN] = { .len = sizeof(struct ifla_vf_vlan) },
  1079. [IFLA_VF_TX_RATE] = { .len = sizeof(struct ifla_vf_tx_rate) },
  1080. [IFLA_VF_SPOOFCHK] = { .len = sizeof(struct ifla_vf_spoofchk) },
  1081. [IFLA_VF_RATE] = { .len = sizeof(struct ifla_vf_rate) },
  1082. [IFLA_VF_LINK_STATE] = { .len = sizeof(struct ifla_vf_link_state) },
  1083. };
  1084. static const struct nla_policy ifla_port_policy[IFLA_PORT_MAX+1] = {
  1085. [IFLA_PORT_VF] = { .type = NLA_U32 },
  1086. [IFLA_PORT_PROFILE] = { .type = NLA_STRING,
  1087. .len = PORT_PROFILE_MAX },
  1088. [IFLA_PORT_VSI_TYPE] = { .type = NLA_BINARY,
  1089. .len = sizeof(struct ifla_port_vsi)},
  1090. [IFLA_PORT_INSTANCE_UUID] = { .type = NLA_BINARY,
  1091. .len = PORT_UUID_MAX },
  1092. [IFLA_PORT_HOST_UUID] = { .type = NLA_STRING,
  1093. .len = PORT_UUID_MAX },
  1094. [IFLA_PORT_REQUEST] = { .type = NLA_U8, },
  1095. [IFLA_PORT_RESPONSE] = { .type = NLA_U16, },
  1096. };
  1097. static int rtnl_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb)
  1098. {
  1099. struct net *net = sock_net(skb->sk);
  1100. int h, s_h;
  1101. int idx = 0, s_idx;
  1102. struct net_device *dev;
  1103. struct hlist_head *head;
  1104. struct nlattr *tb[IFLA_MAX+1];
  1105. u32 ext_filter_mask = 0;
  1106. int err;
  1107. int hdrlen;
  1108. s_h = cb->args[0];
  1109. s_idx = cb->args[1];
  1110. cb->seq = net->dev_base_seq;
  1111. /* A hack to preserve kernel<->userspace interface.
  1112. * The correct header is ifinfomsg. It is consistent with rtnl_getlink.
  1113. * However, before Linux v3.9 the code here assumed rtgenmsg and that's
  1114. * what iproute2 < v3.9.0 used.
  1115. * We can detect the old iproute2. Even including the IFLA_EXT_MASK
  1116. * attribute, its netlink message is shorter than struct ifinfomsg.
  1117. */
  1118. hdrlen = nlmsg_len(cb->nlh) < sizeof(struct ifinfomsg) ?
  1119. sizeof(struct rtgenmsg) : sizeof(struct ifinfomsg);
  1120. if (nlmsg_parse(cb->nlh, hdrlen, tb, IFLA_MAX, ifla_policy) >= 0) {
  1121. if (tb[IFLA_EXT_MASK])
  1122. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1123. }
  1124. for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
  1125. idx = 0;
  1126. head = &net->dev_index_head[h];
  1127. hlist_for_each_entry(dev, head, index_hlist) {
  1128. if (idx < s_idx)
  1129. goto cont;
  1130. err = rtnl_fill_ifinfo(skb, dev, RTM_NEWLINK,
  1131. NETLINK_CB(cb->skb).portid,
  1132. cb->nlh->nlmsg_seq, 0,
  1133. NLM_F_MULTI,
  1134. ext_filter_mask);
  1135. /* If we ran out of room on the first message,
  1136. * we're in trouble
  1137. */
  1138. WARN_ON((err == -EMSGSIZE) && (skb->len == 0));
  1139. if (err < 0)
  1140. goto out;
  1141. nl_dump_check_consistent(cb, nlmsg_hdr(skb));
  1142. cont:
  1143. idx++;
  1144. }
  1145. }
  1146. out:
  1147. cb->args[1] = idx;
  1148. cb->args[0] = h;
  1149. return skb->len;
  1150. }
  1151. int rtnl_nla_parse_ifla(struct nlattr **tb, const struct nlattr *head, int len)
  1152. {
  1153. return nla_parse(tb, IFLA_MAX, head, len, ifla_policy);
  1154. }
  1155. EXPORT_SYMBOL(rtnl_nla_parse_ifla);
  1156. struct net *rtnl_link_get_net(struct net *src_net, struct nlattr *tb[])
  1157. {
  1158. struct net *net;
  1159. /* Examine the link attributes and figure out which
  1160. * network namespace we are talking about.
  1161. */
  1162. if (tb[IFLA_NET_NS_PID])
  1163. net = get_net_ns_by_pid(nla_get_u32(tb[IFLA_NET_NS_PID]));
  1164. else if (tb[IFLA_NET_NS_FD])
  1165. net = get_net_ns_by_fd(nla_get_u32(tb[IFLA_NET_NS_FD]));
  1166. else
  1167. net = get_net(src_net);
  1168. return net;
  1169. }
  1170. EXPORT_SYMBOL(rtnl_link_get_net);
  1171. static int validate_linkmsg(struct net_device *dev, struct nlattr *tb[])
  1172. {
  1173. if (dev) {
  1174. if (tb[IFLA_ADDRESS] &&
  1175. nla_len(tb[IFLA_ADDRESS]) < dev->addr_len)
  1176. return -EINVAL;
  1177. if (tb[IFLA_BROADCAST] &&
  1178. nla_len(tb[IFLA_BROADCAST]) < dev->addr_len)
  1179. return -EINVAL;
  1180. }
  1181. if (tb[IFLA_AF_SPEC]) {
  1182. struct nlattr *af;
  1183. int rem, err;
  1184. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1185. const struct rtnl_af_ops *af_ops;
  1186. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1187. return -EAFNOSUPPORT;
  1188. if (!af_ops->set_link_af)
  1189. return -EOPNOTSUPP;
  1190. if (af_ops->validate_link_af) {
  1191. err = af_ops->validate_link_af(dev, af);
  1192. if (err < 0)
  1193. return err;
  1194. }
  1195. }
  1196. }
  1197. return 0;
  1198. }
  1199. static int do_setvfinfo(struct net_device *dev, struct nlattr *attr)
  1200. {
  1201. int rem, err = -EINVAL;
  1202. struct nlattr *vf;
  1203. const struct net_device_ops *ops = dev->netdev_ops;
  1204. nla_for_each_nested(vf, attr, rem) {
  1205. switch (nla_type(vf)) {
  1206. case IFLA_VF_MAC: {
  1207. struct ifla_vf_mac *ivm;
  1208. ivm = nla_data(vf);
  1209. err = -EOPNOTSUPP;
  1210. if (ops->ndo_set_vf_mac)
  1211. err = ops->ndo_set_vf_mac(dev, ivm->vf,
  1212. ivm->mac);
  1213. break;
  1214. }
  1215. case IFLA_VF_VLAN: {
  1216. struct ifla_vf_vlan *ivv;
  1217. ivv = nla_data(vf);
  1218. err = -EOPNOTSUPP;
  1219. if (ops->ndo_set_vf_vlan)
  1220. err = ops->ndo_set_vf_vlan(dev, ivv->vf,
  1221. ivv->vlan,
  1222. ivv->qos);
  1223. break;
  1224. }
  1225. case IFLA_VF_TX_RATE: {
  1226. struct ifla_vf_tx_rate *ivt;
  1227. struct ifla_vf_info ivf;
  1228. ivt = nla_data(vf);
  1229. err = -EOPNOTSUPP;
  1230. if (ops->ndo_get_vf_config)
  1231. err = ops->ndo_get_vf_config(dev, ivt->vf,
  1232. &ivf);
  1233. if (err)
  1234. break;
  1235. err = -EOPNOTSUPP;
  1236. if (ops->ndo_set_vf_rate)
  1237. err = ops->ndo_set_vf_rate(dev, ivt->vf,
  1238. ivf.min_tx_rate,
  1239. ivt->rate);
  1240. break;
  1241. }
  1242. case IFLA_VF_RATE: {
  1243. struct ifla_vf_rate *ivt;
  1244. ivt = nla_data(vf);
  1245. err = -EOPNOTSUPP;
  1246. if (ops->ndo_set_vf_rate)
  1247. err = ops->ndo_set_vf_rate(dev, ivt->vf,
  1248. ivt->min_tx_rate,
  1249. ivt->max_tx_rate);
  1250. break;
  1251. }
  1252. case IFLA_VF_SPOOFCHK: {
  1253. struct ifla_vf_spoofchk *ivs;
  1254. ivs = nla_data(vf);
  1255. err = -EOPNOTSUPP;
  1256. if (ops->ndo_set_vf_spoofchk)
  1257. err = ops->ndo_set_vf_spoofchk(dev, ivs->vf,
  1258. ivs->setting);
  1259. break;
  1260. }
  1261. case IFLA_VF_LINK_STATE: {
  1262. struct ifla_vf_link_state *ivl;
  1263. ivl = nla_data(vf);
  1264. err = -EOPNOTSUPP;
  1265. if (ops->ndo_set_vf_link_state)
  1266. err = ops->ndo_set_vf_link_state(dev, ivl->vf,
  1267. ivl->link_state);
  1268. break;
  1269. }
  1270. default:
  1271. err = -EINVAL;
  1272. break;
  1273. }
  1274. if (err)
  1275. break;
  1276. }
  1277. return err;
  1278. }
  1279. static int do_set_master(struct net_device *dev, int ifindex)
  1280. {
  1281. struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
  1282. const struct net_device_ops *ops;
  1283. int err;
  1284. if (upper_dev) {
  1285. if (upper_dev->ifindex == ifindex)
  1286. return 0;
  1287. ops = upper_dev->netdev_ops;
  1288. if (ops->ndo_del_slave) {
  1289. err = ops->ndo_del_slave(upper_dev, dev);
  1290. if (err)
  1291. return err;
  1292. } else {
  1293. return -EOPNOTSUPP;
  1294. }
  1295. }
  1296. if (ifindex) {
  1297. upper_dev = __dev_get_by_index(dev_net(dev), ifindex);
  1298. if (!upper_dev)
  1299. return -EINVAL;
  1300. ops = upper_dev->netdev_ops;
  1301. if (ops->ndo_add_slave) {
  1302. err = ops->ndo_add_slave(upper_dev, dev);
  1303. if (err)
  1304. return err;
  1305. } else {
  1306. return -EOPNOTSUPP;
  1307. }
  1308. }
  1309. return 0;
  1310. }
  1311. #define DO_SETLINK_MODIFIED 0x01
  1312. /* notify flag means notify + modified. */
  1313. #define DO_SETLINK_NOTIFY 0x03
  1314. static int do_setlink(const struct sk_buff *skb,
  1315. struct net_device *dev, struct ifinfomsg *ifm,
  1316. struct nlattr **tb, char *ifname, int status)
  1317. {
  1318. const struct net_device_ops *ops = dev->netdev_ops;
  1319. int err;
  1320. if (tb[IFLA_NET_NS_PID] || tb[IFLA_NET_NS_FD]) {
  1321. struct net *net = rtnl_link_get_net(dev_net(dev), tb);
  1322. if (IS_ERR(net)) {
  1323. err = PTR_ERR(net);
  1324. goto errout;
  1325. }
  1326. if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
  1327. put_net(net);
  1328. err = -EPERM;
  1329. goto errout;
  1330. }
  1331. err = dev_change_net_namespace(dev, net, ifname);
  1332. put_net(net);
  1333. if (err)
  1334. goto errout;
  1335. status |= DO_SETLINK_MODIFIED;
  1336. }
  1337. if (tb[IFLA_MAP]) {
  1338. struct rtnl_link_ifmap *u_map;
  1339. struct ifmap k_map;
  1340. if (!ops->ndo_set_config) {
  1341. err = -EOPNOTSUPP;
  1342. goto errout;
  1343. }
  1344. if (!netif_device_present(dev)) {
  1345. err = -ENODEV;
  1346. goto errout;
  1347. }
  1348. u_map = nla_data(tb[IFLA_MAP]);
  1349. k_map.mem_start = (unsigned long) u_map->mem_start;
  1350. k_map.mem_end = (unsigned long) u_map->mem_end;
  1351. k_map.base_addr = (unsigned short) u_map->base_addr;
  1352. k_map.irq = (unsigned char) u_map->irq;
  1353. k_map.dma = (unsigned char) u_map->dma;
  1354. k_map.port = (unsigned char) u_map->port;
  1355. err = ops->ndo_set_config(dev, &k_map);
  1356. if (err < 0)
  1357. goto errout;
  1358. status |= DO_SETLINK_NOTIFY;
  1359. }
  1360. if (tb[IFLA_ADDRESS]) {
  1361. struct sockaddr *sa;
  1362. int len;
  1363. len = sizeof(sa_family_t) + dev->addr_len;
  1364. sa = kmalloc(len, GFP_KERNEL);
  1365. if (!sa) {
  1366. err = -ENOMEM;
  1367. goto errout;
  1368. }
  1369. sa->sa_family = dev->type;
  1370. memcpy(sa->sa_data, nla_data(tb[IFLA_ADDRESS]),
  1371. dev->addr_len);
  1372. err = dev_set_mac_address(dev, sa);
  1373. kfree(sa);
  1374. if (err)
  1375. goto errout;
  1376. status |= DO_SETLINK_MODIFIED;
  1377. }
  1378. if (tb[IFLA_MTU]) {
  1379. err = dev_set_mtu(dev, nla_get_u32(tb[IFLA_MTU]));
  1380. if (err < 0)
  1381. goto errout;
  1382. status |= DO_SETLINK_MODIFIED;
  1383. }
  1384. if (tb[IFLA_GROUP]) {
  1385. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1386. status |= DO_SETLINK_NOTIFY;
  1387. }
  1388. /*
  1389. * Interface selected by interface index but interface
  1390. * name provided implies that a name change has been
  1391. * requested.
  1392. */
  1393. if (ifm->ifi_index > 0 && ifname[0]) {
  1394. err = dev_change_name(dev, ifname);
  1395. if (err < 0)
  1396. goto errout;
  1397. status |= DO_SETLINK_MODIFIED;
  1398. }
  1399. if (tb[IFLA_IFALIAS]) {
  1400. err = dev_set_alias(dev, nla_data(tb[IFLA_IFALIAS]),
  1401. nla_len(tb[IFLA_IFALIAS]));
  1402. if (err < 0)
  1403. goto errout;
  1404. status |= DO_SETLINK_NOTIFY;
  1405. }
  1406. if (tb[IFLA_BROADCAST]) {
  1407. nla_memcpy(dev->broadcast, tb[IFLA_BROADCAST], dev->addr_len);
  1408. call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
  1409. }
  1410. if (ifm->ifi_flags || ifm->ifi_change) {
  1411. err = dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1412. if (err < 0)
  1413. goto errout;
  1414. }
  1415. if (tb[IFLA_MASTER]) {
  1416. err = do_set_master(dev, nla_get_u32(tb[IFLA_MASTER]));
  1417. if (err)
  1418. goto errout;
  1419. status |= DO_SETLINK_MODIFIED;
  1420. }
  1421. if (tb[IFLA_CARRIER]) {
  1422. err = dev_change_carrier(dev, nla_get_u8(tb[IFLA_CARRIER]));
  1423. if (err)
  1424. goto errout;
  1425. status |= DO_SETLINK_MODIFIED;
  1426. }
  1427. if (tb[IFLA_TXQLEN]) {
  1428. unsigned long value = nla_get_u32(tb[IFLA_TXQLEN]);
  1429. if (dev->tx_queue_len ^ value)
  1430. status |= DO_SETLINK_NOTIFY;
  1431. dev->tx_queue_len = value;
  1432. }
  1433. if (tb[IFLA_OPERSTATE])
  1434. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1435. if (tb[IFLA_LINKMODE]) {
  1436. unsigned char value = nla_get_u8(tb[IFLA_LINKMODE]);
  1437. write_lock_bh(&dev_base_lock);
  1438. if (dev->link_mode ^ value)
  1439. status |= DO_SETLINK_NOTIFY;
  1440. dev->link_mode = value;
  1441. write_unlock_bh(&dev_base_lock);
  1442. }
  1443. if (tb[IFLA_VFINFO_LIST]) {
  1444. struct nlattr *attr;
  1445. int rem;
  1446. nla_for_each_nested(attr, tb[IFLA_VFINFO_LIST], rem) {
  1447. if (nla_type(attr) != IFLA_VF_INFO) {
  1448. err = -EINVAL;
  1449. goto errout;
  1450. }
  1451. err = do_setvfinfo(dev, attr);
  1452. if (err < 0)
  1453. goto errout;
  1454. status |= DO_SETLINK_NOTIFY;
  1455. }
  1456. }
  1457. err = 0;
  1458. if (tb[IFLA_VF_PORTS]) {
  1459. struct nlattr *port[IFLA_PORT_MAX+1];
  1460. struct nlattr *attr;
  1461. int vf;
  1462. int rem;
  1463. err = -EOPNOTSUPP;
  1464. if (!ops->ndo_set_vf_port)
  1465. goto errout;
  1466. nla_for_each_nested(attr, tb[IFLA_VF_PORTS], rem) {
  1467. if (nla_type(attr) != IFLA_VF_PORT)
  1468. continue;
  1469. err = nla_parse_nested(port, IFLA_PORT_MAX,
  1470. attr, ifla_port_policy);
  1471. if (err < 0)
  1472. goto errout;
  1473. if (!port[IFLA_PORT_VF]) {
  1474. err = -EOPNOTSUPP;
  1475. goto errout;
  1476. }
  1477. vf = nla_get_u32(port[IFLA_PORT_VF]);
  1478. err = ops->ndo_set_vf_port(dev, vf, port);
  1479. if (err < 0)
  1480. goto errout;
  1481. status |= DO_SETLINK_NOTIFY;
  1482. }
  1483. }
  1484. err = 0;
  1485. if (tb[IFLA_PORT_SELF]) {
  1486. struct nlattr *port[IFLA_PORT_MAX+1];
  1487. err = nla_parse_nested(port, IFLA_PORT_MAX,
  1488. tb[IFLA_PORT_SELF], ifla_port_policy);
  1489. if (err < 0)
  1490. goto errout;
  1491. err = -EOPNOTSUPP;
  1492. if (ops->ndo_set_vf_port)
  1493. err = ops->ndo_set_vf_port(dev, PORT_SELF_VF, port);
  1494. if (err < 0)
  1495. goto errout;
  1496. status |= DO_SETLINK_NOTIFY;
  1497. }
  1498. if (tb[IFLA_AF_SPEC]) {
  1499. struct nlattr *af;
  1500. int rem;
  1501. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1502. const struct rtnl_af_ops *af_ops;
  1503. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1504. BUG();
  1505. err = af_ops->set_link_af(dev, af);
  1506. if (err < 0)
  1507. goto errout;
  1508. status |= DO_SETLINK_NOTIFY;
  1509. }
  1510. }
  1511. err = 0;
  1512. errout:
  1513. if (status & DO_SETLINK_MODIFIED) {
  1514. if (status & DO_SETLINK_NOTIFY)
  1515. netdev_state_change(dev);
  1516. if (err < 0)
  1517. net_warn_ratelimited("A link change request failed with some changes committed already. Interface %s may have been left with an inconsistent configuration, please check.\n",
  1518. dev->name);
  1519. }
  1520. return err;
  1521. }
  1522. static int rtnl_setlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1523. {
  1524. struct net *net = sock_net(skb->sk);
  1525. struct ifinfomsg *ifm;
  1526. struct net_device *dev;
  1527. int err;
  1528. struct nlattr *tb[IFLA_MAX+1];
  1529. char ifname[IFNAMSIZ];
  1530. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1531. if (err < 0)
  1532. goto errout;
  1533. if (tb[IFLA_IFNAME])
  1534. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1535. else
  1536. ifname[0] = '\0';
  1537. err = -EINVAL;
  1538. ifm = nlmsg_data(nlh);
  1539. if (ifm->ifi_index > 0)
  1540. dev = __dev_get_by_index(net, ifm->ifi_index);
  1541. else if (tb[IFLA_IFNAME])
  1542. dev = __dev_get_by_name(net, ifname);
  1543. else
  1544. goto errout;
  1545. if (dev == NULL) {
  1546. err = -ENODEV;
  1547. goto errout;
  1548. }
  1549. err = validate_linkmsg(dev, tb);
  1550. if (err < 0)
  1551. goto errout;
  1552. err = do_setlink(skb, dev, ifm, tb, ifname, 0);
  1553. errout:
  1554. return err;
  1555. }
  1556. static int rtnl_dellink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1557. {
  1558. struct net *net = sock_net(skb->sk);
  1559. const struct rtnl_link_ops *ops;
  1560. struct net_device *dev;
  1561. struct ifinfomsg *ifm;
  1562. char ifname[IFNAMSIZ];
  1563. struct nlattr *tb[IFLA_MAX+1];
  1564. int err;
  1565. LIST_HEAD(list_kill);
  1566. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1567. if (err < 0)
  1568. return err;
  1569. if (tb[IFLA_IFNAME])
  1570. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1571. ifm = nlmsg_data(nlh);
  1572. if (ifm->ifi_index > 0)
  1573. dev = __dev_get_by_index(net, ifm->ifi_index);
  1574. else if (tb[IFLA_IFNAME])
  1575. dev = __dev_get_by_name(net, ifname);
  1576. else
  1577. return -EINVAL;
  1578. if (!dev)
  1579. return -ENODEV;
  1580. ops = dev->rtnl_link_ops;
  1581. if (!ops || !ops->dellink)
  1582. return -EOPNOTSUPP;
  1583. ops->dellink(dev, &list_kill);
  1584. unregister_netdevice_many(&list_kill);
  1585. return 0;
  1586. }
  1587. int rtnl_configure_link(struct net_device *dev, const struct ifinfomsg *ifm)
  1588. {
  1589. unsigned int old_flags;
  1590. int err;
  1591. old_flags = dev->flags;
  1592. if (ifm && (ifm->ifi_flags || ifm->ifi_change)) {
  1593. err = __dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1594. if (err < 0)
  1595. return err;
  1596. }
  1597. dev->rtnl_link_state = RTNL_LINK_INITIALIZED;
  1598. __dev_notify_flags(dev, old_flags, ~0U);
  1599. return 0;
  1600. }
  1601. EXPORT_SYMBOL(rtnl_configure_link);
  1602. struct net_device *rtnl_create_link(struct net *net,
  1603. char *ifname, unsigned char name_assign_type,
  1604. const struct rtnl_link_ops *ops, struct nlattr *tb[])
  1605. {
  1606. int err;
  1607. struct net_device *dev;
  1608. unsigned int num_tx_queues = 1;
  1609. unsigned int num_rx_queues = 1;
  1610. if (tb[IFLA_NUM_TX_QUEUES])
  1611. num_tx_queues = nla_get_u32(tb[IFLA_NUM_TX_QUEUES]);
  1612. else if (ops->get_num_tx_queues)
  1613. num_tx_queues = ops->get_num_tx_queues();
  1614. if (tb[IFLA_NUM_RX_QUEUES])
  1615. num_rx_queues = nla_get_u32(tb[IFLA_NUM_RX_QUEUES]);
  1616. else if (ops->get_num_rx_queues)
  1617. num_rx_queues = ops->get_num_rx_queues();
  1618. err = -ENOMEM;
  1619. dev = alloc_netdev_mqs(ops->priv_size, ifname, name_assign_type,
  1620. ops->setup, num_tx_queues, num_rx_queues);
  1621. if (!dev)
  1622. goto err;
  1623. dev_net_set(dev, net);
  1624. dev->rtnl_link_ops = ops;
  1625. dev->rtnl_link_state = RTNL_LINK_INITIALIZING;
  1626. if (tb[IFLA_MTU])
  1627. dev->mtu = nla_get_u32(tb[IFLA_MTU]);
  1628. if (tb[IFLA_ADDRESS]) {
  1629. memcpy(dev->dev_addr, nla_data(tb[IFLA_ADDRESS]),
  1630. nla_len(tb[IFLA_ADDRESS]));
  1631. dev->addr_assign_type = NET_ADDR_SET;
  1632. }
  1633. if (tb[IFLA_BROADCAST])
  1634. memcpy(dev->broadcast, nla_data(tb[IFLA_BROADCAST]),
  1635. nla_len(tb[IFLA_BROADCAST]));
  1636. if (tb[IFLA_TXQLEN])
  1637. dev->tx_queue_len = nla_get_u32(tb[IFLA_TXQLEN]);
  1638. if (tb[IFLA_OPERSTATE])
  1639. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1640. if (tb[IFLA_LINKMODE])
  1641. dev->link_mode = nla_get_u8(tb[IFLA_LINKMODE]);
  1642. if (tb[IFLA_GROUP])
  1643. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1644. return dev;
  1645. err:
  1646. return ERR_PTR(err);
  1647. }
  1648. EXPORT_SYMBOL(rtnl_create_link);
  1649. static int rtnl_group_changelink(const struct sk_buff *skb,
  1650. struct net *net, int group,
  1651. struct ifinfomsg *ifm,
  1652. struct nlattr **tb)
  1653. {
  1654. struct net_device *dev;
  1655. int err;
  1656. for_each_netdev(net, dev) {
  1657. if (dev->group == group) {
  1658. err = do_setlink(skb, dev, ifm, tb, NULL, 0);
  1659. if (err < 0)
  1660. return err;
  1661. }
  1662. }
  1663. return 0;
  1664. }
  1665. static int rtnl_newlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1666. {
  1667. struct net *net = sock_net(skb->sk);
  1668. const struct rtnl_link_ops *ops;
  1669. const struct rtnl_link_ops *m_ops = NULL;
  1670. struct net_device *dev;
  1671. struct net_device *master_dev = NULL;
  1672. struct ifinfomsg *ifm;
  1673. char kind[MODULE_NAME_LEN];
  1674. char ifname[IFNAMSIZ];
  1675. struct nlattr *tb[IFLA_MAX+1];
  1676. struct nlattr *linkinfo[IFLA_INFO_MAX+1];
  1677. unsigned char name_assign_type = NET_NAME_USER;
  1678. int err;
  1679. #ifdef CONFIG_MODULES
  1680. replay:
  1681. #endif
  1682. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1683. if (err < 0)
  1684. return err;
  1685. if (tb[IFLA_IFNAME])
  1686. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1687. else
  1688. ifname[0] = '\0';
  1689. ifm = nlmsg_data(nlh);
  1690. if (ifm->ifi_index > 0)
  1691. dev = __dev_get_by_index(net, ifm->ifi_index);
  1692. else {
  1693. if (ifname[0])
  1694. dev = __dev_get_by_name(net, ifname);
  1695. else
  1696. dev = NULL;
  1697. }
  1698. if (dev) {
  1699. master_dev = netdev_master_upper_dev_get(dev);
  1700. if (master_dev)
  1701. m_ops = master_dev->rtnl_link_ops;
  1702. }
  1703. err = validate_linkmsg(dev, tb);
  1704. if (err < 0)
  1705. return err;
  1706. if (tb[IFLA_LINKINFO]) {
  1707. err = nla_parse_nested(linkinfo, IFLA_INFO_MAX,
  1708. tb[IFLA_LINKINFO], ifla_info_policy);
  1709. if (err < 0)
  1710. return err;
  1711. } else
  1712. memset(linkinfo, 0, sizeof(linkinfo));
  1713. if (linkinfo[IFLA_INFO_KIND]) {
  1714. nla_strlcpy(kind, linkinfo[IFLA_INFO_KIND], sizeof(kind));
  1715. ops = rtnl_link_ops_get(kind);
  1716. } else {
  1717. kind[0] = '\0';
  1718. ops = NULL;
  1719. }
  1720. if (1) {
  1721. struct nlattr *attr[ops ? ops->maxtype + 1 : 1];
  1722. struct nlattr *slave_attr[m_ops ? m_ops->slave_maxtype + 1 : 1];
  1723. struct nlattr **data = NULL;
  1724. struct nlattr **slave_data = NULL;
  1725. struct net *dest_net, *link_net = NULL;
  1726. if (ops) {
  1727. if (ops->maxtype && linkinfo[IFLA_INFO_DATA]) {
  1728. err = nla_parse_nested(attr, ops->maxtype,
  1729. linkinfo[IFLA_INFO_DATA],
  1730. ops->policy);
  1731. if (err < 0)
  1732. return err;
  1733. data = attr;
  1734. }
  1735. if (ops->validate) {
  1736. err = ops->validate(tb, data);
  1737. if (err < 0)
  1738. return err;
  1739. }
  1740. }
  1741. if (m_ops) {
  1742. if (m_ops->slave_maxtype &&
  1743. linkinfo[IFLA_INFO_SLAVE_DATA]) {
  1744. err = nla_parse_nested(slave_attr,
  1745. m_ops->slave_maxtype,
  1746. linkinfo[IFLA_INFO_SLAVE_DATA],
  1747. m_ops->slave_policy);
  1748. if (err < 0)
  1749. return err;
  1750. slave_data = slave_attr;
  1751. }
  1752. if (m_ops->slave_validate) {
  1753. err = m_ops->slave_validate(tb, slave_data);
  1754. if (err < 0)
  1755. return err;
  1756. }
  1757. }
  1758. if (dev) {
  1759. int status = 0;
  1760. if (nlh->nlmsg_flags & NLM_F_EXCL)
  1761. return -EEXIST;
  1762. if (nlh->nlmsg_flags & NLM_F_REPLACE)
  1763. return -EOPNOTSUPP;
  1764. if (linkinfo[IFLA_INFO_DATA]) {
  1765. if (!ops || ops != dev->rtnl_link_ops ||
  1766. !ops->changelink)
  1767. return -EOPNOTSUPP;
  1768. err = ops->changelink(dev, tb, data);
  1769. if (err < 0)
  1770. return err;
  1771. status |= DO_SETLINK_NOTIFY;
  1772. }
  1773. if (linkinfo[IFLA_INFO_SLAVE_DATA]) {
  1774. if (!m_ops || !m_ops->slave_changelink)
  1775. return -EOPNOTSUPP;
  1776. err = m_ops->slave_changelink(master_dev, dev,
  1777. tb, slave_data);
  1778. if (err < 0)
  1779. return err;
  1780. status |= DO_SETLINK_NOTIFY;
  1781. }
  1782. return do_setlink(skb, dev, ifm, tb, ifname, status);
  1783. }
  1784. if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
  1785. if (ifm->ifi_index == 0 && tb[IFLA_GROUP])
  1786. return rtnl_group_changelink(skb, net,
  1787. nla_get_u32(tb[IFLA_GROUP]),
  1788. ifm, tb);
  1789. return -ENODEV;
  1790. }
  1791. if (tb[IFLA_MAP] || tb[IFLA_MASTER] || tb[IFLA_PROTINFO])
  1792. return -EOPNOTSUPP;
  1793. if (!ops) {
  1794. #ifdef CONFIG_MODULES
  1795. if (kind[0]) {
  1796. __rtnl_unlock();
  1797. request_module("rtnl-link-%s", kind);
  1798. rtnl_lock();
  1799. ops = rtnl_link_ops_get(kind);
  1800. if (ops)
  1801. goto replay;
  1802. }
  1803. #endif
  1804. return -EOPNOTSUPP;
  1805. }
  1806. if (!ops->setup)
  1807. return -EOPNOTSUPP;
  1808. if (!ifname[0]) {
  1809. snprintf(ifname, IFNAMSIZ, "%s%%d", ops->kind);
  1810. name_assign_type = NET_NAME_ENUM;
  1811. }
  1812. dest_net = rtnl_link_get_net(net, tb);
  1813. if (IS_ERR(dest_net))
  1814. return PTR_ERR(dest_net);
  1815. err = -EPERM;
  1816. if (!netlink_ns_capable(skb, dest_net->user_ns, CAP_NET_ADMIN))
  1817. goto out;
  1818. if (tb[IFLA_LINK_NETNSID]) {
  1819. int id = nla_get_s32(tb[IFLA_LINK_NETNSID]);
  1820. link_net = get_net_ns_by_id(dest_net, id);
  1821. if (!link_net) {
  1822. err = -EINVAL;
  1823. goto out;
  1824. }
  1825. err = -EPERM;
  1826. if (!netlink_ns_capable(skb, link_net->user_ns, CAP_NET_ADMIN))
  1827. goto out;
  1828. }
  1829. dev = rtnl_create_link(link_net ? : dest_net, ifname,
  1830. name_assign_type, ops, tb);
  1831. if (IS_ERR(dev)) {
  1832. err = PTR_ERR(dev);
  1833. goto out;
  1834. }
  1835. dev->ifindex = ifm->ifi_index;
  1836. if (ops->newlink) {
  1837. err = ops->newlink(link_net ? : net, dev, tb, data);
  1838. /* Drivers should call free_netdev() in ->destructor
  1839. * and unregister it on failure after registration
  1840. * so that device could be finally freed in rtnl_unlock.
  1841. */
  1842. if (err < 0) {
  1843. /* If device is not registered at all, free it now */
  1844. if (dev->reg_state == NETREG_UNINITIALIZED)
  1845. free_netdev(dev);
  1846. goto out;
  1847. }
  1848. } else {
  1849. err = register_netdevice(dev);
  1850. if (err < 0) {
  1851. free_netdev(dev);
  1852. goto out;
  1853. }
  1854. }
  1855. err = rtnl_configure_link(dev, ifm);
  1856. if (err < 0)
  1857. goto out_unregister;
  1858. if (link_net) {
  1859. err = dev_change_net_namespace(dev, dest_net, ifname);
  1860. if (err < 0)
  1861. goto out_unregister;
  1862. }
  1863. out:
  1864. if (link_net)
  1865. put_net(link_net);
  1866. put_net(dest_net);
  1867. return err;
  1868. out_unregister:
  1869. if (ops->newlink) {
  1870. LIST_HEAD(list_kill);
  1871. ops->dellink(dev, &list_kill);
  1872. unregister_netdevice_many(&list_kill);
  1873. } else {
  1874. unregister_netdevice(dev);
  1875. }
  1876. goto out;
  1877. }
  1878. }
  1879. static int rtnl_getlink(struct sk_buff *skb, struct nlmsghdr* nlh)
  1880. {
  1881. struct net *net = sock_net(skb->sk);
  1882. struct ifinfomsg *ifm;
  1883. char ifname[IFNAMSIZ];
  1884. struct nlattr *tb[IFLA_MAX+1];
  1885. struct net_device *dev = NULL;
  1886. struct sk_buff *nskb;
  1887. int err;
  1888. u32 ext_filter_mask = 0;
  1889. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1890. if (err < 0)
  1891. return err;
  1892. if (tb[IFLA_IFNAME])
  1893. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1894. if (tb[IFLA_EXT_MASK])
  1895. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1896. ifm = nlmsg_data(nlh);
  1897. if (ifm->ifi_index > 0)
  1898. dev = __dev_get_by_index(net, ifm->ifi_index);
  1899. else if (tb[IFLA_IFNAME])
  1900. dev = __dev_get_by_name(net, ifname);
  1901. else
  1902. return -EINVAL;
  1903. if (dev == NULL)
  1904. return -ENODEV;
  1905. nskb = nlmsg_new(if_nlmsg_size(dev, ext_filter_mask), GFP_KERNEL);
  1906. if (nskb == NULL)
  1907. return -ENOBUFS;
  1908. err = rtnl_fill_ifinfo(nskb, dev, RTM_NEWLINK, NETLINK_CB(skb).portid,
  1909. nlh->nlmsg_seq, 0, 0, ext_filter_mask);
  1910. if (err < 0) {
  1911. /* -EMSGSIZE implies BUG in if_nlmsg_size */
  1912. WARN_ON(err == -EMSGSIZE);
  1913. kfree_skb(nskb);
  1914. } else
  1915. err = rtnl_unicast(nskb, net, NETLINK_CB(skb).portid);
  1916. return err;
  1917. }
  1918. static u16 rtnl_calcit(struct sk_buff *skb, struct nlmsghdr *nlh)
  1919. {
  1920. struct net *net = sock_net(skb->sk);
  1921. struct net_device *dev;
  1922. struct nlattr *tb[IFLA_MAX+1];
  1923. u32 ext_filter_mask = 0;
  1924. u16 min_ifinfo_dump_size = 0;
  1925. int hdrlen;
  1926. /* Same kernel<->userspace interface hack as in rtnl_dump_ifinfo. */
  1927. hdrlen = nlmsg_len(nlh) < sizeof(struct ifinfomsg) ?
  1928. sizeof(struct rtgenmsg) : sizeof(struct ifinfomsg);
  1929. if (nlmsg_parse(nlh, hdrlen, tb, IFLA_MAX, ifla_policy) >= 0) {
  1930. if (tb[IFLA_EXT_MASK])
  1931. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1932. }
  1933. if (!ext_filter_mask)
  1934. return NLMSG_GOODSIZE;
  1935. /*
  1936. * traverse the list of net devices and compute the minimum
  1937. * buffer size based upon the filter mask.
  1938. */
  1939. list_for_each_entry(dev, &net->dev_base_head, dev_list) {
  1940. min_ifinfo_dump_size = max_t(u16, min_ifinfo_dump_size,
  1941. if_nlmsg_size(dev,
  1942. ext_filter_mask));
  1943. }
  1944. return min_ifinfo_dump_size;
  1945. }
  1946. static int rtnl_dump_all(struct sk_buff *skb, struct netlink_callback *cb)
  1947. {
  1948. int idx;
  1949. int s_idx = cb->family;
  1950. if (s_idx == 0)
  1951. s_idx = 1;
  1952. for (idx = 1; idx <= RTNL_FAMILY_MAX; idx++) {
  1953. int type = cb->nlh->nlmsg_type-RTM_BASE;
  1954. if (idx < s_idx || idx == PF_PACKET)
  1955. continue;
  1956. if (rtnl_msg_handlers[idx] == NULL ||
  1957. rtnl_msg_handlers[idx][type].dumpit == NULL)
  1958. continue;
  1959. if (idx > s_idx) {
  1960. memset(&cb->args[0], 0, sizeof(cb->args));
  1961. cb->prev_seq = 0;
  1962. cb->seq = 0;
  1963. }
  1964. if (rtnl_msg_handlers[idx][type].dumpit(skb, cb))
  1965. break;
  1966. }
  1967. cb->family = idx;
  1968. return skb->len;
  1969. }
  1970. struct sk_buff *rtmsg_ifinfo_build_skb(int type, struct net_device *dev,
  1971. unsigned int change, gfp_t flags)
  1972. {
  1973. struct net *net = dev_net(dev);
  1974. struct sk_buff *skb;
  1975. int err = -ENOBUFS;
  1976. size_t if_info_size;
  1977. skb = nlmsg_new((if_info_size = if_nlmsg_size(dev, 0)), flags);
  1978. if (skb == NULL)
  1979. goto errout;
  1980. err = rtnl_fill_ifinfo(skb, dev, type, 0, 0, change, 0, 0);
  1981. if (err < 0) {
  1982. /* -EMSGSIZE implies BUG in if_nlmsg_size() */
  1983. WARN_ON(err == -EMSGSIZE);
  1984. kfree_skb(skb);
  1985. goto errout;
  1986. }
  1987. return skb;
  1988. errout:
  1989. if (err < 0)
  1990. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  1991. return NULL;
  1992. }
  1993. void rtmsg_ifinfo_send(struct sk_buff *skb, struct net_device *dev, gfp_t flags)
  1994. {
  1995. struct net *net = dev_net(dev);
  1996. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, flags);
  1997. }
  1998. void rtmsg_ifinfo(int type, struct net_device *dev, unsigned int change,
  1999. gfp_t flags)
  2000. {
  2001. struct sk_buff *skb;
  2002. skb = rtmsg_ifinfo_build_skb(type, dev, change, flags);
  2003. if (skb)
  2004. rtmsg_ifinfo_send(skb, dev, flags);
  2005. }
  2006. EXPORT_SYMBOL(rtmsg_ifinfo);
  2007. static int nlmsg_populate_fdb_fill(struct sk_buff *skb,
  2008. struct net_device *dev,
  2009. u8 *addr, u32 pid, u32 seq,
  2010. int type, unsigned int flags,
  2011. int nlflags)
  2012. {
  2013. struct nlmsghdr *nlh;
  2014. struct ndmsg *ndm;
  2015. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), nlflags);
  2016. if (!nlh)
  2017. return -EMSGSIZE;
  2018. ndm = nlmsg_data(nlh);
  2019. ndm->ndm_family = AF_BRIDGE;
  2020. ndm->ndm_pad1 = 0;
  2021. ndm->ndm_pad2 = 0;
  2022. ndm->ndm_flags = flags;
  2023. ndm->ndm_type = 0;
  2024. ndm->ndm_ifindex = dev->ifindex;
  2025. ndm->ndm_state = NUD_PERMANENT;
  2026. if (nla_put(skb, NDA_LLADDR, ETH_ALEN, addr))
  2027. goto nla_put_failure;
  2028. nlmsg_end(skb, nlh);
  2029. return 0;
  2030. nla_put_failure:
  2031. nlmsg_cancel(skb, nlh);
  2032. return -EMSGSIZE;
  2033. }
  2034. static inline size_t rtnl_fdb_nlmsg_size(void)
  2035. {
  2036. return NLMSG_ALIGN(sizeof(struct ndmsg)) + nla_total_size(ETH_ALEN);
  2037. }
  2038. static void rtnl_fdb_notify(struct net_device *dev, u8 *addr, int type)
  2039. {
  2040. struct net *net = dev_net(dev);
  2041. struct sk_buff *skb;
  2042. int err = -ENOBUFS;
  2043. skb = nlmsg_new(rtnl_fdb_nlmsg_size(), GFP_ATOMIC);
  2044. if (!skb)
  2045. goto errout;
  2046. err = nlmsg_populate_fdb_fill(skb, dev, addr, 0, 0, type, NTF_SELF, 0);
  2047. if (err < 0) {
  2048. kfree_skb(skb);
  2049. goto errout;
  2050. }
  2051. rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
  2052. return;
  2053. errout:
  2054. rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
  2055. }
  2056. /**
  2057. * ndo_dflt_fdb_add - default netdevice operation to add an FDB entry
  2058. */
  2059. int ndo_dflt_fdb_add(struct ndmsg *ndm,
  2060. struct nlattr *tb[],
  2061. struct net_device *dev,
  2062. const unsigned char *addr, u16 vid,
  2063. u16 flags)
  2064. {
  2065. int err = -EINVAL;
  2066. /* If aging addresses are supported device will need to
  2067. * implement its own handler for this.
  2068. */
  2069. if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
  2070. pr_info("%s: FDB only supports static addresses\n", dev->name);
  2071. return err;
  2072. }
  2073. if (vid) {
  2074. pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name);
  2075. return err;
  2076. }
  2077. if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
  2078. err = dev_uc_add_excl(dev, addr);
  2079. else if (is_multicast_ether_addr(addr))
  2080. err = dev_mc_add_excl(dev, addr);
  2081. /* Only return duplicate errors if NLM_F_EXCL is set */
  2082. if (err == -EEXIST && !(flags & NLM_F_EXCL))
  2083. err = 0;
  2084. return err;
  2085. }
  2086. EXPORT_SYMBOL(ndo_dflt_fdb_add);
  2087. static int fdb_vid_parse(struct nlattr *vlan_attr, u16 *p_vid)
  2088. {
  2089. u16 vid = 0;
  2090. if (vlan_attr) {
  2091. if (nla_len(vlan_attr) != sizeof(u16)) {
  2092. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid vlan\n");
  2093. return -EINVAL;
  2094. }
  2095. vid = nla_get_u16(vlan_attr);
  2096. if (!vid || vid >= VLAN_VID_MASK) {
  2097. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid vlan id %d\n",
  2098. vid);
  2099. return -EINVAL;
  2100. }
  2101. }
  2102. *p_vid = vid;
  2103. return 0;
  2104. }
  2105. static int rtnl_fdb_add(struct sk_buff *skb, struct nlmsghdr *nlh)
  2106. {
  2107. struct net *net = sock_net(skb->sk);
  2108. struct ndmsg *ndm;
  2109. struct nlattr *tb[NDA_MAX+1];
  2110. struct net_device *dev;
  2111. u8 *addr;
  2112. u16 vid;
  2113. int err;
  2114. err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
  2115. if (err < 0)
  2116. return err;
  2117. ndm = nlmsg_data(nlh);
  2118. if (ndm->ndm_ifindex == 0) {
  2119. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid ifindex\n");
  2120. return -EINVAL;
  2121. }
  2122. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  2123. if (dev == NULL) {
  2124. pr_info("PF_BRIDGE: RTM_NEWNEIGH with unknown ifindex\n");
  2125. return -ENODEV;
  2126. }
  2127. if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
  2128. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid address\n");
  2129. return -EINVAL;
  2130. }
  2131. addr = nla_data(tb[NDA_LLADDR]);
  2132. err = fdb_vid_parse(tb[NDA_VLAN], &vid);
  2133. if (err)
  2134. return err;
  2135. err = -EOPNOTSUPP;
  2136. /* Support fdb on master device the net/bridge default case */
  2137. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  2138. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  2139. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2140. const struct net_device_ops *ops = br_dev->netdev_ops;
  2141. err = ops->ndo_fdb_add(ndm, tb, dev, addr, vid,
  2142. nlh->nlmsg_flags);
  2143. if (err)
  2144. goto out;
  2145. else
  2146. ndm->ndm_flags &= ~NTF_MASTER;
  2147. }
  2148. /* Embedded bridge, macvlan, and any other device support */
  2149. if ((ndm->ndm_flags & NTF_SELF)) {
  2150. if (dev->netdev_ops->ndo_fdb_add)
  2151. err = dev->netdev_ops->ndo_fdb_add(ndm, tb, dev, addr,
  2152. vid,
  2153. nlh->nlmsg_flags);
  2154. else
  2155. err = ndo_dflt_fdb_add(ndm, tb, dev, addr, vid,
  2156. nlh->nlmsg_flags);
  2157. if (!err) {
  2158. rtnl_fdb_notify(dev, addr, RTM_NEWNEIGH);
  2159. ndm->ndm_flags &= ~NTF_SELF;
  2160. }
  2161. }
  2162. out:
  2163. return err;
  2164. }
  2165. /**
  2166. * ndo_dflt_fdb_del - default netdevice operation to delete an FDB entry
  2167. */
  2168. int ndo_dflt_fdb_del(struct ndmsg *ndm,
  2169. struct nlattr *tb[],
  2170. struct net_device *dev,
  2171. const unsigned char *addr, u16 vid)
  2172. {
  2173. int err = -EINVAL;
  2174. /* If aging addresses are supported device will need to
  2175. * implement its own handler for this.
  2176. */
  2177. if (!(ndm->ndm_state & NUD_PERMANENT)) {
  2178. pr_info("%s: FDB only supports static addresses\n", dev->name);
  2179. return err;
  2180. }
  2181. if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
  2182. err = dev_uc_del(dev, addr);
  2183. else if (is_multicast_ether_addr(addr))
  2184. err = dev_mc_del(dev, addr);
  2185. return err;
  2186. }
  2187. EXPORT_SYMBOL(ndo_dflt_fdb_del);
  2188. static int rtnl_fdb_del(struct sk_buff *skb, struct nlmsghdr *nlh)
  2189. {
  2190. struct net *net = sock_net(skb->sk);
  2191. struct ndmsg *ndm;
  2192. struct nlattr *tb[NDA_MAX+1];
  2193. struct net_device *dev;
  2194. int err = -EINVAL;
  2195. __u8 *addr;
  2196. u16 vid;
  2197. if (!netlink_capable(skb, CAP_NET_ADMIN))
  2198. return -EPERM;
  2199. err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
  2200. if (err < 0)
  2201. return err;
  2202. ndm = nlmsg_data(nlh);
  2203. if (ndm->ndm_ifindex == 0) {
  2204. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid ifindex\n");
  2205. return -EINVAL;
  2206. }
  2207. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  2208. if (dev == NULL) {
  2209. pr_info("PF_BRIDGE: RTM_DELNEIGH with unknown ifindex\n");
  2210. return -ENODEV;
  2211. }
  2212. if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
  2213. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid address\n");
  2214. return -EINVAL;
  2215. }
  2216. addr = nla_data(tb[NDA_LLADDR]);
  2217. err = fdb_vid_parse(tb[NDA_VLAN], &vid);
  2218. if (err)
  2219. return err;
  2220. err = -EOPNOTSUPP;
  2221. /* Support fdb on master device the net/bridge default case */
  2222. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  2223. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  2224. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2225. const struct net_device_ops *ops = br_dev->netdev_ops;
  2226. if (ops->ndo_fdb_del)
  2227. err = ops->ndo_fdb_del(ndm, tb, dev, addr, vid);
  2228. if (err)
  2229. goto out;
  2230. else
  2231. ndm->ndm_flags &= ~NTF_MASTER;
  2232. }
  2233. /* Embedded bridge, macvlan, and any other device support */
  2234. if (ndm->ndm_flags & NTF_SELF) {
  2235. if (dev->netdev_ops->ndo_fdb_del)
  2236. err = dev->netdev_ops->ndo_fdb_del(ndm, tb, dev, addr,
  2237. vid);
  2238. else
  2239. err = ndo_dflt_fdb_del(ndm, tb, dev, addr, vid);
  2240. if (!err) {
  2241. rtnl_fdb_notify(dev, addr, RTM_DELNEIGH);
  2242. ndm->ndm_flags &= ~NTF_SELF;
  2243. }
  2244. }
  2245. out:
  2246. return err;
  2247. }
  2248. static int nlmsg_populate_fdb(struct sk_buff *skb,
  2249. struct netlink_callback *cb,
  2250. struct net_device *dev,
  2251. int *idx,
  2252. struct netdev_hw_addr_list *list)
  2253. {
  2254. struct netdev_hw_addr *ha;
  2255. int err;
  2256. u32 portid, seq;
  2257. portid = NETLINK_CB(cb->skb).portid;
  2258. seq = cb->nlh->nlmsg_seq;
  2259. list_for_each_entry(ha, &list->list, list) {
  2260. if (*idx < cb->args[0])
  2261. goto skip;
  2262. err = nlmsg_populate_fdb_fill(skb, dev, ha->addr,
  2263. portid, seq,
  2264. RTM_NEWNEIGH, NTF_SELF,
  2265. NLM_F_MULTI);
  2266. if (err < 0)
  2267. return err;
  2268. skip:
  2269. *idx += 1;
  2270. }
  2271. return 0;
  2272. }
  2273. /**
  2274. * ndo_dflt_fdb_dump - default netdevice operation to dump an FDB table.
  2275. * @nlh: netlink message header
  2276. * @dev: netdevice
  2277. *
  2278. * Default netdevice operation to dump the existing unicast address list.
  2279. * Returns number of addresses from list put in skb.
  2280. */
  2281. int ndo_dflt_fdb_dump(struct sk_buff *skb,
  2282. struct netlink_callback *cb,
  2283. struct net_device *dev,
  2284. struct net_device *filter_dev,
  2285. int idx)
  2286. {
  2287. int err;
  2288. netif_addr_lock_bh(dev);
  2289. err = nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->uc);
  2290. if (err)
  2291. goto out;
  2292. nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->mc);
  2293. out:
  2294. netif_addr_unlock_bh(dev);
  2295. return idx;
  2296. }
  2297. EXPORT_SYMBOL(ndo_dflt_fdb_dump);
  2298. static int rtnl_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb)
  2299. {
  2300. struct net_device *dev;
  2301. struct nlattr *tb[IFLA_MAX+1];
  2302. struct net_device *bdev = NULL;
  2303. struct net_device *br_dev = NULL;
  2304. const struct net_device_ops *ops = NULL;
  2305. const struct net_device_ops *cops = NULL;
  2306. struct ifinfomsg *ifm = nlmsg_data(cb->nlh);
  2307. struct net *net = sock_net(skb->sk);
  2308. int brport_idx = 0;
  2309. int br_idx = 0;
  2310. int idx = 0;
  2311. if (nlmsg_parse(cb->nlh, sizeof(struct ifinfomsg), tb, IFLA_MAX,
  2312. ifla_policy) == 0) {
  2313. if (tb[IFLA_MASTER])
  2314. br_idx = nla_get_u32(tb[IFLA_MASTER]);
  2315. }
  2316. brport_idx = ifm->ifi_index;
  2317. if (br_idx) {
  2318. br_dev = __dev_get_by_index(net, br_idx);
  2319. if (!br_dev)
  2320. return -ENODEV;
  2321. ops = br_dev->netdev_ops;
  2322. bdev = br_dev;
  2323. }
  2324. for_each_netdev(net, dev) {
  2325. if (brport_idx && (dev->ifindex != brport_idx))
  2326. continue;
  2327. if (!br_idx) { /* user did not specify a specific bridge */
  2328. if (dev->priv_flags & IFF_BRIDGE_PORT) {
  2329. br_dev = netdev_master_upper_dev_get(dev);
  2330. cops = br_dev->netdev_ops;
  2331. }
  2332. bdev = dev;
  2333. } else {
  2334. if (dev != br_dev &&
  2335. !(dev->priv_flags & IFF_BRIDGE_PORT))
  2336. continue;
  2337. if (br_dev != netdev_master_upper_dev_get(dev) &&
  2338. !(dev->priv_flags & IFF_EBRIDGE))
  2339. continue;
  2340. bdev = br_dev;
  2341. cops = ops;
  2342. }
  2343. if (dev->priv_flags & IFF_BRIDGE_PORT) {
  2344. if (cops && cops->ndo_fdb_dump)
  2345. idx = cops->ndo_fdb_dump(skb, cb, br_dev, dev,
  2346. idx);
  2347. }
  2348. if (dev->netdev_ops->ndo_fdb_dump)
  2349. idx = dev->netdev_ops->ndo_fdb_dump(skb, cb, dev, NULL,
  2350. idx);
  2351. else
  2352. idx = ndo_dflt_fdb_dump(skb, cb, dev, NULL, idx);
  2353. cops = NULL;
  2354. }
  2355. cb->args[0] = idx;
  2356. return skb->len;
  2357. }
  2358. static int brport_nla_put_flag(struct sk_buff *skb, u32 flags, u32 mask,
  2359. unsigned int attrnum, unsigned int flag)
  2360. {
  2361. if (mask & flag)
  2362. return nla_put_u8(skb, attrnum, !!(flags & flag));
  2363. return 0;
  2364. }
  2365. int ndo_dflt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
  2366. struct net_device *dev, u16 mode,
  2367. u32 flags, u32 mask)
  2368. {
  2369. struct nlmsghdr *nlh;
  2370. struct ifinfomsg *ifm;
  2371. struct nlattr *br_afspec;
  2372. struct nlattr *protinfo;
  2373. u8 operstate = netif_running(dev) ? dev->operstate : IF_OPER_DOWN;
  2374. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2375. nlh = nlmsg_put(skb, pid, seq, RTM_NEWLINK, sizeof(*ifm), NLM_F_MULTI);
  2376. if (nlh == NULL)
  2377. return -EMSGSIZE;
  2378. ifm = nlmsg_data(nlh);
  2379. ifm->ifi_family = AF_BRIDGE;
  2380. ifm->__ifi_pad = 0;
  2381. ifm->ifi_type = dev->type;
  2382. ifm->ifi_index = dev->ifindex;
  2383. ifm->ifi_flags = dev_get_flags(dev);
  2384. ifm->ifi_change = 0;
  2385. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  2386. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  2387. nla_put_u8(skb, IFLA_OPERSTATE, operstate) ||
  2388. (br_dev &&
  2389. nla_put_u32(skb, IFLA_MASTER, br_dev->ifindex)) ||
  2390. (dev->addr_len &&
  2391. nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr)) ||
  2392. (dev->ifindex != dev->iflink &&
  2393. nla_put_u32(skb, IFLA_LINK, dev->iflink)))
  2394. goto nla_put_failure;
  2395. br_afspec = nla_nest_start(skb, IFLA_AF_SPEC);
  2396. if (!br_afspec)
  2397. goto nla_put_failure;
  2398. if (nla_put_u16(skb, IFLA_BRIDGE_FLAGS, BRIDGE_FLAGS_SELF)) {
  2399. nla_nest_cancel(skb, br_afspec);
  2400. goto nla_put_failure;
  2401. }
  2402. if (mode != BRIDGE_MODE_UNDEF) {
  2403. if (nla_put_u16(skb, IFLA_BRIDGE_MODE, mode)) {
  2404. nla_nest_cancel(skb, br_afspec);
  2405. goto nla_put_failure;
  2406. }
  2407. }
  2408. nla_nest_end(skb, br_afspec);
  2409. protinfo = nla_nest_start(skb, IFLA_PROTINFO | NLA_F_NESTED);
  2410. if (!protinfo)
  2411. goto nla_put_failure;
  2412. if (brport_nla_put_flag(skb, flags, mask,
  2413. IFLA_BRPORT_MODE, BR_HAIRPIN_MODE) ||
  2414. brport_nla_put_flag(skb, flags, mask,
  2415. IFLA_BRPORT_GUARD, BR_BPDU_GUARD) ||
  2416. brport_nla_put_flag(skb, flags, mask,
  2417. IFLA_BRPORT_FAST_LEAVE,
  2418. BR_MULTICAST_FAST_LEAVE) ||
  2419. brport_nla_put_flag(skb, flags, mask,
  2420. IFLA_BRPORT_PROTECT, BR_ROOT_BLOCK) ||
  2421. brport_nla_put_flag(skb, flags, mask,
  2422. IFLA_BRPORT_LEARNING, BR_LEARNING) ||
  2423. brport_nla_put_flag(skb, flags, mask,
  2424. IFLA_BRPORT_LEARNING_SYNC, BR_LEARNING_SYNC) ||
  2425. brport_nla_put_flag(skb, flags, mask,
  2426. IFLA_BRPORT_UNICAST_FLOOD, BR_FLOOD) ||
  2427. brport_nla_put_flag(skb, flags, mask,
  2428. IFLA_BRPORT_PROXYARP, BR_PROXYARP)) {
  2429. nla_nest_cancel(skb, protinfo);
  2430. goto nla_put_failure;
  2431. }
  2432. nla_nest_end(skb, protinfo);
  2433. nlmsg_end(skb, nlh);
  2434. return 0;
  2435. nla_put_failure:
  2436. nlmsg_cancel(skb, nlh);
  2437. return -EMSGSIZE;
  2438. }
  2439. EXPORT_SYMBOL(ndo_dflt_bridge_getlink);
  2440. static int rtnl_bridge_getlink(struct sk_buff *skb, struct netlink_callback *cb)
  2441. {
  2442. struct net *net = sock_net(skb->sk);
  2443. struct net_device *dev;
  2444. int idx = 0;
  2445. u32 portid = NETLINK_CB(cb->skb).portid;
  2446. u32 seq = cb->nlh->nlmsg_seq;
  2447. u32 filter_mask = 0;
  2448. if (nlmsg_len(cb->nlh) > sizeof(struct ifinfomsg)) {
  2449. struct nlattr *extfilt;
  2450. extfilt = nlmsg_find_attr(cb->nlh, sizeof(struct ifinfomsg),
  2451. IFLA_EXT_MASK);
  2452. if (extfilt) {
  2453. if (nla_len(extfilt) < sizeof(filter_mask))
  2454. return -EINVAL;
  2455. filter_mask = nla_get_u32(extfilt);
  2456. }
  2457. }
  2458. rcu_read_lock();
  2459. for_each_netdev_rcu(net, dev) {
  2460. const struct net_device_ops *ops = dev->netdev_ops;
  2461. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2462. if (br_dev && br_dev->netdev_ops->ndo_bridge_getlink) {
  2463. if (idx >= cb->args[0] &&
  2464. br_dev->netdev_ops->ndo_bridge_getlink(
  2465. skb, portid, seq, dev, filter_mask) < 0)
  2466. break;
  2467. idx++;
  2468. }
  2469. if (ops->ndo_bridge_getlink) {
  2470. if (idx >= cb->args[0] &&
  2471. ops->ndo_bridge_getlink(skb, portid, seq, dev,
  2472. filter_mask) < 0)
  2473. break;
  2474. idx++;
  2475. }
  2476. }
  2477. rcu_read_unlock();
  2478. cb->args[0] = idx;
  2479. return skb->len;
  2480. }
  2481. static inline size_t bridge_nlmsg_size(void)
  2482. {
  2483. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  2484. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  2485. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  2486. + nla_total_size(sizeof(u32)) /* IFLA_MASTER */
  2487. + nla_total_size(sizeof(u32)) /* IFLA_MTU */
  2488. + nla_total_size(sizeof(u32)) /* IFLA_LINK */
  2489. + nla_total_size(sizeof(u32)) /* IFLA_OPERSTATE */
  2490. + nla_total_size(sizeof(u8)) /* IFLA_PROTINFO */
  2491. + nla_total_size(sizeof(struct nlattr)) /* IFLA_AF_SPEC */
  2492. + nla_total_size(sizeof(u16)) /* IFLA_BRIDGE_FLAGS */
  2493. + nla_total_size(sizeof(u16)); /* IFLA_BRIDGE_MODE */
  2494. }
  2495. static int rtnl_bridge_notify(struct net_device *dev)
  2496. {
  2497. struct net *net = dev_net(dev);
  2498. struct sk_buff *skb;
  2499. int err = -EOPNOTSUPP;
  2500. if (!dev->netdev_ops->ndo_bridge_getlink)
  2501. return 0;
  2502. skb = nlmsg_new(bridge_nlmsg_size(), GFP_ATOMIC);
  2503. if (!skb) {
  2504. err = -ENOMEM;
  2505. goto errout;
  2506. }
  2507. err = dev->netdev_ops->ndo_bridge_getlink(skb, 0, 0, dev, 0);
  2508. if (err < 0)
  2509. goto errout;
  2510. if (!skb->len)
  2511. goto errout;
  2512. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_ATOMIC);
  2513. return 0;
  2514. errout:
  2515. WARN_ON(err == -EMSGSIZE);
  2516. kfree_skb(skb);
  2517. if (err)
  2518. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  2519. return err;
  2520. }
  2521. static int rtnl_bridge_setlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  2522. {
  2523. struct net *net = sock_net(skb->sk);
  2524. struct ifinfomsg *ifm;
  2525. struct net_device *dev;
  2526. struct nlattr *br_spec, *attr = NULL;
  2527. int rem, err = -EOPNOTSUPP;
  2528. u16 flags = 0;
  2529. bool have_flags = false;
  2530. if (nlmsg_len(nlh) < sizeof(*ifm))
  2531. return -EINVAL;
  2532. ifm = nlmsg_data(nlh);
  2533. if (ifm->ifi_family != AF_BRIDGE)
  2534. return -EPFNOSUPPORT;
  2535. dev = __dev_get_by_index(net, ifm->ifi_index);
  2536. if (!dev) {
  2537. pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
  2538. return -ENODEV;
  2539. }
  2540. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  2541. if (br_spec) {
  2542. nla_for_each_nested(attr, br_spec, rem) {
  2543. if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
  2544. if (nla_len(attr) < sizeof(flags))
  2545. return -EINVAL;
  2546. have_flags = true;
  2547. flags = nla_get_u16(attr);
  2548. break;
  2549. }
  2550. }
  2551. }
  2552. if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
  2553. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2554. if (!br_dev || !br_dev->netdev_ops->ndo_bridge_setlink) {
  2555. err = -EOPNOTSUPP;
  2556. goto out;
  2557. }
  2558. err = br_dev->netdev_ops->ndo_bridge_setlink(dev, nlh, flags);
  2559. if (err)
  2560. goto out;
  2561. flags &= ~BRIDGE_FLAGS_MASTER;
  2562. }
  2563. if ((flags & BRIDGE_FLAGS_SELF)) {
  2564. if (!dev->netdev_ops->ndo_bridge_setlink)
  2565. err = -EOPNOTSUPP;
  2566. else
  2567. err = dev->netdev_ops->ndo_bridge_setlink(dev, nlh,
  2568. flags);
  2569. if (!err) {
  2570. flags &= ~BRIDGE_FLAGS_SELF;
  2571. /* Generate event to notify upper layer of bridge
  2572. * change
  2573. */
  2574. err = rtnl_bridge_notify(dev);
  2575. }
  2576. }
  2577. if (have_flags)
  2578. memcpy(nla_data(attr), &flags, sizeof(flags));
  2579. out:
  2580. return err;
  2581. }
  2582. static int rtnl_bridge_dellink(struct sk_buff *skb, struct nlmsghdr *nlh)
  2583. {
  2584. struct net *net = sock_net(skb->sk);
  2585. struct ifinfomsg *ifm;
  2586. struct net_device *dev;
  2587. struct nlattr *br_spec, *attr = NULL;
  2588. int rem, err = -EOPNOTSUPP;
  2589. u16 flags = 0;
  2590. bool have_flags = false;
  2591. if (nlmsg_len(nlh) < sizeof(*ifm))
  2592. return -EINVAL;
  2593. ifm = nlmsg_data(nlh);
  2594. if (ifm->ifi_family != AF_BRIDGE)
  2595. return -EPFNOSUPPORT;
  2596. dev = __dev_get_by_index(net, ifm->ifi_index);
  2597. if (!dev) {
  2598. pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
  2599. return -ENODEV;
  2600. }
  2601. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  2602. if (br_spec) {
  2603. nla_for_each_nested(attr, br_spec, rem) {
  2604. if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
  2605. if (nla_len(attr) < sizeof(flags))
  2606. return -EINVAL;
  2607. have_flags = true;
  2608. flags = nla_get_u16(attr);
  2609. break;
  2610. }
  2611. }
  2612. }
  2613. if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
  2614. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2615. if (!br_dev || !br_dev->netdev_ops->ndo_bridge_dellink) {
  2616. err = -EOPNOTSUPP;
  2617. goto out;
  2618. }
  2619. err = br_dev->netdev_ops->ndo_bridge_dellink(dev, nlh, flags);
  2620. if (err)
  2621. goto out;
  2622. flags &= ~BRIDGE_FLAGS_MASTER;
  2623. }
  2624. if ((flags & BRIDGE_FLAGS_SELF)) {
  2625. if (!dev->netdev_ops->ndo_bridge_dellink)
  2626. err = -EOPNOTSUPP;
  2627. else
  2628. err = dev->netdev_ops->ndo_bridge_dellink(dev, nlh,
  2629. flags);
  2630. if (!err) {
  2631. flags &= ~BRIDGE_FLAGS_SELF;
  2632. /* Generate event to notify upper layer of bridge
  2633. * change
  2634. */
  2635. err = rtnl_bridge_notify(dev);
  2636. }
  2637. }
  2638. if (have_flags)
  2639. memcpy(nla_data(attr), &flags, sizeof(flags));
  2640. out:
  2641. return err;
  2642. }
  2643. /* Process one rtnetlink message. */
  2644. static int rtnetlink_rcv_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
  2645. {
  2646. struct net *net = sock_net(skb->sk);
  2647. rtnl_doit_func doit;
  2648. int sz_idx, kind;
  2649. int family;
  2650. int type;
  2651. int err;
  2652. type = nlh->nlmsg_type;
  2653. if (type > RTM_MAX)
  2654. return -EOPNOTSUPP;
  2655. type -= RTM_BASE;
  2656. /* All the messages must have at least 1 byte length */
  2657. if (nlmsg_len(nlh) < sizeof(struct rtgenmsg))
  2658. return 0;
  2659. family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
  2660. sz_idx = type>>2;
  2661. kind = type&3;
  2662. if (kind != 2 && !netlink_net_capable(skb, CAP_NET_ADMIN))
  2663. return -EPERM;
  2664. if (kind == 2 && nlh->nlmsg_flags&NLM_F_DUMP) {
  2665. struct sock *rtnl;
  2666. rtnl_dumpit_func dumpit;
  2667. rtnl_calcit_func calcit;
  2668. u16 min_dump_alloc = 0;
  2669. dumpit = rtnl_get_dumpit(family, type);
  2670. if (dumpit == NULL)
  2671. return -EOPNOTSUPP;
  2672. calcit = rtnl_get_calcit(family, type);
  2673. if (calcit)
  2674. min_dump_alloc = calcit(skb, nlh);
  2675. __rtnl_unlock();
  2676. rtnl = net->rtnl;
  2677. {
  2678. struct netlink_dump_control c = {
  2679. .dump = dumpit,
  2680. .min_dump_alloc = min_dump_alloc,
  2681. };
  2682. err = netlink_dump_start(rtnl, skb, nlh, &c);
  2683. }
  2684. rtnl_lock();
  2685. return err;
  2686. }
  2687. doit = rtnl_get_doit(family, type);
  2688. if (doit == NULL)
  2689. return -EOPNOTSUPP;
  2690. return doit(skb, nlh);
  2691. }
  2692. static void rtnetlink_rcv(struct sk_buff *skb)
  2693. {
  2694. rtnl_lock();
  2695. netlink_rcv_skb(skb, &rtnetlink_rcv_msg);
  2696. rtnl_unlock();
  2697. }
  2698. static int rtnetlink_event(struct notifier_block *this, unsigned long event, void *ptr)
  2699. {
  2700. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  2701. switch (event) {
  2702. case NETDEV_UP:
  2703. case NETDEV_DOWN:
  2704. case NETDEV_PRE_UP:
  2705. case NETDEV_POST_INIT:
  2706. case NETDEV_REGISTER:
  2707. case NETDEV_CHANGE:
  2708. case NETDEV_PRE_TYPE_CHANGE:
  2709. case NETDEV_GOING_DOWN:
  2710. case NETDEV_UNREGISTER:
  2711. case NETDEV_UNREGISTER_FINAL:
  2712. case NETDEV_RELEASE:
  2713. case NETDEV_JOIN:
  2714. case NETDEV_BONDING_INFO:
  2715. break;
  2716. default:
  2717. rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
  2718. break;
  2719. }
  2720. return NOTIFY_DONE;
  2721. }
  2722. static struct notifier_block rtnetlink_dev_notifier = {
  2723. .notifier_call = rtnetlink_event,
  2724. };
  2725. static int __net_init rtnetlink_net_init(struct net *net)
  2726. {
  2727. struct sock *sk;
  2728. struct netlink_kernel_cfg cfg = {
  2729. .groups = RTNLGRP_MAX,
  2730. .input = rtnetlink_rcv,
  2731. .cb_mutex = &rtnl_mutex,
  2732. .flags = NL_CFG_F_NONROOT_RECV,
  2733. };
  2734. sk = netlink_kernel_create(net, NETLINK_ROUTE, &cfg);
  2735. if (!sk)
  2736. return -ENOMEM;
  2737. net->rtnl = sk;
  2738. return 0;
  2739. }
  2740. static void __net_exit rtnetlink_net_exit(struct net *net)
  2741. {
  2742. netlink_kernel_release(net->rtnl);
  2743. net->rtnl = NULL;
  2744. }
  2745. static struct pernet_operations rtnetlink_net_ops = {
  2746. .init = rtnetlink_net_init,
  2747. .exit = rtnetlink_net_exit,
  2748. };
  2749. void __init rtnetlink_init(void)
  2750. {
  2751. if (register_pernet_subsys(&rtnetlink_net_ops))
  2752. panic("rtnetlink_init: cannot initialize rtnetlink\n");
  2753. register_netdevice_notifier(&rtnetlink_dev_notifier);
  2754. rtnl_register(PF_UNSPEC, RTM_GETLINK, rtnl_getlink,
  2755. rtnl_dump_ifinfo, rtnl_calcit);
  2756. rtnl_register(PF_UNSPEC, RTM_SETLINK, rtnl_setlink, NULL, NULL);
  2757. rtnl_register(PF_UNSPEC, RTM_NEWLINK, rtnl_newlink, NULL, NULL);
  2758. rtnl_register(PF_UNSPEC, RTM_DELLINK, rtnl_dellink, NULL, NULL);
  2759. rtnl_register(PF_UNSPEC, RTM_GETADDR, NULL, rtnl_dump_all, NULL);
  2760. rtnl_register(PF_UNSPEC, RTM_GETROUTE, NULL, rtnl_dump_all, NULL);
  2761. rtnl_register(PF_BRIDGE, RTM_NEWNEIGH, rtnl_fdb_add, NULL, NULL);
  2762. rtnl_register(PF_BRIDGE, RTM_DELNEIGH, rtnl_fdb_del, NULL, NULL);
  2763. rtnl_register(PF_BRIDGE, RTM_GETNEIGH, NULL, rtnl_fdb_dump, NULL);
  2764. rtnl_register(PF_BRIDGE, RTM_GETLINK, NULL, rtnl_bridge_getlink, NULL);
  2765. rtnl_register(PF_BRIDGE, RTM_DELLINK, rtnl_bridge_dellink, NULL, NULL);
  2766. rtnl_register(PF_BRIDGE, RTM_SETLINK, rtnl_bridge_setlink, NULL, NULL);
  2767. }