rmap.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * mm->mmap_sem
  24. * page->flags PG_locked (lock_page)
  25. * mapping->i_mmap_rwsem
  26. * anon_vma->rwsem
  27. * mm->page_table_lock or pte_lock
  28. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  29. * swap_lock (in swap_duplicate, swap_info_get)
  30. * mmlist_lock (in mmput, drain_mmlist and others)
  31. * mapping->private_lock (in __set_page_dirty_buffers)
  32. * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  33. * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within bdi.wb->list_lock in __sync_single_inode)
  38. *
  39. * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
  40. * ->tasklist_lock
  41. * pte map lock
  42. */
  43. #include <linux/mm.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/swap.h>
  46. #include <linux/swapops.h>
  47. #include <linux/slab.h>
  48. #include <linux/init.h>
  49. #include <linux/ksm.h>
  50. #include <linux/rmap.h>
  51. #include <linux/rcupdate.h>
  52. #include <linux/export.h>
  53. #include <linux/memcontrol.h>
  54. #include <linux/mmu_notifier.h>
  55. #include <linux/migrate.h>
  56. #include <linux/hugetlb.h>
  57. #include <linux/backing-dev.h>
  58. #include <asm/tlbflush.h>
  59. #include "internal.h"
  60. static struct kmem_cache *anon_vma_cachep;
  61. static struct kmem_cache *anon_vma_chain_cachep;
  62. static inline struct anon_vma *anon_vma_alloc(void)
  63. {
  64. struct anon_vma *anon_vma;
  65. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  66. if (anon_vma) {
  67. atomic_set(&anon_vma->refcount, 1);
  68. anon_vma->degree = 1; /* Reference for first vma */
  69. anon_vma->parent = anon_vma;
  70. /*
  71. * Initialise the anon_vma root to point to itself. If called
  72. * from fork, the root will be reset to the parents anon_vma.
  73. */
  74. anon_vma->root = anon_vma;
  75. }
  76. return anon_vma;
  77. }
  78. static inline void anon_vma_free(struct anon_vma *anon_vma)
  79. {
  80. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  81. /*
  82. * Synchronize against page_lock_anon_vma_read() such that
  83. * we can safely hold the lock without the anon_vma getting
  84. * freed.
  85. *
  86. * Relies on the full mb implied by the atomic_dec_and_test() from
  87. * put_anon_vma() against the acquire barrier implied by
  88. * down_read_trylock() from page_lock_anon_vma_read(). This orders:
  89. *
  90. * page_lock_anon_vma_read() VS put_anon_vma()
  91. * down_read_trylock() atomic_dec_and_test()
  92. * LOCK MB
  93. * atomic_read() rwsem_is_locked()
  94. *
  95. * LOCK should suffice since the actual taking of the lock must
  96. * happen _before_ what follows.
  97. */
  98. might_sleep();
  99. if (rwsem_is_locked(&anon_vma->root->rwsem)) {
  100. anon_vma_lock_write(anon_vma);
  101. anon_vma_unlock_write(anon_vma);
  102. }
  103. kmem_cache_free(anon_vma_cachep, anon_vma);
  104. }
  105. static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
  106. {
  107. return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
  108. }
  109. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  110. {
  111. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  112. }
  113. static void anon_vma_chain_link(struct vm_area_struct *vma,
  114. struct anon_vma_chain *avc,
  115. struct anon_vma *anon_vma)
  116. {
  117. avc->vma = vma;
  118. avc->anon_vma = anon_vma;
  119. list_add(&avc->same_vma, &vma->anon_vma_chain);
  120. anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
  121. }
  122. /**
  123. * anon_vma_prepare - attach an anon_vma to a memory region
  124. * @vma: the memory region in question
  125. *
  126. * This makes sure the memory mapping described by 'vma' has
  127. * an 'anon_vma' attached to it, so that we can associate the
  128. * anonymous pages mapped into it with that anon_vma.
  129. *
  130. * The common case will be that we already have one, but if
  131. * not we either need to find an adjacent mapping that we
  132. * can re-use the anon_vma from (very common when the only
  133. * reason for splitting a vma has been mprotect()), or we
  134. * allocate a new one.
  135. *
  136. * Anon-vma allocations are very subtle, because we may have
  137. * optimistically looked up an anon_vma in page_lock_anon_vma_read()
  138. * and that may actually touch the spinlock even in the newly
  139. * allocated vma (it depends on RCU to make sure that the
  140. * anon_vma isn't actually destroyed).
  141. *
  142. * As a result, we need to do proper anon_vma locking even
  143. * for the new allocation. At the same time, we do not want
  144. * to do any locking for the common case of already having
  145. * an anon_vma.
  146. *
  147. * This must be called with the mmap_sem held for reading.
  148. */
  149. int anon_vma_prepare(struct vm_area_struct *vma)
  150. {
  151. struct anon_vma *anon_vma = vma->anon_vma;
  152. struct anon_vma_chain *avc;
  153. might_sleep();
  154. if (unlikely(!anon_vma)) {
  155. struct mm_struct *mm = vma->vm_mm;
  156. struct anon_vma *allocated;
  157. avc = anon_vma_chain_alloc(GFP_KERNEL);
  158. if (!avc)
  159. goto out_enomem;
  160. anon_vma = find_mergeable_anon_vma(vma);
  161. allocated = NULL;
  162. if (!anon_vma) {
  163. anon_vma = anon_vma_alloc();
  164. if (unlikely(!anon_vma))
  165. goto out_enomem_free_avc;
  166. allocated = anon_vma;
  167. }
  168. anon_vma_lock_write(anon_vma);
  169. /* page_table_lock to protect against threads */
  170. spin_lock(&mm->page_table_lock);
  171. if (likely(!vma->anon_vma)) {
  172. vma->anon_vma = anon_vma;
  173. anon_vma_chain_link(vma, avc, anon_vma);
  174. /* vma reference or self-parent link for new root */
  175. anon_vma->degree++;
  176. allocated = NULL;
  177. avc = NULL;
  178. }
  179. spin_unlock(&mm->page_table_lock);
  180. anon_vma_unlock_write(anon_vma);
  181. if (unlikely(allocated))
  182. put_anon_vma(allocated);
  183. if (unlikely(avc))
  184. anon_vma_chain_free(avc);
  185. }
  186. return 0;
  187. out_enomem_free_avc:
  188. anon_vma_chain_free(avc);
  189. out_enomem:
  190. return -ENOMEM;
  191. }
  192. /*
  193. * This is a useful helper function for locking the anon_vma root as
  194. * we traverse the vma->anon_vma_chain, looping over anon_vma's that
  195. * have the same vma.
  196. *
  197. * Such anon_vma's should have the same root, so you'd expect to see
  198. * just a single mutex_lock for the whole traversal.
  199. */
  200. static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
  201. {
  202. struct anon_vma *new_root = anon_vma->root;
  203. if (new_root != root) {
  204. if (WARN_ON_ONCE(root))
  205. up_write(&root->rwsem);
  206. root = new_root;
  207. down_write(&root->rwsem);
  208. }
  209. return root;
  210. }
  211. static inline void unlock_anon_vma_root(struct anon_vma *root)
  212. {
  213. if (root)
  214. up_write(&root->rwsem);
  215. }
  216. /*
  217. * Attach the anon_vmas from src to dst.
  218. * Returns 0 on success, -ENOMEM on failure.
  219. *
  220. * If dst->anon_vma is NULL this function tries to find and reuse existing
  221. * anon_vma which has no vmas and only one child anon_vma. This prevents
  222. * degradation of anon_vma hierarchy to endless linear chain in case of
  223. * constantly forking task. On the other hand, an anon_vma with more than one
  224. * child isn't reused even if there was no alive vma, thus rmap walker has a
  225. * good chance of avoiding scanning the whole hierarchy when it searches where
  226. * page is mapped.
  227. */
  228. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  229. {
  230. struct anon_vma_chain *avc, *pavc;
  231. struct anon_vma *root = NULL;
  232. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  233. struct anon_vma *anon_vma;
  234. avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
  235. if (unlikely(!avc)) {
  236. unlock_anon_vma_root(root);
  237. root = NULL;
  238. avc = anon_vma_chain_alloc(GFP_KERNEL);
  239. if (!avc)
  240. goto enomem_failure;
  241. }
  242. anon_vma = pavc->anon_vma;
  243. root = lock_anon_vma_root(root, anon_vma);
  244. anon_vma_chain_link(dst, avc, anon_vma);
  245. /*
  246. * Reuse existing anon_vma if its degree lower than two,
  247. * that means it has no vma and only one anon_vma child.
  248. *
  249. * Do not chose parent anon_vma, otherwise first child
  250. * will always reuse it. Root anon_vma is never reused:
  251. * it has self-parent reference and at least one child.
  252. */
  253. if (!dst->anon_vma && anon_vma != src->anon_vma &&
  254. anon_vma->degree < 2)
  255. dst->anon_vma = anon_vma;
  256. }
  257. if (dst->anon_vma)
  258. dst->anon_vma->degree++;
  259. unlock_anon_vma_root(root);
  260. return 0;
  261. enomem_failure:
  262. unlink_anon_vmas(dst);
  263. return -ENOMEM;
  264. }
  265. /*
  266. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  267. * the corresponding VMA in the parent process is attached to.
  268. * Returns 0 on success, non-zero on failure.
  269. */
  270. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  271. {
  272. struct anon_vma_chain *avc;
  273. struct anon_vma *anon_vma;
  274. int error;
  275. /* Don't bother if the parent process has no anon_vma here. */
  276. if (!pvma->anon_vma)
  277. return 0;
  278. /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
  279. vma->anon_vma = NULL;
  280. /*
  281. * First, attach the new VMA to the parent VMA's anon_vmas,
  282. * so rmap can find non-COWed pages in child processes.
  283. */
  284. error = anon_vma_clone(vma, pvma);
  285. if (error)
  286. return error;
  287. /* An existing anon_vma has been reused, all done then. */
  288. if (vma->anon_vma)
  289. return 0;
  290. /* Then add our own anon_vma. */
  291. anon_vma = anon_vma_alloc();
  292. if (!anon_vma)
  293. goto out_error;
  294. avc = anon_vma_chain_alloc(GFP_KERNEL);
  295. if (!avc)
  296. goto out_error_free_anon_vma;
  297. /*
  298. * The root anon_vma's spinlock is the lock actually used when we
  299. * lock any of the anon_vmas in this anon_vma tree.
  300. */
  301. anon_vma->root = pvma->anon_vma->root;
  302. anon_vma->parent = pvma->anon_vma;
  303. /*
  304. * With refcounts, an anon_vma can stay around longer than the
  305. * process it belongs to. The root anon_vma needs to be pinned until
  306. * this anon_vma is freed, because the lock lives in the root.
  307. */
  308. get_anon_vma(anon_vma->root);
  309. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  310. vma->anon_vma = anon_vma;
  311. anon_vma_lock_write(anon_vma);
  312. anon_vma_chain_link(vma, avc, anon_vma);
  313. anon_vma->parent->degree++;
  314. anon_vma_unlock_write(anon_vma);
  315. return 0;
  316. out_error_free_anon_vma:
  317. put_anon_vma(anon_vma);
  318. out_error:
  319. unlink_anon_vmas(vma);
  320. return -ENOMEM;
  321. }
  322. void unlink_anon_vmas(struct vm_area_struct *vma)
  323. {
  324. struct anon_vma_chain *avc, *next;
  325. struct anon_vma *root = NULL;
  326. /*
  327. * Unlink each anon_vma chained to the VMA. This list is ordered
  328. * from newest to oldest, ensuring the root anon_vma gets freed last.
  329. */
  330. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  331. struct anon_vma *anon_vma = avc->anon_vma;
  332. root = lock_anon_vma_root(root, anon_vma);
  333. anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
  334. /*
  335. * Leave empty anon_vmas on the list - we'll need
  336. * to free them outside the lock.
  337. */
  338. if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
  339. anon_vma->parent->degree--;
  340. continue;
  341. }
  342. list_del(&avc->same_vma);
  343. anon_vma_chain_free(avc);
  344. }
  345. if (vma->anon_vma)
  346. vma->anon_vma->degree--;
  347. unlock_anon_vma_root(root);
  348. /*
  349. * Iterate the list once more, it now only contains empty and unlinked
  350. * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
  351. * needing to write-acquire the anon_vma->root->rwsem.
  352. */
  353. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  354. struct anon_vma *anon_vma = avc->anon_vma;
  355. BUG_ON(anon_vma->degree);
  356. put_anon_vma(anon_vma);
  357. list_del(&avc->same_vma);
  358. anon_vma_chain_free(avc);
  359. }
  360. }
  361. static void anon_vma_ctor(void *data)
  362. {
  363. struct anon_vma *anon_vma = data;
  364. init_rwsem(&anon_vma->rwsem);
  365. atomic_set(&anon_vma->refcount, 0);
  366. anon_vma->rb_root = RB_ROOT;
  367. }
  368. void __init anon_vma_init(void)
  369. {
  370. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  371. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  372. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  373. }
  374. /*
  375. * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
  376. *
  377. * Since there is no serialization what so ever against page_remove_rmap()
  378. * the best this function can do is return a locked anon_vma that might
  379. * have been relevant to this page.
  380. *
  381. * The page might have been remapped to a different anon_vma or the anon_vma
  382. * returned may already be freed (and even reused).
  383. *
  384. * In case it was remapped to a different anon_vma, the new anon_vma will be a
  385. * child of the old anon_vma, and the anon_vma lifetime rules will therefore
  386. * ensure that any anon_vma obtained from the page will still be valid for as
  387. * long as we observe page_mapped() [ hence all those page_mapped() tests ].
  388. *
  389. * All users of this function must be very careful when walking the anon_vma
  390. * chain and verify that the page in question is indeed mapped in it
  391. * [ something equivalent to page_mapped_in_vma() ].
  392. *
  393. * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
  394. * that the anon_vma pointer from page->mapping is valid if there is a
  395. * mapcount, we can dereference the anon_vma after observing those.
  396. */
  397. struct anon_vma *page_get_anon_vma(struct page *page)
  398. {
  399. struct anon_vma *anon_vma = NULL;
  400. unsigned long anon_mapping;
  401. rcu_read_lock();
  402. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  403. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  404. goto out;
  405. if (!page_mapped(page))
  406. goto out;
  407. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  408. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  409. anon_vma = NULL;
  410. goto out;
  411. }
  412. /*
  413. * If this page is still mapped, then its anon_vma cannot have been
  414. * freed. But if it has been unmapped, we have no security against the
  415. * anon_vma structure being freed and reused (for another anon_vma:
  416. * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
  417. * above cannot corrupt).
  418. */
  419. if (!page_mapped(page)) {
  420. rcu_read_unlock();
  421. put_anon_vma(anon_vma);
  422. return NULL;
  423. }
  424. out:
  425. rcu_read_unlock();
  426. return anon_vma;
  427. }
  428. /*
  429. * Similar to page_get_anon_vma() except it locks the anon_vma.
  430. *
  431. * Its a little more complex as it tries to keep the fast path to a single
  432. * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
  433. * reference like with page_get_anon_vma() and then block on the mutex.
  434. */
  435. struct anon_vma *page_lock_anon_vma_read(struct page *page)
  436. {
  437. struct anon_vma *anon_vma = NULL;
  438. struct anon_vma *root_anon_vma;
  439. unsigned long anon_mapping;
  440. rcu_read_lock();
  441. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  442. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  443. goto out;
  444. if (!page_mapped(page))
  445. goto out;
  446. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  447. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  448. if (down_read_trylock(&root_anon_vma->rwsem)) {
  449. /*
  450. * If the page is still mapped, then this anon_vma is still
  451. * its anon_vma, and holding the mutex ensures that it will
  452. * not go away, see anon_vma_free().
  453. */
  454. if (!page_mapped(page)) {
  455. up_read(&root_anon_vma->rwsem);
  456. anon_vma = NULL;
  457. }
  458. goto out;
  459. }
  460. /* trylock failed, we got to sleep */
  461. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  462. anon_vma = NULL;
  463. goto out;
  464. }
  465. if (!page_mapped(page)) {
  466. rcu_read_unlock();
  467. put_anon_vma(anon_vma);
  468. return NULL;
  469. }
  470. /* we pinned the anon_vma, its safe to sleep */
  471. rcu_read_unlock();
  472. anon_vma_lock_read(anon_vma);
  473. if (atomic_dec_and_test(&anon_vma->refcount)) {
  474. /*
  475. * Oops, we held the last refcount, release the lock
  476. * and bail -- can't simply use put_anon_vma() because
  477. * we'll deadlock on the anon_vma_lock_write() recursion.
  478. */
  479. anon_vma_unlock_read(anon_vma);
  480. __put_anon_vma(anon_vma);
  481. anon_vma = NULL;
  482. }
  483. return anon_vma;
  484. out:
  485. rcu_read_unlock();
  486. return anon_vma;
  487. }
  488. void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
  489. {
  490. anon_vma_unlock_read(anon_vma);
  491. }
  492. /*
  493. * At what user virtual address is page expected in @vma?
  494. */
  495. static inline unsigned long
  496. __vma_address(struct page *page, struct vm_area_struct *vma)
  497. {
  498. pgoff_t pgoff = page_to_pgoff(page);
  499. return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  500. }
  501. inline unsigned long
  502. vma_address(struct page *page, struct vm_area_struct *vma)
  503. {
  504. unsigned long address = __vma_address(page, vma);
  505. /* page should be within @vma mapping range */
  506. VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
  507. return address;
  508. }
  509. /*
  510. * At what user virtual address is page expected in vma?
  511. * Caller should check the page is actually part of the vma.
  512. */
  513. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  514. {
  515. unsigned long address;
  516. if (PageAnon(page)) {
  517. struct anon_vma *page__anon_vma = page_anon_vma(page);
  518. /*
  519. * Note: swapoff's unuse_vma() is more efficient with this
  520. * check, and needs it to match anon_vma when KSM is active.
  521. */
  522. if (!vma->anon_vma || !page__anon_vma ||
  523. vma->anon_vma->root != page__anon_vma->root)
  524. return -EFAULT;
  525. } else if (page->mapping) {
  526. if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
  527. return -EFAULT;
  528. } else
  529. return -EFAULT;
  530. address = __vma_address(page, vma);
  531. if (unlikely(address < vma->vm_start || address >= vma->vm_end))
  532. return -EFAULT;
  533. return address;
  534. }
  535. pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
  536. {
  537. pgd_t *pgd;
  538. pud_t *pud;
  539. pmd_t *pmd = NULL;
  540. pmd_t pmde;
  541. pgd = pgd_offset(mm, address);
  542. if (!pgd_present(*pgd))
  543. goto out;
  544. pud = pud_offset(pgd, address);
  545. if (!pud_present(*pud))
  546. goto out;
  547. pmd = pmd_offset(pud, address);
  548. /*
  549. * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
  550. * without holding anon_vma lock for write. So when looking for a
  551. * genuine pmde (in which to find pte), test present and !THP together.
  552. */
  553. pmde = *pmd;
  554. barrier();
  555. if (!pmd_present(pmde) || pmd_trans_huge(pmde))
  556. pmd = NULL;
  557. out:
  558. return pmd;
  559. }
  560. /*
  561. * Check that @page is mapped at @address into @mm.
  562. *
  563. * If @sync is false, page_check_address may perform a racy check to avoid
  564. * the page table lock when the pte is not present (helpful when reclaiming
  565. * highly shared pages).
  566. *
  567. * On success returns with pte mapped and locked.
  568. */
  569. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  570. unsigned long address, spinlock_t **ptlp, int sync)
  571. {
  572. pmd_t *pmd;
  573. pte_t *pte;
  574. spinlock_t *ptl;
  575. if (unlikely(PageHuge(page))) {
  576. /* when pud is not present, pte will be NULL */
  577. pte = huge_pte_offset(mm, address);
  578. if (!pte)
  579. return NULL;
  580. ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
  581. goto check;
  582. }
  583. pmd = mm_find_pmd(mm, address);
  584. if (!pmd)
  585. return NULL;
  586. pte = pte_offset_map(pmd, address);
  587. /* Make a quick check before getting the lock */
  588. if (!sync && !pte_present(*pte)) {
  589. pte_unmap(pte);
  590. return NULL;
  591. }
  592. ptl = pte_lockptr(mm, pmd);
  593. check:
  594. spin_lock(ptl);
  595. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  596. *ptlp = ptl;
  597. return pte;
  598. }
  599. pte_unmap_unlock(pte, ptl);
  600. return NULL;
  601. }
  602. /**
  603. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  604. * @page: the page to test
  605. * @vma: the VMA to test
  606. *
  607. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  608. * if the page is not mapped into the page tables of this VMA. Only
  609. * valid for normal file or anonymous VMAs.
  610. */
  611. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  612. {
  613. unsigned long address;
  614. pte_t *pte;
  615. spinlock_t *ptl;
  616. address = __vma_address(page, vma);
  617. if (unlikely(address < vma->vm_start || address >= vma->vm_end))
  618. return 0;
  619. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  620. if (!pte) /* the page is not in this mm */
  621. return 0;
  622. pte_unmap_unlock(pte, ptl);
  623. return 1;
  624. }
  625. struct page_referenced_arg {
  626. int mapcount;
  627. int referenced;
  628. unsigned long vm_flags;
  629. struct mem_cgroup *memcg;
  630. };
  631. /*
  632. * arg: page_referenced_arg will be passed
  633. */
  634. static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  635. unsigned long address, void *arg)
  636. {
  637. struct mm_struct *mm = vma->vm_mm;
  638. spinlock_t *ptl;
  639. int referenced = 0;
  640. struct page_referenced_arg *pra = arg;
  641. if (unlikely(PageTransHuge(page))) {
  642. pmd_t *pmd;
  643. /*
  644. * rmap might return false positives; we must filter
  645. * these out using page_check_address_pmd().
  646. */
  647. pmd = page_check_address_pmd(page, mm, address,
  648. PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
  649. if (!pmd)
  650. return SWAP_AGAIN;
  651. if (vma->vm_flags & VM_LOCKED) {
  652. spin_unlock(ptl);
  653. pra->vm_flags |= VM_LOCKED;
  654. return SWAP_FAIL; /* To break the loop */
  655. }
  656. /* go ahead even if the pmd is pmd_trans_splitting() */
  657. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  658. referenced++;
  659. spin_unlock(ptl);
  660. } else {
  661. pte_t *pte;
  662. /*
  663. * rmap might return false positives; we must filter
  664. * these out using page_check_address().
  665. */
  666. pte = page_check_address(page, mm, address, &ptl, 0);
  667. if (!pte)
  668. return SWAP_AGAIN;
  669. if (vma->vm_flags & VM_LOCKED) {
  670. pte_unmap_unlock(pte, ptl);
  671. pra->vm_flags |= VM_LOCKED;
  672. return SWAP_FAIL; /* To break the loop */
  673. }
  674. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  675. /*
  676. * Don't treat a reference through a sequentially read
  677. * mapping as such. If the page has been used in
  678. * another mapping, we will catch it; if this other
  679. * mapping is already gone, the unmap path will have
  680. * set PG_referenced or activated the page.
  681. */
  682. if (likely(!(vma->vm_flags & VM_SEQ_READ)))
  683. referenced++;
  684. }
  685. pte_unmap_unlock(pte, ptl);
  686. }
  687. if (referenced) {
  688. pra->referenced++;
  689. pra->vm_flags |= vma->vm_flags;
  690. }
  691. pra->mapcount--;
  692. if (!pra->mapcount)
  693. return SWAP_SUCCESS; /* To break the loop */
  694. return SWAP_AGAIN;
  695. }
  696. static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
  697. {
  698. struct page_referenced_arg *pra = arg;
  699. struct mem_cgroup *memcg = pra->memcg;
  700. if (!mm_match_cgroup(vma->vm_mm, memcg))
  701. return true;
  702. return false;
  703. }
  704. /**
  705. * page_referenced - test if the page was referenced
  706. * @page: the page to test
  707. * @is_locked: caller holds lock on the page
  708. * @memcg: target memory cgroup
  709. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  710. *
  711. * Quick test_and_clear_referenced for all mappings to a page,
  712. * returns the number of ptes which referenced the page.
  713. */
  714. int page_referenced(struct page *page,
  715. int is_locked,
  716. struct mem_cgroup *memcg,
  717. unsigned long *vm_flags)
  718. {
  719. int ret;
  720. int we_locked = 0;
  721. struct page_referenced_arg pra = {
  722. .mapcount = page_mapcount(page),
  723. .memcg = memcg,
  724. };
  725. struct rmap_walk_control rwc = {
  726. .rmap_one = page_referenced_one,
  727. .arg = (void *)&pra,
  728. .anon_lock = page_lock_anon_vma_read,
  729. };
  730. *vm_flags = 0;
  731. if (!page_mapped(page))
  732. return 0;
  733. if (!page_rmapping(page))
  734. return 0;
  735. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  736. we_locked = trylock_page(page);
  737. if (!we_locked)
  738. return 1;
  739. }
  740. /*
  741. * If we are reclaiming on behalf of a cgroup, skip
  742. * counting on behalf of references from different
  743. * cgroups
  744. */
  745. if (memcg) {
  746. rwc.invalid_vma = invalid_page_referenced_vma;
  747. }
  748. ret = rmap_walk(page, &rwc);
  749. *vm_flags = pra.vm_flags;
  750. if (we_locked)
  751. unlock_page(page);
  752. return pra.referenced;
  753. }
  754. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  755. unsigned long address, void *arg)
  756. {
  757. struct mm_struct *mm = vma->vm_mm;
  758. pte_t *pte;
  759. spinlock_t *ptl;
  760. int ret = 0;
  761. int *cleaned = arg;
  762. pte = page_check_address(page, mm, address, &ptl, 1);
  763. if (!pte)
  764. goto out;
  765. if (pte_dirty(*pte) || pte_write(*pte)) {
  766. pte_t entry;
  767. flush_cache_page(vma, address, pte_pfn(*pte));
  768. entry = ptep_clear_flush(vma, address, pte);
  769. entry = pte_wrprotect(entry);
  770. entry = pte_mkclean(entry);
  771. set_pte_at(mm, address, pte, entry);
  772. ret = 1;
  773. }
  774. pte_unmap_unlock(pte, ptl);
  775. if (ret) {
  776. mmu_notifier_invalidate_page(mm, address);
  777. (*cleaned)++;
  778. }
  779. out:
  780. return SWAP_AGAIN;
  781. }
  782. static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
  783. {
  784. if (vma->vm_flags & VM_SHARED)
  785. return false;
  786. return true;
  787. }
  788. int page_mkclean(struct page *page)
  789. {
  790. int cleaned = 0;
  791. struct address_space *mapping;
  792. struct rmap_walk_control rwc = {
  793. .arg = (void *)&cleaned,
  794. .rmap_one = page_mkclean_one,
  795. .invalid_vma = invalid_mkclean_vma,
  796. };
  797. BUG_ON(!PageLocked(page));
  798. if (!page_mapped(page))
  799. return 0;
  800. mapping = page_mapping(page);
  801. if (!mapping)
  802. return 0;
  803. rmap_walk(page, &rwc);
  804. return cleaned;
  805. }
  806. EXPORT_SYMBOL_GPL(page_mkclean);
  807. /**
  808. * page_move_anon_rmap - move a page to our anon_vma
  809. * @page: the page to move to our anon_vma
  810. * @vma: the vma the page belongs to
  811. * @address: the user virtual address mapped
  812. *
  813. * When a page belongs exclusively to one process after a COW event,
  814. * that page can be moved into the anon_vma that belongs to just that
  815. * process, so the rmap code will not search the parent or sibling
  816. * processes.
  817. */
  818. void page_move_anon_rmap(struct page *page,
  819. struct vm_area_struct *vma, unsigned long address)
  820. {
  821. struct anon_vma *anon_vma = vma->anon_vma;
  822. VM_BUG_ON_PAGE(!PageLocked(page), page);
  823. VM_BUG_ON_VMA(!anon_vma, vma);
  824. VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
  825. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  826. page->mapping = (struct address_space *) anon_vma;
  827. }
  828. /**
  829. * __page_set_anon_rmap - set up new anonymous rmap
  830. * @page: Page to add to rmap
  831. * @vma: VM area to add page to.
  832. * @address: User virtual address of the mapping
  833. * @exclusive: the page is exclusively owned by the current process
  834. */
  835. static void __page_set_anon_rmap(struct page *page,
  836. struct vm_area_struct *vma, unsigned long address, int exclusive)
  837. {
  838. struct anon_vma *anon_vma = vma->anon_vma;
  839. BUG_ON(!anon_vma);
  840. if (PageAnon(page))
  841. return;
  842. /*
  843. * If the page isn't exclusively mapped into this vma,
  844. * we must use the _oldest_ possible anon_vma for the
  845. * page mapping!
  846. */
  847. if (!exclusive)
  848. anon_vma = anon_vma->root;
  849. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  850. page->mapping = (struct address_space *) anon_vma;
  851. page->index = linear_page_index(vma, address);
  852. }
  853. /**
  854. * __page_check_anon_rmap - sanity check anonymous rmap addition
  855. * @page: the page to add the mapping to
  856. * @vma: the vm area in which the mapping is added
  857. * @address: the user virtual address mapped
  858. */
  859. static void __page_check_anon_rmap(struct page *page,
  860. struct vm_area_struct *vma, unsigned long address)
  861. {
  862. #ifdef CONFIG_DEBUG_VM
  863. /*
  864. * The page's anon-rmap details (mapping and index) are guaranteed to
  865. * be set up correctly at this point.
  866. *
  867. * We have exclusion against page_add_anon_rmap because the caller
  868. * always holds the page locked, except if called from page_dup_rmap,
  869. * in which case the page is already known to be setup.
  870. *
  871. * We have exclusion against page_add_new_anon_rmap because those pages
  872. * are initially only visible via the pagetables, and the pte is locked
  873. * over the call to page_add_new_anon_rmap.
  874. */
  875. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  876. BUG_ON(page->index != linear_page_index(vma, address));
  877. #endif
  878. }
  879. /**
  880. * page_add_anon_rmap - add pte mapping to an anonymous page
  881. * @page: the page to add the mapping to
  882. * @vma: the vm area in which the mapping is added
  883. * @address: the user virtual address mapped
  884. *
  885. * The caller needs to hold the pte lock, and the page must be locked in
  886. * the anon_vma case: to serialize mapping,index checking after setting,
  887. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  888. * (but PageKsm is never downgraded to PageAnon).
  889. */
  890. void page_add_anon_rmap(struct page *page,
  891. struct vm_area_struct *vma, unsigned long address)
  892. {
  893. do_page_add_anon_rmap(page, vma, address, 0);
  894. }
  895. /*
  896. * Special version of the above for do_swap_page, which often runs
  897. * into pages that are exclusively owned by the current process.
  898. * Everybody else should continue to use page_add_anon_rmap above.
  899. */
  900. void do_page_add_anon_rmap(struct page *page,
  901. struct vm_area_struct *vma, unsigned long address, int exclusive)
  902. {
  903. int first = atomic_inc_and_test(&page->_mapcount);
  904. if (first) {
  905. /*
  906. * We use the irq-unsafe __{inc|mod}_zone_page_stat because
  907. * these counters are not modified in interrupt context, and
  908. * pte lock(a spinlock) is held, which implies preemption
  909. * disabled.
  910. */
  911. if (PageTransHuge(page))
  912. __inc_zone_page_state(page,
  913. NR_ANON_TRANSPARENT_HUGEPAGES);
  914. __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
  915. hpage_nr_pages(page));
  916. }
  917. if (unlikely(PageKsm(page)))
  918. return;
  919. VM_BUG_ON_PAGE(!PageLocked(page), page);
  920. /* address might be in next vma when migration races vma_adjust */
  921. if (first)
  922. __page_set_anon_rmap(page, vma, address, exclusive);
  923. else
  924. __page_check_anon_rmap(page, vma, address);
  925. }
  926. /**
  927. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  928. * @page: the page to add the mapping to
  929. * @vma: the vm area in which the mapping is added
  930. * @address: the user virtual address mapped
  931. *
  932. * Same as page_add_anon_rmap but must only be called on *new* pages.
  933. * This means the inc-and-test can be bypassed.
  934. * Page does not have to be locked.
  935. */
  936. void page_add_new_anon_rmap(struct page *page,
  937. struct vm_area_struct *vma, unsigned long address)
  938. {
  939. VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
  940. SetPageSwapBacked(page);
  941. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  942. if (PageTransHuge(page))
  943. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  944. __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
  945. hpage_nr_pages(page));
  946. __page_set_anon_rmap(page, vma, address, 1);
  947. }
  948. /**
  949. * page_add_file_rmap - add pte mapping to a file page
  950. * @page: the page to add the mapping to
  951. *
  952. * The caller needs to hold the pte lock.
  953. */
  954. void page_add_file_rmap(struct page *page)
  955. {
  956. struct mem_cgroup *memcg;
  957. memcg = mem_cgroup_begin_page_stat(page);
  958. if (atomic_inc_and_test(&page->_mapcount)) {
  959. __inc_zone_page_state(page, NR_FILE_MAPPED);
  960. mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
  961. }
  962. mem_cgroup_end_page_stat(memcg);
  963. }
  964. static void page_remove_file_rmap(struct page *page)
  965. {
  966. struct mem_cgroup *memcg;
  967. memcg = mem_cgroup_begin_page_stat(page);
  968. /* page still mapped by someone else? */
  969. if (!atomic_add_negative(-1, &page->_mapcount))
  970. goto out;
  971. /* Hugepages are not counted in NR_FILE_MAPPED for now. */
  972. if (unlikely(PageHuge(page)))
  973. goto out;
  974. /*
  975. * We use the irq-unsafe __{inc|mod}_zone_page_stat because
  976. * these counters are not modified in interrupt context, and
  977. * pte lock(a spinlock) is held, which implies preemption disabled.
  978. */
  979. __dec_zone_page_state(page, NR_FILE_MAPPED);
  980. mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
  981. if (unlikely(PageMlocked(page)))
  982. clear_page_mlock(page);
  983. out:
  984. mem_cgroup_end_page_stat(memcg);
  985. }
  986. /**
  987. * page_remove_rmap - take down pte mapping from a page
  988. * @page: page to remove mapping from
  989. *
  990. * The caller needs to hold the pte lock.
  991. */
  992. void page_remove_rmap(struct page *page)
  993. {
  994. if (!PageAnon(page)) {
  995. page_remove_file_rmap(page);
  996. return;
  997. }
  998. /* page still mapped by someone else? */
  999. if (!atomic_add_negative(-1, &page->_mapcount))
  1000. return;
  1001. /* Hugepages are not counted in NR_ANON_PAGES for now. */
  1002. if (unlikely(PageHuge(page)))
  1003. return;
  1004. /*
  1005. * We use the irq-unsafe __{inc|mod}_zone_page_stat because
  1006. * these counters are not modified in interrupt context, and
  1007. * pte lock(a spinlock) is held, which implies preemption disabled.
  1008. */
  1009. if (PageTransHuge(page))
  1010. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  1011. __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
  1012. -hpage_nr_pages(page));
  1013. if (unlikely(PageMlocked(page)))
  1014. clear_page_mlock(page);
  1015. /*
  1016. * It would be tidy to reset the PageAnon mapping here,
  1017. * but that might overwrite a racing page_add_anon_rmap
  1018. * which increments mapcount after us but sets mapping
  1019. * before us: so leave the reset to free_hot_cold_page,
  1020. * and remember that it's only reliable while mapped.
  1021. * Leaving it set also helps swapoff to reinstate ptes
  1022. * faster for those pages still in swapcache.
  1023. */
  1024. }
  1025. /*
  1026. * @arg: enum ttu_flags will be passed to this argument
  1027. */
  1028. static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  1029. unsigned long address, void *arg)
  1030. {
  1031. struct mm_struct *mm = vma->vm_mm;
  1032. pte_t *pte;
  1033. pte_t pteval;
  1034. spinlock_t *ptl;
  1035. int ret = SWAP_AGAIN;
  1036. enum ttu_flags flags = (enum ttu_flags)arg;
  1037. pte = page_check_address(page, mm, address, &ptl, 0);
  1038. if (!pte)
  1039. goto out;
  1040. /*
  1041. * If the page is mlock()d, we cannot swap it out.
  1042. * If it's recently referenced (perhaps page_referenced
  1043. * skipped over this mm) then we should reactivate it.
  1044. */
  1045. if (!(flags & TTU_IGNORE_MLOCK)) {
  1046. if (vma->vm_flags & VM_LOCKED)
  1047. goto out_mlock;
  1048. if (flags & TTU_MUNLOCK)
  1049. goto out_unmap;
  1050. }
  1051. if (!(flags & TTU_IGNORE_ACCESS)) {
  1052. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  1053. ret = SWAP_FAIL;
  1054. goto out_unmap;
  1055. }
  1056. }
  1057. /* Nuke the page table entry. */
  1058. flush_cache_page(vma, address, page_to_pfn(page));
  1059. pteval = ptep_clear_flush(vma, address, pte);
  1060. /* Move the dirty bit to the physical page now the pte is gone. */
  1061. if (pte_dirty(pteval))
  1062. set_page_dirty(page);
  1063. /* Update high watermark before we lower rss */
  1064. update_hiwater_rss(mm);
  1065. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  1066. if (!PageHuge(page)) {
  1067. if (PageAnon(page))
  1068. dec_mm_counter(mm, MM_ANONPAGES);
  1069. else
  1070. dec_mm_counter(mm, MM_FILEPAGES);
  1071. }
  1072. set_pte_at(mm, address, pte,
  1073. swp_entry_to_pte(make_hwpoison_entry(page)));
  1074. } else if (pte_unused(pteval)) {
  1075. /*
  1076. * The guest indicated that the page content is of no
  1077. * interest anymore. Simply discard the pte, vmscan
  1078. * will take care of the rest.
  1079. */
  1080. if (PageAnon(page))
  1081. dec_mm_counter(mm, MM_ANONPAGES);
  1082. else
  1083. dec_mm_counter(mm, MM_FILEPAGES);
  1084. } else if (PageAnon(page)) {
  1085. swp_entry_t entry = { .val = page_private(page) };
  1086. pte_t swp_pte;
  1087. if (PageSwapCache(page)) {
  1088. /*
  1089. * Store the swap location in the pte.
  1090. * See handle_pte_fault() ...
  1091. */
  1092. if (swap_duplicate(entry) < 0) {
  1093. set_pte_at(mm, address, pte, pteval);
  1094. ret = SWAP_FAIL;
  1095. goto out_unmap;
  1096. }
  1097. if (list_empty(&mm->mmlist)) {
  1098. spin_lock(&mmlist_lock);
  1099. if (list_empty(&mm->mmlist))
  1100. list_add(&mm->mmlist, &init_mm.mmlist);
  1101. spin_unlock(&mmlist_lock);
  1102. }
  1103. dec_mm_counter(mm, MM_ANONPAGES);
  1104. inc_mm_counter(mm, MM_SWAPENTS);
  1105. } else if (IS_ENABLED(CONFIG_MIGRATION)) {
  1106. /*
  1107. * Store the pfn of the page in a special migration
  1108. * pte. do_swap_page() will wait until the migration
  1109. * pte is removed and then restart fault handling.
  1110. */
  1111. BUG_ON(!(flags & TTU_MIGRATION));
  1112. entry = make_migration_entry(page, pte_write(pteval));
  1113. }
  1114. swp_pte = swp_entry_to_pte(entry);
  1115. if (pte_soft_dirty(pteval))
  1116. swp_pte = pte_swp_mksoft_dirty(swp_pte);
  1117. set_pte_at(mm, address, pte, swp_pte);
  1118. } else if (IS_ENABLED(CONFIG_MIGRATION) &&
  1119. (flags & TTU_MIGRATION)) {
  1120. /* Establish migration entry for a file page */
  1121. swp_entry_t entry;
  1122. entry = make_migration_entry(page, pte_write(pteval));
  1123. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1124. } else
  1125. dec_mm_counter(mm, MM_FILEPAGES);
  1126. page_remove_rmap(page);
  1127. page_cache_release(page);
  1128. out_unmap:
  1129. pte_unmap_unlock(pte, ptl);
  1130. if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
  1131. mmu_notifier_invalidate_page(mm, address);
  1132. out:
  1133. return ret;
  1134. out_mlock:
  1135. pte_unmap_unlock(pte, ptl);
  1136. /*
  1137. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  1138. * unstable result and race. Plus, We can't wait here because
  1139. * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
  1140. * if trylock failed, the page remain in evictable lru and later
  1141. * vmscan could retry to move the page to unevictable lru if the
  1142. * page is actually mlocked.
  1143. */
  1144. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1145. if (vma->vm_flags & VM_LOCKED) {
  1146. mlock_vma_page(page);
  1147. ret = SWAP_MLOCK;
  1148. }
  1149. up_read(&vma->vm_mm->mmap_sem);
  1150. }
  1151. return ret;
  1152. }
  1153. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1154. {
  1155. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1156. if (!maybe_stack)
  1157. return false;
  1158. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1159. VM_STACK_INCOMPLETE_SETUP)
  1160. return true;
  1161. return false;
  1162. }
  1163. static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
  1164. {
  1165. return is_vma_temporary_stack(vma);
  1166. }
  1167. static int page_not_mapped(struct page *page)
  1168. {
  1169. return !page_mapped(page);
  1170. };
  1171. /**
  1172. * try_to_unmap - try to remove all page table mappings to a page
  1173. * @page: the page to get unmapped
  1174. * @flags: action and flags
  1175. *
  1176. * Tries to remove all the page table entries which are mapping this
  1177. * page, used in the pageout path. Caller must hold the page lock.
  1178. * Return values are:
  1179. *
  1180. * SWAP_SUCCESS - we succeeded in removing all mappings
  1181. * SWAP_AGAIN - we missed a mapping, try again later
  1182. * SWAP_FAIL - the page is unswappable
  1183. * SWAP_MLOCK - page is mlocked.
  1184. */
  1185. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1186. {
  1187. int ret;
  1188. struct rmap_walk_control rwc = {
  1189. .rmap_one = try_to_unmap_one,
  1190. .arg = (void *)flags,
  1191. .done = page_not_mapped,
  1192. .anon_lock = page_lock_anon_vma_read,
  1193. };
  1194. VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
  1195. /*
  1196. * During exec, a temporary VMA is setup and later moved.
  1197. * The VMA is moved under the anon_vma lock but not the
  1198. * page tables leading to a race where migration cannot
  1199. * find the migration ptes. Rather than increasing the
  1200. * locking requirements of exec(), migration skips
  1201. * temporary VMAs until after exec() completes.
  1202. */
  1203. if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
  1204. rwc.invalid_vma = invalid_migration_vma;
  1205. ret = rmap_walk(page, &rwc);
  1206. if (ret != SWAP_MLOCK && !page_mapped(page))
  1207. ret = SWAP_SUCCESS;
  1208. return ret;
  1209. }
  1210. /**
  1211. * try_to_munlock - try to munlock a page
  1212. * @page: the page to be munlocked
  1213. *
  1214. * Called from munlock code. Checks all of the VMAs mapping the page
  1215. * to make sure nobody else has this page mlocked. The page will be
  1216. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1217. *
  1218. * Return values are:
  1219. *
  1220. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1221. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1222. * SWAP_FAIL - page cannot be located at present
  1223. * SWAP_MLOCK - page is now mlocked.
  1224. */
  1225. int try_to_munlock(struct page *page)
  1226. {
  1227. int ret;
  1228. struct rmap_walk_control rwc = {
  1229. .rmap_one = try_to_unmap_one,
  1230. .arg = (void *)TTU_MUNLOCK,
  1231. .done = page_not_mapped,
  1232. .anon_lock = page_lock_anon_vma_read,
  1233. };
  1234. VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
  1235. ret = rmap_walk(page, &rwc);
  1236. return ret;
  1237. }
  1238. void __put_anon_vma(struct anon_vma *anon_vma)
  1239. {
  1240. struct anon_vma *root = anon_vma->root;
  1241. anon_vma_free(anon_vma);
  1242. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1243. anon_vma_free(root);
  1244. }
  1245. static struct anon_vma *rmap_walk_anon_lock(struct page *page,
  1246. struct rmap_walk_control *rwc)
  1247. {
  1248. struct anon_vma *anon_vma;
  1249. if (rwc->anon_lock)
  1250. return rwc->anon_lock(page);
  1251. /*
  1252. * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
  1253. * because that depends on page_mapped(); but not all its usages
  1254. * are holding mmap_sem. Users without mmap_sem are required to
  1255. * take a reference count to prevent the anon_vma disappearing
  1256. */
  1257. anon_vma = page_anon_vma(page);
  1258. if (!anon_vma)
  1259. return NULL;
  1260. anon_vma_lock_read(anon_vma);
  1261. return anon_vma;
  1262. }
  1263. /*
  1264. * rmap_walk_anon - do something to anonymous page using the object-based
  1265. * rmap method
  1266. * @page: the page to be handled
  1267. * @rwc: control variable according to each walk type
  1268. *
  1269. * Find all the mappings of a page using the mapping pointer and the vma chains
  1270. * contained in the anon_vma struct it points to.
  1271. *
  1272. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1273. * where the page was found will be held for write. So, we won't recheck
  1274. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1275. * LOCKED.
  1276. */
  1277. static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
  1278. {
  1279. struct anon_vma *anon_vma;
  1280. pgoff_t pgoff;
  1281. struct anon_vma_chain *avc;
  1282. int ret = SWAP_AGAIN;
  1283. anon_vma = rmap_walk_anon_lock(page, rwc);
  1284. if (!anon_vma)
  1285. return ret;
  1286. pgoff = page_to_pgoff(page);
  1287. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1288. struct vm_area_struct *vma = avc->vma;
  1289. unsigned long address = vma_address(page, vma);
  1290. if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
  1291. continue;
  1292. ret = rwc->rmap_one(page, vma, address, rwc->arg);
  1293. if (ret != SWAP_AGAIN)
  1294. break;
  1295. if (rwc->done && rwc->done(page))
  1296. break;
  1297. }
  1298. anon_vma_unlock_read(anon_vma);
  1299. return ret;
  1300. }
  1301. /*
  1302. * rmap_walk_file - do something to file page using the object-based rmap method
  1303. * @page: the page to be handled
  1304. * @rwc: control variable according to each walk type
  1305. *
  1306. * Find all the mappings of a page using the mapping pointer and the vma chains
  1307. * contained in the address_space struct it points to.
  1308. *
  1309. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1310. * where the page was found will be held for write. So, we won't recheck
  1311. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1312. * LOCKED.
  1313. */
  1314. static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
  1315. {
  1316. struct address_space *mapping = page->mapping;
  1317. pgoff_t pgoff;
  1318. struct vm_area_struct *vma;
  1319. int ret = SWAP_AGAIN;
  1320. /*
  1321. * The page lock not only makes sure that page->mapping cannot
  1322. * suddenly be NULLified by truncation, it makes sure that the
  1323. * structure at mapping cannot be freed and reused yet,
  1324. * so we can safely take mapping->i_mmap_rwsem.
  1325. */
  1326. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1327. if (!mapping)
  1328. return ret;
  1329. pgoff = page_to_pgoff(page);
  1330. i_mmap_lock_read(mapping);
  1331. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  1332. unsigned long address = vma_address(page, vma);
  1333. if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
  1334. continue;
  1335. ret = rwc->rmap_one(page, vma, address, rwc->arg);
  1336. if (ret != SWAP_AGAIN)
  1337. goto done;
  1338. if (rwc->done && rwc->done(page))
  1339. goto done;
  1340. }
  1341. done:
  1342. i_mmap_unlock_read(mapping);
  1343. return ret;
  1344. }
  1345. int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
  1346. {
  1347. if (unlikely(PageKsm(page)))
  1348. return rmap_walk_ksm(page, rwc);
  1349. else if (PageAnon(page))
  1350. return rmap_walk_anon(page, rwc);
  1351. else
  1352. return rmap_walk_file(page, rwc);
  1353. }
  1354. #ifdef CONFIG_HUGETLB_PAGE
  1355. /*
  1356. * The following three functions are for anonymous (private mapped) hugepages.
  1357. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1358. * and no lru code, because we handle hugepages differently from common pages.
  1359. */
  1360. static void __hugepage_set_anon_rmap(struct page *page,
  1361. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1362. {
  1363. struct anon_vma *anon_vma = vma->anon_vma;
  1364. BUG_ON(!anon_vma);
  1365. if (PageAnon(page))
  1366. return;
  1367. if (!exclusive)
  1368. anon_vma = anon_vma->root;
  1369. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1370. page->mapping = (struct address_space *) anon_vma;
  1371. page->index = linear_page_index(vma, address);
  1372. }
  1373. void hugepage_add_anon_rmap(struct page *page,
  1374. struct vm_area_struct *vma, unsigned long address)
  1375. {
  1376. struct anon_vma *anon_vma = vma->anon_vma;
  1377. int first;
  1378. BUG_ON(!PageLocked(page));
  1379. BUG_ON(!anon_vma);
  1380. /* address might be in next vma when migration races vma_adjust */
  1381. first = atomic_inc_and_test(&page->_mapcount);
  1382. if (first)
  1383. __hugepage_set_anon_rmap(page, vma, address, 0);
  1384. }
  1385. void hugepage_add_new_anon_rmap(struct page *page,
  1386. struct vm_area_struct *vma, unsigned long address)
  1387. {
  1388. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1389. atomic_set(&page->_mapcount, 0);
  1390. __hugepage_set_anon_rmap(page, vma, address, 1);
  1391. }
  1392. #endif /* CONFIG_HUGETLB_PAGE */