tick-sched.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245
  1. /*
  2. * linux/kernel/time/tick-sched.c
  3. *
  4. * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  6. * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
  7. *
  8. * No idle tick implementation for low and high resolution timers
  9. *
  10. * Started by: Thomas Gleixner and Ingo Molnar
  11. *
  12. * Distribute under GPLv2.
  13. */
  14. #include <linux/cpu.h>
  15. #include <linux/err.h>
  16. #include <linux/hrtimer.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/kernel_stat.h>
  19. #include <linux/percpu.h>
  20. #include <linux/profile.h>
  21. #include <linux/sched.h>
  22. #include <linux/module.h>
  23. #include <linux/irq_work.h>
  24. #include <linux/posix-timers.h>
  25. #include <linux/perf_event.h>
  26. #include <linux/context_tracking.h>
  27. #include <asm/irq_regs.h>
  28. #include "tick-internal.h"
  29. #include <trace/events/timer.h>
  30. /*
  31. * Per cpu nohz control structure
  32. */
  33. DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  34. /*
  35. * The time, when the last jiffy update happened. Protected by jiffies_lock.
  36. */
  37. static ktime_t last_jiffies_update;
  38. struct tick_sched *tick_get_tick_sched(int cpu)
  39. {
  40. return &per_cpu(tick_cpu_sched, cpu);
  41. }
  42. /*
  43. * Must be called with interrupts disabled !
  44. */
  45. static void tick_do_update_jiffies64(ktime_t now)
  46. {
  47. unsigned long ticks = 0;
  48. ktime_t delta;
  49. /*
  50. * Do a quick check without holding jiffies_lock:
  51. */
  52. delta = ktime_sub(now, last_jiffies_update);
  53. if (delta.tv64 < tick_period.tv64)
  54. return;
  55. /* Reevalute with jiffies_lock held */
  56. write_seqlock(&jiffies_lock);
  57. delta = ktime_sub(now, last_jiffies_update);
  58. if (delta.tv64 >= tick_period.tv64) {
  59. delta = ktime_sub(delta, tick_period);
  60. last_jiffies_update = ktime_add(last_jiffies_update,
  61. tick_period);
  62. /* Slow path for long timeouts */
  63. if (unlikely(delta.tv64 >= tick_period.tv64)) {
  64. s64 incr = ktime_to_ns(tick_period);
  65. ticks = ktime_divns(delta, incr);
  66. last_jiffies_update = ktime_add_ns(last_jiffies_update,
  67. incr * ticks);
  68. }
  69. do_timer(++ticks);
  70. /* Keep the tick_next_period variable up to date */
  71. tick_next_period = ktime_add(last_jiffies_update, tick_period);
  72. } else {
  73. write_sequnlock(&jiffies_lock);
  74. return;
  75. }
  76. write_sequnlock(&jiffies_lock);
  77. update_wall_time();
  78. }
  79. /*
  80. * Initialize and return retrieve the jiffies update.
  81. */
  82. static ktime_t tick_init_jiffy_update(void)
  83. {
  84. ktime_t period;
  85. write_seqlock(&jiffies_lock);
  86. /* Did we start the jiffies update yet ? */
  87. if (last_jiffies_update.tv64 == 0)
  88. last_jiffies_update = tick_next_period;
  89. period = last_jiffies_update;
  90. write_sequnlock(&jiffies_lock);
  91. return period;
  92. }
  93. static void tick_sched_do_timer(ktime_t now)
  94. {
  95. int cpu = smp_processor_id();
  96. #ifdef CONFIG_NO_HZ_COMMON
  97. /*
  98. * Check if the do_timer duty was dropped. We don't care about
  99. * concurrency: This happens only when the cpu in charge went
  100. * into a long sleep. If two cpus happen to assign themself to
  101. * this duty, then the jiffies update is still serialized by
  102. * jiffies_lock.
  103. */
  104. if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
  105. && !tick_nohz_full_cpu(cpu))
  106. tick_do_timer_cpu = cpu;
  107. #endif
  108. /* Check, if the jiffies need an update */
  109. if (tick_do_timer_cpu == cpu)
  110. tick_do_update_jiffies64(now);
  111. }
  112. static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
  113. {
  114. #ifdef CONFIG_NO_HZ_COMMON
  115. /*
  116. * When we are idle and the tick is stopped, we have to touch
  117. * the watchdog as we might not schedule for a really long
  118. * time. This happens on complete idle SMP systems while
  119. * waiting on the login prompt. We also increment the "start of
  120. * idle" jiffy stamp so the idle accounting adjustment we do
  121. * when we go busy again does not account too much ticks.
  122. */
  123. if (ts->tick_stopped) {
  124. touch_softlockup_watchdog();
  125. if (is_idle_task(current))
  126. ts->idle_jiffies++;
  127. }
  128. #endif
  129. update_process_times(user_mode(regs));
  130. profile_tick(CPU_PROFILING);
  131. }
  132. #ifdef CONFIG_NO_HZ_FULL
  133. cpumask_var_t tick_nohz_full_mask;
  134. cpumask_var_t housekeeping_mask;
  135. bool tick_nohz_full_running;
  136. static bool can_stop_full_tick(void)
  137. {
  138. WARN_ON_ONCE(!irqs_disabled());
  139. if (!sched_can_stop_tick()) {
  140. trace_tick_stop(0, "more than 1 task in runqueue\n");
  141. return false;
  142. }
  143. if (!posix_cpu_timers_can_stop_tick(current)) {
  144. trace_tick_stop(0, "posix timers running\n");
  145. return false;
  146. }
  147. if (!perf_event_can_stop_tick()) {
  148. trace_tick_stop(0, "perf events running\n");
  149. return false;
  150. }
  151. /* sched_clock_tick() needs us? */
  152. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  153. /*
  154. * TODO: kick full dynticks CPUs when
  155. * sched_clock_stable is set.
  156. */
  157. if (!sched_clock_stable()) {
  158. trace_tick_stop(0, "unstable sched clock\n");
  159. /*
  160. * Don't allow the user to think they can get
  161. * full NO_HZ with this machine.
  162. */
  163. WARN_ONCE(tick_nohz_full_running,
  164. "NO_HZ FULL will not work with unstable sched clock");
  165. return false;
  166. }
  167. #endif
  168. return true;
  169. }
  170. static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
  171. /*
  172. * Re-evaluate the need for the tick on the current CPU
  173. * and restart it if necessary.
  174. */
  175. void __tick_nohz_full_check(void)
  176. {
  177. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  178. if (tick_nohz_full_cpu(smp_processor_id())) {
  179. if (ts->tick_stopped && !is_idle_task(current)) {
  180. if (!can_stop_full_tick())
  181. tick_nohz_restart_sched_tick(ts, ktime_get());
  182. }
  183. }
  184. }
  185. static void nohz_full_kick_work_func(struct irq_work *work)
  186. {
  187. __tick_nohz_full_check();
  188. }
  189. static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
  190. .func = nohz_full_kick_work_func,
  191. };
  192. /*
  193. * Kick this CPU if it's full dynticks in order to force it to
  194. * re-evaluate its dependency on the tick and restart it if necessary.
  195. * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
  196. * is NMI safe.
  197. */
  198. void tick_nohz_full_kick(void)
  199. {
  200. if (!tick_nohz_full_cpu(smp_processor_id()))
  201. return;
  202. irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
  203. }
  204. /*
  205. * Kick the CPU if it's full dynticks in order to force it to
  206. * re-evaluate its dependency on the tick and restart it if necessary.
  207. */
  208. void tick_nohz_full_kick_cpu(int cpu)
  209. {
  210. if (!tick_nohz_full_cpu(cpu))
  211. return;
  212. irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
  213. }
  214. static void nohz_full_kick_ipi(void *info)
  215. {
  216. __tick_nohz_full_check();
  217. }
  218. /*
  219. * Kick all full dynticks CPUs in order to force these to re-evaluate
  220. * their dependency on the tick and restart it if necessary.
  221. */
  222. void tick_nohz_full_kick_all(void)
  223. {
  224. if (!tick_nohz_full_running)
  225. return;
  226. preempt_disable();
  227. smp_call_function_many(tick_nohz_full_mask,
  228. nohz_full_kick_ipi, NULL, false);
  229. tick_nohz_full_kick();
  230. preempt_enable();
  231. }
  232. /*
  233. * Re-evaluate the need for the tick as we switch the current task.
  234. * It might need the tick due to per task/process properties:
  235. * perf events, posix cpu timers, ...
  236. */
  237. void __tick_nohz_task_switch(struct task_struct *tsk)
  238. {
  239. unsigned long flags;
  240. local_irq_save(flags);
  241. if (!tick_nohz_full_cpu(smp_processor_id()))
  242. goto out;
  243. if (tick_nohz_tick_stopped() && !can_stop_full_tick())
  244. tick_nohz_full_kick();
  245. out:
  246. local_irq_restore(flags);
  247. }
  248. /* Parse the boot-time nohz CPU list from the kernel parameters. */
  249. static int __init tick_nohz_full_setup(char *str)
  250. {
  251. alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
  252. if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
  253. pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
  254. free_bootmem_cpumask_var(tick_nohz_full_mask);
  255. return 1;
  256. }
  257. tick_nohz_full_running = true;
  258. return 1;
  259. }
  260. __setup("nohz_full=", tick_nohz_full_setup);
  261. static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
  262. unsigned long action,
  263. void *hcpu)
  264. {
  265. unsigned int cpu = (unsigned long)hcpu;
  266. switch (action & ~CPU_TASKS_FROZEN) {
  267. case CPU_DOWN_PREPARE:
  268. /*
  269. * If we handle the timekeeping duty for full dynticks CPUs,
  270. * we can't safely shutdown that CPU.
  271. */
  272. if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
  273. return NOTIFY_BAD;
  274. break;
  275. }
  276. return NOTIFY_OK;
  277. }
  278. static int tick_nohz_init_all(void)
  279. {
  280. int err = -1;
  281. #ifdef CONFIG_NO_HZ_FULL_ALL
  282. if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
  283. WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
  284. return err;
  285. }
  286. err = 0;
  287. cpumask_setall(tick_nohz_full_mask);
  288. tick_nohz_full_running = true;
  289. #endif
  290. return err;
  291. }
  292. void __init tick_nohz_init(void)
  293. {
  294. int cpu;
  295. if (!tick_nohz_full_running) {
  296. if (tick_nohz_init_all() < 0)
  297. return;
  298. }
  299. if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
  300. WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
  301. cpumask_clear(tick_nohz_full_mask);
  302. tick_nohz_full_running = false;
  303. return;
  304. }
  305. /*
  306. * Full dynticks uses irq work to drive the tick rescheduling on safe
  307. * locking contexts. But then we need irq work to raise its own
  308. * interrupts to avoid circular dependency on the tick
  309. */
  310. if (!arch_irq_work_has_interrupt()) {
  311. pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
  312. "support irq work self-IPIs\n");
  313. cpumask_clear(tick_nohz_full_mask);
  314. cpumask_copy(housekeeping_mask, cpu_possible_mask);
  315. tick_nohz_full_running = false;
  316. return;
  317. }
  318. cpu = smp_processor_id();
  319. if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
  320. pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
  321. cpumask_clear_cpu(cpu, tick_nohz_full_mask);
  322. }
  323. cpumask_andnot(housekeeping_mask,
  324. cpu_possible_mask, tick_nohz_full_mask);
  325. for_each_cpu(cpu, tick_nohz_full_mask)
  326. context_tracking_cpu_set(cpu);
  327. cpu_notifier(tick_nohz_cpu_down_callback, 0);
  328. pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
  329. cpumask_pr_args(tick_nohz_full_mask));
  330. }
  331. #endif
  332. /*
  333. * NOHZ - aka dynamic tick functionality
  334. */
  335. #ifdef CONFIG_NO_HZ_COMMON
  336. /*
  337. * NO HZ enabled ?
  338. */
  339. static int tick_nohz_enabled __read_mostly = 1;
  340. int tick_nohz_active __read_mostly;
  341. /*
  342. * Enable / Disable tickless mode
  343. */
  344. static int __init setup_tick_nohz(char *str)
  345. {
  346. if (!strcmp(str, "off"))
  347. tick_nohz_enabled = 0;
  348. else if (!strcmp(str, "on"))
  349. tick_nohz_enabled = 1;
  350. else
  351. return 0;
  352. return 1;
  353. }
  354. __setup("nohz=", setup_tick_nohz);
  355. /**
  356. * tick_nohz_update_jiffies - update jiffies when idle was interrupted
  357. *
  358. * Called from interrupt entry when the CPU was idle
  359. *
  360. * In case the sched_tick was stopped on this CPU, we have to check if jiffies
  361. * must be updated. Otherwise an interrupt handler could use a stale jiffy
  362. * value. We do this unconditionally on any cpu, as we don't know whether the
  363. * cpu, which has the update task assigned is in a long sleep.
  364. */
  365. static void tick_nohz_update_jiffies(ktime_t now)
  366. {
  367. unsigned long flags;
  368. __this_cpu_write(tick_cpu_sched.idle_waketime, now);
  369. local_irq_save(flags);
  370. tick_do_update_jiffies64(now);
  371. local_irq_restore(flags);
  372. touch_softlockup_watchdog();
  373. }
  374. /*
  375. * Updates the per cpu time idle statistics counters
  376. */
  377. static void
  378. update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
  379. {
  380. ktime_t delta;
  381. if (ts->idle_active) {
  382. delta = ktime_sub(now, ts->idle_entrytime);
  383. if (nr_iowait_cpu(cpu) > 0)
  384. ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
  385. else
  386. ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
  387. ts->idle_entrytime = now;
  388. }
  389. if (last_update_time)
  390. *last_update_time = ktime_to_us(now);
  391. }
  392. static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
  393. {
  394. update_ts_time_stats(smp_processor_id(), ts, now, NULL);
  395. ts->idle_active = 0;
  396. sched_clock_idle_wakeup_event(0);
  397. }
  398. static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
  399. {
  400. ktime_t now = ktime_get();
  401. ts->idle_entrytime = now;
  402. ts->idle_active = 1;
  403. sched_clock_idle_sleep_event();
  404. return now;
  405. }
  406. /**
  407. * get_cpu_idle_time_us - get the total idle time of a cpu
  408. * @cpu: CPU number to query
  409. * @last_update_time: variable to store update time in. Do not update
  410. * counters if NULL.
  411. *
  412. * Return the cummulative idle time (since boot) for a given
  413. * CPU, in microseconds.
  414. *
  415. * This time is measured via accounting rather than sampling,
  416. * and is as accurate as ktime_get() is.
  417. *
  418. * This function returns -1 if NOHZ is not enabled.
  419. */
  420. u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
  421. {
  422. struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
  423. ktime_t now, idle;
  424. if (!tick_nohz_active)
  425. return -1;
  426. now = ktime_get();
  427. if (last_update_time) {
  428. update_ts_time_stats(cpu, ts, now, last_update_time);
  429. idle = ts->idle_sleeptime;
  430. } else {
  431. if (ts->idle_active && !nr_iowait_cpu(cpu)) {
  432. ktime_t delta = ktime_sub(now, ts->idle_entrytime);
  433. idle = ktime_add(ts->idle_sleeptime, delta);
  434. } else {
  435. idle = ts->idle_sleeptime;
  436. }
  437. }
  438. return ktime_to_us(idle);
  439. }
  440. EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
  441. /**
  442. * get_cpu_iowait_time_us - get the total iowait time of a cpu
  443. * @cpu: CPU number to query
  444. * @last_update_time: variable to store update time in. Do not update
  445. * counters if NULL.
  446. *
  447. * Return the cummulative iowait time (since boot) for a given
  448. * CPU, in microseconds.
  449. *
  450. * This time is measured via accounting rather than sampling,
  451. * and is as accurate as ktime_get() is.
  452. *
  453. * This function returns -1 if NOHZ is not enabled.
  454. */
  455. u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
  456. {
  457. struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
  458. ktime_t now, iowait;
  459. if (!tick_nohz_active)
  460. return -1;
  461. now = ktime_get();
  462. if (last_update_time) {
  463. update_ts_time_stats(cpu, ts, now, last_update_time);
  464. iowait = ts->iowait_sleeptime;
  465. } else {
  466. if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
  467. ktime_t delta = ktime_sub(now, ts->idle_entrytime);
  468. iowait = ktime_add(ts->iowait_sleeptime, delta);
  469. } else {
  470. iowait = ts->iowait_sleeptime;
  471. }
  472. }
  473. return ktime_to_us(iowait);
  474. }
  475. EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
  476. static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
  477. ktime_t now, int cpu)
  478. {
  479. unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
  480. ktime_t last_update, expires, ret = { .tv64 = 0 };
  481. unsigned long rcu_delta_jiffies;
  482. struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
  483. u64 time_delta;
  484. time_delta = timekeeping_max_deferment();
  485. /* Read jiffies and the time when jiffies were updated last */
  486. do {
  487. seq = read_seqbegin(&jiffies_lock);
  488. last_update = last_jiffies_update;
  489. last_jiffies = jiffies;
  490. } while (read_seqretry(&jiffies_lock, seq));
  491. if (rcu_needs_cpu(&rcu_delta_jiffies) ||
  492. arch_needs_cpu() || irq_work_needs_cpu()) {
  493. next_jiffies = last_jiffies + 1;
  494. delta_jiffies = 1;
  495. } else {
  496. /* Get the next timer wheel timer */
  497. next_jiffies = get_next_timer_interrupt(last_jiffies);
  498. delta_jiffies = next_jiffies - last_jiffies;
  499. if (rcu_delta_jiffies < delta_jiffies) {
  500. next_jiffies = last_jiffies + rcu_delta_jiffies;
  501. delta_jiffies = rcu_delta_jiffies;
  502. }
  503. }
  504. /*
  505. * Do not stop the tick, if we are only one off (or less)
  506. * or if the cpu is required for RCU:
  507. */
  508. if (!ts->tick_stopped && delta_jiffies <= 1)
  509. goto out;
  510. /* Schedule the tick, if we are at least one jiffie off */
  511. if ((long)delta_jiffies >= 1) {
  512. /*
  513. * If this cpu is the one which updates jiffies, then
  514. * give up the assignment and let it be taken by the
  515. * cpu which runs the tick timer next, which might be
  516. * this cpu as well. If we don't drop this here the
  517. * jiffies might be stale and do_timer() never
  518. * invoked. Keep track of the fact that it was the one
  519. * which had the do_timer() duty last. If this cpu is
  520. * the one which had the do_timer() duty last, we
  521. * limit the sleep time to the timekeeping
  522. * max_deferement value which we retrieved
  523. * above. Otherwise we can sleep as long as we want.
  524. */
  525. if (cpu == tick_do_timer_cpu) {
  526. tick_do_timer_cpu = TICK_DO_TIMER_NONE;
  527. ts->do_timer_last = 1;
  528. } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
  529. time_delta = KTIME_MAX;
  530. ts->do_timer_last = 0;
  531. } else if (!ts->do_timer_last) {
  532. time_delta = KTIME_MAX;
  533. }
  534. #ifdef CONFIG_NO_HZ_FULL
  535. if (!ts->inidle) {
  536. time_delta = min(time_delta,
  537. scheduler_tick_max_deferment());
  538. }
  539. #endif
  540. /*
  541. * calculate the expiry time for the next timer wheel
  542. * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
  543. * that there is no timer pending or at least extremely
  544. * far into the future (12 days for HZ=1000). In this
  545. * case we set the expiry to the end of time.
  546. */
  547. if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
  548. /*
  549. * Calculate the time delta for the next timer event.
  550. * If the time delta exceeds the maximum time delta
  551. * permitted by the current clocksource then adjust
  552. * the time delta accordingly to ensure the
  553. * clocksource does not wrap.
  554. */
  555. time_delta = min_t(u64, time_delta,
  556. tick_period.tv64 * delta_jiffies);
  557. }
  558. if (time_delta < KTIME_MAX)
  559. expires = ktime_add_ns(last_update, time_delta);
  560. else
  561. expires.tv64 = KTIME_MAX;
  562. /* Skip reprogram of event if its not changed */
  563. if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
  564. goto out;
  565. ret = expires;
  566. /*
  567. * nohz_stop_sched_tick can be called several times before
  568. * the nohz_restart_sched_tick is called. This happens when
  569. * interrupts arrive which do not cause a reschedule. In the
  570. * first call we save the current tick time, so we can restart
  571. * the scheduler tick in nohz_restart_sched_tick.
  572. */
  573. if (!ts->tick_stopped) {
  574. nohz_balance_enter_idle(cpu);
  575. calc_load_enter_idle();
  576. ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
  577. ts->tick_stopped = 1;
  578. trace_tick_stop(1, " ");
  579. }
  580. /*
  581. * If the expiration time == KTIME_MAX, then
  582. * in this case we simply stop the tick timer.
  583. */
  584. if (unlikely(expires.tv64 == KTIME_MAX)) {
  585. if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
  586. hrtimer_cancel(&ts->sched_timer);
  587. goto out;
  588. }
  589. if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
  590. hrtimer_start(&ts->sched_timer, expires,
  591. HRTIMER_MODE_ABS_PINNED);
  592. /* Check, if the timer was already in the past */
  593. if (hrtimer_active(&ts->sched_timer))
  594. goto out;
  595. } else if (!tick_program_event(expires, 0))
  596. goto out;
  597. /*
  598. * We are past the event already. So we crossed a
  599. * jiffie boundary. Update jiffies and raise the
  600. * softirq.
  601. */
  602. tick_do_update_jiffies64(ktime_get());
  603. }
  604. raise_softirq_irqoff(TIMER_SOFTIRQ);
  605. out:
  606. ts->next_jiffies = next_jiffies;
  607. ts->last_jiffies = last_jiffies;
  608. ts->sleep_length = ktime_sub(dev->next_event, now);
  609. return ret;
  610. }
  611. static void tick_nohz_full_stop_tick(struct tick_sched *ts)
  612. {
  613. #ifdef CONFIG_NO_HZ_FULL
  614. int cpu = smp_processor_id();
  615. if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
  616. return;
  617. if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
  618. return;
  619. if (!can_stop_full_tick())
  620. return;
  621. tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
  622. #endif
  623. }
  624. static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
  625. {
  626. /*
  627. * If this cpu is offline and it is the one which updates
  628. * jiffies, then give up the assignment and let it be taken by
  629. * the cpu which runs the tick timer next. If we don't drop
  630. * this here the jiffies might be stale and do_timer() never
  631. * invoked.
  632. */
  633. if (unlikely(!cpu_online(cpu))) {
  634. if (cpu == tick_do_timer_cpu)
  635. tick_do_timer_cpu = TICK_DO_TIMER_NONE;
  636. return false;
  637. }
  638. if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
  639. ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
  640. return false;
  641. }
  642. if (need_resched())
  643. return false;
  644. if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
  645. static int ratelimit;
  646. if (ratelimit < 10 &&
  647. (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
  648. pr_warn("NOHZ: local_softirq_pending %02x\n",
  649. (unsigned int) local_softirq_pending());
  650. ratelimit++;
  651. }
  652. return false;
  653. }
  654. if (tick_nohz_full_enabled()) {
  655. /*
  656. * Keep the tick alive to guarantee timekeeping progression
  657. * if there are full dynticks CPUs around
  658. */
  659. if (tick_do_timer_cpu == cpu)
  660. return false;
  661. /*
  662. * Boot safety: make sure the timekeeping duty has been
  663. * assigned before entering dyntick-idle mode,
  664. */
  665. if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
  666. return false;
  667. }
  668. return true;
  669. }
  670. static void __tick_nohz_idle_enter(struct tick_sched *ts)
  671. {
  672. ktime_t now, expires;
  673. int cpu = smp_processor_id();
  674. now = tick_nohz_start_idle(ts);
  675. if (can_stop_idle_tick(cpu, ts)) {
  676. int was_stopped = ts->tick_stopped;
  677. ts->idle_calls++;
  678. expires = tick_nohz_stop_sched_tick(ts, now, cpu);
  679. if (expires.tv64 > 0LL) {
  680. ts->idle_sleeps++;
  681. ts->idle_expires = expires;
  682. }
  683. if (!was_stopped && ts->tick_stopped)
  684. ts->idle_jiffies = ts->last_jiffies;
  685. }
  686. }
  687. /**
  688. * tick_nohz_idle_enter - stop the idle tick from the idle task
  689. *
  690. * When the next event is more than a tick into the future, stop the idle tick
  691. * Called when we start the idle loop.
  692. *
  693. * The arch is responsible of calling:
  694. *
  695. * - rcu_idle_enter() after its last use of RCU before the CPU is put
  696. * to sleep.
  697. * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
  698. */
  699. void tick_nohz_idle_enter(void)
  700. {
  701. struct tick_sched *ts;
  702. WARN_ON_ONCE(irqs_disabled());
  703. /*
  704. * Update the idle state in the scheduler domain hierarchy
  705. * when tick_nohz_stop_sched_tick() is called from the idle loop.
  706. * State will be updated to busy during the first busy tick after
  707. * exiting idle.
  708. */
  709. set_cpu_sd_state_idle();
  710. local_irq_disable();
  711. ts = this_cpu_ptr(&tick_cpu_sched);
  712. ts->inidle = 1;
  713. __tick_nohz_idle_enter(ts);
  714. local_irq_enable();
  715. }
  716. /**
  717. * tick_nohz_irq_exit - update next tick event from interrupt exit
  718. *
  719. * When an interrupt fires while we are idle and it doesn't cause
  720. * a reschedule, it may still add, modify or delete a timer, enqueue
  721. * an RCU callback, etc...
  722. * So we need to re-calculate and reprogram the next tick event.
  723. */
  724. void tick_nohz_irq_exit(void)
  725. {
  726. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  727. if (ts->inidle)
  728. __tick_nohz_idle_enter(ts);
  729. else
  730. tick_nohz_full_stop_tick(ts);
  731. }
  732. /**
  733. * tick_nohz_get_sleep_length - return the length of the current sleep
  734. *
  735. * Called from power state control code with interrupts disabled
  736. */
  737. ktime_t tick_nohz_get_sleep_length(void)
  738. {
  739. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  740. return ts->sleep_length;
  741. }
  742. static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
  743. {
  744. hrtimer_cancel(&ts->sched_timer);
  745. hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
  746. while (1) {
  747. /* Forward the time to expire in the future */
  748. hrtimer_forward(&ts->sched_timer, now, tick_period);
  749. if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
  750. hrtimer_start_expires(&ts->sched_timer,
  751. HRTIMER_MODE_ABS_PINNED);
  752. /* Check, if the timer was already in the past */
  753. if (hrtimer_active(&ts->sched_timer))
  754. break;
  755. } else {
  756. if (!tick_program_event(
  757. hrtimer_get_expires(&ts->sched_timer), 0))
  758. break;
  759. }
  760. /* Reread time and update jiffies */
  761. now = ktime_get();
  762. tick_do_update_jiffies64(now);
  763. }
  764. }
  765. static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
  766. {
  767. /* Update jiffies first */
  768. tick_do_update_jiffies64(now);
  769. update_cpu_load_nohz();
  770. calc_load_exit_idle();
  771. touch_softlockup_watchdog();
  772. /*
  773. * Cancel the scheduled timer and restore the tick
  774. */
  775. ts->tick_stopped = 0;
  776. ts->idle_exittime = now;
  777. tick_nohz_restart(ts, now);
  778. }
  779. static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
  780. {
  781. #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  782. unsigned long ticks;
  783. if (vtime_accounting_enabled())
  784. return;
  785. /*
  786. * We stopped the tick in idle. Update process times would miss the
  787. * time we slept as update_process_times does only a 1 tick
  788. * accounting. Enforce that this is accounted to idle !
  789. */
  790. ticks = jiffies - ts->idle_jiffies;
  791. /*
  792. * We might be one off. Do not randomly account a huge number of ticks!
  793. */
  794. if (ticks && ticks < LONG_MAX)
  795. account_idle_ticks(ticks);
  796. #endif
  797. }
  798. /**
  799. * tick_nohz_idle_exit - restart the idle tick from the idle task
  800. *
  801. * Restart the idle tick when the CPU is woken up from idle
  802. * This also exit the RCU extended quiescent state. The CPU
  803. * can use RCU again after this function is called.
  804. */
  805. void tick_nohz_idle_exit(void)
  806. {
  807. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  808. ktime_t now;
  809. local_irq_disable();
  810. WARN_ON_ONCE(!ts->inidle);
  811. ts->inidle = 0;
  812. if (ts->idle_active || ts->tick_stopped)
  813. now = ktime_get();
  814. if (ts->idle_active)
  815. tick_nohz_stop_idle(ts, now);
  816. if (ts->tick_stopped) {
  817. tick_nohz_restart_sched_tick(ts, now);
  818. tick_nohz_account_idle_ticks(ts);
  819. }
  820. local_irq_enable();
  821. }
  822. static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
  823. {
  824. hrtimer_forward(&ts->sched_timer, now, tick_period);
  825. return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
  826. }
  827. /*
  828. * The nohz low res interrupt handler
  829. */
  830. static void tick_nohz_handler(struct clock_event_device *dev)
  831. {
  832. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  833. struct pt_regs *regs = get_irq_regs();
  834. ktime_t now = ktime_get();
  835. dev->next_event.tv64 = KTIME_MAX;
  836. tick_sched_do_timer(now);
  837. tick_sched_handle(ts, regs);
  838. /* No need to reprogram if we are running tickless */
  839. if (unlikely(ts->tick_stopped))
  840. return;
  841. while (tick_nohz_reprogram(ts, now)) {
  842. now = ktime_get();
  843. tick_do_update_jiffies64(now);
  844. }
  845. }
  846. /**
  847. * tick_nohz_switch_to_nohz - switch to nohz mode
  848. */
  849. static void tick_nohz_switch_to_nohz(void)
  850. {
  851. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  852. ktime_t next;
  853. if (!tick_nohz_enabled)
  854. return;
  855. local_irq_disable();
  856. if (tick_switch_to_oneshot(tick_nohz_handler)) {
  857. local_irq_enable();
  858. return;
  859. }
  860. tick_nohz_active = 1;
  861. ts->nohz_mode = NOHZ_MODE_LOWRES;
  862. /*
  863. * Recycle the hrtimer in ts, so we can share the
  864. * hrtimer_forward with the highres code.
  865. */
  866. hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  867. /* Get the next period */
  868. next = tick_init_jiffy_update();
  869. for (;;) {
  870. hrtimer_set_expires(&ts->sched_timer, next);
  871. if (!tick_program_event(next, 0))
  872. break;
  873. next = ktime_add(next, tick_period);
  874. }
  875. local_irq_enable();
  876. }
  877. /*
  878. * When NOHZ is enabled and the tick is stopped, we need to kick the
  879. * tick timer from irq_enter() so that the jiffies update is kept
  880. * alive during long running softirqs. That's ugly as hell, but
  881. * correctness is key even if we need to fix the offending softirq in
  882. * the first place.
  883. *
  884. * Note, this is different to tick_nohz_restart. We just kick the
  885. * timer and do not touch the other magic bits which need to be done
  886. * when idle is left.
  887. */
  888. static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
  889. {
  890. #if 0
  891. /* Switch back to 2.6.27 behaviour */
  892. ktime_t delta;
  893. /*
  894. * Do not touch the tick device, when the next expiry is either
  895. * already reached or less/equal than the tick period.
  896. */
  897. delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
  898. if (delta.tv64 <= tick_period.tv64)
  899. return;
  900. tick_nohz_restart(ts, now);
  901. #endif
  902. }
  903. static inline void tick_nohz_irq_enter(void)
  904. {
  905. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  906. ktime_t now;
  907. if (!ts->idle_active && !ts->tick_stopped)
  908. return;
  909. now = ktime_get();
  910. if (ts->idle_active)
  911. tick_nohz_stop_idle(ts, now);
  912. if (ts->tick_stopped) {
  913. tick_nohz_update_jiffies(now);
  914. tick_nohz_kick_tick(ts, now);
  915. }
  916. }
  917. #else
  918. static inline void tick_nohz_switch_to_nohz(void) { }
  919. static inline void tick_nohz_irq_enter(void) { }
  920. #endif /* CONFIG_NO_HZ_COMMON */
  921. /*
  922. * Called from irq_enter to notify about the possible interruption of idle()
  923. */
  924. void tick_irq_enter(void)
  925. {
  926. tick_check_oneshot_broadcast_this_cpu();
  927. tick_nohz_irq_enter();
  928. }
  929. /*
  930. * High resolution timer specific code
  931. */
  932. #ifdef CONFIG_HIGH_RES_TIMERS
  933. /*
  934. * We rearm the timer until we get disabled by the idle code.
  935. * Called with interrupts disabled.
  936. */
  937. static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
  938. {
  939. struct tick_sched *ts =
  940. container_of(timer, struct tick_sched, sched_timer);
  941. struct pt_regs *regs = get_irq_regs();
  942. ktime_t now = ktime_get();
  943. tick_sched_do_timer(now);
  944. /*
  945. * Do not call, when we are not in irq context and have
  946. * no valid regs pointer
  947. */
  948. if (regs)
  949. tick_sched_handle(ts, regs);
  950. /* No need to reprogram if we are in idle or full dynticks mode */
  951. if (unlikely(ts->tick_stopped))
  952. return HRTIMER_NORESTART;
  953. hrtimer_forward(timer, now, tick_period);
  954. return HRTIMER_RESTART;
  955. }
  956. static int sched_skew_tick;
  957. static int __init skew_tick(char *str)
  958. {
  959. get_option(&str, &sched_skew_tick);
  960. return 0;
  961. }
  962. early_param("skew_tick", skew_tick);
  963. /**
  964. * tick_setup_sched_timer - setup the tick emulation timer
  965. */
  966. void tick_setup_sched_timer(void)
  967. {
  968. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  969. ktime_t now = ktime_get();
  970. /*
  971. * Emulate tick processing via per-CPU hrtimers:
  972. */
  973. hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  974. ts->sched_timer.function = tick_sched_timer;
  975. /* Get the next period (per cpu) */
  976. hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
  977. /* Offset the tick to avert jiffies_lock contention. */
  978. if (sched_skew_tick) {
  979. u64 offset = ktime_to_ns(tick_period) >> 1;
  980. do_div(offset, num_possible_cpus());
  981. offset *= smp_processor_id();
  982. hrtimer_add_expires_ns(&ts->sched_timer, offset);
  983. }
  984. for (;;) {
  985. hrtimer_forward(&ts->sched_timer, now, tick_period);
  986. hrtimer_start_expires(&ts->sched_timer,
  987. HRTIMER_MODE_ABS_PINNED);
  988. /* Check, if the timer was already in the past */
  989. if (hrtimer_active(&ts->sched_timer))
  990. break;
  991. now = ktime_get();
  992. }
  993. #ifdef CONFIG_NO_HZ_COMMON
  994. if (tick_nohz_enabled) {
  995. ts->nohz_mode = NOHZ_MODE_HIGHRES;
  996. tick_nohz_active = 1;
  997. }
  998. #endif
  999. }
  1000. #endif /* HIGH_RES_TIMERS */
  1001. #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
  1002. void tick_cancel_sched_timer(int cpu)
  1003. {
  1004. struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
  1005. # ifdef CONFIG_HIGH_RES_TIMERS
  1006. if (ts->sched_timer.base)
  1007. hrtimer_cancel(&ts->sched_timer);
  1008. # endif
  1009. memset(ts, 0, sizeof(*ts));
  1010. }
  1011. #endif
  1012. /**
  1013. * Async notification about clocksource changes
  1014. */
  1015. void tick_clock_notify(void)
  1016. {
  1017. int cpu;
  1018. for_each_possible_cpu(cpu)
  1019. set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
  1020. }
  1021. /*
  1022. * Async notification about clock event changes
  1023. */
  1024. void tick_oneshot_notify(void)
  1025. {
  1026. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  1027. set_bit(0, &ts->check_clocks);
  1028. }
  1029. /**
  1030. * Check, if a change happened, which makes oneshot possible.
  1031. *
  1032. * Called cyclic from the hrtimer softirq (driven by the timer
  1033. * softirq) allow_nohz signals, that we can switch into low-res nohz
  1034. * mode, because high resolution timers are disabled (either compile
  1035. * or runtime).
  1036. */
  1037. int tick_check_oneshot_change(int allow_nohz)
  1038. {
  1039. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  1040. if (!test_and_clear_bit(0, &ts->check_clocks))
  1041. return 0;
  1042. if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
  1043. return 0;
  1044. if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
  1045. return 0;
  1046. if (!allow_nohz)
  1047. return 1;
  1048. tick_nohz_switch_to_nohz();
  1049. return 0;
  1050. }