exit.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634
  1. /*
  2. * linux/kernel/exit.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/slab.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/module.h>
  10. #include <linux/capability.h>
  11. #include <linux/completion.h>
  12. #include <linux/personality.h>
  13. #include <linux/tty.h>
  14. #include <linux/iocontext.h>
  15. #include <linux/key.h>
  16. #include <linux/security.h>
  17. #include <linux/cpu.h>
  18. #include <linux/acct.h>
  19. #include <linux/tsacct_kern.h>
  20. #include <linux/file.h>
  21. #include <linux/fdtable.h>
  22. #include <linux/freezer.h>
  23. #include <linux/binfmts.h>
  24. #include <linux/nsproxy.h>
  25. #include <linux/pid_namespace.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/profile.h>
  28. #include <linux/mount.h>
  29. #include <linux/proc_fs.h>
  30. #include <linux/kthread.h>
  31. #include <linux/mempolicy.h>
  32. #include <linux/taskstats_kern.h>
  33. #include <linux/delayacct.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/signal.h>
  37. #include <linux/posix-timers.h>
  38. #include <linux/cn_proc.h>
  39. #include <linux/mutex.h>
  40. #include <linux/futex.h>
  41. #include <linux/pipe_fs_i.h>
  42. #include <linux/audit.h> /* for audit_free() */
  43. #include <linux/resource.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/task_io_accounting_ops.h>
  46. #include <linux/tracehook.h>
  47. #include <linux/fs_struct.h>
  48. #include <linux/init_task.h>
  49. #include <linux/perf_event.h>
  50. #include <trace/events/sched.h>
  51. #include <linux/hw_breakpoint.h>
  52. #include <linux/oom.h>
  53. #include <linux/writeback.h>
  54. #include <linux/shm.h>
  55. #include <asm/uaccess.h>
  56. #include <asm/unistd.h>
  57. #include <asm/pgtable.h>
  58. #include <asm/mmu_context.h>
  59. static void exit_mm(struct task_struct *tsk);
  60. static void __unhash_process(struct task_struct *p, bool group_dead)
  61. {
  62. nr_threads--;
  63. detach_pid(p, PIDTYPE_PID);
  64. if (group_dead) {
  65. detach_pid(p, PIDTYPE_PGID);
  66. detach_pid(p, PIDTYPE_SID);
  67. list_del_rcu(&p->tasks);
  68. list_del_init(&p->sibling);
  69. __this_cpu_dec(process_counts);
  70. }
  71. list_del_rcu(&p->thread_group);
  72. list_del_rcu(&p->thread_node);
  73. }
  74. /*
  75. * This function expects the tasklist_lock write-locked.
  76. */
  77. static void __exit_signal(struct task_struct *tsk)
  78. {
  79. struct signal_struct *sig = tsk->signal;
  80. bool group_dead = thread_group_leader(tsk);
  81. struct sighand_struct *sighand;
  82. struct tty_struct *uninitialized_var(tty);
  83. cputime_t utime, stime;
  84. sighand = rcu_dereference_check(tsk->sighand,
  85. lockdep_tasklist_lock_is_held());
  86. spin_lock(&sighand->siglock);
  87. posix_cpu_timers_exit(tsk);
  88. if (group_dead) {
  89. posix_cpu_timers_exit_group(tsk);
  90. tty = sig->tty;
  91. sig->tty = NULL;
  92. } else {
  93. /*
  94. * This can only happen if the caller is de_thread().
  95. * FIXME: this is the temporary hack, we should teach
  96. * posix-cpu-timers to handle this case correctly.
  97. */
  98. if (unlikely(has_group_leader_pid(tsk)))
  99. posix_cpu_timers_exit_group(tsk);
  100. /*
  101. * If there is any task waiting for the group exit
  102. * then notify it:
  103. */
  104. if (sig->notify_count > 0 && !--sig->notify_count)
  105. wake_up_process(sig->group_exit_task);
  106. if (tsk == sig->curr_target)
  107. sig->curr_target = next_thread(tsk);
  108. }
  109. /*
  110. * Accumulate here the counters for all threads as they die. We could
  111. * skip the group leader because it is the last user of signal_struct,
  112. * but we want to avoid the race with thread_group_cputime() which can
  113. * see the empty ->thread_head list.
  114. */
  115. task_cputime(tsk, &utime, &stime);
  116. write_seqlock(&sig->stats_lock);
  117. sig->utime += utime;
  118. sig->stime += stime;
  119. sig->gtime += task_gtime(tsk);
  120. sig->min_flt += tsk->min_flt;
  121. sig->maj_flt += tsk->maj_flt;
  122. sig->nvcsw += tsk->nvcsw;
  123. sig->nivcsw += tsk->nivcsw;
  124. sig->inblock += task_io_get_inblock(tsk);
  125. sig->oublock += task_io_get_oublock(tsk);
  126. task_io_accounting_add(&sig->ioac, &tsk->ioac);
  127. sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  128. sig->nr_threads--;
  129. __unhash_process(tsk, group_dead);
  130. write_sequnlock(&sig->stats_lock);
  131. /*
  132. * Do this under ->siglock, we can race with another thread
  133. * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  134. */
  135. flush_sigqueue(&tsk->pending);
  136. tsk->sighand = NULL;
  137. spin_unlock(&sighand->siglock);
  138. __cleanup_sighand(sighand);
  139. clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
  140. if (group_dead) {
  141. flush_sigqueue(&sig->shared_pending);
  142. tty_kref_put(tty);
  143. }
  144. }
  145. static void delayed_put_task_struct(struct rcu_head *rhp)
  146. {
  147. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  148. perf_event_delayed_put(tsk);
  149. trace_sched_process_free(tsk);
  150. put_task_struct(tsk);
  151. }
  152. void release_task(struct task_struct *p)
  153. {
  154. struct task_struct *leader;
  155. int zap_leader;
  156. repeat:
  157. /* don't need to get the RCU readlock here - the process is dead and
  158. * can't be modifying its own credentials. But shut RCU-lockdep up */
  159. rcu_read_lock();
  160. atomic_dec(&__task_cred(p)->user->processes);
  161. rcu_read_unlock();
  162. proc_flush_task(p);
  163. write_lock_irq(&tasklist_lock);
  164. ptrace_release_task(p);
  165. __exit_signal(p);
  166. /*
  167. * If we are the last non-leader member of the thread
  168. * group, and the leader is zombie, then notify the
  169. * group leader's parent process. (if it wants notification.)
  170. */
  171. zap_leader = 0;
  172. leader = p->group_leader;
  173. if (leader != p && thread_group_empty(leader)
  174. && leader->exit_state == EXIT_ZOMBIE) {
  175. /*
  176. * If we were the last child thread and the leader has
  177. * exited already, and the leader's parent ignores SIGCHLD,
  178. * then we are the one who should release the leader.
  179. */
  180. zap_leader = do_notify_parent(leader, leader->exit_signal);
  181. if (zap_leader)
  182. leader->exit_state = EXIT_DEAD;
  183. }
  184. write_unlock_irq(&tasklist_lock);
  185. release_thread(p);
  186. call_rcu(&p->rcu, delayed_put_task_struct);
  187. p = leader;
  188. if (unlikely(zap_leader))
  189. goto repeat;
  190. }
  191. /*
  192. * Determine if a process group is "orphaned", according to the POSIX
  193. * definition in 2.2.2.52. Orphaned process groups are not to be affected
  194. * by terminal-generated stop signals. Newly orphaned process groups are
  195. * to receive a SIGHUP and a SIGCONT.
  196. *
  197. * "I ask you, have you ever known what it is to be an orphan?"
  198. */
  199. static int will_become_orphaned_pgrp(struct pid *pgrp,
  200. struct task_struct *ignored_task)
  201. {
  202. struct task_struct *p;
  203. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  204. if ((p == ignored_task) ||
  205. (p->exit_state && thread_group_empty(p)) ||
  206. is_global_init(p->real_parent))
  207. continue;
  208. if (task_pgrp(p->real_parent) != pgrp &&
  209. task_session(p->real_parent) == task_session(p))
  210. return 0;
  211. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  212. return 1;
  213. }
  214. int is_current_pgrp_orphaned(void)
  215. {
  216. int retval;
  217. read_lock(&tasklist_lock);
  218. retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  219. read_unlock(&tasklist_lock);
  220. return retval;
  221. }
  222. static bool has_stopped_jobs(struct pid *pgrp)
  223. {
  224. struct task_struct *p;
  225. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  226. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  227. return true;
  228. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  229. return false;
  230. }
  231. /*
  232. * Check to see if any process groups have become orphaned as
  233. * a result of our exiting, and if they have any stopped jobs,
  234. * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  235. */
  236. static void
  237. kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  238. {
  239. struct pid *pgrp = task_pgrp(tsk);
  240. struct task_struct *ignored_task = tsk;
  241. if (!parent)
  242. /* exit: our father is in a different pgrp than
  243. * we are and we were the only connection outside.
  244. */
  245. parent = tsk->real_parent;
  246. else
  247. /* reparent: our child is in a different pgrp than
  248. * we are, and it was the only connection outside.
  249. */
  250. ignored_task = NULL;
  251. if (task_pgrp(parent) != pgrp &&
  252. task_session(parent) == task_session(tsk) &&
  253. will_become_orphaned_pgrp(pgrp, ignored_task) &&
  254. has_stopped_jobs(pgrp)) {
  255. __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  256. __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  257. }
  258. }
  259. #ifdef CONFIG_MEMCG
  260. /*
  261. * A task is exiting. If it owned this mm, find a new owner for the mm.
  262. */
  263. void mm_update_next_owner(struct mm_struct *mm)
  264. {
  265. struct task_struct *c, *g, *p = current;
  266. retry:
  267. /*
  268. * If the exiting or execing task is not the owner, it's
  269. * someone else's problem.
  270. */
  271. if (mm->owner != p)
  272. return;
  273. /*
  274. * The current owner is exiting/execing and there are no other
  275. * candidates. Do not leave the mm pointing to a possibly
  276. * freed task structure.
  277. */
  278. if (atomic_read(&mm->mm_users) <= 1) {
  279. mm->owner = NULL;
  280. return;
  281. }
  282. read_lock(&tasklist_lock);
  283. /*
  284. * Search in the children
  285. */
  286. list_for_each_entry(c, &p->children, sibling) {
  287. if (c->mm == mm)
  288. goto assign_new_owner;
  289. }
  290. /*
  291. * Search in the siblings
  292. */
  293. list_for_each_entry(c, &p->real_parent->children, sibling) {
  294. if (c->mm == mm)
  295. goto assign_new_owner;
  296. }
  297. /*
  298. * Search through everything else, we should not get here often.
  299. */
  300. for_each_process(g) {
  301. if (g->flags & PF_KTHREAD)
  302. continue;
  303. for_each_thread(g, c) {
  304. if (c->mm == mm)
  305. goto assign_new_owner;
  306. if (c->mm)
  307. break;
  308. }
  309. }
  310. read_unlock(&tasklist_lock);
  311. /*
  312. * We found no owner yet mm_users > 1: this implies that we are
  313. * most likely racing with swapoff (try_to_unuse()) or /proc or
  314. * ptrace or page migration (get_task_mm()). Mark owner as NULL.
  315. */
  316. mm->owner = NULL;
  317. return;
  318. assign_new_owner:
  319. BUG_ON(c == p);
  320. get_task_struct(c);
  321. /*
  322. * The task_lock protects c->mm from changing.
  323. * We always want mm->owner->mm == mm
  324. */
  325. task_lock(c);
  326. /*
  327. * Delay read_unlock() till we have the task_lock()
  328. * to ensure that c does not slip away underneath us
  329. */
  330. read_unlock(&tasklist_lock);
  331. if (c->mm != mm) {
  332. task_unlock(c);
  333. put_task_struct(c);
  334. goto retry;
  335. }
  336. mm->owner = c;
  337. task_unlock(c);
  338. put_task_struct(c);
  339. }
  340. #endif /* CONFIG_MEMCG */
  341. /*
  342. * Turn us into a lazy TLB process if we
  343. * aren't already..
  344. */
  345. static void exit_mm(struct task_struct *tsk)
  346. {
  347. struct mm_struct *mm = tsk->mm;
  348. struct core_state *core_state;
  349. mm_release(tsk, mm);
  350. if (!mm)
  351. return;
  352. sync_mm_rss(mm);
  353. /*
  354. * Serialize with any possible pending coredump.
  355. * We must hold mmap_sem around checking core_state
  356. * and clearing tsk->mm. The core-inducing thread
  357. * will increment ->nr_threads for each thread in the
  358. * group with ->mm != NULL.
  359. */
  360. down_read(&mm->mmap_sem);
  361. core_state = mm->core_state;
  362. if (core_state) {
  363. struct core_thread self;
  364. up_read(&mm->mmap_sem);
  365. self.task = tsk;
  366. self.next = xchg(&core_state->dumper.next, &self);
  367. /*
  368. * Implies mb(), the result of xchg() must be visible
  369. * to core_state->dumper.
  370. */
  371. if (atomic_dec_and_test(&core_state->nr_threads))
  372. complete(&core_state->startup);
  373. for (;;) {
  374. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  375. if (!self.task) /* see coredump_finish() */
  376. break;
  377. freezable_schedule();
  378. }
  379. __set_task_state(tsk, TASK_RUNNING);
  380. down_read(&mm->mmap_sem);
  381. }
  382. atomic_inc(&mm->mm_count);
  383. BUG_ON(mm != tsk->active_mm);
  384. /* more a memory barrier than a real lock */
  385. task_lock(tsk);
  386. tsk->mm = NULL;
  387. up_read(&mm->mmap_sem);
  388. enter_lazy_tlb(mm, current);
  389. task_unlock(tsk);
  390. mm_update_next_owner(mm);
  391. mmput(mm);
  392. if (test_thread_flag(TIF_MEMDIE))
  393. unmark_oom_victim();
  394. }
  395. static struct task_struct *find_alive_thread(struct task_struct *p)
  396. {
  397. struct task_struct *t;
  398. for_each_thread(p, t) {
  399. if (!(t->flags & PF_EXITING))
  400. return t;
  401. }
  402. return NULL;
  403. }
  404. static struct task_struct *find_child_reaper(struct task_struct *father)
  405. __releases(&tasklist_lock)
  406. __acquires(&tasklist_lock)
  407. {
  408. struct pid_namespace *pid_ns = task_active_pid_ns(father);
  409. struct task_struct *reaper = pid_ns->child_reaper;
  410. if (likely(reaper != father))
  411. return reaper;
  412. reaper = find_alive_thread(father);
  413. if (reaper) {
  414. pid_ns->child_reaper = reaper;
  415. return reaper;
  416. }
  417. write_unlock_irq(&tasklist_lock);
  418. if (unlikely(pid_ns == &init_pid_ns)) {
  419. panic("Attempted to kill init! exitcode=0x%08x\n",
  420. father->signal->group_exit_code ?: father->exit_code);
  421. }
  422. zap_pid_ns_processes(pid_ns);
  423. write_lock_irq(&tasklist_lock);
  424. return father;
  425. }
  426. /*
  427. * When we die, we re-parent all our children, and try to:
  428. * 1. give them to another thread in our thread group, if such a member exists
  429. * 2. give it to the first ancestor process which prctl'd itself as a
  430. * child_subreaper for its children (like a service manager)
  431. * 3. give it to the init process (PID 1) in our pid namespace
  432. */
  433. static struct task_struct *find_new_reaper(struct task_struct *father,
  434. struct task_struct *child_reaper)
  435. {
  436. struct task_struct *thread, *reaper;
  437. thread = find_alive_thread(father);
  438. if (thread)
  439. return thread;
  440. if (father->signal->has_child_subreaper) {
  441. /*
  442. * Find the first ->is_child_subreaper ancestor in our pid_ns.
  443. * We start from father to ensure we can not look into another
  444. * namespace, this is safe because all its threads are dead.
  445. */
  446. for (reaper = father;
  447. !same_thread_group(reaper, child_reaper);
  448. reaper = reaper->real_parent) {
  449. /* call_usermodehelper() descendants need this check */
  450. if (reaper == &init_task)
  451. break;
  452. if (!reaper->signal->is_child_subreaper)
  453. continue;
  454. thread = find_alive_thread(reaper);
  455. if (thread)
  456. return thread;
  457. }
  458. }
  459. return child_reaper;
  460. }
  461. /*
  462. * Any that need to be release_task'd are put on the @dead list.
  463. */
  464. static void reparent_leader(struct task_struct *father, struct task_struct *p,
  465. struct list_head *dead)
  466. {
  467. if (unlikely(p->exit_state == EXIT_DEAD))
  468. return;
  469. /* We don't want people slaying init. */
  470. p->exit_signal = SIGCHLD;
  471. /* If it has exited notify the new parent about this child's death. */
  472. if (!p->ptrace &&
  473. p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  474. if (do_notify_parent(p, p->exit_signal)) {
  475. p->exit_state = EXIT_DEAD;
  476. list_add(&p->ptrace_entry, dead);
  477. }
  478. }
  479. kill_orphaned_pgrp(p, father);
  480. }
  481. /*
  482. * This does two things:
  483. *
  484. * A. Make init inherit all the child processes
  485. * B. Check to see if any process groups have become orphaned
  486. * as a result of our exiting, and if they have any stopped
  487. * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  488. */
  489. static void forget_original_parent(struct task_struct *father,
  490. struct list_head *dead)
  491. {
  492. struct task_struct *p, *t, *reaper;
  493. if (unlikely(!list_empty(&father->ptraced)))
  494. exit_ptrace(father, dead);
  495. /* Can drop and reacquire tasklist_lock */
  496. reaper = find_child_reaper(father);
  497. if (list_empty(&father->children))
  498. return;
  499. reaper = find_new_reaper(father, reaper);
  500. list_for_each_entry(p, &father->children, sibling) {
  501. for_each_thread(p, t) {
  502. t->real_parent = reaper;
  503. BUG_ON((!t->ptrace) != (t->parent == father));
  504. if (likely(!t->ptrace))
  505. t->parent = t->real_parent;
  506. if (t->pdeath_signal)
  507. group_send_sig_info(t->pdeath_signal,
  508. SEND_SIG_NOINFO, t);
  509. }
  510. /*
  511. * If this is a threaded reparent there is no need to
  512. * notify anyone anything has happened.
  513. */
  514. if (!same_thread_group(reaper, father))
  515. reparent_leader(father, p, dead);
  516. }
  517. list_splice_tail_init(&father->children, &reaper->children);
  518. }
  519. /*
  520. * Send signals to all our closest relatives so that they know
  521. * to properly mourn us..
  522. */
  523. static void exit_notify(struct task_struct *tsk, int group_dead)
  524. {
  525. bool autoreap;
  526. struct task_struct *p, *n;
  527. LIST_HEAD(dead);
  528. write_lock_irq(&tasklist_lock);
  529. forget_original_parent(tsk, &dead);
  530. if (group_dead)
  531. kill_orphaned_pgrp(tsk->group_leader, NULL);
  532. if (unlikely(tsk->ptrace)) {
  533. int sig = thread_group_leader(tsk) &&
  534. thread_group_empty(tsk) &&
  535. !ptrace_reparented(tsk) ?
  536. tsk->exit_signal : SIGCHLD;
  537. autoreap = do_notify_parent(tsk, sig);
  538. } else if (thread_group_leader(tsk)) {
  539. autoreap = thread_group_empty(tsk) &&
  540. do_notify_parent(tsk, tsk->exit_signal);
  541. } else {
  542. autoreap = true;
  543. }
  544. tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
  545. if (tsk->exit_state == EXIT_DEAD)
  546. list_add(&tsk->ptrace_entry, &dead);
  547. /* mt-exec, de_thread() is waiting for group leader */
  548. if (unlikely(tsk->signal->notify_count < 0))
  549. wake_up_process(tsk->signal->group_exit_task);
  550. write_unlock_irq(&tasklist_lock);
  551. list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
  552. list_del_init(&p->ptrace_entry);
  553. release_task(p);
  554. }
  555. }
  556. #ifdef CONFIG_DEBUG_STACK_USAGE
  557. static void check_stack_usage(void)
  558. {
  559. static DEFINE_SPINLOCK(low_water_lock);
  560. static int lowest_to_date = THREAD_SIZE;
  561. unsigned long free;
  562. free = stack_not_used(current);
  563. if (free >= lowest_to_date)
  564. return;
  565. spin_lock(&low_water_lock);
  566. if (free < lowest_to_date) {
  567. pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
  568. current->comm, task_pid_nr(current), free);
  569. lowest_to_date = free;
  570. }
  571. spin_unlock(&low_water_lock);
  572. }
  573. #else
  574. static inline void check_stack_usage(void) {}
  575. #endif
  576. void do_exit(long code)
  577. {
  578. struct task_struct *tsk = current;
  579. int group_dead;
  580. TASKS_RCU(int tasks_rcu_i);
  581. profile_task_exit(tsk);
  582. WARN_ON(blk_needs_flush_plug(tsk));
  583. if (unlikely(in_interrupt()))
  584. panic("Aiee, killing interrupt handler!");
  585. if (unlikely(!tsk->pid))
  586. panic("Attempted to kill the idle task!");
  587. /*
  588. * If do_exit is called because this processes oopsed, it's possible
  589. * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
  590. * continuing. Amongst other possible reasons, this is to prevent
  591. * mm_release()->clear_child_tid() from writing to a user-controlled
  592. * kernel address.
  593. */
  594. set_fs(USER_DS);
  595. ptrace_event(PTRACE_EVENT_EXIT, code);
  596. validate_creds_for_do_exit(tsk);
  597. /*
  598. * We're taking recursive faults here in do_exit. Safest is to just
  599. * leave this task alone and wait for reboot.
  600. */
  601. if (unlikely(tsk->flags & PF_EXITING)) {
  602. pr_alert("Fixing recursive fault but reboot is needed!\n");
  603. /*
  604. * We can do this unlocked here. The futex code uses
  605. * this flag just to verify whether the pi state
  606. * cleanup has been done or not. In the worst case it
  607. * loops once more. We pretend that the cleanup was
  608. * done as there is no way to return. Either the
  609. * OWNER_DIED bit is set by now or we push the blocked
  610. * task into the wait for ever nirwana as well.
  611. */
  612. tsk->flags |= PF_EXITPIDONE;
  613. set_current_state(TASK_UNINTERRUPTIBLE);
  614. schedule();
  615. }
  616. exit_signals(tsk); /* sets PF_EXITING */
  617. /*
  618. * tsk->flags are checked in the futex code to protect against
  619. * an exiting task cleaning up the robust pi futexes.
  620. */
  621. smp_mb();
  622. raw_spin_unlock_wait(&tsk->pi_lock);
  623. if (unlikely(in_atomic()))
  624. pr_info("note: %s[%d] exited with preempt_count %d\n",
  625. current->comm, task_pid_nr(current),
  626. preempt_count());
  627. acct_update_integrals(tsk);
  628. /* sync mm's RSS info before statistics gathering */
  629. if (tsk->mm)
  630. sync_mm_rss(tsk->mm);
  631. group_dead = atomic_dec_and_test(&tsk->signal->live);
  632. if (group_dead) {
  633. hrtimer_cancel(&tsk->signal->real_timer);
  634. exit_itimers(tsk->signal);
  635. if (tsk->mm)
  636. setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
  637. }
  638. acct_collect(code, group_dead);
  639. if (group_dead)
  640. tty_audit_exit();
  641. audit_free(tsk);
  642. tsk->exit_code = code;
  643. taskstats_exit(tsk, group_dead);
  644. exit_mm(tsk);
  645. if (group_dead)
  646. acct_process();
  647. trace_sched_process_exit(tsk);
  648. exit_sem(tsk);
  649. exit_shm(tsk);
  650. exit_files(tsk);
  651. exit_fs(tsk);
  652. if (group_dead)
  653. disassociate_ctty(1);
  654. exit_task_namespaces(tsk);
  655. exit_task_work(tsk);
  656. exit_thread();
  657. /*
  658. * Flush inherited counters to the parent - before the parent
  659. * gets woken up by child-exit notifications.
  660. *
  661. * because of cgroup mode, must be called before cgroup_exit()
  662. */
  663. perf_event_exit_task(tsk);
  664. cgroup_exit(tsk);
  665. module_put(task_thread_info(tsk)->exec_domain->module);
  666. /*
  667. * FIXME: do that only when needed, using sched_exit tracepoint
  668. */
  669. flush_ptrace_hw_breakpoint(tsk);
  670. TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
  671. exit_notify(tsk, group_dead);
  672. proc_exit_connector(tsk);
  673. #ifdef CONFIG_NUMA
  674. task_lock(tsk);
  675. mpol_put(tsk->mempolicy);
  676. tsk->mempolicy = NULL;
  677. task_unlock(tsk);
  678. #endif
  679. #ifdef CONFIG_FUTEX
  680. if (unlikely(current->pi_state_cache))
  681. kfree(current->pi_state_cache);
  682. #endif
  683. /*
  684. * Make sure we are holding no locks:
  685. */
  686. debug_check_no_locks_held();
  687. /*
  688. * We can do this unlocked here. The futex code uses this flag
  689. * just to verify whether the pi state cleanup has been done
  690. * or not. In the worst case it loops once more.
  691. */
  692. tsk->flags |= PF_EXITPIDONE;
  693. if (tsk->io_context)
  694. exit_io_context(tsk);
  695. if (tsk->splice_pipe)
  696. free_pipe_info(tsk->splice_pipe);
  697. if (tsk->task_frag.page)
  698. put_page(tsk->task_frag.page);
  699. validate_creds_for_do_exit(tsk);
  700. check_stack_usage();
  701. preempt_disable();
  702. if (tsk->nr_dirtied)
  703. __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
  704. exit_rcu();
  705. TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
  706. /*
  707. * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
  708. * when the following two conditions become true.
  709. * - There is race condition of mmap_sem (It is acquired by
  710. * exit_mm()), and
  711. * - SMI occurs before setting TASK_RUNINNG.
  712. * (or hypervisor of virtual machine switches to other guest)
  713. * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
  714. *
  715. * To avoid it, we have to wait for releasing tsk->pi_lock which
  716. * is held by try_to_wake_up()
  717. */
  718. smp_mb();
  719. raw_spin_unlock_wait(&tsk->pi_lock);
  720. /* causes final put_task_struct in finish_task_switch(). */
  721. tsk->state = TASK_DEAD;
  722. tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
  723. schedule();
  724. BUG();
  725. /* Avoid "noreturn function does return". */
  726. for (;;)
  727. cpu_relax(); /* For when BUG is null */
  728. }
  729. EXPORT_SYMBOL_GPL(do_exit);
  730. void complete_and_exit(struct completion *comp, long code)
  731. {
  732. if (comp)
  733. complete(comp);
  734. do_exit(code);
  735. }
  736. EXPORT_SYMBOL(complete_and_exit);
  737. SYSCALL_DEFINE1(exit, int, error_code)
  738. {
  739. do_exit((error_code&0xff)<<8);
  740. }
  741. /*
  742. * Take down every thread in the group. This is called by fatal signals
  743. * as well as by sys_exit_group (below).
  744. */
  745. void
  746. do_group_exit(int exit_code)
  747. {
  748. struct signal_struct *sig = current->signal;
  749. BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  750. if (signal_group_exit(sig))
  751. exit_code = sig->group_exit_code;
  752. else if (!thread_group_empty(current)) {
  753. struct sighand_struct *const sighand = current->sighand;
  754. spin_lock_irq(&sighand->siglock);
  755. if (signal_group_exit(sig))
  756. /* Another thread got here before we took the lock. */
  757. exit_code = sig->group_exit_code;
  758. else {
  759. sig->group_exit_code = exit_code;
  760. sig->flags = SIGNAL_GROUP_EXIT;
  761. zap_other_threads(current);
  762. }
  763. spin_unlock_irq(&sighand->siglock);
  764. }
  765. do_exit(exit_code);
  766. /* NOTREACHED */
  767. }
  768. /*
  769. * this kills every thread in the thread group. Note that any externally
  770. * wait4()-ing process will get the correct exit code - even if this
  771. * thread is not the thread group leader.
  772. */
  773. SYSCALL_DEFINE1(exit_group, int, error_code)
  774. {
  775. do_group_exit((error_code & 0xff) << 8);
  776. /* NOTREACHED */
  777. return 0;
  778. }
  779. struct wait_opts {
  780. enum pid_type wo_type;
  781. int wo_flags;
  782. struct pid *wo_pid;
  783. struct siginfo __user *wo_info;
  784. int __user *wo_stat;
  785. struct rusage __user *wo_rusage;
  786. wait_queue_t child_wait;
  787. int notask_error;
  788. };
  789. static inline
  790. struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  791. {
  792. if (type != PIDTYPE_PID)
  793. task = task->group_leader;
  794. return task->pids[type].pid;
  795. }
  796. static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
  797. {
  798. return wo->wo_type == PIDTYPE_MAX ||
  799. task_pid_type(p, wo->wo_type) == wo->wo_pid;
  800. }
  801. static int eligible_child(struct wait_opts *wo, struct task_struct *p)
  802. {
  803. if (!eligible_pid(wo, p))
  804. return 0;
  805. /* Wait for all children (clone and not) if __WALL is set;
  806. * otherwise, wait for clone children *only* if __WCLONE is
  807. * set; otherwise, wait for non-clone children *only*. (Note:
  808. * A "clone" child here is one that reports to its parent
  809. * using a signal other than SIGCHLD.) */
  810. if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
  811. && !(wo->wo_flags & __WALL))
  812. return 0;
  813. return 1;
  814. }
  815. static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
  816. pid_t pid, uid_t uid, int why, int status)
  817. {
  818. struct siginfo __user *infop;
  819. int retval = wo->wo_rusage
  820. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  821. put_task_struct(p);
  822. infop = wo->wo_info;
  823. if (infop) {
  824. if (!retval)
  825. retval = put_user(SIGCHLD, &infop->si_signo);
  826. if (!retval)
  827. retval = put_user(0, &infop->si_errno);
  828. if (!retval)
  829. retval = put_user((short)why, &infop->si_code);
  830. if (!retval)
  831. retval = put_user(pid, &infop->si_pid);
  832. if (!retval)
  833. retval = put_user(uid, &infop->si_uid);
  834. if (!retval)
  835. retval = put_user(status, &infop->si_status);
  836. }
  837. if (!retval)
  838. retval = pid;
  839. return retval;
  840. }
  841. /*
  842. * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
  843. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  844. * the lock and this task is uninteresting. If we return nonzero, we have
  845. * released the lock and the system call should return.
  846. */
  847. static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
  848. {
  849. int state, retval, status;
  850. pid_t pid = task_pid_vnr(p);
  851. uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
  852. struct siginfo __user *infop;
  853. if (!likely(wo->wo_flags & WEXITED))
  854. return 0;
  855. if (unlikely(wo->wo_flags & WNOWAIT)) {
  856. int exit_code = p->exit_code;
  857. int why;
  858. get_task_struct(p);
  859. read_unlock(&tasklist_lock);
  860. sched_annotate_sleep();
  861. if ((exit_code & 0x7f) == 0) {
  862. why = CLD_EXITED;
  863. status = exit_code >> 8;
  864. } else {
  865. why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
  866. status = exit_code & 0x7f;
  867. }
  868. return wait_noreap_copyout(wo, p, pid, uid, why, status);
  869. }
  870. /*
  871. * Move the task's state to DEAD/TRACE, only one thread can do this.
  872. */
  873. state = (ptrace_reparented(p) && thread_group_leader(p)) ?
  874. EXIT_TRACE : EXIT_DEAD;
  875. if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
  876. return 0;
  877. /*
  878. * We own this thread, nobody else can reap it.
  879. */
  880. read_unlock(&tasklist_lock);
  881. sched_annotate_sleep();
  882. /*
  883. * Check thread_group_leader() to exclude the traced sub-threads.
  884. */
  885. if (state == EXIT_DEAD && thread_group_leader(p)) {
  886. struct signal_struct *sig = p->signal;
  887. struct signal_struct *psig = current->signal;
  888. unsigned long maxrss;
  889. cputime_t tgutime, tgstime;
  890. /*
  891. * The resource counters for the group leader are in its
  892. * own task_struct. Those for dead threads in the group
  893. * are in its signal_struct, as are those for the child
  894. * processes it has previously reaped. All these
  895. * accumulate in the parent's signal_struct c* fields.
  896. *
  897. * We don't bother to take a lock here to protect these
  898. * p->signal fields because the whole thread group is dead
  899. * and nobody can change them.
  900. *
  901. * psig->stats_lock also protects us from our sub-theads
  902. * which can reap other children at the same time. Until
  903. * we change k_getrusage()-like users to rely on this lock
  904. * we have to take ->siglock as well.
  905. *
  906. * We use thread_group_cputime_adjusted() to get times for
  907. * the thread group, which consolidates times for all threads
  908. * in the group including the group leader.
  909. */
  910. thread_group_cputime_adjusted(p, &tgutime, &tgstime);
  911. spin_lock_irq(&current->sighand->siglock);
  912. write_seqlock(&psig->stats_lock);
  913. psig->cutime += tgutime + sig->cutime;
  914. psig->cstime += tgstime + sig->cstime;
  915. psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
  916. psig->cmin_flt +=
  917. p->min_flt + sig->min_flt + sig->cmin_flt;
  918. psig->cmaj_flt +=
  919. p->maj_flt + sig->maj_flt + sig->cmaj_flt;
  920. psig->cnvcsw +=
  921. p->nvcsw + sig->nvcsw + sig->cnvcsw;
  922. psig->cnivcsw +=
  923. p->nivcsw + sig->nivcsw + sig->cnivcsw;
  924. psig->cinblock +=
  925. task_io_get_inblock(p) +
  926. sig->inblock + sig->cinblock;
  927. psig->coublock +=
  928. task_io_get_oublock(p) +
  929. sig->oublock + sig->coublock;
  930. maxrss = max(sig->maxrss, sig->cmaxrss);
  931. if (psig->cmaxrss < maxrss)
  932. psig->cmaxrss = maxrss;
  933. task_io_accounting_add(&psig->ioac, &p->ioac);
  934. task_io_accounting_add(&psig->ioac, &sig->ioac);
  935. write_sequnlock(&psig->stats_lock);
  936. spin_unlock_irq(&current->sighand->siglock);
  937. }
  938. retval = wo->wo_rusage
  939. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  940. status = (p->signal->flags & SIGNAL_GROUP_EXIT)
  941. ? p->signal->group_exit_code : p->exit_code;
  942. if (!retval && wo->wo_stat)
  943. retval = put_user(status, wo->wo_stat);
  944. infop = wo->wo_info;
  945. if (!retval && infop)
  946. retval = put_user(SIGCHLD, &infop->si_signo);
  947. if (!retval && infop)
  948. retval = put_user(0, &infop->si_errno);
  949. if (!retval && infop) {
  950. int why;
  951. if ((status & 0x7f) == 0) {
  952. why = CLD_EXITED;
  953. status >>= 8;
  954. } else {
  955. why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
  956. status &= 0x7f;
  957. }
  958. retval = put_user((short)why, &infop->si_code);
  959. if (!retval)
  960. retval = put_user(status, &infop->si_status);
  961. }
  962. if (!retval && infop)
  963. retval = put_user(pid, &infop->si_pid);
  964. if (!retval && infop)
  965. retval = put_user(uid, &infop->si_uid);
  966. if (!retval)
  967. retval = pid;
  968. if (state == EXIT_TRACE) {
  969. write_lock_irq(&tasklist_lock);
  970. /* We dropped tasklist, ptracer could die and untrace */
  971. ptrace_unlink(p);
  972. /* If parent wants a zombie, don't release it now */
  973. state = EXIT_ZOMBIE;
  974. if (do_notify_parent(p, p->exit_signal))
  975. state = EXIT_DEAD;
  976. p->exit_state = state;
  977. write_unlock_irq(&tasklist_lock);
  978. }
  979. if (state == EXIT_DEAD)
  980. release_task(p);
  981. return retval;
  982. }
  983. static int *task_stopped_code(struct task_struct *p, bool ptrace)
  984. {
  985. if (ptrace) {
  986. if (task_is_stopped_or_traced(p) &&
  987. !(p->jobctl & JOBCTL_LISTENING))
  988. return &p->exit_code;
  989. } else {
  990. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  991. return &p->signal->group_exit_code;
  992. }
  993. return NULL;
  994. }
  995. /**
  996. * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
  997. * @wo: wait options
  998. * @ptrace: is the wait for ptrace
  999. * @p: task to wait for
  1000. *
  1001. * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
  1002. *
  1003. * CONTEXT:
  1004. * read_lock(&tasklist_lock), which is released if return value is
  1005. * non-zero. Also, grabs and releases @p->sighand->siglock.
  1006. *
  1007. * RETURNS:
  1008. * 0 if wait condition didn't exist and search for other wait conditions
  1009. * should continue. Non-zero return, -errno on failure and @p's pid on
  1010. * success, implies that tasklist_lock is released and wait condition
  1011. * search should terminate.
  1012. */
  1013. static int wait_task_stopped(struct wait_opts *wo,
  1014. int ptrace, struct task_struct *p)
  1015. {
  1016. struct siginfo __user *infop;
  1017. int retval, exit_code, *p_code, why;
  1018. uid_t uid = 0; /* unneeded, required by compiler */
  1019. pid_t pid;
  1020. /*
  1021. * Traditionally we see ptrace'd stopped tasks regardless of options.
  1022. */
  1023. if (!ptrace && !(wo->wo_flags & WUNTRACED))
  1024. return 0;
  1025. if (!task_stopped_code(p, ptrace))
  1026. return 0;
  1027. exit_code = 0;
  1028. spin_lock_irq(&p->sighand->siglock);
  1029. p_code = task_stopped_code(p, ptrace);
  1030. if (unlikely(!p_code))
  1031. goto unlock_sig;
  1032. exit_code = *p_code;
  1033. if (!exit_code)
  1034. goto unlock_sig;
  1035. if (!unlikely(wo->wo_flags & WNOWAIT))
  1036. *p_code = 0;
  1037. uid = from_kuid_munged(current_user_ns(), task_uid(p));
  1038. unlock_sig:
  1039. spin_unlock_irq(&p->sighand->siglock);
  1040. if (!exit_code)
  1041. return 0;
  1042. /*
  1043. * Now we are pretty sure this task is interesting.
  1044. * Make sure it doesn't get reaped out from under us while we
  1045. * give up the lock and then examine it below. We don't want to
  1046. * keep holding onto the tasklist_lock while we call getrusage and
  1047. * possibly take page faults for user memory.
  1048. */
  1049. get_task_struct(p);
  1050. pid = task_pid_vnr(p);
  1051. why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
  1052. read_unlock(&tasklist_lock);
  1053. sched_annotate_sleep();
  1054. if (unlikely(wo->wo_flags & WNOWAIT))
  1055. return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
  1056. retval = wo->wo_rusage
  1057. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1058. if (!retval && wo->wo_stat)
  1059. retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
  1060. infop = wo->wo_info;
  1061. if (!retval && infop)
  1062. retval = put_user(SIGCHLD, &infop->si_signo);
  1063. if (!retval && infop)
  1064. retval = put_user(0, &infop->si_errno);
  1065. if (!retval && infop)
  1066. retval = put_user((short)why, &infop->si_code);
  1067. if (!retval && infop)
  1068. retval = put_user(exit_code, &infop->si_status);
  1069. if (!retval && infop)
  1070. retval = put_user(pid, &infop->si_pid);
  1071. if (!retval && infop)
  1072. retval = put_user(uid, &infop->si_uid);
  1073. if (!retval)
  1074. retval = pid;
  1075. put_task_struct(p);
  1076. BUG_ON(!retval);
  1077. return retval;
  1078. }
  1079. /*
  1080. * Handle do_wait work for one task in a live, non-stopped state.
  1081. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1082. * the lock and this task is uninteresting. If we return nonzero, we have
  1083. * released the lock and the system call should return.
  1084. */
  1085. static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
  1086. {
  1087. int retval;
  1088. pid_t pid;
  1089. uid_t uid;
  1090. if (!unlikely(wo->wo_flags & WCONTINUED))
  1091. return 0;
  1092. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
  1093. return 0;
  1094. spin_lock_irq(&p->sighand->siglock);
  1095. /* Re-check with the lock held. */
  1096. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
  1097. spin_unlock_irq(&p->sighand->siglock);
  1098. return 0;
  1099. }
  1100. if (!unlikely(wo->wo_flags & WNOWAIT))
  1101. p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
  1102. uid = from_kuid_munged(current_user_ns(), task_uid(p));
  1103. spin_unlock_irq(&p->sighand->siglock);
  1104. pid = task_pid_vnr(p);
  1105. get_task_struct(p);
  1106. read_unlock(&tasklist_lock);
  1107. sched_annotate_sleep();
  1108. if (!wo->wo_info) {
  1109. retval = wo->wo_rusage
  1110. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1111. put_task_struct(p);
  1112. if (!retval && wo->wo_stat)
  1113. retval = put_user(0xffff, wo->wo_stat);
  1114. if (!retval)
  1115. retval = pid;
  1116. } else {
  1117. retval = wait_noreap_copyout(wo, p, pid, uid,
  1118. CLD_CONTINUED, SIGCONT);
  1119. BUG_ON(retval == 0);
  1120. }
  1121. return retval;
  1122. }
  1123. /*
  1124. * Consider @p for a wait by @parent.
  1125. *
  1126. * -ECHILD should be in ->notask_error before the first call.
  1127. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1128. * Returns zero if the search for a child should continue;
  1129. * then ->notask_error is 0 if @p is an eligible child,
  1130. * or another error from security_task_wait(), or still -ECHILD.
  1131. */
  1132. static int wait_consider_task(struct wait_opts *wo, int ptrace,
  1133. struct task_struct *p)
  1134. {
  1135. /*
  1136. * We can race with wait_task_zombie() from another thread.
  1137. * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
  1138. * can't confuse the checks below.
  1139. */
  1140. int exit_state = ACCESS_ONCE(p->exit_state);
  1141. int ret;
  1142. if (unlikely(exit_state == EXIT_DEAD))
  1143. return 0;
  1144. ret = eligible_child(wo, p);
  1145. if (!ret)
  1146. return ret;
  1147. ret = security_task_wait(p);
  1148. if (unlikely(ret < 0)) {
  1149. /*
  1150. * If we have not yet seen any eligible child,
  1151. * then let this error code replace -ECHILD.
  1152. * A permission error will give the user a clue
  1153. * to look for security policy problems, rather
  1154. * than for mysterious wait bugs.
  1155. */
  1156. if (wo->notask_error)
  1157. wo->notask_error = ret;
  1158. return 0;
  1159. }
  1160. if (unlikely(exit_state == EXIT_TRACE)) {
  1161. /*
  1162. * ptrace == 0 means we are the natural parent. In this case
  1163. * we should clear notask_error, debugger will notify us.
  1164. */
  1165. if (likely(!ptrace))
  1166. wo->notask_error = 0;
  1167. return 0;
  1168. }
  1169. if (likely(!ptrace) && unlikely(p->ptrace)) {
  1170. /*
  1171. * If it is traced by its real parent's group, just pretend
  1172. * the caller is ptrace_do_wait() and reap this child if it
  1173. * is zombie.
  1174. *
  1175. * This also hides group stop state from real parent; otherwise
  1176. * a single stop can be reported twice as group and ptrace stop.
  1177. * If a ptracer wants to distinguish these two events for its
  1178. * own children it should create a separate process which takes
  1179. * the role of real parent.
  1180. */
  1181. if (!ptrace_reparented(p))
  1182. ptrace = 1;
  1183. }
  1184. /* slay zombie? */
  1185. if (exit_state == EXIT_ZOMBIE) {
  1186. /* we don't reap group leaders with subthreads */
  1187. if (!delay_group_leader(p)) {
  1188. /*
  1189. * A zombie ptracee is only visible to its ptracer.
  1190. * Notification and reaping will be cascaded to the
  1191. * real parent when the ptracer detaches.
  1192. */
  1193. if (unlikely(ptrace) || likely(!p->ptrace))
  1194. return wait_task_zombie(wo, p);
  1195. }
  1196. /*
  1197. * Allow access to stopped/continued state via zombie by
  1198. * falling through. Clearing of notask_error is complex.
  1199. *
  1200. * When !@ptrace:
  1201. *
  1202. * If WEXITED is set, notask_error should naturally be
  1203. * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
  1204. * so, if there are live subthreads, there are events to
  1205. * wait for. If all subthreads are dead, it's still safe
  1206. * to clear - this function will be called again in finite
  1207. * amount time once all the subthreads are released and
  1208. * will then return without clearing.
  1209. *
  1210. * When @ptrace:
  1211. *
  1212. * Stopped state is per-task and thus can't change once the
  1213. * target task dies. Only continued and exited can happen.
  1214. * Clear notask_error if WCONTINUED | WEXITED.
  1215. */
  1216. if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
  1217. wo->notask_error = 0;
  1218. } else {
  1219. /*
  1220. * @p is alive and it's gonna stop, continue or exit, so
  1221. * there always is something to wait for.
  1222. */
  1223. wo->notask_error = 0;
  1224. }
  1225. /*
  1226. * Wait for stopped. Depending on @ptrace, different stopped state
  1227. * is used and the two don't interact with each other.
  1228. */
  1229. ret = wait_task_stopped(wo, ptrace, p);
  1230. if (ret)
  1231. return ret;
  1232. /*
  1233. * Wait for continued. There's only one continued state and the
  1234. * ptracer can consume it which can confuse the real parent. Don't
  1235. * use WCONTINUED from ptracer. You don't need or want it.
  1236. */
  1237. return wait_task_continued(wo, p);
  1238. }
  1239. /*
  1240. * Do the work of do_wait() for one thread in the group, @tsk.
  1241. *
  1242. * -ECHILD should be in ->notask_error before the first call.
  1243. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1244. * Returns zero if the search for a child should continue; then
  1245. * ->notask_error is 0 if there were any eligible children,
  1246. * or another error from security_task_wait(), or still -ECHILD.
  1247. */
  1248. static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
  1249. {
  1250. struct task_struct *p;
  1251. list_for_each_entry(p, &tsk->children, sibling) {
  1252. int ret = wait_consider_task(wo, 0, p);
  1253. if (ret)
  1254. return ret;
  1255. }
  1256. return 0;
  1257. }
  1258. static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
  1259. {
  1260. struct task_struct *p;
  1261. list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
  1262. int ret = wait_consider_task(wo, 1, p);
  1263. if (ret)
  1264. return ret;
  1265. }
  1266. return 0;
  1267. }
  1268. static int child_wait_callback(wait_queue_t *wait, unsigned mode,
  1269. int sync, void *key)
  1270. {
  1271. struct wait_opts *wo = container_of(wait, struct wait_opts,
  1272. child_wait);
  1273. struct task_struct *p = key;
  1274. if (!eligible_pid(wo, p))
  1275. return 0;
  1276. if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
  1277. return 0;
  1278. return default_wake_function(wait, mode, sync, key);
  1279. }
  1280. void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
  1281. {
  1282. __wake_up_sync_key(&parent->signal->wait_chldexit,
  1283. TASK_INTERRUPTIBLE, 1, p);
  1284. }
  1285. static long do_wait(struct wait_opts *wo)
  1286. {
  1287. struct task_struct *tsk;
  1288. int retval;
  1289. trace_sched_process_wait(wo->wo_pid);
  1290. init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
  1291. wo->child_wait.private = current;
  1292. add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1293. repeat:
  1294. /*
  1295. * If there is nothing that can match our critiera just get out.
  1296. * We will clear ->notask_error to zero if we see any child that
  1297. * might later match our criteria, even if we are not able to reap
  1298. * it yet.
  1299. */
  1300. wo->notask_error = -ECHILD;
  1301. if ((wo->wo_type < PIDTYPE_MAX) &&
  1302. (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
  1303. goto notask;
  1304. set_current_state(TASK_INTERRUPTIBLE);
  1305. read_lock(&tasklist_lock);
  1306. tsk = current;
  1307. do {
  1308. retval = do_wait_thread(wo, tsk);
  1309. if (retval)
  1310. goto end;
  1311. retval = ptrace_do_wait(wo, tsk);
  1312. if (retval)
  1313. goto end;
  1314. if (wo->wo_flags & __WNOTHREAD)
  1315. break;
  1316. } while_each_thread(current, tsk);
  1317. read_unlock(&tasklist_lock);
  1318. notask:
  1319. retval = wo->notask_error;
  1320. if (!retval && !(wo->wo_flags & WNOHANG)) {
  1321. retval = -ERESTARTSYS;
  1322. if (!signal_pending(current)) {
  1323. schedule();
  1324. goto repeat;
  1325. }
  1326. }
  1327. end:
  1328. __set_current_state(TASK_RUNNING);
  1329. remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1330. return retval;
  1331. }
  1332. SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
  1333. infop, int, options, struct rusage __user *, ru)
  1334. {
  1335. struct wait_opts wo;
  1336. struct pid *pid = NULL;
  1337. enum pid_type type;
  1338. long ret;
  1339. if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
  1340. return -EINVAL;
  1341. if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
  1342. return -EINVAL;
  1343. switch (which) {
  1344. case P_ALL:
  1345. type = PIDTYPE_MAX;
  1346. break;
  1347. case P_PID:
  1348. type = PIDTYPE_PID;
  1349. if (upid <= 0)
  1350. return -EINVAL;
  1351. break;
  1352. case P_PGID:
  1353. type = PIDTYPE_PGID;
  1354. if (upid <= 0)
  1355. return -EINVAL;
  1356. break;
  1357. default:
  1358. return -EINVAL;
  1359. }
  1360. if (type < PIDTYPE_MAX)
  1361. pid = find_get_pid(upid);
  1362. wo.wo_type = type;
  1363. wo.wo_pid = pid;
  1364. wo.wo_flags = options;
  1365. wo.wo_info = infop;
  1366. wo.wo_stat = NULL;
  1367. wo.wo_rusage = ru;
  1368. ret = do_wait(&wo);
  1369. if (ret > 0) {
  1370. ret = 0;
  1371. } else if (infop) {
  1372. /*
  1373. * For a WNOHANG return, clear out all the fields
  1374. * we would set so the user can easily tell the
  1375. * difference.
  1376. */
  1377. if (!ret)
  1378. ret = put_user(0, &infop->si_signo);
  1379. if (!ret)
  1380. ret = put_user(0, &infop->si_errno);
  1381. if (!ret)
  1382. ret = put_user(0, &infop->si_code);
  1383. if (!ret)
  1384. ret = put_user(0, &infop->si_pid);
  1385. if (!ret)
  1386. ret = put_user(0, &infop->si_uid);
  1387. if (!ret)
  1388. ret = put_user(0, &infop->si_status);
  1389. }
  1390. put_pid(pid);
  1391. return ret;
  1392. }
  1393. SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
  1394. int, options, struct rusage __user *, ru)
  1395. {
  1396. struct wait_opts wo;
  1397. struct pid *pid = NULL;
  1398. enum pid_type type;
  1399. long ret;
  1400. if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
  1401. __WNOTHREAD|__WCLONE|__WALL))
  1402. return -EINVAL;
  1403. if (upid == -1)
  1404. type = PIDTYPE_MAX;
  1405. else if (upid < 0) {
  1406. type = PIDTYPE_PGID;
  1407. pid = find_get_pid(-upid);
  1408. } else if (upid == 0) {
  1409. type = PIDTYPE_PGID;
  1410. pid = get_task_pid(current, PIDTYPE_PGID);
  1411. } else /* upid > 0 */ {
  1412. type = PIDTYPE_PID;
  1413. pid = find_get_pid(upid);
  1414. }
  1415. wo.wo_type = type;
  1416. wo.wo_pid = pid;
  1417. wo.wo_flags = options | WEXITED;
  1418. wo.wo_info = NULL;
  1419. wo.wo_stat = stat_addr;
  1420. wo.wo_rusage = ru;
  1421. ret = do_wait(&wo);
  1422. put_pid(pid);
  1423. return ret;
  1424. }
  1425. #ifdef __ARCH_WANT_SYS_WAITPID
  1426. /*
  1427. * sys_waitpid() remains for compatibility. waitpid() should be
  1428. * implemented by calling sys_wait4() from libc.a.
  1429. */
  1430. SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
  1431. {
  1432. return sys_wait4(pid, stat_addr, options, NULL);
  1433. }
  1434. #endif