sched_clock.c 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217
  1. /*
  2. * sched_clock.c: support for extending counters to full 64-bit ns counter
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/clocksource.h>
  9. #include <linux/init.h>
  10. #include <linux/jiffies.h>
  11. #include <linux/ktime.h>
  12. #include <linux/kernel.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/sched.h>
  15. #include <linux/syscore_ops.h>
  16. #include <linux/hrtimer.h>
  17. #include <linux/sched_clock.h>
  18. #include <linux/seqlock.h>
  19. #include <linux/bitops.h>
  20. struct clock_data {
  21. ktime_t wrap_kt;
  22. u64 epoch_ns;
  23. u64 epoch_cyc;
  24. seqcount_t seq;
  25. unsigned long rate;
  26. u32 mult;
  27. u32 shift;
  28. bool suspended;
  29. };
  30. static struct hrtimer sched_clock_timer;
  31. static int irqtime = -1;
  32. core_param(irqtime, irqtime, int, 0400);
  33. static struct clock_data cd = {
  34. .mult = NSEC_PER_SEC / HZ,
  35. };
  36. static u64 __read_mostly sched_clock_mask;
  37. static u64 notrace jiffy_sched_clock_read(void)
  38. {
  39. /*
  40. * We don't need to use get_jiffies_64 on 32-bit arches here
  41. * because we register with BITS_PER_LONG
  42. */
  43. return (u64)(jiffies - INITIAL_JIFFIES);
  44. }
  45. static u64 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
  46. static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
  47. {
  48. return (cyc * mult) >> shift;
  49. }
  50. unsigned long long notrace sched_clock(void)
  51. {
  52. u64 epoch_ns;
  53. u64 epoch_cyc;
  54. u64 cyc;
  55. unsigned long seq;
  56. if (cd.suspended)
  57. return cd.epoch_ns;
  58. do {
  59. seq = raw_read_seqcount_begin(&cd.seq);
  60. epoch_cyc = cd.epoch_cyc;
  61. epoch_ns = cd.epoch_ns;
  62. } while (read_seqcount_retry(&cd.seq, seq));
  63. cyc = read_sched_clock();
  64. cyc = (cyc - epoch_cyc) & sched_clock_mask;
  65. return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift);
  66. }
  67. /*
  68. * Atomically update the sched_clock epoch.
  69. */
  70. static void notrace update_sched_clock(void)
  71. {
  72. unsigned long flags;
  73. u64 cyc;
  74. u64 ns;
  75. cyc = read_sched_clock();
  76. ns = cd.epoch_ns +
  77. cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
  78. cd.mult, cd.shift);
  79. raw_local_irq_save(flags);
  80. raw_write_seqcount_begin(&cd.seq);
  81. cd.epoch_ns = ns;
  82. cd.epoch_cyc = cyc;
  83. raw_write_seqcount_end(&cd.seq);
  84. raw_local_irq_restore(flags);
  85. }
  86. static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
  87. {
  88. update_sched_clock();
  89. hrtimer_forward_now(hrt, cd.wrap_kt);
  90. return HRTIMER_RESTART;
  91. }
  92. void __init sched_clock_register(u64 (*read)(void), int bits,
  93. unsigned long rate)
  94. {
  95. u64 res, wrap, new_mask, new_epoch, cyc, ns;
  96. u32 new_mult, new_shift;
  97. ktime_t new_wrap_kt;
  98. unsigned long r;
  99. char r_unit;
  100. if (cd.rate > rate)
  101. return;
  102. WARN_ON(!irqs_disabled());
  103. /* calculate the mult/shift to convert counter ticks to ns. */
  104. clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
  105. new_mask = CLOCKSOURCE_MASK(bits);
  106. /* calculate how many ns until we wrap */
  107. wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask);
  108. new_wrap_kt = ns_to_ktime(wrap - (wrap >> 3));
  109. /* update epoch for new counter and update epoch_ns from old counter*/
  110. new_epoch = read();
  111. cyc = read_sched_clock();
  112. ns = cd.epoch_ns + cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
  113. cd.mult, cd.shift);
  114. raw_write_seqcount_begin(&cd.seq);
  115. read_sched_clock = read;
  116. sched_clock_mask = new_mask;
  117. cd.rate = rate;
  118. cd.wrap_kt = new_wrap_kt;
  119. cd.mult = new_mult;
  120. cd.shift = new_shift;
  121. cd.epoch_cyc = new_epoch;
  122. cd.epoch_ns = ns;
  123. raw_write_seqcount_end(&cd.seq);
  124. r = rate;
  125. if (r >= 4000000) {
  126. r /= 1000000;
  127. r_unit = 'M';
  128. } else if (r >= 1000) {
  129. r /= 1000;
  130. r_unit = 'k';
  131. } else
  132. r_unit = ' ';
  133. /* calculate the ns resolution of this counter */
  134. res = cyc_to_ns(1ULL, new_mult, new_shift);
  135. pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
  136. bits, r, r_unit, res, wrap);
  137. /* Enable IRQ time accounting if we have a fast enough sched_clock */
  138. if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
  139. enable_sched_clock_irqtime();
  140. pr_debug("Registered %pF as sched_clock source\n", read);
  141. }
  142. void __init sched_clock_postinit(void)
  143. {
  144. /*
  145. * If no sched_clock function has been provided at that point,
  146. * make it the final one one.
  147. */
  148. if (read_sched_clock == jiffy_sched_clock_read)
  149. sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
  150. update_sched_clock();
  151. /*
  152. * Start the timer to keep sched_clock() properly updated and
  153. * sets the initial epoch.
  154. */
  155. hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  156. sched_clock_timer.function = sched_clock_poll;
  157. hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
  158. }
  159. static int sched_clock_suspend(void)
  160. {
  161. update_sched_clock();
  162. hrtimer_cancel(&sched_clock_timer);
  163. cd.suspended = true;
  164. return 0;
  165. }
  166. static void sched_clock_resume(void)
  167. {
  168. cd.epoch_cyc = read_sched_clock();
  169. hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
  170. cd.suspended = false;
  171. }
  172. static struct syscore_ops sched_clock_ops = {
  173. .suspend = sched_clock_suspend,
  174. .resume = sched_clock_resume,
  175. };
  176. static int __init sched_clock_syscore_init(void)
  177. {
  178. register_syscore_ops(&sched_clock_ops);
  179. return 0;
  180. }
  181. device_initcall(sched_clock_syscore_init);