ring_buffer.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418
  1. /*
  2. * Performance events ring-buffer code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/perf_event.h>
  12. #include <linux/vmalloc.h>
  13. #include <linux/slab.h>
  14. #include <linux/circ_buf.h>
  15. #include <linux/poll.h>
  16. #include "internal.h"
  17. static void perf_output_wakeup(struct perf_output_handle *handle)
  18. {
  19. atomic_set(&handle->rb->poll, POLLIN);
  20. handle->event->pending_wakeup = 1;
  21. irq_work_queue(&handle->event->pending);
  22. }
  23. /*
  24. * We need to ensure a later event_id doesn't publish a head when a former
  25. * event isn't done writing. However since we need to deal with NMIs we
  26. * cannot fully serialize things.
  27. *
  28. * We only publish the head (and generate a wakeup) when the outer-most
  29. * event completes.
  30. */
  31. static void perf_output_get_handle(struct perf_output_handle *handle)
  32. {
  33. struct ring_buffer *rb = handle->rb;
  34. preempt_disable();
  35. local_inc(&rb->nest);
  36. handle->wakeup = local_read(&rb->wakeup);
  37. }
  38. static void perf_output_put_handle(struct perf_output_handle *handle)
  39. {
  40. struct ring_buffer *rb = handle->rb;
  41. unsigned long head;
  42. again:
  43. head = local_read(&rb->head);
  44. /*
  45. * IRQ/NMI can happen here, which means we can miss a head update.
  46. */
  47. if (!local_dec_and_test(&rb->nest))
  48. goto out;
  49. /*
  50. * Since the mmap() consumer (userspace) can run on a different CPU:
  51. *
  52. * kernel user
  53. *
  54. * if (LOAD ->data_tail) { LOAD ->data_head
  55. * (A) smp_rmb() (C)
  56. * STORE $data LOAD $data
  57. * smp_wmb() (B) smp_mb() (D)
  58. * STORE ->data_head STORE ->data_tail
  59. * }
  60. *
  61. * Where A pairs with D, and B pairs with C.
  62. *
  63. * In our case (A) is a control dependency that separates the load of
  64. * the ->data_tail and the stores of $data. In case ->data_tail
  65. * indicates there is no room in the buffer to store $data we do not.
  66. *
  67. * D needs to be a full barrier since it separates the data READ
  68. * from the tail WRITE.
  69. *
  70. * For B a WMB is sufficient since it separates two WRITEs, and for C
  71. * an RMB is sufficient since it separates two READs.
  72. *
  73. * See perf_output_begin().
  74. */
  75. smp_wmb(); /* B, matches C */
  76. rb->user_page->data_head = head;
  77. /*
  78. * Now check if we missed an update -- rely on previous implied
  79. * compiler barriers to force a re-read.
  80. */
  81. if (unlikely(head != local_read(&rb->head))) {
  82. local_inc(&rb->nest);
  83. goto again;
  84. }
  85. if (handle->wakeup != local_read(&rb->wakeup))
  86. perf_output_wakeup(handle);
  87. out:
  88. preempt_enable();
  89. }
  90. int perf_output_begin(struct perf_output_handle *handle,
  91. struct perf_event *event, unsigned int size)
  92. {
  93. struct ring_buffer *rb;
  94. unsigned long tail, offset, head;
  95. int have_lost, page_shift;
  96. struct {
  97. struct perf_event_header header;
  98. u64 id;
  99. u64 lost;
  100. } lost_event;
  101. rcu_read_lock();
  102. /*
  103. * For inherited events we send all the output towards the parent.
  104. */
  105. if (event->parent)
  106. event = event->parent;
  107. rb = rcu_dereference(event->rb);
  108. if (unlikely(!rb))
  109. goto out;
  110. if (unlikely(!rb->nr_pages))
  111. goto out;
  112. handle->rb = rb;
  113. handle->event = event;
  114. have_lost = local_read(&rb->lost);
  115. if (unlikely(have_lost)) {
  116. size += sizeof(lost_event);
  117. if (event->attr.sample_id_all)
  118. size += event->id_header_size;
  119. }
  120. perf_output_get_handle(handle);
  121. do {
  122. tail = ACCESS_ONCE(rb->user_page->data_tail);
  123. offset = head = local_read(&rb->head);
  124. if (!rb->overwrite &&
  125. unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
  126. goto fail;
  127. /*
  128. * The above forms a control dependency barrier separating the
  129. * @tail load above from the data stores below. Since the @tail
  130. * load is required to compute the branch to fail below.
  131. *
  132. * A, matches D; the full memory barrier userspace SHOULD issue
  133. * after reading the data and before storing the new tail
  134. * position.
  135. *
  136. * See perf_output_put_handle().
  137. */
  138. head += size;
  139. } while (local_cmpxchg(&rb->head, offset, head) != offset);
  140. /*
  141. * We rely on the implied barrier() by local_cmpxchg() to ensure
  142. * none of the data stores below can be lifted up by the compiler.
  143. */
  144. if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
  145. local_add(rb->watermark, &rb->wakeup);
  146. page_shift = PAGE_SHIFT + page_order(rb);
  147. handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
  148. offset &= (1UL << page_shift) - 1;
  149. handle->addr = rb->data_pages[handle->page] + offset;
  150. handle->size = (1UL << page_shift) - offset;
  151. if (unlikely(have_lost)) {
  152. struct perf_sample_data sample_data;
  153. lost_event.header.size = sizeof(lost_event);
  154. lost_event.header.type = PERF_RECORD_LOST;
  155. lost_event.header.misc = 0;
  156. lost_event.id = event->id;
  157. lost_event.lost = local_xchg(&rb->lost, 0);
  158. perf_event_header__init_id(&lost_event.header,
  159. &sample_data, event);
  160. perf_output_put(handle, lost_event);
  161. perf_event__output_id_sample(event, handle, &sample_data);
  162. }
  163. return 0;
  164. fail:
  165. local_inc(&rb->lost);
  166. perf_output_put_handle(handle);
  167. out:
  168. rcu_read_unlock();
  169. return -ENOSPC;
  170. }
  171. unsigned int perf_output_copy(struct perf_output_handle *handle,
  172. const void *buf, unsigned int len)
  173. {
  174. return __output_copy(handle, buf, len);
  175. }
  176. unsigned int perf_output_skip(struct perf_output_handle *handle,
  177. unsigned int len)
  178. {
  179. return __output_skip(handle, NULL, len);
  180. }
  181. void perf_output_end(struct perf_output_handle *handle)
  182. {
  183. perf_output_put_handle(handle);
  184. rcu_read_unlock();
  185. }
  186. static void
  187. ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
  188. {
  189. long max_size = perf_data_size(rb);
  190. if (watermark)
  191. rb->watermark = min(max_size, watermark);
  192. if (!rb->watermark)
  193. rb->watermark = max_size / 2;
  194. if (flags & RING_BUFFER_WRITABLE)
  195. rb->overwrite = 0;
  196. else
  197. rb->overwrite = 1;
  198. atomic_set(&rb->refcount, 1);
  199. INIT_LIST_HEAD(&rb->event_list);
  200. spin_lock_init(&rb->event_lock);
  201. }
  202. #ifndef CONFIG_PERF_USE_VMALLOC
  203. /*
  204. * Back perf_mmap() with regular GFP_KERNEL-0 pages.
  205. */
  206. struct page *
  207. perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
  208. {
  209. if (pgoff > rb->nr_pages)
  210. return NULL;
  211. if (pgoff == 0)
  212. return virt_to_page(rb->user_page);
  213. return virt_to_page(rb->data_pages[pgoff - 1]);
  214. }
  215. static void *perf_mmap_alloc_page(int cpu)
  216. {
  217. struct page *page;
  218. int node;
  219. node = (cpu == -1) ? cpu : cpu_to_node(cpu);
  220. page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
  221. if (!page)
  222. return NULL;
  223. return page_address(page);
  224. }
  225. struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
  226. {
  227. struct ring_buffer *rb;
  228. unsigned long size;
  229. int i;
  230. size = sizeof(struct ring_buffer);
  231. size += nr_pages * sizeof(void *);
  232. rb = kzalloc(size, GFP_KERNEL);
  233. if (!rb)
  234. goto fail;
  235. rb->user_page = perf_mmap_alloc_page(cpu);
  236. if (!rb->user_page)
  237. goto fail_user_page;
  238. for (i = 0; i < nr_pages; i++) {
  239. rb->data_pages[i] = perf_mmap_alloc_page(cpu);
  240. if (!rb->data_pages[i])
  241. goto fail_data_pages;
  242. }
  243. rb->nr_pages = nr_pages;
  244. ring_buffer_init(rb, watermark, flags);
  245. return rb;
  246. fail_data_pages:
  247. for (i--; i >= 0; i--)
  248. free_page((unsigned long)rb->data_pages[i]);
  249. free_page((unsigned long)rb->user_page);
  250. fail_user_page:
  251. kfree(rb);
  252. fail:
  253. return NULL;
  254. }
  255. static void perf_mmap_free_page(unsigned long addr)
  256. {
  257. struct page *page = virt_to_page((void *)addr);
  258. page->mapping = NULL;
  259. __free_page(page);
  260. }
  261. void rb_free(struct ring_buffer *rb)
  262. {
  263. int i;
  264. perf_mmap_free_page((unsigned long)rb->user_page);
  265. for (i = 0; i < rb->nr_pages; i++)
  266. perf_mmap_free_page((unsigned long)rb->data_pages[i]);
  267. kfree(rb);
  268. }
  269. #else
  270. static int data_page_nr(struct ring_buffer *rb)
  271. {
  272. return rb->nr_pages << page_order(rb);
  273. }
  274. struct page *
  275. perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
  276. {
  277. /* The '>' counts in the user page. */
  278. if (pgoff > data_page_nr(rb))
  279. return NULL;
  280. return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
  281. }
  282. static void perf_mmap_unmark_page(void *addr)
  283. {
  284. struct page *page = vmalloc_to_page(addr);
  285. page->mapping = NULL;
  286. }
  287. static void rb_free_work(struct work_struct *work)
  288. {
  289. struct ring_buffer *rb;
  290. void *base;
  291. int i, nr;
  292. rb = container_of(work, struct ring_buffer, work);
  293. nr = data_page_nr(rb);
  294. base = rb->user_page;
  295. /* The '<=' counts in the user page. */
  296. for (i = 0; i <= nr; i++)
  297. perf_mmap_unmark_page(base + (i * PAGE_SIZE));
  298. vfree(base);
  299. kfree(rb);
  300. }
  301. void rb_free(struct ring_buffer *rb)
  302. {
  303. schedule_work(&rb->work);
  304. }
  305. struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
  306. {
  307. struct ring_buffer *rb;
  308. unsigned long size;
  309. void *all_buf;
  310. size = sizeof(struct ring_buffer);
  311. size += sizeof(void *);
  312. rb = kzalloc(size, GFP_KERNEL);
  313. if (!rb)
  314. goto fail;
  315. INIT_WORK(&rb->work, rb_free_work);
  316. all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
  317. if (!all_buf)
  318. goto fail_all_buf;
  319. rb->user_page = all_buf;
  320. rb->data_pages[0] = all_buf + PAGE_SIZE;
  321. rb->page_order = ilog2(nr_pages);
  322. rb->nr_pages = !!nr_pages;
  323. ring_buffer_init(rb, watermark, flags);
  324. return rb;
  325. fail_all_buf:
  326. kfree(rb);
  327. fail:
  328. return NULL;
  329. }
  330. #endif