core.c 201 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625
  1. /*
  2. * Performance events core code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/mm.h>
  13. #include <linux/cpu.h>
  14. #include <linux/smp.h>
  15. #include <linux/idr.h>
  16. #include <linux/file.h>
  17. #include <linux/poll.h>
  18. #include <linux/slab.h>
  19. #include <linux/hash.h>
  20. #include <linux/tick.h>
  21. #include <linux/sysfs.h>
  22. #include <linux/dcache.h>
  23. #include <linux/percpu.h>
  24. #include <linux/ptrace.h>
  25. #include <linux/reboot.h>
  26. #include <linux/vmstat.h>
  27. #include <linux/device.h>
  28. #include <linux/export.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/hardirq.h>
  31. #include <linux/rculist.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/anon_inodes.h>
  35. #include <linux/kernel_stat.h>
  36. #include <linux/perf_event.h>
  37. #include <linux/ftrace_event.h>
  38. #include <linux/hw_breakpoint.h>
  39. #include <linux/mm_types.h>
  40. #include <linux/cgroup.h>
  41. #include <linux/module.h>
  42. #include <linux/mman.h>
  43. #include <linux/compat.h>
  44. #include "internal.h"
  45. #include <asm/irq_regs.h>
  46. static struct workqueue_struct *perf_wq;
  47. struct remote_function_call {
  48. struct task_struct *p;
  49. int (*func)(void *info);
  50. void *info;
  51. int ret;
  52. };
  53. static void remote_function(void *data)
  54. {
  55. struct remote_function_call *tfc = data;
  56. struct task_struct *p = tfc->p;
  57. if (p) {
  58. tfc->ret = -EAGAIN;
  59. if (task_cpu(p) != smp_processor_id() || !task_curr(p))
  60. return;
  61. }
  62. tfc->ret = tfc->func(tfc->info);
  63. }
  64. /**
  65. * task_function_call - call a function on the cpu on which a task runs
  66. * @p: the task to evaluate
  67. * @func: the function to be called
  68. * @info: the function call argument
  69. *
  70. * Calls the function @func when the task is currently running. This might
  71. * be on the current CPU, which just calls the function directly
  72. *
  73. * returns: @func return value, or
  74. * -ESRCH - when the process isn't running
  75. * -EAGAIN - when the process moved away
  76. */
  77. static int
  78. task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
  79. {
  80. struct remote_function_call data = {
  81. .p = p,
  82. .func = func,
  83. .info = info,
  84. .ret = -ESRCH, /* No such (running) process */
  85. };
  86. if (task_curr(p))
  87. smp_call_function_single(task_cpu(p), remote_function, &data, 1);
  88. return data.ret;
  89. }
  90. /**
  91. * cpu_function_call - call a function on the cpu
  92. * @func: the function to be called
  93. * @info: the function call argument
  94. *
  95. * Calls the function @func on the remote cpu.
  96. *
  97. * returns: @func return value or -ENXIO when the cpu is offline
  98. */
  99. static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
  100. {
  101. struct remote_function_call data = {
  102. .p = NULL,
  103. .func = func,
  104. .info = info,
  105. .ret = -ENXIO, /* No such CPU */
  106. };
  107. smp_call_function_single(cpu, remote_function, &data, 1);
  108. return data.ret;
  109. }
  110. #define EVENT_OWNER_KERNEL ((void *) -1)
  111. static bool is_kernel_event(struct perf_event *event)
  112. {
  113. return event->owner == EVENT_OWNER_KERNEL;
  114. }
  115. #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
  116. PERF_FLAG_FD_OUTPUT |\
  117. PERF_FLAG_PID_CGROUP |\
  118. PERF_FLAG_FD_CLOEXEC)
  119. /*
  120. * branch priv levels that need permission checks
  121. */
  122. #define PERF_SAMPLE_BRANCH_PERM_PLM \
  123. (PERF_SAMPLE_BRANCH_KERNEL |\
  124. PERF_SAMPLE_BRANCH_HV)
  125. enum event_type_t {
  126. EVENT_FLEXIBLE = 0x1,
  127. EVENT_PINNED = 0x2,
  128. EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
  129. };
  130. /*
  131. * perf_sched_events : >0 events exist
  132. * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
  133. */
  134. struct static_key_deferred perf_sched_events __read_mostly;
  135. static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
  136. static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
  137. static atomic_t nr_mmap_events __read_mostly;
  138. static atomic_t nr_comm_events __read_mostly;
  139. static atomic_t nr_task_events __read_mostly;
  140. static atomic_t nr_freq_events __read_mostly;
  141. static LIST_HEAD(pmus);
  142. static DEFINE_MUTEX(pmus_lock);
  143. static struct srcu_struct pmus_srcu;
  144. /*
  145. * perf event paranoia level:
  146. * -1 - not paranoid at all
  147. * 0 - disallow raw tracepoint access for unpriv
  148. * 1 - disallow cpu events for unpriv
  149. * 2 - disallow kernel profiling for unpriv
  150. */
  151. int sysctl_perf_event_paranoid __read_mostly = 1;
  152. /* Minimum for 512 kiB + 1 user control page */
  153. int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
  154. /*
  155. * max perf event sample rate
  156. */
  157. #define DEFAULT_MAX_SAMPLE_RATE 100000
  158. #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
  159. #define DEFAULT_CPU_TIME_MAX_PERCENT 25
  160. int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
  161. static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
  162. static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
  163. static int perf_sample_allowed_ns __read_mostly =
  164. DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
  165. void update_perf_cpu_limits(void)
  166. {
  167. u64 tmp = perf_sample_period_ns;
  168. tmp *= sysctl_perf_cpu_time_max_percent;
  169. do_div(tmp, 100);
  170. ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
  171. }
  172. static int perf_rotate_context(struct perf_cpu_context *cpuctx);
  173. int perf_proc_update_handler(struct ctl_table *table, int write,
  174. void __user *buffer, size_t *lenp,
  175. loff_t *ppos)
  176. {
  177. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  178. if (ret || !write)
  179. return ret;
  180. max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
  181. perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
  182. update_perf_cpu_limits();
  183. return 0;
  184. }
  185. int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
  186. int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
  187. void __user *buffer, size_t *lenp,
  188. loff_t *ppos)
  189. {
  190. int ret = proc_dointvec(table, write, buffer, lenp, ppos);
  191. if (ret || !write)
  192. return ret;
  193. update_perf_cpu_limits();
  194. return 0;
  195. }
  196. /*
  197. * perf samples are done in some very critical code paths (NMIs).
  198. * If they take too much CPU time, the system can lock up and not
  199. * get any real work done. This will drop the sample rate when
  200. * we detect that events are taking too long.
  201. */
  202. #define NR_ACCUMULATED_SAMPLES 128
  203. static DEFINE_PER_CPU(u64, running_sample_length);
  204. static void perf_duration_warn(struct irq_work *w)
  205. {
  206. u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
  207. u64 avg_local_sample_len;
  208. u64 local_samples_len;
  209. local_samples_len = __this_cpu_read(running_sample_length);
  210. avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
  211. printk_ratelimited(KERN_WARNING
  212. "perf interrupt took too long (%lld > %lld), lowering "
  213. "kernel.perf_event_max_sample_rate to %d\n",
  214. avg_local_sample_len, allowed_ns >> 1,
  215. sysctl_perf_event_sample_rate);
  216. }
  217. static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
  218. void perf_sample_event_took(u64 sample_len_ns)
  219. {
  220. u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
  221. u64 avg_local_sample_len;
  222. u64 local_samples_len;
  223. if (allowed_ns == 0)
  224. return;
  225. /* decay the counter by 1 average sample */
  226. local_samples_len = __this_cpu_read(running_sample_length);
  227. local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
  228. local_samples_len += sample_len_ns;
  229. __this_cpu_write(running_sample_length, local_samples_len);
  230. /*
  231. * note: this will be biased artifically low until we have
  232. * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
  233. * from having to maintain a count.
  234. */
  235. avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
  236. if (avg_local_sample_len <= allowed_ns)
  237. return;
  238. if (max_samples_per_tick <= 1)
  239. return;
  240. max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
  241. sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
  242. perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
  243. update_perf_cpu_limits();
  244. if (!irq_work_queue(&perf_duration_work)) {
  245. early_printk("perf interrupt took too long (%lld > %lld), lowering "
  246. "kernel.perf_event_max_sample_rate to %d\n",
  247. avg_local_sample_len, allowed_ns >> 1,
  248. sysctl_perf_event_sample_rate);
  249. }
  250. }
  251. static atomic64_t perf_event_id;
  252. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  253. enum event_type_t event_type);
  254. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  255. enum event_type_t event_type,
  256. struct task_struct *task);
  257. static void update_context_time(struct perf_event_context *ctx);
  258. static u64 perf_event_time(struct perf_event *event);
  259. void __weak perf_event_print_debug(void) { }
  260. extern __weak const char *perf_pmu_name(void)
  261. {
  262. return "pmu";
  263. }
  264. static inline u64 perf_clock(void)
  265. {
  266. return local_clock();
  267. }
  268. static inline struct perf_cpu_context *
  269. __get_cpu_context(struct perf_event_context *ctx)
  270. {
  271. return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
  272. }
  273. static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
  274. struct perf_event_context *ctx)
  275. {
  276. raw_spin_lock(&cpuctx->ctx.lock);
  277. if (ctx)
  278. raw_spin_lock(&ctx->lock);
  279. }
  280. static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
  281. struct perf_event_context *ctx)
  282. {
  283. if (ctx)
  284. raw_spin_unlock(&ctx->lock);
  285. raw_spin_unlock(&cpuctx->ctx.lock);
  286. }
  287. #ifdef CONFIG_CGROUP_PERF
  288. /*
  289. * perf_cgroup_info keeps track of time_enabled for a cgroup.
  290. * This is a per-cpu dynamically allocated data structure.
  291. */
  292. struct perf_cgroup_info {
  293. u64 time;
  294. u64 timestamp;
  295. };
  296. struct perf_cgroup {
  297. struct cgroup_subsys_state css;
  298. struct perf_cgroup_info __percpu *info;
  299. };
  300. /*
  301. * Must ensure cgroup is pinned (css_get) before calling
  302. * this function. In other words, we cannot call this function
  303. * if there is no cgroup event for the current CPU context.
  304. */
  305. static inline struct perf_cgroup *
  306. perf_cgroup_from_task(struct task_struct *task)
  307. {
  308. return container_of(task_css(task, perf_event_cgrp_id),
  309. struct perf_cgroup, css);
  310. }
  311. static inline bool
  312. perf_cgroup_match(struct perf_event *event)
  313. {
  314. struct perf_event_context *ctx = event->ctx;
  315. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  316. /* @event doesn't care about cgroup */
  317. if (!event->cgrp)
  318. return true;
  319. /* wants specific cgroup scope but @cpuctx isn't associated with any */
  320. if (!cpuctx->cgrp)
  321. return false;
  322. /*
  323. * Cgroup scoping is recursive. An event enabled for a cgroup is
  324. * also enabled for all its descendant cgroups. If @cpuctx's
  325. * cgroup is a descendant of @event's (the test covers identity
  326. * case), it's a match.
  327. */
  328. return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
  329. event->cgrp->css.cgroup);
  330. }
  331. static inline void perf_detach_cgroup(struct perf_event *event)
  332. {
  333. css_put(&event->cgrp->css);
  334. event->cgrp = NULL;
  335. }
  336. static inline int is_cgroup_event(struct perf_event *event)
  337. {
  338. return event->cgrp != NULL;
  339. }
  340. static inline u64 perf_cgroup_event_time(struct perf_event *event)
  341. {
  342. struct perf_cgroup_info *t;
  343. t = per_cpu_ptr(event->cgrp->info, event->cpu);
  344. return t->time;
  345. }
  346. static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
  347. {
  348. struct perf_cgroup_info *info;
  349. u64 now;
  350. now = perf_clock();
  351. info = this_cpu_ptr(cgrp->info);
  352. info->time += now - info->timestamp;
  353. info->timestamp = now;
  354. }
  355. static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  356. {
  357. struct perf_cgroup *cgrp_out = cpuctx->cgrp;
  358. if (cgrp_out)
  359. __update_cgrp_time(cgrp_out);
  360. }
  361. static inline void update_cgrp_time_from_event(struct perf_event *event)
  362. {
  363. struct perf_cgroup *cgrp;
  364. /*
  365. * ensure we access cgroup data only when needed and
  366. * when we know the cgroup is pinned (css_get)
  367. */
  368. if (!is_cgroup_event(event))
  369. return;
  370. cgrp = perf_cgroup_from_task(current);
  371. /*
  372. * Do not update time when cgroup is not active
  373. */
  374. if (cgrp == event->cgrp)
  375. __update_cgrp_time(event->cgrp);
  376. }
  377. static inline void
  378. perf_cgroup_set_timestamp(struct task_struct *task,
  379. struct perf_event_context *ctx)
  380. {
  381. struct perf_cgroup *cgrp;
  382. struct perf_cgroup_info *info;
  383. /*
  384. * ctx->lock held by caller
  385. * ensure we do not access cgroup data
  386. * unless we have the cgroup pinned (css_get)
  387. */
  388. if (!task || !ctx->nr_cgroups)
  389. return;
  390. cgrp = perf_cgroup_from_task(task);
  391. info = this_cpu_ptr(cgrp->info);
  392. info->timestamp = ctx->timestamp;
  393. }
  394. #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
  395. #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
  396. /*
  397. * reschedule events based on the cgroup constraint of task.
  398. *
  399. * mode SWOUT : schedule out everything
  400. * mode SWIN : schedule in based on cgroup for next
  401. */
  402. void perf_cgroup_switch(struct task_struct *task, int mode)
  403. {
  404. struct perf_cpu_context *cpuctx;
  405. struct pmu *pmu;
  406. unsigned long flags;
  407. /*
  408. * disable interrupts to avoid geting nr_cgroup
  409. * changes via __perf_event_disable(). Also
  410. * avoids preemption.
  411. */
  412. local_irq_save(flags);
  413. /*
  414. * we reschedule only in the presence of cgroup
  415. * constrained events.
  416. */
  417. rcu_read_lock();
  418. list_for_each_entry_rcu(pmu, &pmus, entry) {
  419. cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  420. if (cpuctx->unique_pmu != pmu)
  421. continue; /* ensure we process each cpuctx once */
  422. /*
  423. * perf_cgroup_events says at least one
  424. * context on this CPU has cgroup events.
  425. *
  426. * ctx->nr_cgroups reports the number of cgroup
  427. * events for a context.
  428. */
  429. if (cpuctx->ctx.nr_cgroups > 0) {
  430. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  431. perf_pmu_disable(cpuctx->ctx.pmu);
  432. if (mode & PERF_CGROUP_SWOUT) {
  433. cpu_ctx_sched_out(cpuctx, EVENT_ALL);
  434. /*
  435. * must not be done before ctxswout due
  436. * to event_filter_match() in event_sched_out()
  437. */
  438. cpuctx->cgrp = NULL;
  439. }
  440. if (mode & PERF_CGROUP_SWIN) {
  441. WARN_ON_ONCE(cpuctx->cgrp);
  442. /*
  443. * set cgrp before ctxsw in to allow
  444. * event_filter_match() to not have to pass
  445. * task around
  446. */
  447. cpuctx->cgrp = perf_cgroup_from_task(task);
  448. cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
  449. }
  450. perf_pmu_enable(cpuctx->ctx.pmu);
  451. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  452. }
  453. }
  454. rcu_read_unlock();
  455. local_irq_restore(flags);
  456. }
  457. static inline void perf_cgroup_sched_out(struct task_struct *task,
  458. struct task_struct *next)
  459. {
  460. struct perf_cgroup *cgrp1;
  461. struct perf_cgroup *cgrp2 = NULL;
  462. /*
  463. * we come here when we know perf_cgroup_events > 0
  464. */
  465. cgrp1 = perf_cgroup_from_task(task);
  466. /*
  467. * next is NULL when called from perf_event_enable_on_exec()
  468. * that will systematically cause a cgroup_switch()
  469. */
  470. if (next)
  471. cgrp2 = perf_cgroup_from_task(next);
  472. /*
  473. * only schedule out current cgroup events if we know
  474. * that we are switching to a different cgroup. Otherwise,
  475. * do no touch the cgroup events.
  476. */
  477. if (cgrp1 != cgrp2)
  478. perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
  479. }
  480. static inline void perf_cgroup_sched_in(struct task_struct *prev,
  481. struct task_struct *task)
  482. {
  483. struct perf_cgroup *cgrp1;
  484. struct perf_cgroup *cgrp2 = NULL;
  485. /*
  486. * we come here when we know perf_cgroup_events > 0
  487. */
  488. cgrp1 = perf_cgroup_from_task(task);
  489. /* prev can never be NULL */
  490. cgrp2 = perf_cgroup_from_task(prev);
  491. /*
  492. * only need to schedule in cgroup events if we are changing
  493. * cgroup during ctxsw. Cgroup events were not scheduled
  494. * out of ctxsw out if that was not the case.
  495. */
  496. if (cgrp1 != cgrp2)
  497. perf_cgroup_switch(task, PERF_CGROUP_SWIN);
  498. }
  499. static inline int perf_cgroup_connect(int fd, struct perf_event *event,
  500. struct perf_event_attr *attr,
  501. struct perf_event *group_leader)
  502. {
  503. struct perf_cgroup *cgrp;
  504. struct cgroup_subsys_state *css;
  505. struct fd f = fdget(fd);
  506. int ret = 0;
  507. if (!f.file)
  508. return -EBADF;
  509. css = css_tryget_online_from_dir(f.file->f_path.dentry,
  510. &perf_event_cgrp_subsys);
  511. if (IS_ERR(css)) {
  512. ret = PTR_ERR(css);
  513. goto out;
  514. }
  515. cgrp = container_of(css, struct perf_cgroup, css);
  516. event->cgrp = cgrp;
  517. /*
  518. * all events in a group must monitor
  519. * the same cgroup because a task belongs
  520. * to only one perf cgroup at a time
  521. */
  522. if (group_leader && group_leader->cgrp != cgrp) {
  523. perf_detach_cgroup(event);
  524. ret = -EINVAL;
  525. }
  526. out:
  527. fdput(f);
  528. return ret;
  529. }
  530. static inline void
  531. perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  532. {
  533. struct perf_cgroup_info *t;
  534. t = per_cpu_ptr(event->cgrp->info, event->cpu);
  535. event->shadow_ctx_time = now - t->timestamp;
  536. }
  537. static inline void
  538. perf_cgroup_defer_enabled(struct perf_event *event)
  539. {
  540. /*
  541. * when the current task's perf cgroup does not match
  542. * the event's, we need to remember to call the
  543. * perf_mark_enable() function the first time a task with
  544. * a matching perf cgroup is scheduled in.
  545. */
  546. if (is_cgroup_event(event) && !perf_cgroup_match(event))
  547. event->cgrp_defer_enabled = 1;
  548. }
  549. static inline void
  550. perf_cgroup_mark_enabled(struct perf_event *event,
  551. struct perf_event_context *ctx)
  552. {
  553. struct perf_event *sub;
  554. u64 tstamp = perf_event_time(event);
  555. if (!event->cgrp_defer_enabled)
  556. return;
  557. event->cgrp_defer_enabled = 0;
  558. event->tstamp_enabled = tstamp - event->total_time_enabled;
  559. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  560. if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
  561. sub->tstamp_enabled = tstamp - sub->total_time_enabled;
  562. sub->cgrp_defer_enabled = 0;
  563. }
  564. }
  565. }
  566. #else /* !CONFIG_CGROUP_PERF */
  567. static inline bool
  568. perf_cgroup_match(struct perf_event *event)
  569. {
  570. return true;
  571. }
  572. static inline void perf_detach_cgroup(struct perf_event *event)
  573. {}
  574. static inline int is_cgroup_event(struct perf_event *event)
  575. {
  576. return 0;
  577. }
  578. static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
  579. {
  580. return 0;
  581. }
  582. static inline void update_cgrp_time_from_event(struct perf_event *event)
  583. {
  584. }
  585. static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  586. {
  587. }
  588. static inline void perf_cgroup_sched_out(struct task_struct *task,
  589. struct task_struct *next)
  590. {
  591. }
  592. static inline void perf_cgroup_sched_in(struct task_struct *prev,
  593. struct task_struct *task)
  594. {
  595. }
  596. static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
  597. struct perf_event_attr *attr,
  598. struct perf_event *group_leader)
  599. {
  600. return -EINVAL;
  601. }
  602. static inline void
  603. perf_cgroup_set_timestamp(struct task_struct *task,
  604. struct perf_event_context *ctx)
  605. {
  606. }
  607. void
  608. perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
  609. {
  610. }
  611. static inline void
  612. perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  613. {
  614. }
  615. static inline u64 perf_cgroup_event_time(struct perf_event *event)
  616. {
  617. return 0;
  618. }
  619. static inline void
  620. perf_cgroup_defer_enabled(struct perf_event *event)
  621. {
  622. }
  623. static inline void
  624. perf_cgroup_mark_enabled(struct perf_event *event,
  625. struct perf_event_context *ctx)
  626. {
  627. }
  628. #endif
  629. /*
  630. * set default to be dependent on timer tick just
  631. * like original code
  632. */
  633. #define PERF_CPU_HRTIMER (1000 / HZ)
  634. /*
  635. * function must be called with interrupts disbled
  636. */
  637. static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
  638. {
  639. struct perf_cpu_context *cpuctx;
  640. enum hrtimer_restart ret = HRTIMER_NORESTART;
  641. int rotations = 0;
  642. WARN_ON(!irqs_disabled());
  643. cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
  644. rotations = perf_rotate_context(cpuctx);
  645. /*
  646. * arm timer if needed
  647. */
  648. if (rotations) {
  649. hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
  650. ret = HRTIMER_RESTART;
  651. }
  652. return ret;
  653. }
  654. /* CPU is going down */
  655. void perf_cpu_hrtimer_cancel(int cpu)
  656. {
  657. struct perf_cpu_context *cpuctx;
  658. struct pmu *pmu;
  659. unsigned long flags;
  660. if (WARN_ON(cpu != smp_processor_id()))
  661. return;
  662. local_irq_save(flags);
  663. rcu_read_lock();
  664. list_for_each_entry_rcu(pmu, &pmus, entry) {
  665. cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  666. if (pmu->task_ctx_nr == perf_sw_context)
  667. continue;
  668. hrtimer_cancel(&cpuctx->hrtimer);
  669. }
  670. rcu_read_unlock();
  671. local_irq_restore(flags);
  672. }
  673. static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
  674. {
  675. struct hrtimer *hr = &cpuctx->hrtimer;
  676. struct pmu *pmu = cpuctx->ctx.pmu;
  677. int timer;
  678. /* no multiplexing needed for SW PMU */
  679. if (pmu->task_ctx_nr == perf_sw_context)
  680. return;
  681. /*
  682. * check default is sane, if not set then force to
  683. * default interval (1/tick)
  684. */
  685. timer = pmu->hrtimer_interval_ms;
  686. if (timer < 1)
  687. timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
  688. cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
  689. hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
  690. hr->function = perf_cpu_hrtimer_handler;
  691. }
  692. static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
  693. {
  694. struct hrtimer *hr = &cpuctx->hrtimer;
  695. struct pmu *pmu = cpuctx->ctx.pmu;
  696. /* not for SW PMU */
  697. if (pmu->task_ctx_nr == perf_sw_context)
  698. return;
  699. if (hrtimer_active(hr))
  700. return;
  701. if (!hrtimer_callback_running(hr))
  702. __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
  703. 0, HRTIMER_MODE_REL_PINNED, 0);
  704. }
  705. void perf_pmu_disable(struct pmu *pmu)
  706. {
  707. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  708. if (!(*count)++)
  709. pmu->pmu_disable(pmu);
  710. }
  711. void perf_pmu_enable(struct pmu *pmu)
  712. {
  713. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  714. if (!--(*count))
  715. pmu->pmu_enable(pmu);
  716. }
  717. static DEFINE_PER_CPU(struct list_head, active_ctx_list);
  718. /*
  719. * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
  720. * perf_event_task_tick() are fully serialized because they're strictly cpu
  721. * affine and perf_event_ctx{activate,deactivate} are called with IRQs
  722. * disabled, while perf_event_task_tick is called from IRQ context.
  723. */
  724. static void perf_event_ctx_activate(struct perf_event_context *ctx)
  725. {
  726. struct list_head *head = this_cpu_ptr(&active_ctx_list);
  727. WARN_ON(!irqs_disabled());
  728. WARN_ON(!list_empty(&ctx->active_ctx_list));
  729. list_add(&ctx->active_ctx_list, head);
  730. }
  731. static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
  732. {
  733. WARN_ON(!irqs_disabled());
  734. WARN_ON(list_empty(&ctx->active_ctx_list));
  735. list_del_init(&ctx->active_ctx_list);
  736. }
  737. static void get_ctx(struct perf_event_context *ctx)
  738. {
  739. WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
  740. }
  741. static void put_ctx(struct perf_event_context *ctx)
  742. {
  743. if (atomic_dec_and_test(&ctx->refcount)) {
  744. if (ctx->parent_ctx)
  745. put_ctx(ctx->parent_ctx);
  746. if (ctx->task)
  747. put_task_struct(ctx->task);
  748. kfree_rcu(ctx, rcu_head);
  749. }
  750. }
  751. /*
  752. * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
  753. * perf_pmu_migrate_context() we need some magic.
  754. *
  755. * Those places that change perf_event::ctx will hold both
  756. * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
  757. *
  758. * Lock ordering is by mutex address. There is one other site where
  759. * perf_event_context::mutex nests and that is put_event(). But remember that
  760. * that is a parent<->child context relation, and migration does not affect
  761. * children, therefore these two orderings should not interact.
  762. *
  763. * The change in perf_event::ctx does not affect children (as claimed above)
  764. * because the sys_perf_event_open() case will install a new event and break
  765. * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
  766. * concerned with cpuctx and that doesn't have children.
  767. *
  768. * The places that change perf_event::ctx will issue:
  769. *
  770. * perf_remove_from_context();
  771. * synchronize_rcu();
  772. * perf_install_in_context();
  773. *
  774. * to affect the change. The remove_from_context() + synchronize_rcu() should
  775. * quiesce the event, after which we can install it in the new location. This
  776. * means that only external vectors (perf_fops, prctl) can perturb the event
  777. * while in transit. Therefore all such accessors should also acquire
  778. * perf_event_context::mutex to serialize against this.
  779. *
  780. * However; because event->ctx can change while we're waiting to acquire
  781. * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
  782. * function.
  783. *
  784. * Lock order:
  785. * task_struct::perf_event_mutex
  786. * perf_event_context::mutex
  787. * perf_event_context::lock
  788. * perf_event::child_mutex;
  789. * perf_event::mmap_mutex
  790. * mmap_sem
  791. */
  792. static struct perf_event_context *
  793. perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
  794. {
  795. struct perf_event_context *ctx;
  796. again:
  797. rcu_read_lock();
  798. ctx = ACCESS_ONCE(event->ctx);
  799. if (!atomic_inc_not_zero(&ctx->refcount)) {
  800. rcu_read_unlock();
  801. goto again;
  802. }
  803. rcu_read_unlock();
  804. mutex_lock_nested(&ctx->mutex, nesting);
  805. if (event->ctx != ctx) {
  806. mutex_unlock(&ctx->mutex);
  807. put_ctx(ctx);
  808. goto again;
  809. }
  810. return ctx;
  811. }
  812. static inline struct perf_event_context *
  813. perf_event_ctx_lock(struct perf_event *event)
  814. {
  815. return perf_event_ctx_lock_nested(event, 0);
  816. }
  817. static void perf_event_ctx_unlock(struct perf_event *event,
  818. struct perf_event_context *ctx)
  819. {
  820. mutex_unlock(&ctx->mutex);
  821. put_ctx(ctx);
  822. }
  823. /*
  824. * This must be done under the ctx->lock, such as to serialize against
  825. * context_equiv(), therefore we cannot call put_ctx() since that might end up
  826. * calling scheduler related locks and ctx->lock nests inside those.
  827. */
  828. static __must_check struct perf_event_context *
  829. unclone_ctx(struct perf_event_context *ctx)
  830. {
  831. struct perf_event_context *parent_ctx = ctx->parent_ctx;
  832. lockdep_assert_held(&ctx->lock);
  833. if (parent_ctx)
  834. ctx->parent_ctx = NULL;
  835. ctx->generation++;
  836. return parent_ctx;
  837. }
  838. static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
  839. {
  840. /*
  841. * only top level events have the pid namespace they were created in
  842. */
  843. if (event->parent)
  844. event = event->parent;
  845. return task_tgid_nr_ns(p, event->ns);
  846. }
  847. static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
  848. {
  849. /*
  850. * only top level events have the pid namespace they were created in
  851. */
  852. if (event->parent)
  853. event = event->parent;
  854. return task_pid_nr_ns(p, event->ns);
  855. }
  856. /*
  857. * If we inherit events we want to return the parent event id
  858. * to userspace.
  859. */
  860. static u64 primary_event_id(struct perf_event *event)
  861. {
  862. u64 id = event->id;
  863. if (event->parent)
  864. id = event->parent->id;
  865. return id;
  866. }
  867. /*
  868. * Get the perf_event_context for a task and lock it.
  869. * This has to cope with with the fact that until it is locked,
  870. * the context could get moved to another task.
  871. */
  872. static struct perf_event_context *
  873. perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
  874. {
  875. struct perf_event_context *ctx;
  876. retry:
  877. /*
  878. * One of the few rules of preemptible RCU is that one cannot do
  879. * rcu_read_unlock() while holding a scheduler (or nested) lock when
  880. * part of the read side critical section was preemptible -- see
  881. * rcu_read_unlock_special().
  882. *
  883. * Since ctx->lock nests under rq->lock we must ensure the entire read
  884. * side critical section is non-preemptible.
  885. */
  886. preempt_disable();
  887. rcu_read_lock();
  888. ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
  889. if (ctx) {
  890. /*
  891. * If this context is a clone of another, it might
  892. * get swapped for another underneath us by
  893. * perf_event_task_sched_out, though the
  894. * rcu_read_lock() protects us from any context
  895. * getting freed. Lock the context and check if it
  896. * got swapped before we could get the lock, and retry
  897. * if so. If we locked the right context, then it
  898. * can't get swapped on us any more.
  899. */
  900. raw_spin_lock_irqsave(&ctx->lock, *flags);
  901. if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
  902. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  903. rcu_read_unlock();
  904. preempt_enable();
  905. goto retry;
  906. }
  907. if (!atomic_inc_not_zero(&ctx->refcount)) {
  908. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  909. ctx = NULL;
  910. }
  911. }
  912. rcu_read_unlock();
  913. preempt_enable();
  914. return ctx;
  915. }
  916. /*
  917. * Get the context for a task and increment its pin_count so it
  918. * can't get swapped to another task. This also increments its
  919. * reference count so that the context can't get freed.
  920. */
  921. static struct perf_event_context *
  922. perf_pin_task_context(struct task_struct *task, int ctxn)
  923. {
  924. struct perf_event_context *ctx;
  925. unsigned long flags;
  926. ctx = perf_lock_task_context(task, ctxn, &flags);
  927. if (ctx) {
  928. ++ctx->pin_count;
  929. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  930. }
  931. return ctx;
  932. }
  933. static void perf_unpin_context(struct perf_event_context *ctx)
  934. {
  935. unsigned long flags;
  936. raw_spin_lock_irqsave(&ctx->lock, flags);
  937. --ctx->pin_count;
  938. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  939. }
  940. /*
  941. * Update the record of the current time in a context.
  942. */
  943. static void update_context_time(struct perf_event_context *ctx)
  944. {
  945. u64 now = perf_clock();
  946. ctx->time += now - ctx->timestamp;
  947. ctx->timestamp = now;
  948. }
  949. static u64 perf_event_time(struct perf_event *event)
  950. {
  951. struct perf_event_context *ctx = event->ctx;
  952. if (is_cgroup_event(event))
  953. return perf_cgroup_event_time(event);
  954. return ctx ? ctx->time : 0;
  955. }
  956. /*
  957. * Update the total_time_enabled and total_time_running fields for a event.
  958. * The caller of this function needs to hold the ctx->lock.
  959. */
  960. static void update_event_times(struct perf_event *event)
  961. {
  962. struct perf_event_context *ctx = event->ctx;
  963. u64 run_end;
  964. if (event->state < PERF_EVENT_STATE_INACTIVE ||
  965. event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
  966. return;
  967. /*
  968. * in cgroup mode, time_enabled represents
  969. * the time the event was enabled AND active
  970. * tasks were in the monitored cgroup. This is
  971. * independent of the activity of the context as
  972. * there may be a mix of cgroup and non-cgroup events.
  973. *
  974. * That is why we treat cgroup events differently
  975. * here.
  976. */
  977. if (is_cgroup_event(event))
  978. run_end = perf_cgroup_event_time(event);
  979. else if (ctx->is_active)
  980. run_end = ctx->time;
  981. else
  982. run_end = event->tstamp_stopped;
  983. event->total_time_enabled = run_end - event->tstamp_enabled;
  984. if (event->state == PERF_EVENT_STATE_INACTIVE)
  985. run_end = event->tstamp_stopped;
  986. else
  987. run_end = perf_event_time(event);
  988. event->total_time_running = run_end - event->tstamp_running;
  989. }
  990. /*
  991. * Update total_time_enabled and total_time_running for all events in a group.
  992. */
  993. static void update_group_times(struct perf_event *leader)
  994. {
  995. struct perf_event *event;
  996. update_event_times(leader);
  997. list_for_each_entry(event, &leader->sibling_list, group_entry)
  998. update_event_times(event);
  999. }
  1000. static struct list_head *
  1001. ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
  1002. {
  1003. if (event->attr.pinned)
  1004. return &ctx->pinned_groups;
  1005. else
  1006. return &ctx->flexible_groups;
  1007. }
  1008. /*
  1009. * Add a event from the lists for its context.
  1010. * Must be called with ctx->mutex and ctx->lock held.
  1011. */
  1012. static void
  1013. list_add_event(struct perf_event *event, struct perf_event_context *ctx)
  1014. {
  1015. WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
  1016. event->attach_state |= PERF_ATTACH_CONTEXT;
  1017. /*
  1018. * If we're a stand alone event or group leader, we go to the context
  1019. * list, group events are kept attached to the group so that
  1020. * perf_group_detach can, at all times, locate all siblings.
  1021. */
  1022. if (event->group_leader == event) {
  1023. struct list_head *list;
  1024. if (is_software_event(event))
  1025. event->group_flags |= PERF_GROUP_SOFTWARE;
  1026. list = ctx_group_list(event, ctx);
  1027. list_add_tail(&event->group_entry, list);
  1028. }
  1029. if (is_cgroup_event(event))
  1030. ctx->nr_cgroups++;
  1031. if (has_branch_stack(event))
  1032. ctx->nr_branch_stack++;
  1033. list_add_rcu(&event->event_entry, &ctx->event_list);
  1034. ctx->nr_events++;
  1035. if (event->attr.inherit_stat)
  1036. ctx->nr_stat++;
  1037. ctx->generation++;
  1038. }
  1039. /*
  1040. * Initialize event state based on the perf_event_attr::disabled.
  1041. */
  1042. static inline void perf_event__state_init(struct perf_event *event)
  1043. {
  1044. event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
  1045. PERF_EVENT_STATE_INACTIVE;
  1046. }
  1047. /*
  1048. * Called at perf_event creation and when events are attached/detached from a
  1049. * group.
  1050. */
  1051. static void perf_event__read_size(struct perf_event *event)
  1052. {
  1053. int entry = sizeof(u64); /* value */
  1054. int size = 0;
  1055. int nr = 1;
  1056. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  1057. size += sizeof(u64);
  1058. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  1059. size += sizeof(u64);
  1060. if (event->attr.read_format & PERF_FORMAT_ID)
  1061. entry += sizeof(u64);
  1062. if (event->attr.read_format & PERF_FORMAT_GROUP) {
  1063. nr += event->group_leader->nr_siblings;
  1064. size += sizeof(u64);
  1065. }
  1066. size += entry * nr;
  1067. event->read_size = size;
  1068. }
  1069. static void perf_event__header_size(struct perf_event *event)
  1070. {
  1071. struct perf_sample_data *data;
  1072. u64 sample_type = event->attr.sample_type;
  1073. u16 size = 0;
  1074. perf_event__read_size(event);
  1075. if (sample_type & PERF_SAMPLE_IP)
  1076. size += sizeof(data->ip);
  1077. if (sample_type & PERF_SAMPLE_ADDR)
  1078. size += sizeof(data->addr);
  1079. if (sample_type & PERF_SAMPLE_PERIOD)
  1080. size += sizeof(data->period);
  1081. if (sample_type & PERF_SAMPLE_WEIGHT)
  1082. size += sizeof(data->weight);
  1083. if (sample_type & PERF_SAMPLE_READ)
  1084. size += event->read_size;
  1085. if (sample_type & PERF_SAMPLE_DATA_SRC)
  1086. size += sizeof(data->data_src.val);
  1087. if (sample_type & PERF_SAMPLE_TRANSACTION)
  1088. size += sizeof(data->txn);
  1089. event->header_size = size;
  1090. }
  1091. static void perf_event__id_header_size(struct perf_event *event)
  1092. {
  1093. struct perf_sample_data *data;
  1094. u64 sample_type = event->attr.sample_type;
  1095. u16 size = 0;
  1096. if (sample_type & PERF_SAMPLE_TID)
  1097. size += sizeof(data->tid_entry);
  1098. if (sample_type & PERF_SAMPLE_TIME)
  1099. size += sizeof(data->time);
  1100. if (sample_type & PERF_SAMPLE_IDENTIFIER)
  1101. size += sizeof(data->id);
  1102. if (sample_type & PERF_SAMPLE_ID)
  1103. size += sizeof(data->id);
  1104. if (sample_type & PERF_SAMPLE_STREAM_ID)
  1105. size += sizeof(data->stream_id);
  1106. if (sample_type & PERF_SAMPLE_CPU)
  1107. size += sizeof(data->cpu_entry);
  1108. event->id_header_size = size;
  1109. }
  1110. static void perf_group_attach(struct perf_event *event)
  1111. {
  1112. struct perf_event *group_leader = event->group_leader, *pos;
  1113. /*
  1114. * We can have double attach due to group movement in perf_event_open.
  1115. */
  1116. if (event->attach_state & PERF_ATTACH_GROUP)
  1117. return;
  1118. event->attach_state |= PERF_ATTACH_GROUP;
  1119. if (group_leader == event)
  1120. return;
  1121. WARN_ON_ONCE(group_leader->ctx != event->ctx);
  1122. if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
  1123. !is_software_event(event))
  1124. group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
  1125. list_add_tail(&event->group_entry, &group_leader->sibling_list);
  1126. group_leader->nr_siblings++;
  1127. perf_event__header_size(group_leader);
  1128. list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
  1129. perf_event__header_size(pos);
  1130. }
  1131. /*
  1132. * Remove a event from the lists for its context.
  1133. * Must be called with ctx->mutex and ctx->lock held.
  1134. */
  1135. static void
  1136. list_del_event(struct perf_event *event, struct perf_event_context *ctx)
  1137. {
  1138. struct perf_cpu_context *cpuctx;
  1139. WARN_ON_ONCE(event->ctx != ctx);
  1140. lockdep_assert_held(&ctx->lock);
  1141. /*
  1142. * We can have double detach due to exit/hot-unplug + close.
  1143. */
  1144. if (!(event->attach_state & PERF_ATTACH_CONTEXT))
  1145. return;
  1146. event->attach_state &= ~PERF_ATTACH_CONTEXT;
  1147. if (is_cgroup_event(event)) {
  1148. ctx->nr_cgroups--;
  1149. cpuctx = __get_cpu_context(ctx);
  1150. /*
  1151. * if there are no more cgroup events
  1152. * then cler cgrp to avoid stale pointer
  1153. * in update_cgrp_time_from_cpuctx()
  1154. */
  1155. if (!ctx->nr_cgroups)
  1156. cpuctx->cgrp = NULL;
  1157. }
  1158. if (has_branch_stack(event))
  1159. ctx->nr_branch_stack--;
  1160. ctx->nr_events--;
  1161. if (event->attr.inherit_stat)
  1162. ctx->nr_stat--;
  1163. list_del_rcu(&event->event_entry);
  1164. if (event->group_leader == event)
  1165. list_del_init(&event->group_entry);
  1166. update_group_times(event);
  1167. /*
  1168. * If event was in error state, then keep it
  1169. * that way, otherwise bogus counts will be
  1170. * returned on read(). The only way to get out
  1171. * of error state is by explicit re-enabling
  1172. * of the event
  1173. */
  1174. if (event->state > PERF_EVENT_STATE_OFF)
  1175. event->state = PERF_EVENT_STATE_OFF;
  1176. ctx->generation++;
  1177. }
  1178. static void perf_group_detach(struct perf_event *event)
  1179. {
  1180. struct perf_event *sibling, *tmp;
  1181. struct list_head *list = NULL;
  1182. /*
  1183. * We can have double detach due to exit/hot-unplug + close.
  1184. */
  1185. if (!(event->attach_state & PERF_ATTACH_GROUP))
  1186. return;
  1187. event->attach_state &= ~PERF_ATTACH_GROUP;
  1188. /*
  1189. * If this is a sibling, remove it from its group.
  1190. */
  1191. if (event->group_leader != event) {
  1192. list_del_init(&event->group_entry);
  1193. event->group_leader->nr_siblings--;
  1194. goto out;
  1195. }
  1196. if (!list_empty(&event->group_entry))
  1197. list = &event->group_entry;
  1198. /*
  1199. * If this was a group event with sibling events then
  1200. * upgrade the siblings to singleton events by adding them
  1201. * to whatever list we are on.
  1202. */
  1203. list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
  1204. if (list)
  1205. list_move_tail(&sibling->group_entry, list);
  1206. sibling->group_leader = sibling;
  1207. /* Inherit group flags from the previous leader */
  1208. sibling->group_flags = event->group_flags;
  1209. WARN_ON_ONCE(sibling->ctx != event->ctx);
  1210. }
  1211. out:
  1212. perf_event__header_size(event->group_leader);
  1213. list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
  1214. perf_event__header_size(tmp);
  1215. }
  1216. /*
  1217. * User event without the task.
  1218. */
  1219. static bool is_orphaned_event(struct perf_event *event)
  1220. {
  1221. return event && !is_kernel_event(event) && !event->owner;
  1222. }
  1223. /*
  1224. * Event has a parent but parent's task finished and it's
  1225. * alive only because of children holding refference.
  1226. */
  1227. static bool is_orphaned_child(struct perf_event *event)
  1228. {
  1229. return is_orphaned_event(event->parent);
  1230. }
  1231. static void orphans_remove_work(struct work_struct *work);
  1232. static void schedule_orphans_remove(struct perf_event_context *ctx)
  1233. {
  1234. if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
  1235. return;
  1236. if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
  1237. get_ctx(ctx);
  1238. ctx->orphans_remove_sched = true;
  1239. }
  1240. }
  1241. static int __init perf_workqueue_init(void)
  1242. {
  1243. perf_wq = create_singlethread_workqueue("perf");
  1244. WARN(!perf_wq, "failed to create perf workqueue\n");
  1245. return perf_wq ? 0 : -1;
  1246. }
  1247. core_initcall(perf_workqueue_init);
  1248. static inline int
  1249. event_filter_match(struct perf_event *event)
  1250. {
  1251. return (event->cpu == -1 || event->cpu == smp_processor_id())
  1252. && perf_cgroup_match(event);
  1253. }
  1254. static void
  1255. event_sched_out(struct perf_event *event,
  1256. struct perf_cpu_context *cpuctx,
  1257. struct perf_event_context *ctx)
  1258. {
  1259. u64 tstamp = perf_event_time(event);
  1260. u64 delta;
  1261. WARN_ON_ONCE(event->ctx != ctx);
  1262. lockdep_assert_held(&ctx->lock);
  1263. /*
  1264. * An event which could not be activated because of
  1265. * filter mismatch still needs to have its timings
  1266. * maintained, otherwise bogus information is return
  1267. * via read() for time_enabled, time_running:
  1268. */
  1269. if (event->state == PERF_EVENT_STATE_INACTIVE
  1270. && !event_filter_match(event)) {
  1271. delta = tstamp - event->tstamp_stopped;
  1272. event->tstamp_running += delta;
  1273. event->tstamp_stopped = tstamp;
  1274. }
  1275. if (event->state != PERF_EVENT_STATE_ACTIVE)
  1276. return;
  1277. perf_pmu_disable(event->pmu);
  1278. event->state = PERF_EVENT_STATE_INACTIVE;
  1279. if (event->pending_disable) {
  1280. event->pending_disable = 0;
  1281. event->state = PERF_EVENT_STATE_OFF;
  1282. }
  1283. event->tstamp_stopped = tstamp;
  1284. event->pmu->del(event, 0);
  1285. event->oncpu = -1;
  1286. if (!is_software_event(event))
  1287. cpuctx->active_oncpu--;
  1288. if (!--ctx->nr_active)
  1289. perf_event_ctx_deactivate(ctx);
  1290. if (event->attr.freq && event->attr.sample_freq)
  1291. ctx->nr_freq--;
  1292. if (event->attr.exclusive || !cpuctx->active_oncpu)
  1293. cpuctx->exclusive = 0;
  1294. if (is_orphaned_child(event))
  1295. schedule_orphans_remove(ctx);
  1296. perf_pmu_enable(event->pmu);
  1297. }
  1298. static void
  1299. group_sched_out(struct perf_event *group_event,
  1300. struct perf_cpu_context *cpuctx,
  1301. struct perf_event_context *ctx)
  1302. {
  1303. struct perf_event *event;
  1304. int state = group_event->state;
  1305. event_sched_out(group_event, cpuctx, ctx);
  1306. /*
  1307. * Schedule out siblings (if any):
  1308. */
  1309. list_for_each_entry(event, &group_event->sibling_list, group_entry)
  1310. event_sched_out(event, cpuctx, ctx);
  1311. if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
  1312. cpuctx->exclusive = 0;
  1313. }
  1314. struct remove_event {
  1315. struct perf_event *event;
  1316. bool detach_group;
  1317. };
  1318. /*
  1319. * Cross CPU call to remove a performance event
  1320. *
  1321. * We disable the event on the hardware level first. After that we
  1322. * remove it from the context list.
  1323. */
  1324. static int __perf_remove_from_context(void *info)
  1325. {
  1326. struct remove_event *re = info;
  1327. struct perf_event *event = re->event;
  1328. struct perf_event_context *ctx = event->ctx;
  1329. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1330. raw_spin_lock(&ctx->lock);
  1331. event_sched_out(event, cpuctx, ctx);
  1332. if (re->detach_group)
  1333. perf_group_detach(event);
  1334. list_del_event(event, ctx);
  1335. if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
  1336. ctx->is_active = 0;
  1337. cpuctx->task_ctx = NULL;
  1338. }
  1339. raw_spin_unlock(&ctx->lock);
  1340. return 0;
  1341. }
  1342. /*
  1343. * Remove the event from a task's (or a CPU's) list of events.
  1344. *
  1345. * CPU events are removed with a smp call. For task events we only
  1346. * call when the task is on a CPU.
  1347. *
  1348. * If event->ctx is a cloned context, callers must make sure that
  1349. * every task struct that event->ctx->task could possibly point to
  1350. * remains valid. This is OK when called from perf_release since
  1351. * that only calls us on the top-level context, which can't be a clone.
  1352. * When called from perf_event_exit_task, it's OK because the
  1353. * context has been detached from its task.
  1354. */
  1355. static void perf_remove_from_context(struct perf_event *event, bool detach_group)
  1356. {
  1357. struct perf_event_context *ctx = event->ctx;
  1358. struct task_struct *task = ctx->task;
  1359. struct remove_event re = {
  1360. .event = event,
  1361. .detach_group = detach_group,
  1362. };
  1363. lockdep_assert_held(&ctx->mutex);
  1364. if (!task) {
  1365. /*
  1366. * Per cpu events are removed via an smp call. The removal can
  1367. * fail if the CPU is currently offline, but in that case we
  1368. * already called __perf_remove_from_context from
  1369. * perf_event_exit_cpu.
  1370. */
  1371. cpu_function_call(event->cpu, __perf_remove_from_context, &re);
  1372. return;
  1373. }
  1374. retry:
  1375. if (!task_function_call(task, __perf_remove_from_context, &re))
  1376. return;
  1377. raw_spin_lock_irq(&ctx->lock);
  1378. /*
  1379. * If we failed to find a running task, but find the context active now
  1380. * that we've acquired the ctx->lock, retry.
  1381. */
  1382. if (ctx->is_active) {
  1383. raw_spin_unlock_irq(&ctx->lock);
  1384. /*
  1385. * Reload the task pointer, it might have been changed by
  1386. * a concurrent perf_event_context_sched_out().
  1387. */
  1388. task = ctx->task;
  1389. goto retry;
  1390. }
  1391. /*
  1392. * Since the task isn't running, its safe to remove the event, us
  1393. * holding the ctx->lock ensures the task won't get scheduled in.
  1394. */
  1395. if (detach_group)
  1396. perf_group_detach(event);
  1397. list_del_event(event, ctx);
  1398. raw_spin_unlock_irq(&ctx->lock);
  1399. }
  1400. /*
  1401. * Cross CPU call to disable a performance event
  1402. */
  1403. int __perf_event_disable(void *info)
  1404. {
  1405. struct perf_event *event = info;
  1406. struct perf_event_context *ctx = event->ctx;
  1407. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1408. /*
  1409. * If this is a per-task event, need to check whether this
  1410. * event's task is the current task on this cpu.
  1411. *
  1412. * Can trigger due to concurrent perf_event_context_sched_out()
  1413. * flipping contexts around.
  1414. */
  1415. if (ctx->task && cpuctx->task_ctx != ctx)
  1416. return -EINVAL;
  1417. raw_spin_lock(&ctx->lock);
  1418. /*
  1419. * If the event is on, turn it off.
  1420. * If it is in error state, leave it in error state.
  1421. */
  1422. if (event->state >= PERF_EVENT_STATE_INACTIVE) {
  1423. update_context_time(ctx);
  1424. update_cgrp_time_from_event(event);
  1425. update_group_times(event);
  1426. if (event == event->group_leader)
  1427. group_sched_out(event, cpuctx, ctx);
  1428. else
  1429. event_sched_out(event, cpuctx, ctx);
  1430. event->state = PERF_EVENT_STATE_OFF;
  1431. }
  1432. raw_spin_unlock(&ctx->lock);
  1433. return 0;
  1434. }
  1435. /*
  1436. * Disable a event.
  1437. *
  1438. * If event->ctx is a cloned context, callers must make sure that
  1439. * every task struct that event->ctx->task could possibly point to
  1440. * remains valid. This condition is satisifed when called through
  1441. * perf_event_for_each_child or perf_event_for_each because they
  1442. * hold the top-level event's child_mutex, so any descendant that
  1443. * goes to exit will block in sync_child_event.
  1444. * When called from perf_pending_event it's OK because event->ctx
  1445. * is the current context on this CPU and preemption is disabled,
  1446. * hence we can't get into perf_event_task_sched_out for this context.
  1447. */
  1448. static void _perf_event_disable(struct perf_event *event)
  1449. {
  1450. struct perf_event_context *ctx = event->ctx;
  1451. struct task_struct *task = ctx->task;
  1452. if (!task) {
  1453. /*
  1454. * Disable the event on the cpu that it's on
  1455. */
  1456. cpu_function_call(event->cpu, __perf_event_disable, event);
  1457. return;
  1458. }
  1459. retry:
  1460. if (!task_function_call(task, __perf_event_disable, event))
  1461. return;
  1462. raw_spin_lock_irq(&ctx->lock);
  1463. /*
  1464. * If the event is still active, we need to retry the cross-call.
  1465. */
  1466. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  1467. raw_spin_unlock_irq(&ctx->lock);
  1468. /*
  1469. * Reload the task pointer, it might have been changed by
  1470. * a concurrent perf_event_context_sched_out().
  1471. */
  1472. task = ctx->task;
  1473. goto retry;
  1474. }
  1475. /*
  1476. * Since we have the lock this context can't be scheduled
  1477. * in, so we can change the state safely.
  1478. */
  1479. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1480. update_group_times(event);
  1481. event->state = PERF_EVENT_STATE_OFF;
  1482. }
  1483. raw_spin_unlock_irq(&ctx->lock);
  1484. }
  1485. /*
  1486. * Strictly speaking kernel users cannot create groups and therefore this
  1487. * interface does not need the perf_event_ctx_lock() magic.
  1488. */
  1489. void perf_event_disable(struct perf_event *event)
  1490. {
  1491. struct perf_event_context *ctx;
  1492. ctx = perf_event_ctx_lock(event);
  1493. _perf_event_disable(event);
  1494. perf_event_ctx_unlock(event, ctx);
  1495. }
  1496. EXPORT_SYMBOL_GPL(perf_event_disable);
  1497. static void perf_set_shadow_time(struct perf_event *event,
  1498. struct perf_event_context *ctx,
  1499. u64 tstamp)
  1500. {
  1501. /*
  1502. * use the correct time source for the time snapshot
  1503. *
  1504. * We could get by without this by leveraging the
  1505. * fact that to get to this function, the caller
  1506. * has most likely already called update_context_time()
  1507. * and update_cgrp_time_xx() and thus both timestamp
  1508. * are identical (or very close). Given that tstamp is,
  1509. * already adjusted for cgroup, we could say that:
  1510. * tstamp - ctx->timestamp
  1511. * is equivalent to
  1512. * tstamp - cgrp->timestamp.
  1513. *
  1514. * Then, in perf_output_read(), the calculation would
  1515. * work with no changes because:
  1516. * - event is guaranteed scheduled in
  1517. * - no scheduled out in between
  1518. * - thus the timestamp would be the same
  1519. *
  1520. * But this is a bit hairy.
  1521. *
  1522. * So instead, we have an explicit cgroup call to remain
  1523. * within the time time source all along. We believe it
  1524. * is cleaner and simpler to understand.
  1525. */
  1526. if (is_cgroup_event(event))
  1527. perf_cgroup_set_shadow_time(event, tstamp);
  1528. else
  1529. event->shadow_ctx_time = tstamp - ctx->timestamp;
  1530. }
  1531. #define MAX_INTERRUPTS (~0ULL)
  1532. static void perf_log_throttle(struct perf_event *event, int enable);
  1533. static int
  1534. event_sched_in(struct perf_event *event,
  1535. struct perf_cpu_context *cpuctx,
  1536. struct perf_event_context *ctx)
  1537. {
  1538. u64 tstamp = perf_event_time(event);
  1539. int ret = 0;
  1540. lockdep_assert_held(&ctx->lock);
  1541. if (event->state <= PERF_EVENT_STATE_OFF)
  1542. return 0;
  1543. event->state = PERF_EVENT_STATE_ACTIVE;
  1544. event->oncpu = smp_processor_id();
  1545. /*
  1546. * Unthrottle events, since we scheduled we might have missed several
  1547. * ticks already, also for a heavily scheduling task there is little
  1548. * guarantee it'll get a tick in a timely manner.
  1549. */
  1550. if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
  1551. perf_log_throttle(event, 1);
  1552. event->hw.interrupts = 0;
  1553. }
  1554. /*
  1555. * The new state must be visible before we turn it on in the hardware:
  1556. */
  1557. smp_wmb();
  1558. perf_pmu_disable(event->pmu);
  1559. if (event->pmu->add(event, PERF_EF_START)) {
  1560. event->state = PERF_EVENT_STATE_INACTIVE;
  1561. event->oncpu = -1;
  1562. ret = -EAGAIN;
  1563. goto out;
  1564. }
  1565. event->tstamp_running += tstamp - event->tstamp_stopped;
  1566. perf_set_shadow_time(event, ctx, tstamp);
  1567. if (!is_software_event(event))
  1568. cpuctx->active_oncpu++;
  1569. if (!ctx->nr_active++)
  1570. perf_event_ctx_activate(ctx);
  1571. if (event->attr.freq && event->attr.sample_freq)
  1572. ctx->nr_freq++;
  1573. if (event->attr.exclusive)
  1574. cpuctx->exclusive = 1;
  1575. if (is_orphaned_child(event))
  1576. schedule_orphans_remove(ctx);
  1577. out:
  1578. perf_pmu_enable(event->pmu);
  1579. return ret;
  1580. }
  1581. static int
  1582. group_sched_in(struct perf_event *group_event,
  1583. struct perf_cpu_context *cpuctx,
  1584. struct perf_event_context *ctx)
  1585. {
  1586. struct perf_event *event, *partial_group = NULL;
  1587. struct pmu *pmu = ctx->pmu;
  1588. u64 now = ctx->time;
  1589. bool simulate = false;
  1590. if (group_event->state == PERF_EVENT_STATE_OFF)
  1591. return 0;
  1592. pmu->start_txn(pmu);
  1593. if (event_sched_in(group_event, cpuctx, ctx)) {
  1594. pmu->cancel_txn(pmu);
  1595. perf_cpu_hrtimer_restart(cpuctx);
  1596. return -EAGAIN;
  1597. }
  1598. /*
  1599. * Schedule in siblings as one group (if any):
  1600. */
  1601. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  1602. if (event_sched_in(event, cpuctx, ctx)) {
  1603. partial_group = event;
  1604. goto group_error;
  1605. }
  1606. }
  1607. if (!pmu->commit_txn(pmu))
  1608. return 0;
  1609. group_error:
  1610. /*
  1611. * Groups can be scheduled in as one unit only, so undo any
  1612. * partial group before returning:
  1613. * The events up to the failed event are scheduled out normally,
  1614. * tstamp_stopped will be updated.
  1615. *
  1616. * The failed events and the remaining siblings need to have
  1617. * their timings updated as if they had gone thru event_sched_in()
  1618. * and event_sched_out(). This is required to get consistent timings
  1619. * across the group. This also takes care of the case where the group
  1620. * could never be scheduled by ensuring tstamp_stopped is set to mark
  1621. * the time the event was actually stopped, such that time delta
  1622. * calculation in update_event_times() is correct.
  1623. */
  1624. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  1625. if (event == partial_group)
  1626. simulate = true;
  1627. if (simulate) {
  1628. event->tstamp_running += now - event->tstamp_stopped;
  1629. event->tstamp_stopped = now;
  1630. } else {
  1631. event_sched_out(event, cpuctx, ctx);
  1632. }
  1633. }
  1634. event_sched_out(group_event, cpuctx, ctx);
  1635. pmu->cancel_txn(pmu);
  1636. perf_cpu_hrtimer_restart(cpuctx);
  1637. return -EAGAIN;
  1638. }
  1639. /*
  1640. * Work out whether we can put this event group on the CPU now.
  1641. */
  1642. static int group_can_go_on(struct perf_event *event,
  1643. struct perf_cpu_context *cpuctx,
  1644. int can_add_hw)
  1645. {
  1646. /*
  1647. * Groups consisting entirely of software events can always go on.
  1648. */
  1649. if (event->group_flags & PERF_GROUP_SOFTWARE)
  1650. return 1;
  1651. /*
  1652. * If an exclusive group is already on, no other hardware
  1653. * events can go on.
  1654. */
  1655. if (cpuctx->exclusive)
  1656. return 0;
  1657. /*
  1658. * If this group is exclusive and there are already
  1659. * events on the CPU, it can't go on.
  1660. */
  1661. if (event->attr.exclusive && cpuctx->active_oncpu)
  1662. return 0;
  1663. /*
  1664. * Otherwise, try to add it if all previous groups were able
  1665. * to go on.
  1666. */
  1667. return can_add_hw;
  1668. }
  1669. static void add_event_to_ctx(struct perf_event *event,
  1670. struct perf_event_context *ctx)
  1671. {
  1672. u64 tstamp = perf_event_time(event);
  1673. list_add_event(event, ctx);
  1674. perf_group_attach(event);
  1675. event->tstamp_enabled = tstamp;
  1676. event->tstamp_running = tstamp;
  1677. event->tstamp_stopped = tstamp;
  1678. }
  1679. static void task_ctx_sched_out(struct perf_event_context *ctx);
  1680. static void
  1681. ctx_sched_in(struct perf_event_context *ctx,
  1682. struct perf_cpu_context *cpuctx,
  1683. enum event_type_t event_type,
  1684. struct task_struct *task);
  1685. static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
  1686. struct perf_event_context *ctx,
  1687. struct task_struct *task)
  1688. {
  1689. cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
  1690. if (ctx)
  1691. ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
  1692. cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
  1693. if (ctx)
  1694. ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
  1695. }
  1696. /*
  1697. * Cross CPU call to install and enable a performance event
  1698. *
  1699. * Must be called with ctx->mutex held
  1700. */
  1701. static int __perf_install_in_context(void *info)
  1702. {
  1703. struct perf_event *event = info;
  1704. struct perf_event_context *ctx = event->ctx;
  1705. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1706. struct perf_event_context *task_ctx = cpuctx->task_ctx;
  1707. struct task_struct *task = current;
  1708. perf_ctx_lock(cpuctx, task_ctx);
  1709. perf_pmu_disable(cpuctx->ctx.pmu);
  1710. /*
  1711. * If there was an active task_ctx schedule it out.
  1712. */
  1713. if (task_ctx)
  1714. task_ctx_sched_out(task_ctx);
  1715. /*
  1716. * If the context we're installing events in is not the
  1717. * active task_ctx, flip them.
  1718. */
  1719. if (ctx->task && task_ctx != ctx) {
  1720. if (task_ctx)
  1721. raw_spin_unlock(&task_ctx->lock);
  1722. raw_spin_lock(&ctx->lock);
  1723. task_ctx = ctx;
  1724. }
  1725. if (task_ctx) {
  1726. cpuctx->task_ctx = task_ctx;
  1727. task = task_ctx->task;
  1728. }
  1729. cpu_ctx_sched_out(cpuctx, EVENT_ALL);
  1730. update_context_time(ctx);
  1731. /*
  1732. * update cgrp time only if current cgrp
  1733. * matches event->cgrp. Must be done before
  1734. * calling add_event_to_ctx()
  1735. */
  1736. update_cgrp_time_from_event(event);
  1737. add_event_to_ctx(event, ctx);
  1738. /*
  1739. * Schedule everything back in
  1740. */
  1741. perf_event_sched_in(cpuctx, task_ctx, task);
  1742. perf_pmu_enable(cpuctx->ctx.pmu);
  1743. perf_ctx_unlock(cpuctx, task_ctx);
  1744. return 0;
  1745. }
  1746. /*
  1747. * Attach a performance event to a context
  1748. *
  1749. * First we add the event to the list with the hardware enable bit
  1750. * in event->hw_config cleared.
  1751. *
  1752. * If the event is attached to a task which is on a CPU we use a smp
  1753. * call to enable it in the task context. The task might have been
  1754. * scheduled away, but we check this in the smp call again.
  1755. */
  1756. static void
  1757. perf_install_in_context(struct perf_event_context *ctx,
  1758. struct perf_event *event,
  1759. int cpu)
  1760. {
  1761. struct task_struct *task = ctx->task;
  1762. lockdep_assert_held(&ctx->mutex);
  1763. event->ctx = ctx;
  1764. if (event->cpu != -1)
  1765. event->cpu = cpu;
  1766. if (!task) {
  1767. /*
  1768. * Per cpu events are installed via an smp call and
  1769. * the install is always successful.
  1770. */
  1771. cpu_function_call(cpu, __perf_install_in_context, event);
  1772. return;
  1773. }
  1774. retry:
  1775. if (!task_function_call(task, __perf_install_in_context, event))
  1776. return;
  1777. raw_spin_lock_irq(&ctx->lock);
  1778. /*
  1779. * If we failed to find a running task, but find the context active now
  1780. * that we've acquired the ctx->lock, retry.
  1781. */
  1782. if (ctx->is_active) {
  1783. raw_spin_unlock_irq(&ctx->lock);
  1784. /*
  1785. * Reload the task pointer, it might have been changed by
  1786. * a concurrent perf_event_context_sched_out().
  1787. */
  1788. task = ctx->task;
  1789. goto retry;
  1790. }
  1791. /*
  1792. * Since the task isn't running, its safe to add the event, us holding
  1793. * the ctx->lock ensures the task won't get scheduled in.
  1794. */
  1795. add_event_to_ctx(event, ctx);
  1796. raw_spin_unlock_irq(&ctx->lock);
  1797. }
  1798. /*
  1799. * Put a event into inactive state and update time fields.
  1800. * Enabling the leader of a group effectively enables all
  1801. * the group members that aren't explicitly disabled, so we
  1802. * have to update their ->tstamp_enabled also.
  1803. * Note: this works for group members as well as group leaders
  1804. * since the non-leader members' sibling_lists will be empty.
  1805. */
  1806. static void __perf_event_mark_enabled(struct perf_event *event)
  1807. {
  1808. struct perf_event *sub;
  1809. u64 tstamp = perf_event_time(event);
  1810. event->state = PERF_EVENT_STATE_INACTIVE;
  1811. event->tstamp_enabled = tstamp - event->total_time_enabled;
  1812. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  1813. if (sub->state >= PERF_EVENT_STATE_INACTIVE)
  1814. sub->tstamp_enabled = tstamp - sub->total_time_enabled;
  1815. }
  1816. }
  1817. /*
  1818. * Cross CPU call to enable a performance event
  1819. */
  1820. static int __perf_event_enable(void *info)
  1821. {
  1822. struct perf_event *event = info;
  1823. struct perf_event_context *ctx = event->ctx;
  1824. struct perf_event *leader = event->group_leader;
  1825. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1826. int err;
  1827. /*
  1828. * There's a time window between 'ctx->is_active' check
  1829. * in perf_event_enable function and this place having:
  1830. * - IRQs on
  1831. * - ctx->lock unlocked
  1832. *
  1833. * where the task could be killed and 'ctx' deactivated
  1834. * by perf_event_exit_task.
  1835. */
  1836. if (!ctx->is_active)
  1837. return -EINVAL;
  1838. raw_spin_lock(&ctx->lock);
  1839. update_context_time(ctx);
  1840. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1841. goto unlock;
  1842. /*
  1843. * set current task's cgroup time reference point
  1844. */
  1845. perf_cgroup_set_timestamp(current, ctx);
  1846. __perf_event_mark_enabled(event);
  1847. if (!event_filter_match(event)) {
  1848. if (is_cgroup_event(event))
  1849. perf_cgroup_defer_enabled(event);
  1850. goto unlock;
  1851. }
  1852. /*
  1853. * If the event is in a group and isn't the group leader,
  1854. * then don't put it on unless the group is on.
  1855. */
  1856. if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
  1857. goto unlock;
  1858. if (!group_can_go_on(event, cpuctx, 1)) {
  1859. err = -EEXIST;
  1860. } else {
  1861. if (event == leader)
  1862. err = group_sched_in(event, cpuctx, ctx);
  1863. else
  1864. err = event_sched_in(event, cpuctx, ctx);
  1865. }
  1866. if (err) {
  1867. /*
  1868. * If this event can't go on and it's part of a
  1869. * group, then the whole group has to come off.
  1870. */
  1871. if (leader != event) {
  1872. group_sched_out(leader, cpuctx, ctx);
  1873. perf_cpu_hrtimer_restart(cpuctx);
  1874. }
  1875. if (leader->attr.pinned) {
  1876. update_group_times(leader);
  1877. leader->state = PERF_EVENT_STATE_ERROR;
  1878. }
  1879. }
  1880. unlock:
  1881. raw_spin_unlock(&ctx->lock);
  1882. return 0;
  1883. }
  1884. /*
  1885. * Enable a event.
  1886. *
  1887. * If event->ctx is a cloned context, callers must make sure that
  1888. * every task struct that event->ctx->task could possibly point to
  1889. * remains valid. This condition is satisfied when called through
  1890. * perf_event_for_each_child or perf_event_for_each as described
  1891. * for perf_event_disable.
  1892. */
  1893. static void _perf_event_enable(struct perf_event *event)
  1894. {
  1895. struct perf_event_context *ctx = event->ctx;
  1896. struct task_struct *task = ctx->task;
  1897. if (!task) {
  1898. /*
  1899. * Enable the event on the cpu that it's on
  1900. */
  1901. cpu_function_call(event->cpu, __perf_event_enable, event);
  1902. return;
  1903. }
  1904. raw_spin_lock_irq(&ctx->lock);
  1905. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1906. goto out;
  1907. /*
  1908. * If the event is in error state, clear that first.
  1909. * That way, if we see the event in error state below, we
  1910. * know that it has gone back into error state, as distinct
  1911. * from the task having been scheduled away before the
  1912. * cross-call arrived.
  1913. */
  1914. if (event->state == PERF_EVENT_STATE_ERROR)
  1915. event->state = PERF_EVENT_STATE_OFF;
  1916. retry:
  1917. if (!ctx->is_active) {
  1918. __perf_event_mark_enabled(event);
  1919. goto out;
  1920. }
  1921. raw_spin_unlock_irq(&ctx->lock);
  1922. if (!task_function_call(task, __perf_event_enable, event))
  1923. return;
  1924. raw_spin_lock_irq(&ctx->lock);
  1925. /*
  1926. * If the context is active and the event is still off,
  1927. * we need to retry the cross-call.
  1928. */
  1929. if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
  1930. /*
  1931. * task could have been flipped by a concurrent
  1932. * perf_event_context_sched_out()
  1933. */
  1934. task = ctx->task;
  1935. goto retry;
  1936. }
  1937. out:
  1938. raw_spin_unlock_irq(&ctx->lock);
  1939. }
  1940. /*
  1941. * See perf_event_disable();
  1942. */
  1943. void perf_event_enable(struct perf_event *event)
  1944. {
  1945. struct perf_event_context *ctx;
  1946. ctx = perf_event_ctx_lock(event);
  1947. _perf_event_enable(event);
  1948. perf_event_ctx_unlock(event, ctx);
  1949. }
  1950. EXPORT_SYMBOL_GPL(perf_event_enable);
  1951. static int _perf_event_refresh(struct perf_event *event, int refresh)
  1952. {
  1953. /*
  1954. * not supported on inherited events
  1955. */
  1956. if (event->attr.inherit || !is_sampling_event(event))
  1957. return -EINVAL;
  1958. atomic_add(refresh, &event->event_limit);
  1959. _perf_event_enable(event);
  1960. return 0;
  1961. }
  1962. /*
  1963. * See perf_event_disable()
  1964. */
  1965. int perf_event_refresh(struct perf_event *event, int refresh)
  1966. {
  1967. struct perf_event_context *ctx;
  1968. int ret;
  1969. ctx = perf_event_ctx_lock(event);
  1970. ret = _perf_event_refresh(event, refresh);
  1971. perf_event_ctx_unlock(event, ctx);
  1972. return ret;
  1973. }
  1974. EXPORT_SYMBOL_GPL(perf_event_refresh);
  1975. static void ctx_sched_out(struct perf_event_context *ctx,
  1976. struct perf_cpu_context *cpuctx,
  1977. enum event_type_t event_type)
  1978. {
  1979. struct perf_event *event;
  1980. int is_active = ctx->is_active;
  1981. ctx->is_active &= ~event_type;
  1982. if (likely(!ctx->nr_events))
  1983. return;
  1984. update_context_time(ctx);
  1985. update_cgrp_time_from_cpuctx(cpuctx);
  1986. if (!ctx->nr_active)
  1987. return;
  1988. perf_pmu_disable(ctx->pmu);
  1989. if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
  1990. list_for_each_entry(event, &ctx->pinned_groups, group_entry)
  1991. group_sched_out(event, cpuctx, ctx);
  1992. }
  1993. if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
  1994. list_for_each_entry(event, &ctx->flexible_groups, group_entry)
  1995. group_sched_out(event, cpuctx, ctx);
  1996. }
  1997. perf_pmu_enable(ctx->pmu);
  1998. }
  1999. /*
  2000. * Test whether two contexts are equivalent, i.e. whether they have both been
  2001. * cloned from the same version of the same context.
  2002. *
  2003. * Equivalence is measured using a generation number in the context that is
  2004. * incremented on each modification to it; see unclone_ctx(), list_add_event()
  2005. * and list_del_event().
  2006. */
  2007. static int context_equiv(struct perf_event_context *ctx1,
  2008. struct perf_event_context *ctx2)
  2009. {
  2010. lockdep_assert_held(&ctx1->lock);
  2011. lockdep_assert_held(&ctx2->lock);
  2012. /* Pinning disables the swap optimization */
  2013. if (ctx1->pin_count || ctx2->pin_count)
  2014. return 0;
  2015. /* If ctx1 is the parent of ctx2 */
  2016. if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
  2017. return 1;
  2018. /* If ctx2 is the parent of ctx1 */
  2019. if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
  2020. return 1;
  2021. /*
  2022. * If ctx1 and ctx2 have the same parent; we flatten the parent
  2023. * hierarchy, see perf_event_init_context().
  2024. */
  2025. if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
  2026. ctx1->parent_gen == ctx2->parent_gen)
  2027. return 1;
  2028. /* Unmatched */
  2029. return 0;
  2030. }
  2031. static void __perf_event_sync_stat(struct perf_event *event,
  2032. struct perf_event *next_event)
  2033. {
  2034. u64 value;
  2035. if (!event->attr.inherit_stat)
  2036. return;
  2037. /*
  2038. * Update the event value, we cannot use perf_event_read()
  2039. * because we're in the middle of a context switch and have IRQs
  2040. * disabled, which upsets smp_call_function_single(), however
  2041. * we know the event must be on the current CPU, therefore we
  2042. * don't need to use it.
  2043. */
  2044. switch (event->state) {
  2045. case PERF_EVENT_STATE_ACTIVE:
  2046. event->pmu->read(event);
  2047. /* fall-through */
  2048. case PERF_EVENT_STATE_INACTIVE:
  2049. update_event_times(event);
  2050. break;
  2051. default:
  2052. break;
  2053. }
  2054. /*
  2055. * In order to keep per-task stats reliable we need to flip the event
  2056. * values when we flip the contexts.
  2057. */
  2058. value = local64_read(&next_event->count);
  2059. value = local64_xchg(&event->count, value);
  2060. local64_set(&next_event->count, value);
  2061. swap(event->total_time_enabled, next_event->total_time_enabled);
  2062. swap(event->total_time_running, next_event->total_time_running);
  2063. /*
  2064. * Since we swizzled the values, update the user visible data too.
  2065. */
  2066. perf_event_update_userpage(event);
  2067. perf_event_update_userpage(next_event);
  2068. }
  2069. static void perf_event_sync_stat(struct perf_event_context *ctx,
  2070. struct perf_event_context *next_ctx)
  2071. {
  2072. struct perf_event *event, *next_event;
  2073. if (!ctx->nr_stat)
  2074. return;
  2075. update_context_time(ctx);
  2076. event = list_first_entry(&ctx->event_list,
  2077. struct perf_event, event_entry);
  2078. next_event = list_first_entry(&next_ctx->event_list,
  2079. struct perf_event, event_entry);
  2080. while (&event->event_entry != &ctx->event_list &&
  2081. &next_event->event_entry != &next_ctx->event_list) {
  2082. __perf_event_sync_stat(event, next_event);
  2083. event = list_next_entry(event, event_entry);
  2084. next_event = list_next_entry(next_event, event_entry);
  2085. }
  2086. }
  2087. static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
  2088. struct task_struct *next)
  2089. {
  2090. struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
  2091. struct perf_event_context *next_ctx;
  2092. struct perf_event_context *parent, *next_parent;
  2093. struct perf_cpu_context *cpuctx;
  2094. int do_switch = 1;
  2095. if (likely(!ctx))
  2096. return;
  2097. cpuctx = __get_cpu_context(ctx);
  2098. if (!cpuctx->task_ctx)
  2099. return;
  2100. rcu_read_lock();
  2101. next_ctx = next->perf_event_ctxp[ctxn];
  2102. if (!next_ctx)
  2103. goto unlock;
  2104. parent = rcu_dereference(ctx->parent_ctx);
  2105. next_parent = rcu_dereference(next_ctx->parent_ctx);
  2106. /* If neither context have a parent context; they cannot be clones. */
  2107. if (!parent && !next_parent)
  2108. goto unlock;
  2109. if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
  2110. /*
  2111. * Looks like the two contexts are clones, so we might be
  2112. * able to optimize the context switch. We lock both
  2113. * contexts and check that they are clones under the
  2114. * lock (including re-checking that neither has been
  2115. * uncloned in the meantime). It doesn't matter which
  2116. * order we take the locks because no other cpu could
  2117. * be trying to lock both of these tasks.
  2118. */
  2119. raw_spin_lock(&ctx->lock);
  2120. raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
  2121. if (context_equiv(ctx, next_ctx)) {
  2122. /*
  2123. * XXX do we need a memory barrier of sorts
  2124. * wrt to rcu_dereference() of perf_event_ctxp
  2125. */
  2126. task->perf_event_ctxp[ctxn] = next_ctx;
  2127. next->perf_event_ctxp[ctxn] = ctx;
  2128. ctx->task = next;
  2129. next_ctx->task = task;
  2130. do_switch = 0;
  2131. perf_event_sync_stat(ctx, next_ctx);
  2132. }
  2133. raw_spin_unlock(&next_ctx->lock);
  2134. raw_spin_unlock(&ctx->lock);
  2135. }
  2136. unlock:
  2137. rcu_read_unlock();
  2138. if (do_switch) {
  2139. raw_spin_lock(&ctx->lock);
  2140. ctx_sched_out(ctx, cpuctx, EVENT_ALL);
  2141. cpuctx->task_ctx = NULL;
  2142. raw_spin_unlock(&ctx->lock);
  2143. }
  2144. }
  2145. #define for_each_task_context_nr(ctxn) \
  2146. for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
  2147. /*
  2148. * Called from scheduler to remove the events of the current task,
  2149. * with interrupts disabled.
  2150. *
  2151. * We stop each event and update the event value in event->count.
  2152. *
  2153. * This does not protect us against NMI, but disable()
  2154. * sets the disabled bit in the control field of event _before_
  2155. * accessing the event control register. If a NMI hits, then it will
  2156. * not restart the event.
  2157. */
  2158. void __perf_event_task_sched_out(struct task_struct *task,
  2159. struct task_struct *next)
  2160. {
  2161. int ctxn;
  2162. for_each_task_context_nr(ctxn)
  2163. perf_event_context_sched_out(task, ctxn, next);
  2164. /*
  2165. * if cgroup events exist on this CPU, then we need
  2166. * to check if we have to switch out PMU state.
  2167. * cgroup event are system-wide mode only
  2168. */
  2169. if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
  2170. perf_cgroup_sched_out(task, next);
  2171. }
  2172. static void task_ctx_sched_out(struct perf_event_context *ctx)
  2173. {
  2174. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  2175. if (!cpuctx->task_ctx)
  2176. return;
  2177. if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
  2178. return;
  2179. ctx_sched_out(ctx, cpuctx, EVENT_ALL);
  2180. cpuctx->task_ctx = NULL;
  2181. }
  2182. /*
  2183. * Called with IRQs disabled
  2184. */
  2185. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  2186. enum event_type_t event_type)
  2187. {
  2188. ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
  2189. }
  2190. static void
  2191. ctx_pinned_sched_in(struct perf_event_context *ctx,
  2192. struct perf_cpu_context *cpuctx)
  2193. {
  2194. struct perf_event *event;
  2195. list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
  2196. if (event->state <= PERF_EVENT_STATE_OFF)
  2197. continue;
  2198. if (!event_filter_match(event))
  2199. continue;
  2200. /* may need to reset tstamp_enabled */
  2201. if (is_cgroup_event(event))
  2202. perf_cgroup_mark_enabled(event, ctx);
  2203. if (group_can_go_on(event, cpuctx, 1))
  2204. group_sched_in(event, cpuctx, ctx);
  2205. /*
  2206. * If this pinned group hasn't been scheduled,
  2207. * put it in error state.
  2208. */
  2209. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  2210. update_group_times(event);
  2211. event->state = PERF_EVENT_STATE_ERROR;
  2212. }
  2213. }
  2214. }
  2215. static void
  2216. ctx_flexible_sched_in(struct perf_event_context *ctx,
  2217. struct perf_cpu_context *cpuctx)
  2218. {
  2219. struct perf_event *event;
  2220. int can_add_hw = 1;
  2221. list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
  2222. /* Ignore events in OFF or ERROR state */
  2223. if (event->state <= PERF_EVENT_STATE_OFF)
  2224. continue;
  2225. /*
  2226. * Listen to the 'cpu' scheduling filter constraint
  2227. * of events:
  2228. */
  2229. if (!event_filter_match(event))
  2230. continue;
  2231. /* may need to reset tstamp_enabled */
  2232. if (is_cgroup_event(event))
  2233. perf_cgroup_mark_enabled(event, ctx);
  2234. if (group_can_go_on(event, cpuctx, can_add_hw)) {
  2235. if (group_sched_in(event, cpuctx, ctx))
  2236. can_add_hw = 0;
  2237. }
  2238. }
  2239. }
  2240. static void
  2241. ctx_sched_in(struct perf_event_context *ctx,
  2242. struct perf_cpu_context *cpuctx,
  2243. enum event_type_t event_type,
  2244. struct task_struct *task)
  2245. {
  2246. u64 now;
  2247. int is_active = ctx->is_active;
  2248. ctx->is_active |= event_type;
  2249. if (likely(!ctx->nr_events))
  2250. return;
  2251. now = perf_clock();
  2252. ctx->timestamp = now;
  2253. perf_cgroup_set_timestamp(task, ctx);
  2254. /*
  2255. * First go through the list and put on any pinned groups
  2256. * in order to give them the best chance of going on.
  2257. */
  2258. if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
  2259. ctx_pinned_sched_in(ctx, cpuctx);
  2260. /* Then walk through the lower prio flexible groups */
  2261. if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
  2262. ctx_flexible_sched_in(ctx, cpuctx);
  2263. }
  2264. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  2265. enum event_type_t event_type,
  2266. struct task_struct *task)
  2267. {
  2268. struct perf_event_context *ctx = &cpuctx->ctx;
  2269. ctx_sched_in(ctx, cpuctx, event_type, task);
  2270. }
  2271. static void perf_event_context_sched_in(struct perf_event_context *ctx,
  2272. struct task_struct *task)
  2273. {
  2274. struct perf_cpu_context *cpuctx;
  2275. cpuctx = __get_cpu_context(ctx);
  2276. if (cpuctx->task_ctx == ctx)
  2277. return;
  2278. perf_ctx_lock(cpuctx, ctx);
  2279. perf_pmu_disable(ctx->pmu);
  2280. /*
  2281. * We want to keep the following priority order:
  2282. * cpu pinned (that don't need to move), task pinned,
  2283. * cpu flexible, task flexible.
  2284. */
  2285. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  2286. if (ctx->nr_events)
  2287. cpuctx->task_ctx = ctx;
  2288. perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
  2289. perf_pmu_enable(ctx->pmu);
  2290. perf_ctx_unlock(cpuctx, ctx);
  2291. }
  2292. /*
  2293. * When sampling the branck stack in system-wide, it may be necessary
  2294. * to flush the stack on context switch. This happens when the branch
  2295. * stack does not tag its entries with the pid of the current task.
  2296. * Otherwise it becomes impossible to associate a branch entry with a
  2297. * task. This ambiguity is more likely to appear when the branch stack
  2298. * supports priv level filtering and the user sets it to monitor only
  2299. * at the user level (which could be a useful measurement in system-wide
  2300. * mode). In that case, the risk is high of having a branch stack with
  2301. * branch from multiple tasks. Flushing may mean dropping the existing
  2302. * entries or stashing them somewhere in the PMU specific code layer.
  2303. *
  2304. * This function provides the context switch callback to the lower code
  2305. * layer. It is invoked ONLY when there is at least one system-wide context
  2306. * with at least one active event using taken branch sampling.
  2307. */
  2308. static void perf_branch_stack_sched_in(struct task_struct *prev,
  2309. struct task_struct *task)
  2310. {
  2311. struct perf_cpu_context *cpuctx;
  2312. struct pmu *pmu;
  2313. unsigned long flags;
  2314. /* no need to flush branch stack if not changing task */
  2315. if (prev == task)
  2316. return;
  2317. local_irq_save(flags);
  2318. rcu_read_lock();
  2319. list_for_each_entry_rcu(pmu, &pmus, entry) {
  2320. cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  2321. /*
  2322. * check if the context has at least one
  2323. * event using PERF_SAMPLE_BRANCH_STACK
  2324. */
  2325. if (cpuctx->ctx.nr_branch_stack > 0
  2326. && pmu->flush_branch_stack) {
  2327. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  2328. perf_pmu_disable(pmu);
  2329. pmu->flush_branch_stack();
  2330. perf_pmu_enable(pmu);
  2331. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  2332. }
  2333. }
  2334. rcu_read_unlock();
  2335. local_irq_restore(flags);
  2336. }
  2337. /*
  2338. * Called from scheduler to add the events of the current task
  2339. * with interrupts disabled.
  2340. *
  2341. * We restore the event value and then enable it.
  2342. *
  2343. * This does not protect us against NMI, but enable()
  2344. * sets the enabled bit in the control field of event _before_
  2345. * accessing the event control register. If a NMI hits, then it will
  2346. * keep the event running.
  2347. */
  2348. void __perf_event_task_sched_in(struct task_struct *prev,
  2349. struct task_struct *task)
  2350. {
  2351. struct perf_event_context *ctx;
  2352. int ctxn;
  2353. for_each_task_context_nr(ctxn) {
  2354. ctx = task->perf_event_ctxp[ctxn];
  2355. if (likely(!ctx))
  2356. continue;
  2357. perf_event_context_sched_in(ctx, task);
  2358. }
  2359. /*
  2360. * if cgroup events exist on this CPU, then we need
  2361. * to check if we have to switch in PMU state.
  2362. * cgroup event are system-wide mode only
  2363. */
  2364. if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
  2365. perf_cgroup_sched_in(prev, task);
  2366. /* check for system-wide branch_stack events */
  2367. if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
  2368. perf_branch_stack_sched_in(prev, task);
  2369. }
  2370. static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
  2371. {
  2372. u64 frequency = event->attr.sample_freq;
  2373. u64 sec = NSEC_PER_SEC;
  2374. u64 divisor, dividend;
  2375. int count_fls, nsec_fls, frequency_fls, sec_fls;
  2376. count_fls = fls64(count);
  2377. nsec_fls = fls64(nsec);
  2378. frequency_fls = fls64(frequency);
  2379. sec_fls = 30;
  2380. /*
  2381. * We got @count in @nsec, with a target of sample_freq HZ
  2382. * the target period becomes:
  2383. *
  2384. * @count * 10^9
  2385. * period = -------------------
  2386. * @nsec * sample_freq
  2387. *
  2388. */
  2389. /*
  2390. * Reduce accuracy by one bit such that @a and @b converge
  2391. * to a similar magnitude.
  2392. */
  2393. #define REDUCE_FLS(a, b) \
  2394. do { \
  2395. if (a##_fls > b##_fls) { \
  2396. a >>= 1; \
  2397. a##_fls--; \
  2398. } else { \
  2399. b >>= 1; \
  2400. b##_fls--; \
  2401. } \
  2402. } while (0)
  2403. /*
  2404. * Reduce accuracy until either term fits in a u64, then proceed with
  2405. * the other, so that finally we can do a u64/u64 division.
  2406. */
  2407. while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
  2408. REDUCE_FLS(nsec, frequency);
  2409. REDUCE_FLS(sec, count);
  2410. }
  2411. if (count_fls + sec_fls > 64) {
  2412. divisor = nsec * frequency;
  2413. while (count_fls + sec_fls > 64) {
  2414. REDUCE_FLS(count, sec);
  2415. divisor >>= 1;
  2416. }
  2417. dividend = count * sec;
  2418. } else {
  2419. dividend = count * sec;
  2420. while (nsec_fls + frequency_fls > 64) {
  2421. REDUCE_FLS(nsec, frequency);
  2422. dividend >>= 1;
  2423. }
  2424. divisor = nsec * frequency;
  2425. }
  2426. if (!divisor)
  2427. return dividend;
  2428. return div64_u64(dividend, divisor);
  2429. }
  2430. static DEFINE_PER_CPU(int, perf_throttled_count);
  2431. static DEFINE_PER_CPU(u64, perf_throttled_seq);
  2432. static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
  2433. {
  2434. struct hw_perf_event *hwc = &event->hw;
  2435. s64 period, sample_period;
  2436. s64 delta;
  2437. period = perf_calculate_period(event, nsec, count);
  2438. delta = (s64)(period - hwc->sample_period);
  2439. delta = (delta + 7) / 8; /* low pass filter */
  2440. sample_period = hwc->sample_period + delta;
  2441. if (!sample_period)
  2442. sample_period = 1;
  2443. hwc->sample_period = sample_period;
  2444. if (local64_read(&hwc->period_left) > 8*sample_period) {
  2445. if (disable)
  2446. event->pmu->stop(event, PERF_EF_UPDATE);
  2447. local64_set(&hwc->period_left, 0);
  2448. if (disable)
  2449. event->pmu->start(event, PERF_EF_RELOAD);
  2450. }
  2451. }
  2452. /*
  2453. * combine freq adjustment with unthrottling to avoid two passes over the
  2454. * events. At the same time, make sure, having freq events does not change
  2455. * the rate of unthrottling as that would introduce bias.
  2456. */
  2457. static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
  2458. int needs_unthr)
  2459. {
  2460. struct perf_event *event;
  2461. struct hw_perf_event *hwc;
  2462. u64 now, period = TICK_NSEC;
  2463. s64 delta;
  2464. /*
  2465. * only need to iterate over all events iff:
  2466. * - context have events in frequency mode (needs freq adjust)
  2467. * - there are events to unthrottle on this cpu
  2468. */
  2469. if (!(ctx->nr_freq || needs_unthr))
  2470. return;
  2471. raw_spin_lock(&ctx->lock);
  2472. perf_pmu_disable(ctx->pmu);
  2473. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  2474. if (event->state != PERF_EVENT_STATE_ACTIVE)
  2475. continue;
  2476. if (!event_filter_match(event))
  2477. continue;
  2478. perf_pmu_disable(event->pmu);
  2479. hwc = &event->hw;
  2480. if (hwc->interrupts == MAX_INTERRUPTS) {
  2481. hwc->interrupts = 0;
  2482. perf_log_throttle(event, 1);
  2483. event->pmu->start(event, 0);
  2484. }
  2485. if (!event->attr.freq || !event->attr.sample_freq)
  2486. goto next;
  2487. /*
  2488. * stop the event and update event->count
  2489. */
  2490. event->pmu->stop(event, PERF_EF_UPDATE);
  2491. now = local64_read(&event->count);
  2492. delta = now - hwc->freq_count_stamp;
  2493. hwc->freq_count_stamp = now;
  2494. /*
  2495. * restart the event
  2496. * reload only if value has changed
  2497. * we have stopped the event so tell that
  2498. * to perf_adjust_period() to avoid stopping it
  2499. * twice.
  2500. */
  2501. if (delta > 0)
  2502. perf_adjust_period(event, period, delta, false);
  2503. event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
  2504. next:
  2505. perf_pmu_enable(event->pmu);
  2506. }
  2507. perf_pmu_enable(ctx->pmu);
  2508. raw_spin_unlock(&ctx->lock);
  2509. }
  2510. /*
  2511. * Round-robin a context's events:
  2512. */
  2513. static void rotate_ctx(struct perf_event_context *ctx)
  2514. {
  2515. /*
  2516. * Rotate the first entry last of non-pinned groups. Rotation might be
  2517. * disabled by the inheritance code.
  2518. */
  2519. if (!ctx->rotate_disable)
  2520. list_rotate_left(&ctx->flexible_groups);
  2521. }
  2522. static int perf_rotate_context(struct perf_cpu_context *cpuctx)
  2523. {
  2524. struct perf_event_context *ctx = NULL;
  2525. int rotate = 0;
  2526. if (cpuctx->ctx.nr_events) {
  2527. if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
  2528. rotate = 1;
  2529. }
  2530. ctx = cpuctx->task_ctx;
  2531. if (ctx && ctx->nr_events) {
  2532. if (ctx->nr_events != ctx->nr_active)
  2533. rotate = 1;
  2534. }
  2535. if (!rotate)
  2536. goto done;
  2537. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  2538. perf_pmu_disable(cpuctx->ctx.pmu);
  2539. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  2540. if (ctx)
  2541. ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
  2542. rotate_ctx(&cpuctx->ctx);
  2543. if (ctx)
  2544. rotate_ctx(ctx);
  2545. perf_event_sched_in(cpuctx, ctx, current);
  2546. perf_pmu_enable(cpuctx->ctx.pmu);
  2547. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  2548. done:
  2549. return rotate;
  2550. }
  2551. #ifdef CONFIG_NO_HZ_FULL
  2552. bool perf_event_can_stop_tick(void)
  2553. {
  2554. if (atomic_read(&nr_freq_events) ||
  2555. __this_cpu_read(perf_throttled_count))
  2556. return false;
  2557. else
  2558. return true;
  2559. }
  2560. #endif
  2561. void perf_event_task_tick(void)
  2562. {
  2563. struct list_head *head = this_cpu_ptr(&active_ctx_list);
  2564. struct perf_event_context *ctx, *tmp;
  2565. int throttled;
  2566. WARN_ON(!irqs_disabled());
  2567. __this_cpu_inc(perf_throttled_seq);
  2568. throttled = __this_cpu_xchg(perf_throttled_count, 0);
  2569. list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
  2570. perf_adjust_freq_unthr_context(ctx, throttled);
  2571. }
  2572. static int event_enable_on_exec(struct perf_event *event,
  2573. struct perf_event_context *ctx)
  2574. {
  2575. if (!event->attr.enable_on_exec)
  2576. return 0;
  2577. event->attr.enable_on_exec = 0;
  2578. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  2579. return 0;
  2580. __perf_event_mark_enabled(event);
  2581. return 1;
  2582. }
  2583. /*
  2584. * Enable all of a task's events that have been marked enable-on-exec.
  2585. * This expects task == current.
  2586. */
  2587. static void perf_event_enable_on_exec(struct perf_event_context *ctx)
  2588. {
  2589. struct perf_event_context *clone_ctx = NULL;
  2590. struct perf_event *event;
  2591. unsigned long flags;
  2592. int enabled = 0;
  2593. int ret;
  2594. local_irq_save(flags);
  2595. if (!ctx || !ctx->nr_events)
  2596. goto out;
  2597. /*
  2598. * We must ctxsw out cgroup events to avoid conflict
  2599. * when invoking perf_task_event_sched_in() later on
  2600. * in this function. Otherwise we end up trying to
  2601. * ctxswin cgroup events which are already scheduled
  2602. * in.
  2603. */
  2604. perf_cgroup_sched_out(current, NULL);
  2605. raw_spin_lock(&ctx->lock);
  2606. task_ctx_sched_out(ctx);
  2607. list_for_each_entry(event, &ctx->event_list, event_entry) {
  2608. ret = event_enable_on_exec(event, ctx);
  2609. if (ret)
  2610. enabled = 1;
  2611. }
  2612. /*
  2613. * Unclone this context if we enabled any event.
  2614. */
  2615. if (enabled)
  2616. clone_ctx = unclone_ctx(ctx);
  2617. raw_spin_unlock(&ctx->lock);
  2618. /*
  2619. * Also calls ctxswin for cgroup events, if any:
  2620. */
  2621. perf_event_context_sched_in(ctx, ctx->task);
  2622. out:
  2623. local_irq_restore(flags);
  2624. if (clone_ctx)
  2625. put_ctx(clone_ctx);
  2626. }
  2627. void perf_event_exec(void)
  2628. {
  2629. struct perf_event_context *ctx;
  2630. int ctxn;
  2631. rcu_read_lock();
  2632. for_each_task_context_nr(ctxn) {
  2633. ctx = current->perf_event_ctxp[ctxn];
  2634. if (!ctx)
  2635. continue;
  2636. perf_event_enable_on_exec(ctx);
  2637. }
  2638. rcu_read_unlock();
  2639. }
  2640. /*
  2641. * Cross CPU call to read the hardware event
  2642. */
  2643. static void __perf_event_read(void *info)
  2644. {
  2645. struct perf_event *event = info;
  2646. struct perf_event_context *ctx = event->ctx;
  2647. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  2648. /*
  2649. * If this is a task context, we need to check whether it is
  2650. * the current task context of this cpu. If not it has been
  2651. * scheduled out before the smp call arrived. In that case
  2652. * event->count would have been updated to a recent sample
  2653. * when the event was scheduled out.
  2654. */
  2655. if (ctx->task && cpuctx->task_ctx != ctx)
  2656. return;
  2657. raw_spin_lock(&ctx->lock);
  2658. if (ctx->is_active) {
  2659. update_context_time(ctx);
  2660. update_cgrp_time_from_event(event);
  2661. }
  2662. update_event_times(event);
  2663. if (event->state == PERF_EVENT_STATE_ACTIVE)
  2664. event->pmu->read(event);
  2665. raw_spin_unlock(&ctx->lock);
  2666. }
  2667. static inline u64 perf_event_count(struct perf_event *event)
  2668. {
  2669. return local64_read(&event->count) + atomic64_read(&event->child_count);
  2670. }
  2671. static u64 perf_event_read(struct perf_event *event)
  2672. {
  2673. /*
  2674. * If event is enabled and currently active on a CPU, update the
  2675. * value in the event structure:
  2676. */
  2677. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  2678. smp_call_function_single(event->oncpu,
  2679. __perf_event_read, event, 1);
  2680. } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
  2681. struct perf_event_context *ctx = event->ctx;
  2682. unsigned long flags;
  2683. raw_spin_lock_irqsave(&ctx->lock, flags);
  2684. /*
  2685. * may read while context is not active
  2686. * (e.g., thread is blocked), in that case
  2687. * we cannot update context time
  2688. */
  2689. if (ctx->is_active) {
  2690. update_context_time(ctx);
  2691. update_cgrp_time_from_event(event);
  2692. }
  2693. update_event_times(event);
  2694. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  2695. }
  2696. return perf_event_count(event);
  2697. }
  2698. /*
  2699. * Initialize the perf_event context in a task_struct:
  2700. */
  2701. static void __perf_event_init_context(struct perf_event_context *ctx)
  2702. {
  2703. raw_spin_lock_init(&ctx->lock);
  2704. mutex_init(&ctx->mutex);
  2705. INIT_LIST_HEAD(&ctx->active_ctx_list);
  2706. INIT_LIST_HEAD(&ctx->pinned_groups);
  2707. INIT_LIST_HEAD(&ctx->flexible_groups);
  2708. INIT_LIST_HEAD(&ctx->event_list);
  2709. atomic_set(&ctx->refcount, 1);
  2710. INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
  2711. }
  2712. static struct perf_event_context *
  2713. alloc_perf_context(struct pmu *pmu, struct task_struct *task)
  2714. {
  2715. struct perf_event_context *ctx;
  2716. ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
  2717. if (!ctx)
  2718. return NULL;
  2719. __perf_event_init_context(ctx);
  2720. if (task) {
  2721. ctx->task = task;
  2722. get_task_struct(task);
  2723. }
  2724. ctx->pmu = pmu;
  2725. return ctx;
  2726. }
  2727. static struct task_struct *
  2728. find_lively_task_by_vpid(pid_t vpid)
  2729. {
  2730. struct task_struct *task;
  2731. int err;
  2732. rcu_read_lock();
  2733. if (!vpid)
  2734. task = current;
  2735. else
  2736. task = find_task_by_vpid(vpid);
  2737. if (task)
  2738. get_task_struct(task);
  2739. rcu_read_unlock();
  2740. if (!task)
  2741. return ERR_PTR(-ESRCH);
  2742. /* Reuse ptrace permission checks for now. */
  2743. err = -EACCES;
  2744. if (!ptrace_may_access(task, PTRACE_MODE_READ))
  2745. goto errout;
  2746. return task;
  2747. errout:
  2748. put_task_struct(task);
  2749. return ERR_PTR(err);
  2750. }
  2751. /*
  2752. * Returns a matching context with refcount and pincount.
  2753. */
  2754. static struct perf_event_context *
  2755. find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
  2756. {
  2757. struct perf_event_context *ctx, *clone_ctx = NULL;
  2758. struct perf_cpu_context *cpuctx;
  2759. unsigned long flags;
  2760. int ctxn, err;
  2761. if (!task) {
  2762. /* Must be root to operate on a CPU event: */
  2763. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  2764. return ERR_PTR(-EACCES);
  2765. /*
  2766. * We could be clever and allow to attach a event to an
  2767. * offline CPU and activate it when the CPU comes up, but
  2768. * that's for later.
  2769. */
  2770. if (!cpu_online(cpu))
  2771. return ERR_PTR(-ENODEV);
  2772. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  2773. ctx = &cpuctx->ctx;
  2774. get_ctx(ctx);
  2775. ++ctx->pin_count;
  2776. return ctx;
  2777. }
  2778. err = -EINVAL;
  2779. ctxn = pmu->task_ctx_nr;
  2780. if (ctxn < 0)
  2781. goto errout;
  2782. retry:
  2783. ctx = perf_lock_task_context(task, ctxn, &flags);
  2784. if (ctx) {
  2785. clone_ctx = unclone_ctx(ctx);
  2786. ++ctx->pin_count;
  2787. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  2788. if (clone_ctx)
  2789. put_ctx(clone_ctx);
  2790. } else {
  2791. ctx = alloc_perf_context(pmu, task);
  2792. err = -ENOMEM;
  2793. if (!ctx)
  2794. goto errout;
  2795. err = 0;
  2796. mutex_lock(&task->perf_event_mutex);
  2797. /*
  2798. * If it has already passed perf_event_exit_task().
  2799. * we must see PF_EXITING, it takes this mutex too.
  2800. */
  2801. if (task->flags & PF_EXITING)
  2802. err = -ESRCH;
  2803. else if (task->perf_event_ctxp[ctxn])
  2804. err = -EAGAIN;
  2805. else {
  2806. get_ctx(ctx);
  2807. ++ctx->pin_count;
  2808. rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
  2809. }
  2810. mutex_unlock(&task->perf_event_mutex);
  2811. if (unlikely(err)) {
  2812. put_ctx(ctx);
  2813. if (err == -EAGAIN)
  2814. goto retry;
  2815. goto errout;
  2816. }
  2817. }
  2818. return ctx;
  2819. errout:
  2820. return ERR_PTR(err);
  2821. }
  2822. static void perf_event_free_filter(struct perf_event *event);
  2823. static void free_event_rcu(struct rcu_head *head)
  2824. {
  2825. struct perf_event *event;
  2826. event = container_of(head, struct perf_event, rcu_head);
  2827. if (event->ns)
  2828. put_pid_ns(event->ns);
  2829. perf_event_free_filter(event);
  2830. kfree(event);
  2831. }
  2832. static void ring_buffer_put(struct ring_buffer *rb);
  2833. static void ring_buffer_attach(struct perf_event *event,
  2834. struct ring_buffer *rb);
  2835. static void unaccount_event_cpu(struct perf_event *event, int cpu)
  2836. {
  2837. if (event->parent)
  2838. return;
  2839. if (has_branch_stack(event)) {
  2840. if (!(event->attach_state & PERF_ATTACH_TASK))
  2841. atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
  2842. }
  2843. if (is_cgroup_event(event))
  2844. atomic_dec(&per_cpu(perf_cgroup_events, cpu));
  2845. }
  2846. static void unaccount_event(struct perf_event *event)
  2847. {
  2848. if (event->parent)
  2849. return;
  2850. if (event->attach_state & PERF_ATTACH_TASK)
  2851. static_key_slow_dec_deferred(&perf_sched_events);
  2852. if (event->attr.mmap || event->attr.mmap_data)
  2853. atomic_dec(&nr_mmap_events);
  2854. if (event->attr.comm)
  2855. atomic_dec(&nr_comm_events);
  2856. if (event->attr.task)
  2857. atomic_dec(&nr_task_events);
  2858. if (event->attr.freq)
  2859. atomic_dec(&nr_freq_events);
  2860. if (is_cgroup_event(event))
  2861. static_key_slow_dec_deferred(&perf_sched_events);
  2862. if (has_branch_stack(event))
  2863. static_key_slow_dec_deferred(&perf_sched_events);
  2864. unaccount_event_cpu(event, event->cpu);
  2865. }
  2866. static void __free_event(struct perf_event *event)
  2867. {
  2868. if (!event->parent) {
  2869. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
  2870. put_callchain_buffers();
  2871. }
  2872. if (event->destroy)
  2873. event->destroy(event);
  2874. if (event->ctx)
  2875. put_ctx(event->ctx);
  2876. if (event->pmu)
  2877. module_put(event->pmu->module);
  2878. call_rcu(&event->rcu_head, free_event_rcu);
  2879. }
  2880. static void _free_event(struct perf_event *event)
  2881. {
  2882. irq_work_sync(&event->pending);
  2883. unaccount_event(event);
  2884. if (event->rb) {
  2885. /*
  2886. * Can happen when we close an event with re-directed output.
  2887. *
  2888. * Since we have a 0 refcount, perf_mmap_close() will skip
  2889. * over us; possibly making our ring_buffer_put() the last.
  2890. */
  2891. mutex_lock(&event->mmap_mutex);
  2892. ring_buffer_attach(event, NULL);
  2893. mutex_unlock(&event->mmap_mutex);
  2894. }
  2895. if (is_cgroup_event(event))
  2896. perf_detach_cgroup(event);
  2897. __free_event(event);
  2898. }
  2899. /*
  2900. * Used to free events which have a known refcount of 1, such as in error paths
  2901. * where the event isn't exposed yet and inherited events.
  2902. */
  2903. static void free_event(struct perf_event *event)
  2904. {
  2905. if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
  2906. "unexpected event refcount: %ld; ptr=%p\n",
  2907. atomic_long_read(&event->refcount), event)) {
  2908. /* leak to avoid use-after-free */
  2909. return;
  2910. }
  2911. _free_event(event);
  2912. }
  2913. /*
  2914. * Remove user event from the owner task.
  2915. */
  2916. static void perf_remove_from_owner(struct perf_event *event)
  2917. {
  2918. struct task_struct *owner;
  2919. rcu_read_lock();
  2920. owner = ACCESS_ONCE(event->owner);
  2921. /*
  2922. * Matches the smp_wmb() in perf_event_exit_task(). If we observe
  2923. * !owner it means the list deletion is complete and we can indeed
  2924. * free this event, otherwise we need to serialize on
  2925. * owner->perf_event_mutex.
  2926. */
  2927. smp_read_barrier_depends();
  2928. if (owner) {
  2929. /*
  2930. * Since delayed_put_task_struct() also drops the last
  2931. * task reference we can safely take a new reference
  2932. * while holding the rcu_read_lock().
  2933. */
  2934. get_task_struct(owner);
  2935. }
  2936. rcu_read_unlock();
  2937. if (owner) {
  2938. /*
  2939. * If we're here through perf_event_exit_task() we're already
  2940. * holding ctx->mutex which would be an inversion wrt. the
  2941. * normal lock order.
  2942. *
  2943. * However we can safely take this lock because its the child
  2944. * ctx->mutex.
  2945. */
  2946. mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
  2947. /*
  2948. * We have to re-check the event->owner field, if it is cleared
  2949. * we raced with perf_event_exit_task(), acquiring the mutex
  2950. * ensured they're done, and we can proceed with freeing the
  2951. * event.
  2952. */
  2953. if (event->owner)
  2954. list_del_init(&event->owner_entry);
  2955. mutex_unlock(&owner->perf_event_mutex);
  2956. put_task_struct(owner);
  2957. }
  2958. }
  2959. /*
  2960. * Called when the last reference to the file is gone.
  2961. */
  2962. static void put_event(struct perf_event *event)
  2963. {
  2964. struct perf_event_context *ctx;
  2965. if (!atomic_long_dec_and_test(&event->refcount))
  2966. return;
  2967. if (!is_kernel_event(event))
  2968. perf_remove_from_owner(event);
  2969. /*
  2970. * There are two ways this annotation is useful:
  2971. *
  2972. * 1) there is a lock recursion from perf_event_exit_task
  2973. * see the comment there.
  2974. *
  2975. * 2) there is a lock-inversion with mmap_sem through
  2976. * perf_event_read_group(), which takes faults while
  2977. * holding ctx->mutex, however this is called after
  2978. * the last filedesc died, so there is no possibility
  2979. * to trigger the AB-BA case.
  2980. */
  2981. ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
  2982. WARN_ON_ONCE(ctx->parent_ctx);
  2983. perf_remove_from_context(event, true);
  2984. perf_event_ctx_unlock(event, ctx);
  2985. _free_event(event);
  2986. }
  2987. int perf_event_release_kernel(struct perf_event *event)
  2988. {
  2989. put_event(event);
  2990. return 0;
  2991. }
  2992. EXPORT_SYMBOL_GPL(perf_event_release_kernel);
  2993. static int perf_release(struct inode *inode, struct file *file)
  2994. {
  2995. put_event(file->private_data);
  2996. return 0;
  2997. }
  2998. /*
  2999. * Remove all orphanes events from the context.
  3000. */
  3001. static void orphans_remove_work(struct work_struct *work)
  3002. {
  3003. struct perf_event_context *ctx;
  3004. struct perf_event *event, *tmp;
  3005. ctx = container_of(work, struct perf_event_context,
  3006. orphans_remove.work);
  3007. mutex_lock(&ctx->mutex);
  3008. list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
  3009. struct perf_event *parent_event = event->parent;
  3010. if (!is_orphaned_child(event))
  3011. continue;
  3012. perf_remove_from_context(event, true);
  3013. mutex_lock(&parent_event->child_mutex);
  3014. list_del_init(&event->child_list);
  3015. mutex_unlock(&parent_event->child_mutex);
  3016. free_event(event);
  3017. put_event(parent_event);
  3018. }
  3019. raw_spin_lock_irq(&ctx->lock);
  3020. ctx->orphans_remove_sched = false;
  3021. raw_spin_unlock_irq(&ctx->lock);
  3022. mutex_unlock(&ctx->mutex);
  3023. put_ctx(ctx);
  3024. }
  3025. u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
  3026. {
  3027. struct perf_event *child;
  3028. u64 total = 0;
  3029. *enabled = 0;
  3030. *running = 0;
  3031. mutex_lock(&event->child_mutex);
  3032. total += perf_event_read(event);
  3033. *enabled += event->total_time_enabled +
  3034. atomic64_read(&event->child_total_time_enabled);
  3035. *running += event->total_time_running +
  3036. atomic64_read(&event->child_total_time_running);
  3037. list_for_each_entry(child, &event->child_list, child_list) {
  3038. total += perf_event_read(child);
  3039. *enabled += child->total_time_enabled;
  3040. *running += child->total_time_running;
  3041. }
  3042. mutex_unlock(&event->child_mutex);
  3043. return total;
  3044. }
  3045. EXPORT_SYMBOL_GPL(perf_event_read_value);
  3046. static int perf_event_read_group(struct perf_event *event,
  3047. u64 read_format, char __user *buf)
  3048. {
  3049. struct perf_event *leader = event->group_leader, *sub;
  3050. struct perf_event_context *ctx = leader->ctx;
  3051. int n = 0, size = 0, ret;
  3052. u64 count, enabled, running;
  3053. u64 values[5];
  3054. lockdep_assert_held(&ctx->mutex);
  3055. count = perf_event_read_value(leader, &enabled, &running);
  3056. values[n++] = 1 + leader->nr_siblings;
  3057. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  3058. values[n++] = enabled;
  3059. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  3060. values[n++] = running;
  3061. values[n++] = count;
  3062. if (read_format & PERF_FORMAT_ID)
  3063. values[n++] = primary_event_id(leader);
  3064. size = n * sizeof(u64);
  3065. if (copy_to_user(buf, values, size))
  3066. return -EFAULT;
  3067. ret = size;
  3068. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  3069. n = 0;
  3070. values[n++] = perf_event_read_value(sub, &enabled, &running);
  3071. if (read_format & PERF_FORMAT_ID)
  3072. values[n++] = primary_event_id(sub);
  3073. size = n * sizeof(u64);
  3074. if (copy_to_user(buf + ret, values, size)) {
  3075. return -EFAULT;
  3076. }
  3077. ret += size;
  3078. }
  3079. return ret;
  3080. }
  3081. static int perf_event_read_one(struct perf_event *event,
  3082. u64 read_format, char __user *buf)
  3083. {
  3084. u64 enabled, running;
  3085. u64 values[4];
  3086. int n = 0;
  3087. values[n++] = perf_event_read_value(event, &enabled, &running);
  3088. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  3089. values[n++] = enabled;
  3090. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  3091. values[n++] = running;
  3092. if (read_format & PERF_FORMAT_ID)
  3093. values[n++] = primary_event_id(event);
  3094. if (copy_to_user(buf, values, n * sizeof(u64)))
  3095. return -EFAULT;
  3096. return n * sizeof(u64);
  3097. }
  3098. static bool is_event_hup(struct perf_event *event)
  3099. {
  3100. bool no_children;
  3101. if (event->state != PERF_EVENT_STATE_EXIT)
  3102. return false;
  3103. mutex_lock(&event->child_mutex);
  3104. no_children = list_empty(&event->child_list);
  3105. mutex_unlock(&event->child_mutex);
  3106. return no_children;
  3107. }
  3108. /*
  3109. * Read the performance event - simple non blocking version for now
  3110. */
  3111. static ssize_t
  3112. perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
  3113. {
  3114. u64 read_format = event->attr.read_format;
  3115. int ret;
  3116. /*
  3117. * Return end-of-file for a read on a event that is in
  3118. * error state (i.e. because it was pinned but it couldn't be
  3119. * scheduled on to the CPU at some point).
  3120. */
  3121. if (event->state == PERF_EVENT_STATE_ERROR)
  3122. return 0;
  3123. if (count < event->read_size)
  3124. return -ENOSPC;
  3125. WARN_ON_ONCE(event->ctx->parent_ctx);
  3126. if (read_format & PERF_FORMAT_GROUP)
  3127. ret = perf_event_read_group(event, read_format, buf);
  3128. else
  3129. ret = perf_event_read_one(event, read_format, buf);
  3130. return ret;
  3131. }
  3132. static ssize_t
  3133. perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
  3134. {
  3135. struct perf_event *event = file->private_data;
  3136. struct perf_event_context *ctx;
  3137. int ret;
  3138. ctx = perf_event_ctx_lock(event);
  3139. ret = perf_read_hw(event, buf, count);
  3140. perf_event_ctx_unlock(event, ctx);
  3141. return ret;
  3142. }
  3143. static unsigned int perf_poll(struct file *file, poll_table *wait)
  3144. {
  3145. struct perf_event *event = file->private_data;
  3146. struct ring_buffer *rb;
  3147. unsigned int events = POLLHUP;
  3148. poll_wait(file, &event->waitq, wait);
  3149. if (is_event_hup(event))
  3150. return events;
  3151. /*
  3152. * Pin the event->rb by taking event->mmap_mutex; otherwise
  3153. * perf_event_set_output() can swizzle our rb and make us miss wakeups.
  3154. */
  3155. mutex_lock(&event->mmap_mutex);
  3156. rb = event->rb;
  3157. if (rb)
  3158. events = atomic_xchg(&rb->poll, 0);
  3159. mutex_unlock(&event->mmap_mutex);
  3160. return events;
  3161. }
  3162. static void _perf_event_reset(struct perf_event *event)
  3163. {
  3164. (void)perf_event_read(event);
  3165. local64_set(&event->count, 0);
  3166. perf_event_update_userpage(event);
  3167. }
  3168. /*
  3169. * Holding the top-level event's child_mutex means that any
  3170. * descendant process that has inherited this event will block
  3171. * in sync_child_event if it goes to exit, thus satisfying the
  3172. * task existence requirements of perf_event_enable/disable.
  3173. */
  3174. static void perf_event_for_each_child(struct perf_event *event,
  3175. void (*func)(struct perf_event *))
  3176. {
  3177. struct perf_event *child;
  3178. WARN_ON_ONCE(event->ctx->parent_ctx);
  3179. mutex_lock(&event->child_mutex);
  3180. func(event);
  3181. list_for_each_entry(child, &event->child_list, child_list)
  3182. func(child);
  3183. mutex_unlock(&event->child_mutex);
  3184. }
  3185. static void perf_event_for_each(struct perf_event *event,
  3186. void (*func)(struct perf_event *))
  3187. {
  3188. struct perf_event_context *ctx = event->ctx;
  3189. struct perf_event *sibling;
  3190. lockdep_assert_held(&ctx->mutex);
  3191. event = event->group_leader;
  3192. perf_event_for_each_child(event, func);
  3193. list_for_each_entry(sibling, &event->sibling_list, group_entry)
  3194. perf_event_for_each_child(sibling, func);
  3195. }
  3196. static int perf_event_period(struct perf_event *event, u64 __user *arg)
  3197. {
  3198. struct perf_event_context *ctx = event->ctx;
  3199. int ret = 0, active;
  3200. u64 value;
  3201. if (!is_sampling_event(event))
  3202. return -EINVAL;
  3203. if (copy_from_user(&value, arg, sizeof(value)))
  3204. return -EFAULT;
  3205. if (!value)
  3206. return -EINVAL;
  3207. raw_spin_lock_irq(&ctx->lock);
  3208. if (event->attr.freq) {
  3209. if (value > sysctl_perf_event_sample_rate) {
  3210. ret = -EINVAL;
  3211. goto unlock;
  3212. }
  3213. event->attr.sample_freq = value;
  3214. } else {
  3215. event->attr.sample_period = value;
  3216. event->hw.sample_period = value;
  3217. }
  3218. active = (event->state == PERF_EVENT_STATE_ACTIVE);
  3219. if (active) {
  3220. perf_pmu_disable(ctx->pmu);
  3221. event->pmu->stop(event, PERF_EF_UPDATE);
  3222. }
  3223. local64_set(&event->hw.period_left, 0);
  3224. if (active) {
  3225. event->pmu->start(event, PERF_EF_RELOAD);
  3226. perf_pmu_enable(ctx->pmu);
  3227. }
  3228. unlock:
  3229. raw_spin_unlock_irq(&ctx->lock);
  3230. return ret;
  3231. }
  3232. static const struct file_operations perf_fops;
  3233. static inline int perf_fget_light(int fd, struct fd *p)
  3234. {
  3235. struct fd f = fdget(fd);
  3236. if (!f.file)
  3237. return -EBADF;
  3238. if (f.file->f_op != &perf_fops) {
  3239. fdput(f);
  3240. return -EBADF;
  3241. }
  3242. *p = f;
  3243. return 0;
  3244. }
  3245. static int perf_event_set_output(struct perf_event *event,
  3246. struct perf_event *output_event);
  3247. static int perf_event_set_filter(struct perf_event *event, void __user *arg);
  3248. static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
  3249. {
  3250. void (*func)(struct perf_event *);
  3251. u32 flags = arg;
  3252. switch (cmd) {
  3253. case PERF_EVENT_IOC_ENABLE:
  3254. func = _perf_event_enable;
  3255. break;
  3256. case PERF_EVENT_IOC_DISABLE:
  3257. func = _perf_event_disable;
  3258. break;
  3259. case PERF_EVENT_IOC_RESET:
  3260. func = _perf_event_reset;
  3261. break;
  3262. case PERF_EVENT_IOC_REFRESH:
  3263. return _perf_event_refresh(event, arg);
  3264. case PERF_EVENT_IOC_PERIOD:
  3265. return perf_event_period(event, (u64 __user *)arg);
  3266. case PERF_EVENT_IOC_ID:
  3267. {
  3268. u64 id = primary_event_id(event);
  3269. if (copy_to_user((void __user *)arg, &id, sizeof(id)))
  3270. return -EFAULT;
  3271. return 0;
  3272. }
  3273. case PERF_EVENT_IOC_SET_OUTPUT:
  3274. {
  3275. int ret;
  3276. if (arg != -1) {
  3277. struct perf_event *output_event;
  3278. struct fd output;
  3279. ret = perf_fget_light(arg, &output);
  3280. if (ret)
  3281. return ret;
  3282. output_event = output.file->private_data;
  3283. ret = perf_event_set_output(event, output_event);
  3284. fdput(output);
  3285. } else {
  3286. ret = perf_event_set_output(event, NULL);
  3287. }
  3288. return ret;
  3289. }
  3290. case PERF_EVENT_IOC_SET_FILTER:
  3291. return perf_event_set_filter(event, (void __user *)arg);
  3292. default:
  3293. return -ENOTTY;
  3294. }
  3295. if (flags & PERF_IOC_FLAG_GROUP)
  3296. perf_event_for_each(event, func);
  3297. else
  3298. perf_event_for_each_child(event, func);
  3299. return 0;
  3300. }
  3301. static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  3302. {
  3303. struct perf_event *event = file->private_data;
  3304. struct perf_event_context *ctx;
  3305. long ret;
  3306. ctx = perf_event_ctx_lock(event);
  3307. ret = _perf_ioctl(event, cmd, arg);
  3308. perf_event_ctx_unlock(event, ctx);
  3309. return ret;
  3310. }
  3311. #ifdef CONFIG_COMPAT
  3312. static long perf_compat_ioctl(struct file *file, unsigned int cmd,
  3313. unsigned long arg)
  3314. {
  3315. switch (_IOC_NR(cmd)) {
  3316. case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
  3317. case _IOC_NR(PERF_EVENT_IOC_ID):
  3318. /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
  3319. if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
  3320. cmd &= ~IOCSIZE_MASK;
  3321. cmd |= sizeof(void *) << IOCSIZE_SHIFT;
  3322. }
  3323. break;
  3324. }
  3325. return perf_ioctl(file, cmd, arg);
  3326. }
  3327. #else
  3328. # define perf_compat_ioctl NULL
  3329. #endif
  3330. int perf_event_task_enable(void)
  3331. {
  3332. struct perf_event_context *ctx;
  3333. struct perf_event *event;
  3334. mutex_lock(&current->perf_event_mutex);
  3335. list_for_each_entry(event, &current->perf_event_list, owner_entry) {
  3336. ctx = perf_event_ctx_lock(event);
  3337. perf_event_for_each_child(event, _perf_event_enable);
  3338. perf_event_ctx_unlock(event, ctx);
  3339. }
  3340. mutex_unlock(&current->perf_event_mutex);
  3341. return 0;
  3342. }
  3343. int perf_event_task_disable(void)
  3344. {
  3345. struct perf_event_context *ctx;
  3346. struct perf_event *event;
  3347. mutex_lock(&current->perf_event_mutex);
  3348. list_for_each_entry(event, &current->perf_event_list, owner_entry) {
  3349. ctx = perf_event_ctx_lock(event);
  3350. perf_event_for_each_child(event, _perf_event_disable);
  3351. perf_event_ctx_unlock(event, ctx);
  3352. }
  3353. mutex_unlock(&current->perf_event_mutex);
  3354. return 0;
  3355. }
  3356. static int perf_event_index(struct perf_event *event)
  3357. {
  3358. if (event->hw.state & PERF_HES_STOPPED)
  3359. return 0;
  3360. if (event->state != PERF_EVENT_STATE_ACTIVE)
  3361. return 0;
  3362. return event->pmu->event_idx(event);
  3363. }
  3364. static void calc_timer_values(struct perf_event *event,
  3365. u64 *now,
  3366. u64 *enabled,
  3367. u64 *running)
  3368. {
  3369. u64 ctx_time;
  3370. *now = perf_clock();
  3371. ctx_time = event->shadow_ctx_time + *now;
  3372. *enabled = ctx_time - event->tstamp_enabled;
  3373. *running = ctx_time - event->tstamp_running;
  3374. }
  3375. static void perf_event_init_userpage(struct perf_event *event)
  3376. {
  3377. struct perf_event_mmap_page *userpg;
  3378. struct ring_buffer *rb;
  3379. rcu_read_lock();
  3380. rb = rcu_dereference(event->rb);
  3381. if (!rb)
  3382. goto unlock;
  3383. userpg = rb->user_page;
  3384. /* Allow new userspace to detect that bit 0 is deprecated */
  3385. userpg->cap_bit0_is_deprecated = 1;
  3386. userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
  3387. unlock:
  3388. rcu_read_unlock();
  3389. }
  3390. void __weak arch_perf_update_userpage(
  3391. struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
  3392. {
  3393. }
  3394. /*
  3395. * Callers need to ensure there can be no nesting of this function, otherwise
  3396. * the seqlock logic goes bad. We can not serialize this because the arch
  3397. * code calls this from NMI context.
  3398. */
  3399. void perf_event_update_userpage(struct perf_event *event)
  3400. {
  3401. struct perf_event_mmap_page *userpg;
  3402. struct ring_buffer *rb;
  3403. u64 enabled, running, now;
  3404. rcu_read_lock();
  3405. rb = rcu_dereference(event->rb);
  3406. if (!rb)
  3407. goto unlock;
  3408. /*
  3409. * compute total_time_enabled, total_time_running
  3410. * based on snapshot values taken when the event
  3411. * was last scheduled in.
  3412. *
  3413. * we cannot simply called update_context_time()
  3414. * because of locking issue as we can be called in
  3415. * NMI context
  3416. */
  3417. calc_timer_values(event, &now, &enabled, &running);
  3418. userpg = rb->user_page;
  3419. /*
  3420. * Disable preemption so as to not let the corresponding user-space
  3421. * spin too long if we get preempted.
  3422. */
  3423. preempt_disable();
  3424. ++userpg->lock;
  3425. barrier();
  3426. userpg->index = perf_event_index(event);
  3427. userpg->offset = perf_event_count(event);
  3428. if (userpg->index)
  3429. userpg->offset -= local64_read(&event->hw.prev_count);
  3430. userpg->time_enabled = enabled +
  3431. atomic64_read(&event->child_total_time_enabled);
  3432. userpg->time_running = running +
  3433. atomic64_read(&event->child_total_time_running);
  3434. arch_perf_update_userpage(event, userpg, now);
  3435. barrier();
  3436. ++userpg->lock;
  3437. preempt_enable();
  3438. unlock:
  3439. rcu_read_unlock();
  3440. }
  3441. static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  3442. {
  3443. struct perf_event *event = vma->vm_file->private_data;
  3444. struct ring_buffer *rb;
  3445. int ret = VM_FAULT_SIGBUS;
  3446. if (vmf->flags & FAULT_FLAG_MKWRITE) {
  3447. if (vmf->pgoff == 0)
  3448. ret = 0;
  3449. return ret;
  3450. }
  3451. rcu_read_lock();
  3452. rb = rcu_dereference(event->rb);
  3453. if (!rb)
  3454. goto unlock;
  3455. if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
  3456. goto unlock;
  3457. vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
  3458. if (!vmf->page)
  3459. goto unlock;
  3460. get_page(vmf->page);
  3461. vmf->page->mapping = vma->vm_file->f_mapping;
  3462. vmf->page->index = vmf->pgoff;
  3463. ret = 0;
  3464. unlock:
  3465. rcu_read_unlock();
  3466. return ret;
  3467. }
  3468. static void ring_buffer_attach(struct perf_event *event,
  3469. struct ring_buffer *rb)
  3470. {
  3471. struct ring_buffer *old_rb = NULL;
  3472. unsigned long flags;
  3473. if (event->rb) {
  3474. /*
  3475. * Should be impossible, we set this when removing
  3476. * event->rb_entry and wait/clear when adding event->rb_entry.
  3477. */
  3478. WARN_ON_ONCE(event->rcu_pending);
  3479. old_rb = event->rb;
  3480. event->rcu_batches = get_state_synchronize_rcu();
  3481. event->rcu_pending = 1;
  3482. spin_lock_irqsave(&old_rb->event_lock, flags);
  3483. list_del_rcu(&event->rb_entry);
  3484. spin_unlock_irqrestore(&old_rb->event_lock, flags);
  3485. }
  3486. if (event->rcu_pending && rb) {
  3487. cond_synchronize_rcu(event->rcu_batches);
  3488. event->rcu_pending = 0;
  3489. }
  3490. if (rb) {
  3491. spin_lock_irqsave(&rb->event_lock, flags);
  3492. list_add_rcu(&event->rb_entry, &rb->event_list);
  3493. spin_unlock_irqrestore(&rb->event_lock, flags);
  3494. }
  3495. rcu_assign_pointer(event->rb, rb);
  3496. if (old_rb) {
  3497. ring_buffer_put(old_rb);
  3498. /*
  3499. * Since we detached before setting the new rb, so that we
  3500. * could attach the new rb, we could have missed a wakeup.
  3501. * Provide it now.
  3502. */
  3503. wake_up_all(&event->waitq);
  3504. }
  3505. }
  3506. static void ring_buffer_wakeup(struct perf_event *event)
  3507. {
  3508. struct ring_buffer *rb;
  3509. rcu_read_lock();
  3510. rb = rcu_dereference(event->rb);
  3511. if (rb) {
  3512. list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
  3513. wake_up_all(&event->waitq);
  3514. }
  3515. rcu_read_unlock();
  3516. }
  3517. static void rb_free_rcu(struct rcu_head *rcu_head)
  3518. {
  3519. struct ring_buffer *rb;
  3520. rb = container_of(rcu_head, struct ring_buffer, rcu_head);
  3521. rb_free(rb);
  3522. }
  3523. static struct ring_buffer *ring_buffer_get(struct perf_event *event)
  3524. {
  3525. struct ring_buffer *rb;
  3526. rcu_read_lock();
  3527. rb = rcu_dereference(event->rb);
  3528. if (rb) {
  3529. if (!atomic_inc_not_zero(&rb->refcount))
  3530. rb = NULL;
  3531. }
  3532. rcu_read_unlock();
  3533. return rb;
  3534. }
  3535. static void ring_buffer_put(struct ring_buffer *rb)
  3536. {
  3537. if (!atomic_dec_and_test(&rb->refcount))
  3538. return;
  3539. WARN_ON_ONCE(!list_empty(&rb->event_list));
  3540. call_rcu(&rb->rcu_head, rb_free_rcu);
  3541. }
  3542. static void perf_mmap_open(struct vm_area_struct *vma)
  3543. {
  3544. struct perf_event *event = vma->vm_file->private_data;
  3545. atomic_inc(&event->mmap_count);
  3546. atomic_inc(&event->rb->mmap_count);
  3547. if (event->pmu->event_mapped)
  3548. event->pmu->event_mapped(event);
  3549. }
  3550. /*
  3551. * A buffer can be mmap()ed multiple times; either directly through the same
  3552. * event, or through other events by use of perf_event_set_output().
  3553. *
  3554. * In order to undo the VM accounting done by perf_mmap() we need to destroy
  3555. * the buffer here, where we still have a VM context. This means we need
  3556. * to detach all events redirecting to us.
  3557. */
  3558. static void perf_mmap_close(struct vm_area_struct *vma)
  3559. {
  3560. struct perf_event *event = vma->vm_file->private_data;
  3561. struct ring_buffer *rb = ring_buffer_get(event);
  3562. struct user_struct *mmap_user = rb->mmap_user;
  3563. int mmap_locked = rb->mmap_locked;
  3564. unsigned long size = perf_data_size(rb);
  3565. if (event->pmu->event_unmapped)
  3566. event->pmu->event_unmapped(event);
  3567. atomic_dec(&rb->mmap_count);
  3568. if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
  3569. goto out_put;
  3570. ring_buffer_attach(event, NULL);
  3571. mutex_unlock(&event->mmap_mutex);
  3572. /* If there's still other mmap()s of this buffer, we're done. */
  3573. if (atomic_read(&rb->mmap_count))
  3574. goto out_put;
  3575. /*
  3576. * No other mmap()s, detach from all other events that might redirect
  3577. * into the now unreachable buffer. Somewhat complicated by the
  3578. * fact that rb::event_lock otherwise nests inside mmap_mutex.
  3579. */
  3580. again:
  3581. rcu_read_lock();
  3582. list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
  3583. if (!atomic_long_inc_not_zero(&event->refcount)) {
  3584. /*
  3585. * This event is en-route to free_event() which will
  3586. * detach it and remove it from the list.
  3587. */
  3588. continue;
  3589. }
  3590. rcu_read_unlock();
  3591. mutex_lock(&event->mmap_mutex);
  3592. /*
  3593. * Check we didn't race with perf_event_set_output() which can
  3594. * swizzle the rb from under us while we were waiting to
  3595. * acquire mmap_mutex.
  3596. *
  3597. * If we find a different rb; ignore this event, a next
  3598. * iteration will no longer find it on the list. We have to
  3599. * still restart the iteration to make sure we're not now
  3600. * iterating the wrong list.
  3601. */
  3602. if (event->rb == rb)
  3603. ring_buffer_attach(event, NULL);
  3604. mutex_unlock(&event->mmap_mutex);
  3605. put_event(event);
  3606. /*
  3607. * Restart the iteration; either we're on the wrong list or
  3608. * destroyed its integrity by doing a deletion.
  3609. */
  3610. goto again;
  3611. }
  3612. rcu_read_unlock();
  3613. /*
  3614. * It could be there's still a few 0-ref events on the list; they'll
  3615. * get cleaned up by free_event() -- they'll also still have their
  3616. * ref on the rb and will free it whenever they are done with it.
  3617. *
  3618. * Aside from that, this buffer is 'fully' detached and unmapped,
  3619. * undo the VM accounting.
  3620. */
  3621. atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
  3622. vma->vm_mm->pinned_vm -= mmap_locked;
  3623. free_uid(mmap_user);
  3624. out_put:
  3625. ring_buffer_put(rb); /* could be last */
  3626. }
  3627. static const struct vm_operations_struct perf_mmap_vmops = {
  3628. .open = perf_mmap_open,
  3629. .close = perf_mmap_close,
  3630. .fault = perf_mmap_fault,
  3631. .page_mkwrite = perf_mmap_fault,
  3632. };
  3633. static int perf_mmap(struct file *file, struct vm_area_struct *vma)
  3634. {
  3635. struct perf_event *event = file->private_data;
  3636. unsigned long user_locked, user_lock_limit;
  3637. struct user_struct *user = current_user();
  3638. unsigned long locked, lock_limit;
  3639. struct ring_buffer *rb;
  3640. unsigned long vma_size;
  3641. unsigned long nr_pages;
  3642. long user_extra, extra;
  3643. int ret = 0, flags = 0;
  3644. /*
  3645. * Don't allow mmap() of inherited per-task counters. This would
  3646. * create a performance issue due to all children writing to the
  3647. * same rb.
  3648. */
  3649. if (event->cpu == -1 && event->attr.inherit)
  3650. return -EINVAL;
  3651. if (!(vma->vm_flags & VM_SHARED))
  3652. return -EINVAL;
  3653. vma_size = vma->vm_end - vma->vm_start;
  3654. nr_pages = (vma_size / PAGE_SIZE) - 1;
  3655. /*
  3656. * If we have rb pages ensure they're a power-of-two number, so we
  3657. * can do bitmasks instead of modulo.
  3658. */
  3659. if (nr_pages != 0 && !is_power_of_2(nr_pages))
  3660. return -EINVAL;
  3661. if (vma_size != PAGE_SIZE * (1 + nr_pages))
  3662. return -EINVAL;
  3663. if (vma->vm_pgoff != 0)
  3664. return -EINVAL;
  3665. WARN_ON_ONCE(event->ctx->parent_ctx);
  3666. again:
  3667. mutex_lock(&event->mmap_mutex);
  3668. if (event->rb) {
  3669. if (event->rb->nr_pages != nr_pages) {
  3670. ret = -EINVAL;
  3671. goto unlock;
  3672. }
  3673. if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
  3674. /*
  3675. * Raced against perf_mmap_close() through
  3676. * perf_event_set_output(). Try again, hope for better
  3677. * luck.
  3678. */
  3679. mutex_unlock(&event->mmap_mutex);
  3680. goto again;
  3681. }
  3682. goto unlock;
  3683. }
  3684. user_extra = nr_pages + 1;
  3685. user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
  3686. /*
  3687. * Increase the limit linearly with more CPUs:
  3688. */
  3689. user_lock_limit *= num_online_cpus();
  3690. user_locked = atomic_long_read(&user->locked_vm) + user_extra;
  3691. extra = 0;
  3692. if (user_locked > user_lock_limit)
  3693. extra = user_locked - user_lock_limit;
  3694. lock_limit = rlimit(RLIMIT_MEMLOCK);
  3695. lock_limit >>= PAGE_SHIFT;
  3696. locked = vma->vm_mm->pinned_vm + extra;
  3697. if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
  3698. !capable(CAP_IPC_LOCK)) {
  3699. ret = -EPERM;
  3700. goto unlock;
  3701. }
  3702. WARN_ON(event->rb);
  3703. if (vma->vm_flags & VM_WRITE)
  3704. flags |= RING_BUFFER_WRITABLE;
  3705. rb = rb_alloc(nr_pages,
  3706. event->attr.watermark ? event->attr.wakeup_watermark : 0,
  3707. event->cpu, flags);
  3708. if (!rb) {
  3709. ret = -ENOMEM;
  3710. goto unlock;
  3711. }
  3712. atomic_set(&rb->mmap_count, 1);
  3713. rb->mmap_locked = extra;
  3714. rb->mmap_user = get_current_user();
  3715. atomic_long_add(user_extra, &user->locked_vm);
  3716. vma->vm_mm->pinned_vm += extra;
  3717. ring_buffer_attach(event, rb);
  3718. perf_event_init_userpage(event);
  3719. perf_event_update_userpage(event);
  3720. unlock:
  3721. if (!ret)
  3722. atomic_inc(&event->mmap_count);
  3723. mutex_unlock(&event->mmap_mutex);
  3724. /*
  3725. * Since pinned accounting is per vm we cannot allow fork() to copy our
  3726. * vma.
  3727. */
  3728. vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
  3729. vma->vm_ops = &perf_mmap_vmops;
  3730. if (event->pmu->event_mapped)
  3731. event->pmu->event_mapped(event);
  3732. return ret;
  3733. }
  3734. static int perf_fasync(int fd, struct file *filp, int on)
  3735. {
  3736. struct inode *inode = file_inode(filp);
  3737. struct perf_event *event = filp->private_data;
  3738. int retval;
  3739. mutex_lock(&inode->i_mutex);
  3740. retval = fasync_helper(fd, filp, on, &event->fasync);
  3741. mutex_unlock(&inode->i_mutex);
  3742. if (retval < 0)
  3743. return retval;
  3744. return 0;
  3745. }
  3746. static const struct file_operations perf_fops = {
  3747. .llseek = no_llseek,
  3748. .release = perf_release,
  3749. .read = perf_read,
  3750. .poll = perf_poll,
  3751. .unlocked_ioctl = perf_ioctl,
  3752. .compat_ioctl = perf_compat_ioctl,
  3753. .mmap = perf_mmap,
  3754. .fasync = perf_fasync,
  3755. };
  3756. /*
  3757. * Perf event wakeup
  3758. *
  3759. * If there's data, ensure we set the poll() state and publish everything
  3760. * to user-space before waking everybody up.
  3761. */
  3762. void perf_event_wakeup(struct perf_event *event)
  3763. {
  3764. ring_buffer_wakeup(event);
  3765. if (event->pending_kill) {
  3766. kill_fasync(&event->fasync, SIGIO, event->pending_kill);
  3767. event->pending_kill = 0;
  3768. }
  3769. }
  3770. static void perf_pending_event(struct irq_work *entry)
  3771. {
  3772. struct perf_event *event = container_of(entry,
  3773. struct perf_event, pending);
  3774. if (event->pending_disable) {
  3775. event->pending_disable = 0;
  3776. __perf_event_disable(event);
  3777. }
  3778. if (event->pending_wakeup) {
  3779. event->pending_wakeup = 0;
  3780. perf_event_wakeup(event);
  3781. }
  3782. }
  3783. /*
  3784. * We assume there is only KVM supporting the callbacks.
  3785. * Later on, we might change it to a list if there is
  3786. * another virtualization implementation supporting the callbacks.
  3787. */
  3788. struct perf_guest_info_callbacks *perf_guest_cbs;
  3789. int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  3790. {
  3791. perf_guest_cbs = cbs;
  3792. return 0;
  3793. }
  3794. EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
  3795. int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  3796. {
  3797. perf_guest_cbs = NULL;
  3798. return 0;
  3799. }
  3800. EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
  3801. static void
  3802. perf_output_sample_regs(struct perf_output_handle *handle,
  3803. struct pt_regs *regs, u64 mask)
  3804. {
  3805. int bit;
  3806. for_each_set_bit(bit, (const unsigned long *) &mask,
  3807. sizeof(mask) * BITS_PER_BYTE) {
  3808. u64 val;
  3809. val = perf_reg_value(regs, bit);
  3810. perf_output_put(handle, val);
  3811. }
  3812. }
  3813. static void perf_sample_regs_user(struct perf_regs *regs_user,
  3814. struct pt_regs *regs,
  3815. struct pt_regs *regs_user_copy)
  3816. {
  3817. if (user_mode(regs)) {
  3818. regs_user->abi = perf_reg_abi(current);
  3819. regs_user->regs = regs;
  3820. } else if (current->mm) {
  3821. perf_get_regs_user(regs_user, regs, regs_user_copy);
  3822. } else {
  3823. regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
  3824. regs_user->regs = NULL;
  3825. }
  3826. }
  3827. static void perf_sample_regs_intr(struct perf_regs *regs_intr,
  3828. struct pt_regs *regs)
  3829. {
  3830. regs_intr->regs = regs;
  3831. regs_intr->abi = perf_reg_abi(current);
  3832. }
  3833. /*
  3834. * Get remaining task size from user stack pointer.
  3835. *
  3836. * It'd be better to take stack vma map and limit this more
  3837. * precisly, but there's no way to get it safely under interrupt,
  3838. * so using TASK_SIZE as limit.
  3839. */
  3840. static u64 perf_ustack_task_size(struct pt_regs *regs)
  3841. {
  3842. unsigned long addr = perf_user_stack_pointer(regs);
  3843. if (!addr || addr >= TASK_SIZE)
  3844. return 0;
  3845. return TASK_SIZE - addr;
  3846. }
  3847. static u16
  3848. perf_sample_ustack_size(u16 stack_size, u16 header_size,
  3849. struct pt_regs *regs)
  3850. {
  3851. u64 task_size;
  3852. /* No regs, no stack pointer, no dump. */
  3853. if (!regs)
  3854. return 0;
  3855. /*
  3856. * Check if we fit in with the requested stack size into the:
  3857. * - TASK_SIZE
  3858. * If we don't, we limit the size to the TASK_SIZE.
  3859. *
  3860. * - remaining sample size
  3861. * If we don't, we customize the stack size to
  3862. * fit in to the remaining sample size.
  3863. */
  3864. task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
  3865. stack_size = min(stack_size, (u16) task_size);
  3866. /* Current header size plus static size and dynamic size. */
  3867. header_size += 2 * sizeof(u64);
  3868. /* Do we fit in with the current stack dump size? */
  3869. if ((u16) (header_size + stack_size) < header_size) {
  3870. /*
  3871. * If we overflow the maximum size for the sample,
  3872. * we customize the stack dump size to fit in.
  3873. */
  3874. stack_size = USHRT_MAX - header_size - sizeof(u64);
  3875. stack_size = round_up(stack_size, sizeof(u64));
  3876. }
  3877. return stack_size;
  3878. }
  3879. static void
  3880. perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
  3881. struct pt_regs *regs)
  3882. {
  3883. /* Case of a kernel thread, nothing to dump */
  3884. if (!regs) {
  3885. u64 size = 0;
  3886. perf_output_put(handle, size);
  3887. } else {
  3888. unsigned long sp;
  3889. unsigned int rem;
  3890. u64 dyn_size;
  3891. /*
  3892. * We dump:
  3893. * static size
  3894. * - the size requested by user or the best one we can fit
  3895. * in to the sample max size
  3896. * data
  3897. * - user stack dump data
  3898. * dynamic size
  3899. * - the actual dumped size
  3900. */
  3901. /* Static size. */
  3902. perf_output_put(handle, dump_size);
  3903. /* Data. */
  3904. sp = perf_user_stack_pointer(regs);
  3905. rem = __output_copy_user(handle, (void *) sp, dump_size);
  3906. dyn_size = dump_size - rem;
  3907. perf_output_skip(handle, rem);
  3908. /* Dynamic size. */
  3909. perf_output_put(handle, dyn_size);
  3910. }
  3911. }
  3912. static void __perf_event_header__init_id(struct perf_event_header *header,
  3913. struct perf_sample_data *data,
  3914. struct perf_event *event)
  3915. {
  3916. u64 sample_type = event->attr.sample_type;
  3917. data->type = sample_type;
  3918. header->size += event->id_header_size;
  3919. if (sample_type & PERF_SAMPLE_TID) {
  3920. /* namespace issues */
  3921. data->tid_entry.pid = perf_event_pid(event, current);
  3922. data->tid_entry.tid = perf_event_tid(event, current);
  3923. }
  3924. if (sample_type & PERF_SAMPLE_TIME)
  3925. data->time = perf_clock();
  3926. if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
  3927. data->id = primary_event_id(event);
  3928. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3929. data->stream_id = event->id;
  3930. if (sample_type & PERF_SAMPLE_CPU) {
  3931. data->cpu_entry.cpu = raw_smp_processor_id();
  3932. data->cpu_entry.reserved = 0;
  3933. }
  3934. }
  3935. void perf_event_header__init_id(struct perf_event_header *header,
  3936. struct perf_sample_data *data,
  3937. struct perf_event *event)
  3938. {
  3939. if (event->attr.sample_id_all)
  3940. __perf_event_header__init_id(header, data, event);
  3941. }
  3942. static void __perf_event__output_id_sample(struct perf_output_handle *handle,
  3943. struct perf_sample_data *data)
  3944. {
  3945. u64 sample_type = data->type;
  3946. if (sample_type & PERF_SAMPLE_TID)
  3947. perf_output_put(handle, data->tid_entry);
  3948. if (sample_type & PERF_SAMPLE_TIME)
  3949. perf_output_put(handle, data->time);
  3950. if (sample_type & PERF_SAMPLE_ID)
  3951. perf_output_put(handle, data->id);
  3952. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3953. perf_output_put(handle, data->stream_id);
  3954. if (sample_type & PERF_SAMPLE_CPU)
  3955. perf_output_put(handle, data->cpu_entry);
  3956. if (sample_type & PERF_SAMPLE_IDENTIFIER)
  3957. perf_output_put(handle, data->id);
  3958. }
  3959. void perf_event__output_id_sample(struct perf_event *event,
  3960. struct perf_output_handle *handle,
  3961. struct perf_sample_data *sample)
  3962. {
  3963. if (event->attr.sample_id_all)
  3964. __perf_event__output_id_sample(handle, sample);
  3965. }
  3966. static void perf_output_read_one(struct perf_output_handle *handle,
  3967. struct perf_event *event,
  3968. u64 enabled, u64 running)
  3969. {
  3970. u64 read_format = event->attr.read_format;
  3971. u64 values[4];
  3972. int n = 0;
  3973. values[n++] = perf_event_count(event);
  3974. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
  3975. values[n++] = enabled +
  3976. atomic64_read(&event->child_total_time_enabled);
  3977. }
  3978. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
  3979. values[n++] = running +
  3980. atomic64_read(&event->child_total_time_running);
  3981. }
  3982. if (read_format & PERF_FORMAT_ID)
  3983. values[n++] = primary_event_id(event);
  3984. __output_copy(handle, values, n * sizeof(u64));
  3985. }
  3986. /*
  3987. * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
  3988. */
  3989. static void perf_output_read_group(struct perf_output_handle *handle,
  3990. struct perf_event *event,
  3991. u64 enabled, u64 running)
  3992. {
  3993. struct perf_event *leader = event->group_leader, *sub;
  3994. u64 read_format = event->attr.read_format;
  3995. u64 values[5];
  3996. int n = 0;
  3997. values[n++] = 1 + leader->nr_siblings;
  3998. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  3999. values[n++] = enabled;
  4000. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  4001. values[n++] = running;
  4002. if (leader != event)
  4003. leader->pmu->read(leader);
  4004. values[n++] = perf_event_count(leader);
  4005. if (read_format & PERF_FORMAT_ID)
  4006. values[n++] = primary_event_id(leader);
  4007. __output_copy(handle, values, n * sizeof(u64));
  4008. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  4009. n = 0;
  4010. if ((sub != event) &&
  4011. (sub->state == PERF_EVENT_STATE_ACTIVE))
  4012. sub->pmu->read(sub);
  4013. values[n++] = perf_event_count(sub);
  4014. if (read_format & PERF_FORMAT_ID)
  4015. values[n++] = primary_event_id(sub);
  4016. __output_copy(handle, values, n * sizeof(u64));
  4017. }
  4018. }
  4019. #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
  4020. PERF_FORMAT_TOTAL_TIME_RUNNING)
  4021. static void perf_output_read(struct perf_output_handle *handle,
  4022. struct perf_event *event)
  4023. {
  4024. u64 enabled = 0, running = 0, now;
  4025. u64 read_format = event->attr.read_format;
  4026. /*
  4027. * compute total_time_enabled, total_time_running
  4028. * based on snapshot values taken when the event
  4029. * was last scheduled in.
  4030. *
  4031. * we cannot simply called update_context_time()
  4032. * because of locking issue as we are called in
  4033. * NMI context
  4034. */
  4035. if (read_format & PERF_FORMAT_TOTAL_TIMES)
  4036. calc_timer_values(event, &now, &enabled, &running);
  4037. if (event->attr.read_format & PERF_FORMAT_GROUP)
  4038. perf_output_read_group(handle, event, enabled, running);
  4039. else
  4040. perf_output_read_one(handle, event, enabled, running);
  4041. }
  4042. void perf_output_sample(struct perf_output_handle *handle,
  4043. struct perf_event_header *header,
  4044. struct perf_sample_data *data,
  4045. struct perf_event *event)
  4046. {
  4047. u64 sample_type = data->type;
  4048. perf_output_put(handle, *header);
  4049. if (sample_type & PERF_SAMPLE_IDENTIFIER)
  4050. perf_output_put(handle, data->id);
  4051. if (sample_type & PERF_SAMPLE_IP)
  4052. perf_output_put(handle, data->ip);
  4053. if (sample_type & PERF_SAMPLE_TID)
  4054. perf_output_put(handle, data->tid_entry);
  4055. if (sample_type & PERF_SAMPLE_TIME)
  4056. perf_output_put(handle, data->time);
  4057. if (sample_type & PERF_SAMPLE_ADDR)
  4058. perf_output_put(handle, data->addr);
  4059. if (sample_type & PERF_SAMPLE_ID)
  4060. perf_output_put(handle, data->id);
  4061. if (sample_type & PERF_SAMPLE_STREAM_ID)
  4062. perf_output_put(handle, data->stream_id);
  4063. if (sample_type & PERF_SAMPLE_CPU)
  4064. perf_output_put(handle, data->cpu_entry);
  4065. if (sample_type & PERF_SAMPLE_PERIOD)
  4066. perf_output_put(handle, data->period);
  4067. if (sample_type & PERF_SAMPLE_READ)
  4068. perf_output_read(handle, event);
  4069. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  4070. if (data->callchain) {
  4071. int size = 1;
  4072. if (data->callchain)
  4073. size += data->callchain->nr;
  4074. size *= sizeof(u64);
  4075. __output_copy(handle, data->callchain, size);
  4076. } else {
  4077. u64 nr = 0;
  4078. perf_output_put(handle, nr);
  4079. }
  4080. }
  4081. if (sample_type & PERF_SAMPLE_RAW) {
  4082. if (data->raw) {
  4083. perf_output_put(handle, data->raw->size);
  4084. __output_copy(handle, data->raw->data,
  4085. data->raw->size);
  4086. } else {
  4087. struct {
  4088. u32 size;
  4089. u32 data;
  4090. } raw = {
  4091. .size = sizeof(u32),
  4092. .data = 0,
  4093. };
  4094. perf_output_put(handle, raw);
  4095. }
  4096. }
  4097. if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
  4098. if (data->br_stack) {
  4099. size_t size;
  4100. size = data->br_stack->nr
  4101. * sizeof(struct perf_branch_entry);
  4102. perf_output_put(handle, data->br_stack->nr);
  4103. perf_output_copy(handle, data->br_stack->entries, size);
  4104. } else {
  4105. /*
  4106. * we always store at least the value of nr
  4107. */
  4108. u64 nr = 0;
  4109. perf_output_put(handle, nr);
  4110. }
  4111. }
  4112. if (sample_type & PERF_SAMPLE_REGS_USER) {
  4113. u64 abi = data->regs_user.abi;
  4114. /*
  4115. * If there are no regs to dump, notice it through
  4116. * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
  4117. */
  4118. perf_output_put(handle, abi);
  4119. if (abi) {
  4120. u64 mask = event->attr.sample_regs_user;
  4121. perf_output_sample_regs(handle,
  4122. data->regs_user.regs,
  4123. mask);
  4124. }
  4125. }
  4126. if (sample_type & PERF_SAMPLE_STACK_USER) {
  4127. perf_output_sample_ustack(handle,
  4128. data->stack_user_size,
  4129. data->regs_user.regs);
  4130. }
  4131. if (sample_type & PERF_SAMPLE_WEIGHT)
  4132. perf_output_put(handle, data->weight);
  4133. if (sample_type & PERF_SAMPLE_DATA_SRC)
  4134. perf_output_put(handle, data->data_src.val);
  4135. if (sample_type & PERF_SAMPLE_TRANSACTION)
  4136. perf_output_put(handle, data->txn);
  4137. if (sample_type & PERF_SAMPLE_REGS_INTR) {
  4138. u64 abi = data->regs_intr.abi;
  4139. /*
  4140. * If there are no regs to dump, notice it through
  4141. * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
  4142. */
  4143. perf_output_put(handle, abi);
  4144. if (abi) {
  4145. u64 mask = event->attr.sample_regs_intr;
  4146. perf_output_sample_regs(handle,
  4147. data->regs_intr.regs,
  4148. mask);
  4149. }
  4150. }
  4151. if (!event->attr.watermark) {
  4152. int wakeup_events = event->attr.wakeup_events;
  4153. if (wakeup_events) {
  4154. struct ring_buffer *rb = handle->rb;
  4155. int events = local_inc_return(&rb->events);
  4156. if (events >= wakeup_events) {
  4157. local_sub(wakeup_events, &rb->events);
  4158. local_inc(&rb->wakeup);
  4159. }
  4160. }
  4161. }
  4162. }
  4163. void perf_prepare_sample(struct perf_event_header *header,
  4164. struct perf_sample_data *data,
  4165. struct perf_event *event,
  4166. struct pt_regs *regs)
  4167. {
  4168. u64 sample_type = event->attr.sample_type;
  4169. header->type = PERF_RECORD_SAMPLE;
  4170. header->size = sizeof(*header) + event->header_size;
  4171. header->misc = 0;
  4172. header->misc |= perf_misc_flags(regs);
  4173. __perf_event_header__init_id(header, data, event);
  4174. if (sample_type & PERF_SAMPLE_IP)
  4175. data->ip = perf_instruction_pointer(regs);
  4176. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  4177. int size = 1;
  4178. data->callchain = perf_callchain(event, regs);
  4179. if (data->callchain)
  4180. size += data->callchain->nr;
  4181. header->size += size * sizeof(u64);
  4182. }
  4183. if (sample_type & PERF_SAMPLE_RAW) {
  4184. int size = sizeof(u32);
  4185. if (data->raw)
  4186. size += data->raw->size;
  4187. else
  4188. size += sizeof(u32);
  4189. WARN_ON_ONCE(size & (sizeof(u64)-1));
  4190. header->size += size;
  4191. }
  4192. if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
  4193. int size = sizeof(u64); /* nr */
  4194. if (data->br_stack) {
  4195. size += data->br_stack->nr
  4196. * sizeof(struct perf_branch_entry);
  4197. }
  4198. header->size += size;
  4199. }
  4200. if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
  4201. perf_sample_regs_user(&data->regs_user, regs,
  4202. &data->regs_user_copy);
  4203. if (sample_type & PERF_SAMPLE_REGS_USER) {
  4204. /* regs dump ABI info */
  4205. int size = sizeof(u64);
  4206. if (data->regs_user.regs) {
  4207. u64 mask = event->attr.sample_regs_user;
  4208. size += hweight64(mask) * sizeof(u64);
  4209. }
  4210. header->size += size;
  4211. }
  4212. if (sample_type & PERF_SAMPLE_STACK_USER) {
  4213. /*
  4214. * Either we need PERF_SAMPLE_STACK_USER bit to be allways
  4215. * processed as the last one or have additional check added
  4216. * in case new sample type is added, because we could eat
  4217. * up the rest of the sample size.
  4218. */
  4219. u16 stack_size = event->attr.sample_stack_user;
  4220. u16 size = sizeof(u64);
  4221. stack_size = perf_sample_ustack_size(stack_size, header->size,
  4222. data->regs_user.regs);
  4223. /*
  4224. * If there is something to dump, add space for the dump
  4225. * itself and for the field that tells the dynamic size,
  4226. * which is how many have been actually dumped.
  4227. */
  4228. if (stack_size)
  4229. size += sizeof(u64) + stack_size;
  4230. data->stack_user_size = stack_size;
  4231. header->size += size;
  4232. }
  4233. if (sample_type & PERF_SAMPLE_REGS_INTR) {
  4234. /* regs dump ABI info */
  4235. int size = sizeof(u64);
  4236. perf_sample_regs_intr(&data->regs_intr, regs);
  4237. if (data->regs_intr.regs) {
  4238. u64 mask = event->attr.sample_regs_intr;
  4239. size += hweight64(mask) * sizeof(u64);
  4240. }
  4241. header->size += size;
  4242. }
  4243. }
  4244. static void perf_event_output(struct perf_event *event,
  4245. struct perf_sample_data *data,
  4246. struct pt_regs *regs)
  4247. {
  4248. struct perf_output_handle handle;
  4249. struct perf_event_header header;
  4250. /* protect the callchain buffers */
  4251. rcu_read_lock();
  4252. perf_prepare_sample(&header, data, event, regs);
  4253. if (perf_output_begin(&handle, event, header.size))
  4254. goto exit;
  4255. perf_output_sample(&handle, &header, data, event);
  4256. perf_output_end(&handle);
  4257. exit:
  4258. rcu_read_unlock();
  4259. }
  4260. /*
  4261. * read event_id
  4262. */
  4263. struct perf_read_event {
  4264. struct perf_event_header header;
  4265. u32 pid;
  4266. u32 tid;
  4267. };
  4268. static void
  4269. perf_event_read_event(struct perf_event *event,
  4270. struct task_struct *task)
  4271. {
  4272. struct perf_output_handle handle;
  4273. struct perf_sample_data sample;
  4274. struct perf_read_event read_event = {
  4275. .header = {
  4276. .type = PERF_RECORD_READ,
  4277. .misc = 0,
  4278. .size = sizeof(read_event) + event->read_size,
  4279. },
  4280. .pid = perf_event_pid(event, task),
  4281. .tid = perf_event_tid(event, task),
  4282. };
  4283. int ret;
  4284. perf_event_header__init_id(&read_event.header, &sample, event);
  4285. ret = perf_output_begin(&handle, event, read_event.header.size);
  4286. if (ret)
  4287. return;
  4288. perf_output_put(&handle, read_event);
  4289. perf_output_read(&handle, event);
  4290. perf_event__output_id_sample(event, &handle, &sample);
  4291. perf_output_end(&handle);
  4292. }
  4293. typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
  4294. static void
  4295. perf_event_aux_ctx(struct perf_event_context *ctx,
  4296. perf_event_aux_output_cb output,
  4297. void *data)
  4298. {
  4299. struct perf_event *event;
  4300. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  4301. if (event->state < PERF_EVENT_STATE_INACTIVE)
  4302. continue;
  4303. if (!event_filter_match(event))
  4304. continue;
  4305. output(event, data);
  4306. }
  4307. }
  4308. static void
  4309. perf_event_aux(perf_event_aux_output_cb output, void *data,
  4310. struct perf_event_context *task_ctx)
  4311. {
  4312. struct perf_cpu_context *cpuctx;
  4313. struct perf_event_context *ctx;
  4314. struct pmu *pmu;
  4315. int ctxn;
  4316. rcu_read_lock();
  4317. list_for_each_entry_rcu(pmu, &pmus, entry) {
  4318. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  4319. if (cpuctx->unique_pmu != pmu)
  4320. goto next;
  4321. perf_event_aux_ctx(&cpuctx->ctx, output, data);
  4322. if (task_ctx)
  4323. goto next;
  4324. ctxn = pmu->task_ctx_nr;
  4325. if (ctxn < 0)
  4326. goto next;
  4327. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  4328. if (ctx)
  4329. perf_event_aux_ctx(ctx, output, data);
  4330. next:
  4331. put_cpu_ptr(pmu->pmu_cpu_context);
  4332. }
  4333. if (task_ctx) {
  4334. preempt_disable();
  4335. perf_event_aux_ctx(task_ctx, output, data);
  4336. preempt_enable();
  4337. }
  4338. rcu_read_unlock();
  4339. }
  4340. /*
  4341. * task tracking -- fork/exit
  4342. *
  4343. * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
  4344. */
  4345. struct perf_task_event {
  4346. struct task_struct *task;
  4347. struct perf_event_context *task_ctx;
  4348. struct {
  4349. struct perf_event_header header;
  4350. u32 pid;
  4351. u32 ppid;
  4352. u32 tid;
  4353. u32 ptid;
  4354. u64 time;
  4355. } event_id;
  4356. };
  4357. static int perf_event_task_match(struct perf_event *event)
  4358. {
  4359. return event->attr.comm || event->attr.mmap ||
  4360. event->attr.mmap2 || event->attr.mmap_data ||
  4361. event->attr.task;
  4362. }
  4363. static void perf_event_task_output(struct perf_event *event,
  4364. void *data)
  4365. {
  4366. struct perf_task_event *task_event = data;
  4367. struct perf_output_handle handle;
  4368. struct perf_sample_data sample;
  4369. struct task_struct *task = task_event->task;
  4370. int ret, size = task_event->event_id.header.size;
  4371. if (!perf_event_task_match(event))
  4372. return;
  4373. perf_event_header__init_id(&task_event->event_id.header, &sample, event);
  4374. ret = perf_output_begin(&handle, event,
  4375. task_event->event_id.header.size);
  4376. if (ret)
  4377. goto out;
  4378. task_event->event_id.pid = perf_event_pid(event, task);
  4379. task_event->event_id.ppid = perf_event_pid(event, current);
  4380. task_event->event_id.tid = perf_event_tid(event, task);
  4381. task_event->event_id.ptid = perf_event_tid(event, current);
  4382. perf_output_put(&handle, task_event->event_id);
  4383. perf_event__output_id_sample(event, &handle, &sample);
  4384. perf_output_end(&handle);
  4385. out:
  4386. task_event->event_id.header.size = size;
  4387. }
  4388. static void perf_event_task(struct task_struct *task,
  4389. struct perf_event_context *task_ctx,
  4390. int new)
  4391. {
  4392. struct perf_task_event task_event;
  4393. if (!atomic_read(&nr_comm_events) &&
  4394. !atomic_read(&nr_mmap_events) &&
  4395. !atomic_read(&nr_task_events))
  4396. return;
  4397. task_event = (struct perf_task_event){
  4398. .task = task,
  4399. .task_ctx = task_ctx,
  4400. .event_id = {
  4401. .header = {
  4402. .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
  4403. .misc = 0,
  4404. .size = sizeof(task_event.event_id),
  4405. },
  4406. /* .pid */
  4407. /* .ppid */
  4408. /* .tid */
  4409. /* .ptid */
  4410. .time = perf_clock(),
  4411. },
  4412. };
  4413. perf_event_aux(perf_event_task_output,
  4414. &task_event,
  4415. task_ctx);
  4416. }
  4417. void perf_event_fork(struct task_struct *task)
  4418. {
  4419. perf_event_task(task, NULL, 1);
  4420. }
  4421. /*
  4422. * comm tracking
  4423. */
  4424. struct perf_comm_event {
  4425. struct task_struct *task;
  4426. char *comm;
  4427. int comm_size;
  4428. struct {
  4429. struct perf_event_header header;
  4430. u32 pid;
  4431. u32 tid;
  4432. } event_id;
  4433. };
  4434. static int perf_event_comm_match(struct perf_event *event)
  4435. {
  4436. return event->attr.comm;
  4437. }
  4438. static void perf_event_comm_output(struct perf_event *event,
  4439. void *data)
  4440. {
  4441. struct perf_comm_event *comm_event = data;
  4442. struct perf_output_handle handle;
  4443. struct perf_sample_data sample;
  4444. int size = comm_event->event_id.header.size;
  4445. int ret;
  4446. if (!perf_event_comm_match(event))
  4447. return;
  4448. perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
  4449. ret = perf_output_begin(&handle, event,
  4450. comm_event->event_id.header.size);
  4451. if (ret)
  4452. goto out;
  4453. comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
  4454. comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
  4455. perf_output_put(&handle, comm_event->event_id);
  4456. __output_copy(&handle, comm_event->comm,
  4457. comm_event->comm_size);
  4458. perf_event__output_id_sample(event, &handle, &sample);
  4459. perf_output_end(&handle);
  4460. out:
  4461. comm_event->event_id.header.size = size;
  4462. }
  4463. static void perf_event_comm_event(struct perf_comm_event *comm_event)
  4464. {
  4465. char comm[TASK_COMM_LEN];
  4466. unsigned int size;
  4467. memset(comm, 0, sizeof(comm));
  4468. strlcpy(comm, comm_event->task->comm, sizeof(comm));
  4469. size = ALIGN(strlen(comm)+1, sizeof(u64));
  4470. comm_event->comm = comm;
  4471. comm_event->comm_size = size;
  4472. comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
  4473. perf_event_aux(perf_event_comm_output,
  4474. comm_event,
  4475. NULL);
  4476. }
  4477. void perf_event_comm(struct task_struct *task, bool exec)
  4478. {
  4479. struct perf_comm_event comm_event;
  4480. if (!atomic_read(&nr_comm_events))
  4481. return;
  4482. comm_event = (struct perf_comm_event){
  4483. .task = task,
  4484. /* .comm */
  4485. /* .comm_size */
  4486. .event_id = {
  4487. .header = {
  4488. .type = PERF_RECORD_COMM,
  4489. .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
  4490. /* .size */
  4491. },
  4492. /* .pid */
  4493. /* .tid */
  4494. },
  4495. };
  4496. perf_event_comm_event(&comm_event);
  4497. }
  4498. /*
  4499. * mmap tracking
  4500. */
  4501. struct perf_mmap_event {
  4502. struct vm_area_struct *vma;
  4503. const char *file_name;
  4504. int file_size;
  4505. int maj, min;
  4506. u64 ino;
  4507. u64 ino_generation;
  4508. u32 prot, flags;
  4509. struct {
  4510. struct perf_event_header header;
  4511. u32 pid;
  4512. u32 tid;
  4513. u64 start;
  4514. u64 len;
  4515. u64 pgoff;
  4516. } event_id;
  4517. };
  4518. static int perf_event_mmap_match(struct perf_event *event,
  4519. void *data)
  4520. {
  4521. struct perf_mmap_event *mmap_event = data;
  4522. struct vm_area_struct *vma = mmap_event->vma;
  4523. int executable = vma->vm_flags & VM_EXEC;
  4524. return (!executable && event->attr.mmap_data) ||
  4525. (executable && (event->attr.mmap || event->attr.mmap2));
  4526. }
  4527. static void perf_event_mmap_output(struct perf_event *event,
  4528. void *data)
  4529. {
  4530. struct perf_mmap_event *mmap_event = data;
  4531. struct perf_output_handle handle;
  4532. struct perf_sample_data sample;
  4533. int size = mmap_event->event_id.header.size;
  4534. int ret;
  4535. if (!perf_event_mmap_match(event, data))
  4536. return;
  4537. if (event->attr.mmap2) {
  4538. mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
  4539. mmap_event->event_id.header.size += sizeof(mmap_event->maj);
  4540. mmap_event->event_id.header.size += sizeof(mmap_event->min);
  4541. mmap_event->event_id.header.size += sizeof(mmap_event->ino);
  4542. mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
  4543. mmap_event->event_id.header.size += sizeof(mmap_event->prot);
  4544. mmap_event->event_id.header.size += sizeof(mmap_event->flags);
  4545. }
  4546. perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
  4547. ret = perf_output_begin(&handle, event,
  4548. mmap_event->event_id.header.size);
  4549. if (ret)
  4550. goto out;
  4551. mmap_event->event_id.pid = perf_event_pid(event, current);
  4552. mmap_event->event_id.tid = perf_event_tid(event, current);
  4553. perf_output_put(&handle, mmap_event->event_id);
  4554. if (event->attr.mmap2) {
  4555. perf_output_put(&handle, mmap_event->maj);
  4556. perf_output_put(&handle, mmap_event->min);
  4557. perf_output_put(&handle, mmap_event->ino);
  4558. perf_output_put(&handle, mmap_event->ino_generation);
  4559. perf_output_put(&handle, mmap_event->prot);
  4560. perf_output_put(&handle, mmap_event->flags);
  4561. }
  4562. __output_copy(&handle, mmap_event->file_name,
  4563. mmap_event->file_size);
  4564. perf_event__output_id_sample(event, &handle, &sample);
  4565. perf_output_end(&handle);
  4566. out:
  4567. mmap_event->event_id.header.size = size;
  4568. }
  4569. static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
  4570. {
  4571. struct vm_area_struct *vma = mmap_event->vma;
  4572. struct file *file = vma->vm_file;
  4573. int maj = 0, min = 0;
  4574. u64 ino = 0, gen = 0;
  4575. u32 prot = 0, flags = 0;
  4576. unsigned int size;
  4577. char tmp[16];
  4578. char *buf = NULL;
  4579. char *name;
  4580. if (file) {
  4581. struct inode *inode;
  4582. dev_t dev;
  4583. buf = kmalloc(PATH_MAX, GFP_KERNEL);
  4584. if (!buf) {
  4585. name = "//enomem";
  4586. goto cpy_name;
  4587. }
  4588. /*
  4589. * d_path() works from the end of the rb backwards, so we
  4590. * need to add enough zero bytes after the string to handle
  4591. * the 64bit alignment we do later.
  4592. */
  4593. name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
  4594. if (IS_ERR(name)) {
  4595. name = "//toolong";
  4596. goto cpy_name;
  4597. }
  4598. inode = file_inode(vma->vm_file);
  4599. dev = inode->i_sb->s_dev;
  4600. ino = inode->i_ino;
  4601. gen = inode->i_generation;
  4602. maj = MAJOR(dev);
  4603. min = MINOR(dev);
  4604. if (vma->vm_flags & VM_READ)
  4605. prot |= PROT_READ;
  4606. if (vma->vm_flags & VM_WRITE)
  4607. prot |= PROT_WRITE;
  4608. if (vma->vm_flags & VM_EXEC)
  4609. prot |= PROT_EXEC;
  4610. if (vma->vm_flags & VM_MAYSHARE)
  4611. flags = MAP_SHARED;
  4612. else
  4613. flags = MAP_PRIVATE;
  4614. if (vma->vm_flags & VM_DENYWRITE)
  4615. flags |= MAP_DENYWRITE;
  4616. if (vma->vm_flags & VM_MAYEXEC)
  4617. flags |= MAP_EXECUTABLE;
  4618. if (vma->vm_flags & VM_LOCKED)
  4619. flags |= MAP_LOCKED;
  4620. if (vma->vm_flags & VM_HUGETLB)
  4621. flags |= MAP_HUGETLB;
  4622. goto got_name;
  4623. } else {
  4624. if (vma->vm_ops && vma->vm_ops->name) {
  4625. name = (char *) vma->vm_ops->name(vma);
  4626. if (name)
  4627. goto cpy_name;
  4628. }
  4629. name = (char *)arch_vma_name(vma);
  4630. if (name)
  4631. goto cpy_name;
  4632. if (vma->vm_start <= vma->vm_mm->start_brk &&
  4633. vma->vm_end >= vma->vm_mm->brk) {
  4634. name = "[heap]";
  4635. goto cpy_name;
  4636. }
  4637. if (vma->vm_start <= vma->vm_mm->start_stack &&
  4638. vma->vm_end >= vma->vm_mm->start_stack) {
  4639. name = "[stack]";
  4640. goto cpy_name;
  4641. }
  4642. name = "//anon";
  4643. goto cpy_name;
  4644. }
  4645. cpy_name:
  4646. strlcpy(tmp, name, sizeof(tmp));
  4647. name = tmp;
  4648. got_name:
  4649. /*
  4650. * Since our buffer works in 8 byte units we need to align our string
  4651. * size to a multiple of 8. However, we must guarantee the tail end is
  4652. * zero'd out to avoid leaking random bits to userspace.
  4653. */
  4654. size = strlen(name)+1;
  4655. while (!IS_ALIGNED(size, sizeof(u64)))
  4656. name[size++] = '\0';
  4657. mmap_event->file_name = name;
  4658. mmap_event->file_size = size;
  4659. mmap_event->maj = maj;
  4660. mmap_event->min = min;
  4661. mmap_event->ino = ino;
  4662. mmap_event->ino_generation = gen;
  4663. mmap_event->prot = prot;
  4664. mmap_event->flags = flags;
  4665. if (!(vma->vm_flags & VM_EXEC))
  4666. mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
  4667. mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
  4668. perf_event_aux(perf_event_mmap_output,
  4669. mmap_event,
  4670. NULL);
  4671. kfree(buf);
  4672. }
  4673. void perf_event_mmap(struct vm_area_struct *vma)
  4674. {
  4675. struct perf_mmap_event mmap_event;
  4676. if (!atomic_read(&nr_mmap_events))
  4677. return;
  4678. mmap_event = (struct perf_mmap_event){
  4679. .vma = vma,
  4680. /* .file_name */
  4681. /* .file_size */
  4682. .event_id = {
  4683. .header = {
  4684. .type = PERF_RECORD_MMAP,
  4685. .misc = PERF_RECORD_MISC_USER,
  4686. /* .size */
  4687. },
  4688. /* .pid */
  4689. /* .tid */
  4690. .start = vma->vm_start,
  4691. .len = vma->vm_end - vma->vm_start,
  4692. .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
  4693. },
  4694. /* .maj (attr_mmap2 only) */
  4695. /* .min (attr_mmap2 only) */
  4696. /* .ino (attr_mmap2 only) */
  4697. /* .ino_generation (attr_mmap2 only) */
  4698. /* .prot (attr_mmap2 only) */
  4699. /* .flags (attr_mmap2 only) */
  4700. };
  4701. perf_event_mmap_event(&mmap_event);
  4702. }
  4703. /*
  4704. * IRQ throttle logging
  4705. */
  4706. static void perf_log_throttle(struct perf_event *event, int enable)
  4707. {
  4708. struct perf_output_handle handle;
  4709. struct perf_sample_data sample;
  4710. int ret;
  4711. struct {
  4712. struct perf_event_header header;
  4713. u64 time;
  4714. u64 id;
  4715. u64 stream_id;
  4716. } throttle_event = {
  4717. .header = {
  4718. .type = PERF_RECORD_THROTTLE,
  4719. .misc = 0,
  4720. .size = sizeof(throttle_event),
  4721. },
  4722. .time = perf_clock(),
  4723. .id = primary_event_id(event),
  4724. .stream_id = event->id,
  4725. };
  4726. if (enable)
  4727. throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
  4728. perf_event_header__init_id(&throttle_event.header, &sample, event);
  4729. ret = perf_output_begin(&handle, event,
  4730. throttle_event.header.size);
  4731. if (ret)
  4732. return;
  4733. perf_output_put(&handle, throttle_event);
  4734. perf_event__output_id_sample(event, &handle, &sample);
  4735. perf_output_end(&handle);
  4736. }
  4737. /*
  4738. * Generic event overflow handling, sampling.
  4739. */
  4740. static int __perf_event_overflow(struct perf_event *event,
  4741. int throttle, struct perf_sample_data *data,
  4742. struct pt_regs *regs)
  4743. {
  4744. int events = atomic_read(&event->event_limit);
  4745. struct hw_perf_event *hwc = &event->hw;
  4746. u64 seq;
  4747. int ret = 0;
  4748. /*
  4749. * Non-sampling counters might still use the PMI to fold short
  4750. * hardware counters, ignore those.
  4751. */
  4752. if (unlikely(!is_sampling_event(event)))
  4753. return 0;
  4754. seq = __this_cpu_read(perf_throttled_seq);
  4755. if (seq != hwc->interrupts_seq) {
  4756. hwc->interrupts_seq = seq;
  4757. hwc->interrupts = 1;
  4758. } else {
  4759. hwc->interrupts++;
  4760. if (unlikely(throttle
  4761. && hwc->interrupts >= max_samples_per_tick)) {
  4762. __this_cpu_inc(perf_throttled_count);
  4763. hwc->interrupts = MAX_INTERRUPTS;
  4764. perf_log_throttle(event, 0);
  4765. tick_nohz_full_kick();
  4766. ret = 1;
  4767. }
  4768. }
  4769. if (event->attr.freq) {
  4770. u64 now = perf_clock();
  4771. s64 delta = now - hwc->freq_time_stamp;
  4772. hwc->freq_time_stamp = now;
  4773. if (delta > 0 && delta < 2*TICK_NSEC)
  4774. perf_adjust_period(event, delta, hwc->last_period, true);
  4775. }
  4776. /*
  4777. * XXX event_limit might not quite work as expected on inherited
  4778. * events
  4779. */
  4780. event->pending_kill = POLL_IN;
  4781. if (events && atomic_dec_and_test(&event->event_limit)) {
  4782. ret = 1;
  4783. event->pending_kill = POLL_HUP;
  4784. event->pending_disable = 1;
  4785. irq_work_queue(&event->pending);
  4786. }
  4787. if (event->overflow_handler)
  4788. event->overflow_handler(event, data, regs);
  4789. else
  4790. perf_event_output(event, data, regs);
  4791. if (event->fasync && event->pending_kill) {
  4792. event->pending_wakeup = 1;
  4793. irq_work_queue(&event->pending);
  4794. }
  4795. return ret;
  4796. }
  4797. int perf_event_overflow(struct perf_event *event,
  4798. struct perf_sample_data *data,
  4799. struct pt_regs *regs)
  4800. {
  4801. return __perf_event_overflow(event, 1, data, regs);
  4802. }
  4803. /*
  4804. * Generic software event infrastructure
  4805. */
  4806. struct swevent_htable {
  4807. struct swevent_hlist *swevent_hlist;
  4808. struct mutex hlist_mutex;
  4809. int hlist_refcount;
  4810. /* Recursion avoidance in each contexts */
  4811. int recursion[PERF_NR_CONTEXTS];
  4812. /* Keeps track of cpu being initialized/exited */
  4813. bool online;
  4814. };
  4815. static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
  4816. /*
  4817. * We directly increment event->count and keep a second value in
  4818. * event->hw.period_left to count intervals. This period event
  4819. * is kept in the range [-sample_period, 0] so that we can use the
  4820. * sign as trigger.
  4821. */
  4822. u64 perf_swevent_set_period(struct perf_event *event)
  4823. {
  4824. struct hw_perf_event *hwc = &event->hw;
  4825. u64 period = hwc->last_period;
  4826. u64 nr, offset;
  4827. s64 old, val;
  4828. hwc->last_period = hwc->sample_period;
  4829. again:
  4830. old = val = local64_read(&hwc->period_left);
  4831. if (val < 0)
  4832. return 0;
  4833. nr = div64_u64(period + val, period);
  4834. offset = nr * period;
  4835. val -= offset;
  4836. if (local64_cmpxchg(&hwc->period_left, old, val) != old)
  4837. goto again;
  4838. return nr;
  4839. }
  4840. static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
  4841. struct perf_sample_data *data,
  4842. struct pt_regs *regs)
  4843. {
  4844. struct hw_perf_event *hwc = &event->hw;
  4845. int throttle = 0;
  4846. if (!overflow)
  4847. overflow = perf_swevent_set_period(event);
  4848. if (hwc->interrupts == MAX_INTERRUPTS)
  4849. return;
  4850. for (; overflow; overflow--) {
  4851. if (__perf_event_overflow(event, throttle,
  4852. data, regs)) {
  4853. /*
  4854. * We inhibit the overflow from happening when
  4855. * hwc->interrupts == MAX_INTERRUPTS.
  4856. */
  4857. break;
  4858. }
  4859. throttle = 1;
  4860. }
  4861. }
  4862. static void perf_swevent_event(struct perf_event *event, u64 nr,
  4863. struct perf_sample_data *data,
  4864. struct pt_regs *regs)
  4865. {
  4866. struct hw_perf_event *hwc = &event->hw;
  4867. local64_add(nr, &event->count);
  4868. if (!regs)
  4869. return;
  4870. if (!is_sampling_event(event))
  4871. return;
  4872. if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
  4873. data->period = nr;
  4874. return perf_swevent_overflow(event, 1, data, regs);
  4875. } else
  4876. data->period = event->hw.last_period;
  4877. if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
  4878. return perf_swevent_overflow(event, 1, data, regs);
  4879. if (local64_add_negative(nr, &hwc->period_left))
  4880. return;
  4881. perf_swevent_overflow(event, 0, data, regs);
  4882. }
  4883. static int perf_exclude_event(struct perf_event *event,
  4884. struct pt_regs *regs)
  4885. {
  4886. if (event->hw.state & PERF_HES_STOPPED)
  4887. return 1;
  4888. if (regs) {
  4889. if (event->attr.exclude_user && user_mode(regs))
  4890. return 1;
  4891. if (event->attr.exclude_kernel && !user_mode(regs))
  4892. return 1;
  4893. }
  4894. return 0;
  4895. }
  4896. static int perf_swevent_match(struct perf_event *event,
  4897. enum perf_type_id type,
  4898. u32 event_id,
  4899. struct perf_sample_data *data,
  4900. struct pt_regs *regs)
  4901. {
  4902. if (event->attr.type != type)
  4903. return 0;
  4904. if (event->attr.config != event_id)
  4905. return 0;
  4906. if (perf_exclude_event(event, regs))
  4907. return 0;
  4908. return 1;
  4909. }
  4910. static inline u64 swevent_hash(u64 type, u32 event_id)
  4911. {
  4912. u64 val = event_id | (type << 32);
  4913. return hash_64(val, SWEVENT_HLIST_BITS);
  4914. }
  4915. static inline struct hlist_head *
  4916. __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
  4917. {
  4918. u64 hash = swevent_hash(type, event_id);
  4919. return &hlist->heads[hash];
  4920. }
  4921. /* For the read side: events when they trigger */
  4922. static inline struct hlist_head *
  4923. find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
  4924. {
  4925. struct swevent_hlist *hlist;
  4926. hlist = rcu_dereference(swhash->swevent_hlist);
  4927. if (!hlist)
  4928. return NULL;
  4929. return __find_swevent_head(hlist, type, event_id);
  4930. }
  4931. /* For the event head insertion and removal in the hlist */
  4932. static inline struct hlist_head *
  4933. find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
  4934. {
  4935. struct swevent_hlist *hlist;
  4936. u32 event_id = event->attr.config;
  4937. u64 type = event->attr.type;
  4938. /*
  4939. * Event scheduling is always serialized against hlist allocation
  4940. * and release. Which makes the protected version suitable here.
  4941. * The context lock guarantees that.
  4942. */
  4943. hlist = rcu_dereference_protected(swhash->swevent_hlist,
  4944. lockdep_is_held(&event->ctx->lock));
  4945. if (!hlist)
  4946. return NULL;
  4947. return __find_swevent_head(hlist, type, event_id);
  4948. }
  4949. static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
  4950. u64 nr,
  4951. struct perf_sample_data *data,
  4952. struct pt_regs *regs)
  4953. {
  4954. struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
  4955. struct perf_event *event;
  4956. struct hlist_head *head;
  4957. rcu_read_lock();
  4958. head = find_swevent_head_rcu(swhash, type, event_id);
  4959. if (!head)
  4960. goto end;
  4961. hlist_for_each_entry_rcu(event, head, hlist_entry) {
  4962. if (perf_swevent_match(event, type, event_id, data, regs))
  4963. perf_swevent_event(event, nr, data, regs);
  4964. }
  4965. end:
  4966. rcu_read_unlock();
  4967. }
  4968. DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
  4969. int perf_swevent_get_recursion_context(void)
  4970. {
  4971. struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
  4972. return get_recursion_context(swhash->recursion);
  4973. }
  4974. EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
  4975. inline void perf_swevent_put_recursion_context(int rctx)
  4976. {
  4977. struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
  4978. put_recursion_context(swhash->recursion, rctx);
  4979. }
  4980. void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
  4981. {
  4982. struct perf_sample_data data;
  4983. if (WARN_ON_ONCE(!regs))
  4984. return;
  4985. perf_sample_data_init(&data, addr, 0);
  4986. do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
  4987. }
  4988. void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
  4989. {
  4990. int rctx;
  4991. preempt_disable_notrace();
  4992. rctx = perf_swevent_get_recursion_context();
  4993. if (unlikely(rctx < 0))
  4994. goto fail;
  4995. ___perf_sw_event(event_id, nr, regs, addr);
  4996. perf_swevent_put_recursion_context(rctx);
  4997. fail:
  4998. preempt_enable_notrace();
  4999. }
  5000. static void perf_swevent_read(struct perf_event *event)
  5001. {
  5002. }
  5003. static int perf_swevent_add(struct perf_event *event, int flags)
  5004. {
  5005. struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
  5006. struct hw_perf_event *hwc = &event->hw;
  5007. struct hlist_head *head;
  5008. if (is_sampling_event(event)) {
  5009. hwc->last_period = hwc->sample_period;
  5010. perf_swevent_set_period(event);
  5011. }
  5012. hwc->state = !(flags & PERF_EF_START);
  5013. head = find_swevent_head(swhash, event);
  5014. if (!head) {
  5015. /*
  5016. * We can race with cpu hotplug code. Do not
  5017. * WARN if the cpu just got unplugged.
  5018. */
  5019. WARN_ON_ONCE(swhash->online);
  5020. return -EINVAL;
  5021. }
  5022. hlist_add_head_rcu(&event->hlist_entry, head);
  5023. return 0;
  5024. }
  5025. static void perf_swevent_del(struct perf_event *event, int flags)
  5026. {
  5027. hlist_del_rcu(&event->hlist_entry);
  5028. }
  5029. static void perf_swevent_start(struct perf_event *event, int flags)
  5030. {
  5031. event->hw.state = 0;
  5032. }
  5033. static void perf_swevent_stop(struct perf_event *event, int flags)
  5034. {
  5035. event->hw.state = PERF_HES_STOPPED;
  5036. }
  5037. /* Deref the hlist from the update side */
  5038. static inline struct swevent_hlist *
  5039. swevent_hlist_deref(struct swevent_htable *swhash)
  5040. {
  5041. return rcu_dereference_protected(swhash->swevent_hlist,
  5042. lockdep_is_held(&swhash->hlist_mutex));
  5043. }
  5044. static void swevent_hlist_release(struct swevent_htable *swhash)
  5045. {
  5046. struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
  5047. if (!hlist)
  5048. return;
  5049. RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
  5050. kfree_rcu(hlist, rcu_head);
  5051. }
  5052. static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
  5053. {
  5054. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  5055. mutex_lock(&swhash->hlist_mutex);
  5056. if (!--swhash->hlist_refcount)
  5057. swevent_hlist_release(swhash);
  5058. mutex_unlock(&swhash->hlist_mutex);
  5059. }
  5060. static void swevent_hlist_put(struct perf_event *event)
  5061. {
  5062. int cpu;
  5063. for_each_possible_cpu(cpu)
  5064. swevent_hlist_put_cpu(event, cpu);
  5065. }
  5066. static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
  5067. {
  5068. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  5069. int err = 0;
  5070. mutex_lock(&swhash->hlist_mutex);
  5071. if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
  5072. struct swevent_hlist *hlist;
  5073. hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
  5074. if (!hlist) {
  5075. err = -ENOMEM;
  5076. goto exit;
  5077. }
  5078. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  5079. }
  5080. swhash->hlist_refcount++;
  5081. exit:
  5082. mutex_unlock(&swhash->hlist_mutex);
  5083. return err;
  5084. }
  5085. static int swevent_hlist_get(struct perf_event *event)
  5086. {
  5087. int err;
  5088. int cpu, failed_cpu;
  5089. get_online_cpus();
  5090. for_each_possible_cpu(cpu) {
  5091. err = swevent_hlist_get_cpu(event, cpu);
  5092. if (err) {
  5093. failed_cpu = cpu;
  5094. goto fail;
  5095. }
  5096. }
  5097. put_online_cpus();
  5098. return 0;
  5099. fail:
  5100. for_each_possible_cpu(cpu) {
  5101. if (cpu == failed_cpu)
  5102. break;
  5103. swevent_hlist_put_cpu(event, cpu);
  5104. }
  5105. put_online_cpus();
  5106. return err;
  5107. }
  5108. struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
  5109. static void sw_perf_event_destroy(struct perf_event *event)
  5110. {
  5111. u64 event_id = event->attr.config;
  5112. WARN_ON(event->parent);
  5113. static_key_slow_dec(&perf_swevent_enabled[event_id]);
  5114. swevent_hlist_put(event);
  5115. }
  5116. static int perf_swevent_init(struct perf_event *event)
  5117. {
  5118. u64 event_id = event->attr.config;
  5119. if (event->attr.type != PERF_TYPE_SOFTWARE)
  5120. return -ENOENT;
  5121. /*
  5122. * no branch sampling for software events
  5123. */
  5124. if (has_branch_stack(event))
  5125. return -EOPNOTSUPP;
  5126. switch (event_id) {
  5127. case PERF_COUNT_SW_CPU_CLOCK:
  5128. case PERF_COUNT_SW_TASK_CLOCK:
  5129. return -ENOENT;
  5130. default:
  5131. break;
  5132. }
  5133. if (event_id >= PERF_COUNT_SW_MAX)
  5134. return -ENOENT;
  5135. if (!event->parent) {
  5136. int err;
  5137. err = swevent_hlist_get(event);
  5138. if (err)
  5139. return err;
  5140. static_key_slow_inc(&perf_swevent_enabled[event_id]);
  5141. event->destroy = sw_perf_event_destroy;
  5142. }
  5143. return 0;
  5144. }
  5145. static struct pmu perf_swevent = {
  5146. .task_ctx_nr = perf_sw_context,
  5147. .event_init = perf_swevent_init,
  5148. .add = perf_swevent_add,
  5149. .del = perf_swevent_del,
  5150. .start = perf_swevent_start,
  5151. .stop = perf_swevent_stop,
  5152. .read = perf_swevent_read,
  5153. };
  5154. #ifdef CONFIG_EVENT_TRACING
  5155. static int perf_tp_filter_match(struct perf_event *event,
  5156. struct perf_sample_data *data)
  5157. {
  5158. void *record = data->raw->data;
  5159. if (likely(!event->filter) || filter_match_preds(event->filter, record))
  5160. return 1;
  5161. return 0;
  5162. }
  5163. static int perf_tp_event_match(struct perf_event *event,
  5164. struct perf_sample_data *data,
  5165. struct pt_regs *regs)
  5166. {
  5167. if (event->hw.state & PERF_HES_STOPPED)
  5168. return 0;
  5169. /*
  5170. * All tracepoints are from kernel-space.
  5171. */
  5172. if (event->attr.exclude_kernel)
  5173. return 0;
  5174. if (!perf_tp_filter_match(event, data))
  5175. return 0;
  5176. return 1;
  5177. }
  5178. void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
  5179. struct pt_regs *regs, struct hlist_head *head, int rctx,
  5180. struct task_struct *task)
  5181. {
  5182. struct perf_sample_data data;
  5183. struct perf_event *event;
  5184. struct perf_raw_record raw = {
  5185. .size = entry_size,
  5186. .data = record,
  5187. };
  5188. perf_sample_data_init(&data, addr, 0);
  5189. data.raw = &raw;
  5190. hlist_for_each_entry_rcu(event, head, hlist_entry) {
  5191. if (perf_tp_event_match(event, &data, regs))
  5192. perf_swevent_event(event, count, &data, regs);
  5193. }
  5194. /*
  5195. * If we got specified a target task, also iterate its context and
  5196. * deliver this event there too.
  5197. */
  5198. if (task && task != current) {
  5199. struct perf_event_context *ctx;
  5200. struct trace_entry *entry = record;
  5201. rcu_read_lock();
  5202. ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
  5203. if (!ctx)
  5204. goto unlock;
  5205. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  5206. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  5207. continue;
  5208. if (event->attr.config != entry->type)
  5209. continue;
  5210. if (perf_tp_event_match(event, &data, regs))
  5211. perf_swevent_event(event, count, &data, regs);
  5212. }
  5213. unlock:
  5214. rcu_read_unlock();
  5215. }
  5216. perf_swevent_put_recursion_context(rctx);
  5217. }
  5218. EXPORT_SYMBOL_GPL(perf_tp_event);
  5219. static void tp_perf_event_destroy(struct perf_event *event)
  5220. {
  5221. perf_trace_destroy(event);
  5222. }
  5223. static int perf_tp_event_init(struct perf_event *event)
  5224. {
  5225. int err;
  5226. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  5227. return -ENOENT;
  5228. /*
  5229. * no branch sampling for tracepoint events
  5230. */
  5231. if (has_branch_stack(event))
  5232. return -EOPNOTSUPP;
  5233. err = perf_trace_init(event);
  5234. if (err)
  5235. return err;
  5236. event->destroy = tp_perf_event_destroy;
  5237. return 0;
  5238. }
  5239. static struct pmu perf_tracepoint = {
  5240. .task_ctx_nr = perf_sw_context,
  5241. .event_init = perf_tp_event_init,
  5242. .add = perf_trace_add,
  5243. .del = perf_trace_del,
  5244. .start = perf_swevent_start,
  5245. .stop = perf_swevent_stop,
  5246. .read = perf_swevent_read,
  5247. };
  5248. static inline void perf_tp_register(void)
  5249. {
  5250. perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
  5251. }
  5252. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  5253. {
  5254. char *filter_str;
  5255. int ret;
  5256. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  5257. return -EINVAL;
  5258. filter_str = strndup_user(arg, PAGE_SIZE);
  5259. if (IS_ERR(filter_str))
  5260. return PTR_ERR(filter_str);
  5261. ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
  5262. kfree(filter_str);
  5263. return ret;
  5264. }
  5265. static void perf_event_free_filter(struct perf_event *event)
  5266. {
  5267. ftrace_profile_free_filter(event);
  5268. }
  5269. #else
  5270. static inline void perf_tp_register(void)
  5271. {
  5272. }
  5273. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  5274. {
  5275. return -ENOENT;
  5276. }
  5277. static void perf_event_free_filter(struct perf_event *event)
  5278. {
  5279. }
  5280. #endif /* CONFIG_EVENT_TRACING */
  5281. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  5282. void perf_bp_event(struct perf_event *bp, void *data)
  5283. {
  5284. struct perf_sample_data sample;
  5285. struct pt_regs *regs = data;
  5286. perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
  5287. if (!bp->hw.state && !perf_exclude_event(bp, regs))
  5288. perf_swevent_event(bp, 1, &sample, regs);
  5289. }
  5290. #endif
  5291. /*
  5292. * hrtimer based swevent callback
  5293. */
  5294. static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
  5295. {
  5296. enum hrtimer_restart ret = HRTIMER_RESTART;
  5297. struct perf_sample_data data;
  5298. struct pt_regs *regs;
  5299. struct perf_event *event;
  5300. u64 period;
  5301. event = container_of(hrtimer, struct perf_event, hw.hrtimer);
  5302. if (event->state != PERF_EVENT_STATE_ACTIVE)
  5303. return HRTIMER_NORESTART;
  5304. event->pmu->read(event);
  5305. perf_sample_data_init(&data, 0, event->hw.last_period);
  5306. regs = get_irq_regs();
  5307. if (regs && !perf_exclude_event(event, regs)) {
  5308. if (!(event->attr.exclude_idle && is_idle_task(current)))
  5309. if (__perf_event_overflow(event, 1, &data, regs))
  5310. ret = HRTIMER_NORESTART;
  5311. }
  5312. period = max_t(u64, 10000, event->hw.sample_period);
  5313. hrtimer_forward_now(hrtimer, ns_to_ktime(period));
  5314. return ret;
  5315. }
  5316. static void perf_swevent_start_hrtimer(struct perf_event *event)
  5317. {
  5318. struct hw_perf_event *hwc = &event->hw;
  5319. s64 period;
  5320. if (!is_sampling_event(event))
  5321. return;
  5322. period = local64_read(&hwc->period_left);
  5323. if (period) {
  5324. if (period < 0)
  5325. period = 10000;
  5326. local64_set(&hwc->period_left, 0);
  5327. } else {
  5328. period = max_t(u64, 10000, hwc->sample_period);
  5329. }
  5330. __hrtimer_start_range_ns(&hwc->hrtimer,
  5331. ns_to_ktime(period), 0,
  5332. HRTIMER_MODE_REL_PINNED, 0);
  5333. }
  5334. static void perf_swevent_cancel_hrtimer(struct perf_event *event)
  5335. {
  5336. struct hw_perf_event *hwc = &event->hw;
  5337. if (is_sampling_event(event)) {
  5338. ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
  5339. local64_set(&hwc->period_left, ktime_to_ns(remaining));
  5340. hrtimer_cancel(&hwc->hrtimer);
  5341. }
  5342. }
  5343. static void perf_swevent_init_hrtimer(struct perf_event *event)
  5344. {
  5345. struct hw_perf_event *hwc = &event->hw;
  5346. if (!is_sampling_event(event))
  5347. return;
  5348. hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  5349. hwc->hrtimer.function = perf_swevent_hrtimer;
  5350. /*
  5351. * Since hrtimers have a fixed rate, we can do a static freq->period
  5352. * mapping and avoid the whole period adjust feedback stuff.
  5353. */
  5354. if (event->attr.freq) {
  5355. long freq = event->attr.sample_freq;
  5356. event->attr.sample_period = NSEC_PER_SEC / freq;
  5357. hwc->sample_period = event->attr.sample_period;
  5358. local64_set(&hwc->period_left, hwc->sample_period);
  5359. hwc->last_period = hwc->sample_period;
  5360. event->attr.freq = 0;
  5361. }
  5362. }
  5363. /*
  5364. * Software event: cpu wall time clock
  5365. */
  5366. static void cpu_clock_event_update(struct perf_event *event)
  5367. {
  5368. s64 prev;
  5369. u64 now;
  5370. now = local_clock();
  5371. prev = local64_xchg(&event->hw.prev_count, now);
  5372. local64_add(now - prev, &event->count);
  5373. }
  5374. static void cpu_clock_event_start(struct perf_event *event, int flags)
  5375. {
  5376. local64_set(&event->hw.prev_count, local_clock());
  5377. perf_swevent_start_hrtimer(event);
  5378. }
  5379. static void cpu_clock_event_stop(struct perf_event *event, int flags)
  5380. {
  5381. perf_swevent_cancel_hrtimer(event);
  5382. cpu_clock_event_update(event);
  5383. }
  5384. static int cpu_clock_event_add(struct perf_event *event, int flags)
  5385. {
  5386. if (flags & PERF_EF_START)
  5387. cpu_clock_event_start(event, flags);
  5388. return 0;
  5389. }
  5390. static void cpu_clock_event_del(struct perf_event *event, int flags)
  5391. {
  5392. cpu_clock_event_stop(event, flags);
  5393. }
  5394. static void cpu_clock_event_read(struct perf_event *event)
  5395. {
  5396. cpu_clock_event_update(event);
  5397. }
  5398. static int cpu_clock_event_init(struct perf_event *event)
  5399. {
  5400. if (event->attr.type != PERF_TYPE_SOFTWARE)
  5401. return -ENOENT;
  5402. if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
  5403. return -ENOENT;
  5404. /*
  5405. * no branch sampling for software events
  5406. */
  5407. if (has_branch_stack(event))
  5408. return -EOPNOTSUPP;
  5409. perf_swevent_init_hrtimer(event);
  5410. return 0;
  5411. }
  5412. static struct pmu perf_cpu_clock = {
  5413. .task_ctx_nr = perf_sw_context,
  5414. .event_init = cpu_clock_event_init,
  5415. .add = cpu_clock_event_add,
  5416. .del = cpu_clock_event_del,
  5417. .start = cpu_clock_event_start,
  5418. .stop = cpu_clock_event_stop,
  5419. .read = cpu_clock_event_read,
  5420. };
  5421. /*
  5422. * Software event: task time clock
  5423. */
  5424. static void task_clock_event_update(struct perf_event *event, u64 now)
  5425. {
  5426. u64 prev;
  5427. s64 delta;
  5428. prev = local64_xchg(&event->hw.prev_count, now);
  5429. delta = now - prev;
  5430. local64_add(delta, &event->count);
  5431. }
  5432. static void task_clock_event_start(struct perf_event *event, int flags)
  5433. {
  5434. local64_set(&event->hw.prev_count, event->ctx->time);
  5435. perf_swevent_start_hrtimer(event);
  5436. }
  5437. static void task_clock_event_stop(struct perf_event *event, int flags)
  5438. {
  5439. perf_swevent_cancel_hrtimer(event);
  5440. task_clock_event_update(event, event->ctx->time);
  5441. }
  5442. static int task_clock_event_add(struct perf_event *event, int flags)
  5443. {
  5444. if (flags & PERF_EF_START)
  5445. task_clock_event_start(event, flags);
  5446. return 0;
  5447. }
  5448. static void task_clock_event_del(struct perf_event *event, int flags)
  5449. {
  5450. task_clock_event_stop(event, PERF_EF_UPDATE);
  5451. }
  5452. static void task_clock_event_read(struct perf_event *event)
  5453. {
  5454. u64 now = perf_clock();
  5455. u64 delta = now - event->ctx->timestamp;
  5456. u64 time = event->ctx->time + delta;
  5457. task_clock_event_update(event, time);
  5458. }
  5459. static int task_clock_event_init(struct perf_event *event)
  5460. {
  5461. if (event->attr.type != PERF_TYPE_SOFTWARE)
  5462. return -ENOENT;
  5463. if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
  5464. return -ENOENT;
  5465. /*
  5466. * no branch sampling for software events
  5467. */
  5468. if (has_branch_stack(event))
  5469. return -EOPNOTSUPP;
  5470. perf_swevent_init_hrtimer(event);
  5471. return 0;
  5472. }
  5473. static struct pmu perf_task_clock = {
  5474. .task_ctx_nr = perf_sw_context,
  5475. .event_init = task_clock_event_init,
  5476. .add = task_clock_event_add,
  5477. .del = task_clock_event_del,
  5478. .start = task_clock_event_start,
  5479. .stop = task_clock_event_stop,
  5480. .read = task_clock_event_read,
  5481. };
  5482. static void perf_pmu_nop_void(struct pmu *pmu)
  5483. {
  5484. }
  5485. static int perf_pmu_nop_int(struct pmu *pmu)
  5486. {
  5487. return 0;
  5488. }
  5489. static void perf_pmu_start_txn(struct pmu *pmu)
  5490. {
  5491. perf_pmu_disable(pmu);
  5492. }
  5493. static int perf_pmu_commit_txn(struct pmu *pmu)
  5494. {
  5495. perf_pmu_enable(pmu);
  5496. return 0;
  5497. }
  5498. static void perf_pmu_cancel_txn(struct pmu *pmu)
  5499. {
  5500. perf_pmu_enable(pmu);
  5501. }
  5502. static int perf_event_idx_default(struct perf_event *event)
  5503. {
  5504. return 0;
  5505. }
  5506. /*
  5507. * Ensures all contexts with the same task_ctx_nr have the same
  5508. * pmu_cpu_context too.
  5509. */
  5510. static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
  5511. {
  5512. struct pmu *pmu;
  5513. if (ctxn < 0)
  5514. return NULL;
  5515. list_for_each_entry(pmu, &pmus, entry) {
  5516. if (pmu->task_ctx_nr == ctxn)
  5517. return pmu->pmu_cpu_context;
  5518. }
  5519. return NULL;
  5520. }
  5521. static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
  5522. {
  5523. int cpu;
  5524. for_each_possible_cpu(cpu) {
  5525. struct perf_cpu_context *cpuctx;
  5526. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  5527. if (cpuctx->unique_pmu == old_pmu)
  5528. cpuctx->unique_pmu = pmu;
  5529. }
  5530. }
  5531. static void free_pmu_context(struct pmu *pmu)
  5532. {
  5533. struct pmu *i;
  5534. mutex_lock(&pmus_lock);
  5535. /*
  5536. * Like a real lame refcount.
  5537. */
  5538. list_for_each_entry(i, &pmus, entry) {
  5539. if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
  5540. update_pmu_context(i, pmu);
  5541. goto out;
  5542. }
  5543. }
  5544. free_percpu(pmu->pmu_cpu_context);
  5545. out:
  5546. mutex_unlock(&pmus_lock);
  5547. }
  5548. static struct idr pmu_idr;
  5549. static ssize_t
  5550. type_show(struct device *dev, struct device_attribute *attr, char *page)
  5551. {
  5552. struct pmu *pmu = dev_get_drvdata(dev);
  5553. return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
  5554. }
  5555. static DEVICE_ATTR_RO(type);
  5556. static ssize_t
  5557. perf_event_mux_interval_ms_show(struct device *dev,
  5558. struct device_attribute *attr,
  5559. char *page)
  5560. {
  5561. struct pmu *pmu = dev_get_drvdata(dev);
  5562. return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
  5563. }
  5564. static ssize_t
  5565. perf_event_mux_interval_ms_store(struct device *dev,
  5566. struct device_attribute *attr,
  5567. const char *buf, size_t count)
  5568. {
  5569. struct pmu *pmu = dev_get_drvdata(dev);
  5570. int timer, cpu, ret;
  5571. ret = kstrtoint(buf, 0, &timer);
  5572. if (ret)
  5573. return ret;
  5574. if (timer < 1)
  5575. return -EINVAL;
  5576. /* same value, noting to do */
  5577. if (timer == pmu->hrtimer_interval_ms)
  5578. return count;
  5579. pmu->hrtimer_interval_ms = timer;
  5580. /* update all cpuctx for this PMU */
  5581. for_each_possible_cpu(cpu) {
  5582. struct perf_cpu_context *cpuctx;
  5583. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  5584. cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
  5585. if (hrtimer_active(&cpuctx->hrtimer))
  5586. hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
  5587. }
  5588. return count;
  5589. }
  5590. static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
  5591. static struct attribute *pmu_dev_attrs[] = {
  5592. &dev_attr_type.attr,
  5593. &dev_attr_perf_event_mux_interval_ms.attr,
  5594. NULL,
  5595. };
  5596. ATTRIBUTE_GROUPS(pmu_dev);
  5597. static int pmu_bus_running;
  5598. static struct bus_type pmu_bus = {
  5599. .name = "event_source",
  5600. .dev_groups = pmu_dev_groups,
  5601. };
  5602. static void pmu_dev_release(struct device *dev)
  5603. {
  5604. kfree(dev);
  5605. }
  5606. static int pmu_dev_alloc(struct pmu *pmu)
  5607. {
  5608. int ret = -ENOMEM;
  5609. pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  5610. if (!pmu->dev)
  5611. goto out;
  5612. pmu->dev->groups = pmu->attr_groups;
  5613. device_initialize(pmu->dev);
  5614. ret = dev_set_name(pmu->dev, "%s", pmu->name);
  5615. if (ret)
  5616. goto free_dev;
  5617. dev_set_drvdata(pmu->dev, pmu);
  5618. pmu->dev->bus = &pmu_bus;
  5619. pmu->dev->release = pmu_dev_release;
  5620. ret = device_add(pmu->dev);
  5621. if (ret)
  5622. goto free_dev;
  5623. out:
  5624. return ret;
  5625. free_dev:
  5626. put_device(pmu->dev);
  5627. goto out;
  5628. }
  5629. static struct lock_class_key cpuctx_mutex;
  5630. static struct lock_class_key cpuctx_lock;
  5631. int perf_pmu_register(struct pmu *pmu, const char *name, int type)
  5632. {
  5633. int cpu, ret;
  5634. mutex_lock(&pmus_lock);
  5635. ret = -ENOMEM;
  5636. pmu->pmu_disable_count = alloc_percpu(int);
  5637. if (!pmu->pmu_disable_count)
  5638. goto unlock;
  5639. pmu->type = -1;
  5640. if (!name)
  5641. goto skip_type;
  5642. pmu->name = name;
  5643. if (type < 0) {
  5644. type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
  5645. if (type < 0) {
  5646. ret = type;
  5647. goto free_pdc;
  5648. }
  5649. }
  5650. pmu->type = type;
  5651. if (pmu_bus_running) {
  5652. ret = pmu_dev_alloc(pmu);
  5653. if (ret)
  5654. goto free_idr;
  5655. }
  5656. skip_type:
  5657. pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
  5658. if (pmu->pmu_cpu_context)
  5659. goto got_cpu_context;
  5660. ret = -ENOMEM;
  5661. pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
  5662. if (!pmu->pmu_cpu_context)
  5663. goto free_dev;
  5664. for_each_possible_cpu(cpu) {
  5665. struct perf_cpu_context *cpuctx;
  5666. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  5667. __perf_event_init_context(&cpuctx->ctx);
  5668. lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
  5669. lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
  5670. cpuctx->ctx.pmu = pmu;
  5671. __perf_cpu_hrtimer_init(cpuctx, cpu);
  5672. cpuctx->unique_pmu = pmu;
  5673. }
  5674. got_cpu_context:
  5675. if (!pmu->start_txn) {
  5676. if (pmu->pmu_enable) {
  5677. /*
  5678. * If we have pmu_enable/pmu_disable calls, install
  5679. * transaction stubs that use that to try and batch
  5680. * hardware accesses.
  5681. */
  5682. pmu->start_txn = perf_pmu_start_txn;
  5683. pmu->commit_txn = perf_pmu_commit_txn;
  5684. pmu->cancel_txn = perf_pmu_cancel_txn;
  5685. } else {
  5686. pmu->start_txn = perf_pmu_nop_void;
  5687. pmu->commit_txn = perf_pmu_nop_int;
  5688. pmu->cancel_txn = perf_pmu_nop_void;
  5689. }
  5690. }
  5691. if (!pmu->pmu_enable) {
  5692. pmu->pmu_enable = perf_pmu_nop_void;
  5693. pmu->pmu_disable = perf_pmu_nop_void;
  5694. }
  5695. if (!pmu->event_idx)
  5696. pmu->event_idx = perf_event_idx_default;
  5697. list_add_rcu(&pmu->entry, &pmus);
  5698. ret = 0;
  5699. unlock:
  5700. mutex_unlock(&pmus_lock);
  5701. return ret;
  5702. free_dev:
  5703. device_del(pmu->dev);
  5704. put_device(pmu->dev);
  5705. free_idr:
  5706. if (pmu->type >= PERF_TYPE_MAX)
  5707. idr_remove(&pmu_idr, pmu->type);
  5708. free_pdc:
  5709. free_percpu(pmu->pmu_disable_count);
  5710. goto unlock;
  5711. }
  5712. EXPORT_SYMBOL_GPL(perf_pmu_register);
  5713. void perf_pmu_unregister(struct pmu *pmu)
  5714. {
  5715. mutex_lock(&pmus_lock);
  5716. list_del_rcu(&pmu->entry);
  5717. mutex_unlock(&pmus_lock);
  5718. /*
  5719. * We dereference the pmu list under both SRCU and regular RCU, so
  5720. * synchronize against both of those.
  5721. */
  5722. synchronize_srcu(&pmus_srcu);
  5723. synchronize_rcu();
  5724. free_percpu(pmu->pmu_disable_count);
  5725. if (pmu->type >= PERF_TYPE_MAX)
  5726. idr_remove(&pmu_idr, pmu->type);
  5727. device_del(pmu->dev);
  5728. put_device(pmu->dev);
  5729. free_pmu_context(pmu);
  5730. }
  5731. EXPORT_SYMBOL_GPL(perf_pmu_unregister);
  5732. static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
  5733. {
  5734. int ret;
  5735. if (!try_module_get(pmu->module))
  5736. return -ENODEV;
  5737. event->pmu = pmu;
  5738. ret = pmu->event_init(event);
  5739. if (ret)
  5740. module_put(pmu->module);
  5741. return ret;
  5742. }
  5743. struct pmu *perf_init_event(struct perf_event *event)
  5744. {
  5745. struct pmu *pmu = NULL;
  5746. int idx;
  5747. int ret;
  5748. idx = srcu_read_lock(&pmus_srcu);
  5749. rcu_read_lock();
  5750. pmu = idr_find(&pmu_idr, event->attr.type);
  5751. rcu_read_unlock();
  5752. if (pmu) {
  5753. ret = perf_try_init_event(pmu, event);
  5754. if (ret)
  5755. pmu = ERR_PTR(ret);
  5756. goto unlock;
  5757. }
  5758. list_for_each_entry_rcu(pmu, &pmus, entry) {
  5759. ret = perf_try_init_event(pmu, event);
  5760. if (!ret)
  5761. goto unlock;
  5762. if (ret != -ENOENT) {
  5763. pmu = ERR_PTR(ret);
  5764. goto unlock;
  5765. }
  5766. }
  5767. pmu = ERR_PTR(-ENOENT);
  5768. unlock:
  5769. srcu_read_unlock(&pmus_srcu, idx);
  5770. return pmu;
  5771. }
  5772. static void account_event_cpu(struct perf_event *event, int cpu)
  5773. {
  5774. if (event->parent)
  5775. return;
  5776. if (has_branch_stack(event)) {
  5777. if (!(event->attach_state & PERF_ATTACH_TASK))
  5778. atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
  5779. }
  5780. if (is_cgroup_event(event))
  5781. atomic_inc(&per_cpu(perf_cgroup_events, cpu));
  5782. }
  5783. static void account_event(struct perf_event *event)
  5784. {
  5785. if (event->parent)
  5786. return;
  5787. if (event->attach_state & PERF_ATTACH_TASK)
  5788. static_key_slow_inc(&perf_sched_events.key);
  5789. if (event->attr.mmap || event->attr.mmap_data)
  5790. atomic_inc(&nr_mmap_events);
  5791. if (event->attr.comm)
  5792. atomic_inc(&nr_comm_events);
  5793. if (event->attr.task)
  5794. atomic_inc(&nr_task_events);
  5795. if (event->attr.freq) {
  5796. if (atomic_inc_return(&nr_freq_events) == 1)
  5797. tick_nohz_full_kick_all();
  5798. }
  5799. if (has_branch_stack(event))
  5800. static_key_slow_inc(&perf_sched_events.key);
  5801. if (is_cgroup_event(event))
  5802. static_key_slow_inc(&perf_sched_events.key);
  5803. account_event_cpu(event, event->cpu);
  5804. }
  5805. /*
  5806. * Allocate and initialize a event structure
  5807. */
  5808. static struct perf_event *
  5809. perf_event_alloc(struct perf_event_attr *attr, int cpu,
  5810. struct task_struct *task,
  5811. struct perf_event *group_leader,
  5812. struct perf_event *parent_event,
  5813. perf_overflow_handler_t overflow_handler,
  5814. void *context)
  5815. {
  5816. struct pmu *pmu;
  5817. struct perf_event *event;
  5818. struct hw_perf_event *hwc;
  5819. long err = -EINVAL;
  5820. if ((unsigned)cpu >= nr_cpu_ids) {
  5821. if (!task || cpu != -1)
  5822. return ERR_PTR(-EINVAL);
  5823. }
  5824. event = kzalloc(sizeof(*event), GFP_KERNEL);
  5825. if (!event)
  5826. return ERR_PTR(-ENOMEM);
  5827. /*
  5828. * Single events are their own group leaders, with an
  5829. * empty sibling list:
  5830. */
  5831. if (!group_leader)
  5832. group_leader = event;
  5833. mutex_init(&event->child_mutex);
  5834. INIT_LIST_HEAD(&event->child_list);
  5835. INIT_LIST_HEAD(&event->group_entry);
  5836. INIT_LIST_HEAD(&event->event_entry);
  5837. INIT_LIST_HEAD(&event->sibling_list);
  5838. INIT_LIST_HEAD(&event->rb_entry);
  5839. INIT_LIST_HEAD(&event->active_entry);
  5840. INIT_HLIST_NODE(&event->hlist_entry);
  5841. init_waitqueue_head(&event->waitq);
  5842. init_irq_work(&event->pending, perf_pending_event);
  5843. mutex_init(&event->mmap_mutex);
  5844. atomic_long_set(&event->refcount, 1);
  5845. event->cpu = cpu;
  5846. event->attr = *attr;
  5847. event->group_leader = group_leader;
  5848. event->pmu = NULL;
  5849. event->oncpu = -1;
  5850. event->parent = parent_event;
  5851. event->ns = get_pid_ns(task_active_pid_ns(current));
  5852. event->id = atomic64_inc_return(&perf_event_id);
  5853. event->state = PERF_EVENT_STATE_INACTIVE;
  5854. if (task) {
  5855. event->attach_state = PERF_ATTACH_TASK;
  5856. if (attr->type == PERF_TYPE_TRACEPOINT)
  5857. event->hw.tp_target = task;
  5858. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  5859. /*
  5860. * hw_breakpoint is a bit difficult here..
  5861. */
  5862. else if (attr->type == PERF_TYPE_BREAKPOINT)
  5863. event->hw.bp_target = task;
  5864. #endif
  5865. }
  5866. if (!overflow_handler && parent_event) {
  5867. overflow_handler = parent_event->overflow_handler;
  5868. context = parent_event->overflow_handler_context;
  5869. }
  5870. event->overflow_handler = overflow_handler;
  5871. event->overflow_handler_context = context;
  5872. perf_event__state_init(event);
  5873. pmu = NULL;
  5874. hwc = &event->hw;
  5875. hwc->sample_period = attr->sample_period;
  5876. if (attr->freq && attr->sample_freq)
  5877. hwc->sample_period = 1;
  5878. hwc->last_period = hwc->sample_period;
  5879. local64_set(&hwc->period_left, hwc->sample_period);
  5880. /*
  5881. * we currently do not support PERF_FORMAT_GROUP on inherited events
  5882. */
  5883. if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
  5884. goto err_ns;
  5885. pmu = perf_init_event(event);
  5886. if (!pmu)
  5887. goto err_ns;
  5888. else if (IS_ERR(pmu)) {
  5889. err = PTR_ERR(pmu);
  5890. goto err_ns;
  5891. }
  5892. if (!event->parent) {
  5893. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
  5894. err = get_callchain_buffers();
  5895. if (err)
  5896. goto err_pmu;
  5897. }
  5898. }
  5899. return event;
  5900. err_pmu:
  5901. if (event->destroy)
  5902. event->destroy(event);
  5903. module_put(pmu->module);
  5904. err_ns:
  5905. if (event->ns)
  5906. put_pid_ns(event->ns);
  5907. kfree(event);
  5908. return ERR_PTR(err);
  5909. }
  5910. static int perf_copy_attr(struct perf_event_attr __user *uattr,
  5911. struct perf_event_attr *attr)
  5912. {
  5913. u32 size;
  5914. int ret;
  5915. if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
  5916. return -EFAULT;
  5917. /*
  5918. * zero the full structure, so that a short copy will be nice.
  5919. */
  5920. memset(attr, 0, sizeof(*attr));
  5921. ret = get_user(size, &uattr->size);
  5922. if (ret)
  5923. return ret;
  5924. if (size > PAGE_SIZE) /* silly large */
  5925. goto err_size;
  5926. if (!size) /* abi compat */
  5927. size = PERF_ATTR_SIZE_VER0;
  5928. if (size < PERF_ATTR_SIZE_VER0)
  5929. goto err_size;
  5930. /*
  5931. * If we're handed a bigger struct than we know of,
  5932. * ensure all the unknown bits are 0 - i.e. new
  5933. * user-space does not rely on any kernel feature
  5934. * extensions we dont know about yet.
  5935. */
  5936. if (size > sizeof(*attr)) {
  5937. unsigned char __user *addr;
  5938. unsigned char __user *end;
  5939. unsigned char val;
  5940. addr = (void __user *)uattr + sizeof(*attr);
  5941. end = (void __user *)uattr + size;
  5942. for (; addr < end; addr++) {
  5943. ret = get_user(val, addr);
  5944. if (ret)
  5945. return ret;
  5946. if (val)
  5947. goto err_size;
  5948. }
  5949. size = sizeof(*attr);
  5950. }
  5951. ret = copy_from_user(attr, uattr, size);
  5952. if (ret)
  5953. return -EFAULT;
  5954. if (attr->__reserved_1)
  5955. return -EINVAL;
  5956. if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
  5957. return -EINVAL;
  5958. if (attr->read_format & ~(PERF_FORMAT_MAX-1))
  5959. return -EINVAL;
  5960. if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
  5961. u64 mask = attr->branch_sample_type;
  5962. /* only using defined bits */
  5963. if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
  5964. return -EINVAL;
  5965. /* at least one branch bit must be set */
  5966. if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
  5967. return -EINVAL;
  5968. /* propagate priv level, when not set for branch */
  5969. if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
  5970. /* exclude_kernel checked on syscall entry */
  5971. if (!attr->exclude_kernel)
  5972. mask |= PERF_SAMPLE_BRANCH_KERNEL;
  5973. if (!attr->exclude_user)
  5974. mask |= PERF_SAMPLE_BRANCH_USER;
  5975. if (!attr->exclude_hv)
  5976. mask |= PERF_SAMPLE_BRANCH_HV;
  5977. /*
  5978. * adjust user setting (for HW filter setup)
  5979. */
  5980. attr->branch_sample_type = mask;
  5981. }
  5982. /* privileged levels capture (kernel, hv): check permissions */
  5983. if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
  5984. && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  5985. return -EACCES;
  5986. }
  5987. if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
  5988. ret = perf_reg_validate(attr->sample_regs_user);
  5989. if (ret)
  5990. return ret;
  5991. }
  5992. if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
  5993. if (!arch_perf_have_user_stack_dump())
  5994. return -ENOSYS;
  5995. /*
  5996. * We have __u32 type for the size, but so far
  5997. * we can only use __u16 as maximum due to the
  5998. * __u16 sample size limit.
  5999. */
  6000. if (attr->sample_stack_user >= USHRT_MAX)
  6001. ret = -EINVAL;
  6002. else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
  6003. ret = -EINVAL;
  6004. }
  6005. if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
  6006. ret = perf_reg_validate(attr->sample_regs_intr);
  6007. out:
  6008. return ret;
  6009. err_size:
  6010. put_user(sizeof(*attr), &uattr->size);
  6011. ret = -E2BIG;
  6012. goto out;
  6013. }
  6014. static int
  6015. perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
  6016. {
  6017. struct ring_buffer *rb = NULL;
  6018. int ret = -EINVAL;
  6019. if (!output_event)
  6020. goto set;
  6021. /* don't allow circular references */
  6022. if (event == output_event)
  6023. goto out;
  6024. /*
  6025. * Don't allow cross-cpu buffers
  6026. */
  6027. if (output_event->cpu != event->cpu)
  6028. goto out;
  6029. /*
  6030. * If its not a per-cpu rb, it must be the same task.
  6031. */
  6032. if (output_event->cpu == -1 && output_event->ctx != event->ctx)
  6033. goto out;
  6034. set:
  6035. mutex_lock(&event->mmap_mutex);
  6036. /* Can't redirect output if we've got an active mmap() */
  6037. if (atomic_read(&event->mmap_count))
  6038. goto unlock;
  6039. if (output_event) {
  6040. /* get the rb we want to redirect to */
  6041. rb = ring_buffer_get(output_event);
  6042. if (!rb)
  6043. goto unlock;
  6044. }
  6045. ring_buffer_attach(event, rb);
  6046. ret = 0;
  6047. unlock:
  6048. mutex_unlock(&event->mmap_mutex);
  6049. out:
  6050. return ret;
  6051. }
  6052. static void mutex_lock_double(struct mutex *a, struct mutex *b)
  6053. {
  6054. if (b < a)
  6055. swap(a, b);
  6056. mutex_lock(a);
  6057. mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
  6058. }
  6059. /**
  6060. * sys_perf_event_open - open a performance event, associate it to a task/cpu
  6061. *
  6062. * @attr_uptr: event_id type attributes for monitoring/sampling
  6063. * @pid: target pid
  6064. * @cpu: target cpu
  6065. * @group_fd: group leader event fd
  6066. */
  6067. SYSCALL_DEFINE5(perf_event_open,
  6068. struct perf_event_attr __user *, attr_uptr,
  6069. pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
  6070. {
  6071. struct perf_event *group_leader = NULL, *output_event = NULL;
  6072. struct perf_event *event, *sibling;
  6073. struct perf_event_attr attr;
  6074. struct perf_event_context *ctx, *uninitialized_var(gctx);
  6075. struct file *event_file = NULL;
  6076. struct fd group = {NULL, 0};
  6077. struct task_struct *task = NULL;
  6078. struct pmu *pmu;
  6079. int event_fd;
  6080. int move_group = 0;
  6081. int err;
  6082. int f_flags = O_RDWR;
  6083. /* for future expandability... */
  6084. if (flags & ~PERF_FLAG_ALL)
  6085. return -EINVAL;
  6086. err = perf_copy_attr(attr_uptr, &attr);
  6087. if (err)
  6088. return err;
  6089. if (!attr.exclude_kernel) {
  6090. if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  6091. return -EACCES;
  6092. }
  6093. if (attr.freq) {
  6094. if (attr.sample_freq > sysctl_perf_event_sample_rate)
  6095. return -EINVAL;
  6096. } else {
  6097. if (attr.sample_period & (1ULL << 63))
  6098. return -EINVAL;
  6099. }
  6100. /*
  6101. * In cgroup mode, the pid argument is used to pass the fd
  6102. * opened to the cgroup directory in cgroupfs. The cpu argument
  6103. * designates the cpu on which to monitor threads from that
  6104. * cgroup.
  6105. */
  6106. if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
  6107. return -EINVAL;
  6108. if (flags & PERF_FLAG_FD_CLOEXEC)
  6109. f_flags |= O_CLOEXEC;
  6110. event_fd = get_unused_fd_flags(f_flags);
  6111. if (event_fd < 0)
  6112. return event_fd;
  6113. if (group_fd != -1) {
  6114. err = perf_fget_light(group_fd, &group);
  6115. if (err)
  6116. goto err_fd;
  6117. group_leader = group.file->private_data;
  6118. if (flags & PERF_FLAG_FD_OUTPUT)
  6119. output_event = group_leader;
  6120. if (flags & PERF_FLAG_FD_NO_GROUP)
  6121. group_leader = NULL;
  6122. }
  6123. if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
  6124. task = find_lively_task_by_vpid(pid);
  6125. if (IS_ERR(task)) {
  6126. err = PTR_ERR(task);
  6127. goto err_group_fd;
  6128. }
  6129. }
  6130. if (task && group_leader &&
  6131. group_leader->attr.inherit != attr.inherit) {
  6132. err = -EINVAL;
  6133. goto err_task;
  6134. }
  6135. get_online_cpus();
  6136. event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
  6137. NULL, NULL);
  6138. if (IS_ERR(event)) {
  6139. err = PTR_ERR(event);
  6140. goto err_cpus;
  6141. }
  6142. if (flags & PERF_FLAG_PID_CGROUP) {
  6143. err = perf_cgroup_connect(pid, event, &attr, group_leader);
  6144. if (err) {
  6145. __free_event(event);
  6146. goto err_cpus;
  6147. }
  6148. }
  6149. if (is_sampling_event(event)) {
  6150. if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
  6151. err = -ENOTSUPP;
  6152. goto err_alloc;
  6153. }
  6154. }
  6155. account_event(event);
  6156. /*
  6157. * Special case software events and allow them to be part of
  6158. * any hardware group.
  6159. */
  6160. pmu = event->pmu;
  6161. if (group_leader &&
  6162. (is_software_event(event) != is_software_event(group_leader))) {
  6163. if (is_software_event(event)) {
  6164. /*
  6165. * If event and group_leader are not both a software
  6166. * event, and event is, then group leader is not.
  6167. *
  6168. * Allow the addition of software events to !software
  6169. * groups, this is safe because software events never
  6170. * fail to schedule.
  6171. */
  6172. pmu = group_leader->pmu;
  6173. } else if (is_software_event(group_leader) &&
  6174. (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
  6175. /*
  6176. * In case the group is a pure software group, and we
  6177. * try to add a hardware event, move the whole group to
  6178. * the hardware context.
  6179. */
  6180. move_group = 1;
  6181. }
  6182. }
  6183. /*
  6184. * Get the target context (task or percpu):
  6185. */
  6186. ctx = find_get_context(pmu, task, event->cpu);
  6187. if (IS_ERR(ctx)) {
  6188. err = PTR_ERR(ctx);
  6189. goto err_alloc;
  6190. }
  6191. if (task) {
  6192. put_task_struct(task);
  6193. task = NULL;
  6194. }
  6195. /*
  6196. * Look up the group leader (we will attach this event to it):
  6197. */
  6198. if (group_leader) {
  6199. err = -EINVAL;
  6200. /*
  6201. * Do not allow a recursive hierarchy (this new sibling
  6202. * becoming part of another group-sibling):
  6203. */
  6204. if (group_leader->group_leader != group_leader)
  6205. goto err_context;
  6206. /*
  6207. * Do not allow to attach to a group in a different
  6208. * task or CPU context:
  6209. */
  6210. if (move_group) {
  6211. /*
  6212. * Make sure we're both on the same task, or both
  6213. * per-cpu events.
  6214. */
  6215. if (group_leader->ctx->task != ctx->task)
  6216. goto err_context;
  6217. /*
  6218. * Make sure we're both events for the same CPU;
  6219. * grouping events for different CPUs is broken; since
  6220. * you can never concurrently schedule them anyhow.
  6221. */
  6222. if (group_leader->cpu != event->cpu)
  6223. goto err_context;
  6224. } else {
  6225. if (group_leader->ctx != ctx)
  6226. goto err_context;
  6227. }
  6228. /*
  6229. * Only a group leader can be exclusive or pinned
  6230. */
  6231. if (attr.exclusive || attr.pinned)
  6232. goto err_context;
  6233. }
  6234. if (output_event) {
  6235. err = perf_event_set_output(event, output_event);
  6236. if (err)
  6237. goto err_context;
  6238. }
  6239. event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
  6240. f_flags);
  6241. if (IS_ERR(event_file)) {
  6242. err = PTR_ERR(event_file);
  6243. goto err_context;
  6244. }
  6245. if (move_group) {
  6246. gctx = group_leader->ctx;
  6247. /*
  6248. * See perf_event_ctx_lock() for comments on the details
  6249. * of swizzling perf_event::ctx.
  6250. */
  6251. mutex_lock_double(&gctx->mutex, &ctx->mutex);
  6252. perf_remove_from_context(group_leader, false);
  6253. list_for_each_entry(sibling, &group_leader->sibling_list,
  6254. group_entry) {
  6255. perf_remove_from_context(sibling, false);
  6256. put_ctx(gctx);
  6257. }
  6258. } else {
  6259. mutex_lock(&ctx->mutex);
  6260. }
  6261. WARN_ON_ONCE(ctx->parent_ctx);
  6262. if (move_group) {
  6263. /*
  6264. * Wait for everybody to stop referencing the events through
  6265. * the old lists, before installing it on new lists.
  6266. */
  6267. synchronize_rcu();
  6268. /*
  6269. * Install the group siblings before the group leader.
  6270. *
  6271. * Because a group leader will try and install the entire group
  6272. * (through the sibling list, which is still in-tact), we can
  6273. * end up with siblings installed in the wrong context.
  6274. *
  6275. * By installing siblings first we NO-OP because they're not
  6276. * reachable through the group lists.
  6277. */
  6278. list_for_each_entry(sibling, &group_leader->sibling_list,
  6279. group_entry) {
  6280. perf_event__state_init(sibling);
  6281. perf_install_in_context(ctx, sibling, sibling->cpu);
  6282. get_ctx(ctx);
  6283. }
  6284. /*
  6285. * Removing from the context ends up with disabled
  6286. * event. What we want here is event in the initial
  6287. * startup state, ready to be add into new context.
  6288. */
  6289. perf_event__state_init(group_leader);
  6290. perf_install_in_context(ctx, group_leader, group_leader->cpu);
  6291. get_ctx(ctx);
  6292. }
  6293. perf_install_in_context(ctx, event, event->cpu);
  6294. perf_unpin_context(ctx);
  6295. if (move_group) {
  6296. mutex_unlock(&gctx->mutex);
  6297. put_ctx(gctx);
  6298. }
  6299. mutex_unlock(&ctx->mutex);
  6300. put_online_cpus();
  6301. event->owner = current;
  6302. mutex_lock(&current->perf_event_mutex);
  6303. list_add_tail(&event->owner_entry, &current->perf_event_list);
  6304. mutex_unlock(&current->perf_event_mutex);
  6305. /*
  6306. * Precalculate sample_data sizes
  6307. */
  6308. perf_event__header_size(event);
  6309. perf_event__id_header_size(event);
  6310. /*
  6311. * Drop the reference on the group_event after placing the
  6312. * new event on the sibling_list. This ensures destruction
  6313. * of the group leader will find the pointer to itself in
  6314. * perf_group_detach().
  6315. */
  6316. fdput(group);
  6317. fd_install(event_fd, event_file);
  6318. return event_fd;
  6319. err_context:
  6320. perf_unpin_context(ctx);
  6321. put_ctx(ctx);
  6322. err_alloc:
  6323. free_event(event);
  6324. err_cpus:
  6325. put_online_cpus();
  6326. err_task:
  6327. if (task)
  6328. put_task_struct(task);
  6329. err_group_fd:
  6330. fdput(group);
  6331. err_fd:
  6332. put_unused_fd(event_fd);
  6333. return err;
  6334. }
  6335. /**
  6336. * perf_event_create_kernel_counter
  6337. *
  6338. * @attr: attributes of the counter to create
  6339. * @cpu: cpu in which the counter is bound
  6340. * @task: task to profile (NULL for percpu)
  6341. */
  6342. struct perf_event *
  6343. perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
  6344. struct task_struct *task,
  6345. perf_overflow_handler_t overflow_handler,
  6346. void *context)
  6347. {
  6348. struct perf_event_context *ctx;
  6349. struct perf_event *event;
  6350. int err;
  6351. /*
  6352. * Get the target context (task or percpu):
  6353. */
  6354. event = perf_event_alloc(attr, cpu, task, NULL, NULL,
  6355. overflow_handler, context);
  6356. if (IS_ERR(event)) {
  6357. err = PTR_ERR(event);
  6358. goto err;
  6359. }
  6360. /* Mark owner so we could distinguish it from user events. */
  6361. event->owner = EVENT_OWNER_KERNEL;
  6362. account_event(event);
  6363. ctx = find_get_context(event->pmu, task, cpu);
  6364. if (IS_ERR(ctx)) {
  6365. err = PTR_ERR(ctx);
  6366. goto err_free;
  6367. }
  6368. WARN_ON_ONCE(ctx->parent_ctx);
  6369. mutex_lock(&ctx->mutex);
  6370. perf_install_in_context(ctx, event, cpu);
  6371. perf_unpin_context(ctx);
  6372. mutex_unlock(&ctx->mutex);
  6373. return event;
  6374. err_free:
  6375. free_event(event);
  6376. err:
  6377. return ERR_PTR(err);
  6378. }
  6379. EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
  6380. void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
  6381. {
  6382. struct perf_event_context *src_ctx;
  6383. struct perf_event_context *dst_ctx;
  6384. struct perf_event *event, *tmp;
  6385. LIST_HEAD(events);
  6386. src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
  6387. dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
  6388. /*
  6389. * See perf_event_ctx_lock() for comments on the details
  6390. * of swizzling perf_event::ctx.
  6391. */
  6392. mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
  6393. list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
  6394. event_entry) {
  6395. perf_remove_from_context(event, false);
  6396. unaccount_event_cpu(event, src_cpu);
  6397. put_ctx(src_ctx);
  6398. list_add(&event->migrate_entry, &events);
  6399. }
  6400. /*
  6401. * Wait for the events to quiesce before re-instating them.
  6402. */
  6403. synchronize_rcu();
  6404. /*
  6405. * Re-instate events in 2 passes.
  6406. *
  6407. * Skip over group leaders and only install siblings on this first
  6408. * pass, siblings will not get enabled without a leader, however a
  6409. * leader will enable its siblings, even if those are still on the old
  6410. * context.
  6411. */
  6412. list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
  6413. if (event->group_leader == event)
  6414. continue;
  6415. list_del(&event->migrate_entry);
  6416. if (event->state >= PERF_EVENT_STATE_OFF)
  6417. event->state = PERF_EVENT_STATE_INACTIVE;
  6418. account_event_cpu(event, dst_cpu);
  6419. perf_install_in_context(dst_ctx, event, dst_cpu);
  6420. get_ctx(dst_ctx);
  6421. }
  6422. /*
  6423. * Once all the siblings are setup properly, install the group leaders
  6424. * to make it go.
  6425. */
  6426. list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
  6427. list_del(&event->migrate_entry);
  6428. if (event->state >= PERF_EVENT_STATE_OFF)
  6429. event->state = PERF_EVENT_STATE_INACTIVE;
  6430. account_event_cpu(event, dst_cpu);
  6431. perf_install_in_context(dst_ctx, event, dst_cpu);
  6432. get_ctx(dst_ctx);
  6433. }
  6434. mutex_unlock(&dst_ctx->mutex);
  6435. mutex_unlock(&src_ctx->mutex);
  6436. }
  6437. EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
  6438. static void sync_child_event(struct perf_event *child_event,
  6439. struct task_struct *child)
  6440. {
  6441. struct perf_event *parent_event = child_event->parent;
  6442. u64 child_val;
  6443. if (child_event->attr.inherit_stat)
  6444. perf_event_read_event(child_event, child);
  6445. child_val = perf_event_count(child_event);
  6446. /*
  6447. * Add back the child's count to the parent's count:
  6448. */
  6449. atomic64_add(child_val, &parent_event->child_count);
  6450. atomic64_add(child_event->total_time_enabled,
  6451. &parent_event->child_total_time_enabled);
  6452. atomic64_add(child_event->total_time_running,
  6453. &parent_event->child_total_time_running);
  6454. /*
  6455. * Remove this event from the parent's list
  6456. */
  6457. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  6458. mutex_lock(&parent_event->child_mutex);
  6459. list_del_init(&child_event->child_list);
  6460. mutex_unlock(&parent_event->child_mutex);
  6461. /*
  6462. * Make sure user/parent get notified, that we just
  6463. * lost one event.
  6464. */
  6465. perf_event_wakeup(parent_event);
  6466. /*
  6467. * Release the parent event, if this was the last
  6468. * reference to it.
  6469. */
  6470. put_event(parent_event);
  6471. }
  6472. static void
  6473. __perf_event_exit_task(struct perf_event *child_event,
  6474. struct perf_event_context *child_ctx,
  6475. struct task_struct *child)
  6476. {
  6477. /*
  6478. * Do not destroy the 'original' grouping; because of the context
  6479. * switch optimization the original events could've ended up in a
  6480. * random child task.
  6481. *
  6482. * If we were to destroy the original group, all group related
  6483. * operations would cease to function properly after this random
  6484. * child dies.
  6485. *
  6486. * Do destroy all inherited groups, we don't care about those
  6487. * and being thorough is better.
  6488. */
  6489. perf_remove_from_context(child_event, !!child_event->parent);
  6490. /*
  6491. * It can happen that the parent exits first, and has events
  6492. * that are still around due to the child reference. These
  6493. * events need to be zapped.
  6494. */
  6495. if (child_event->parent) {
  6496. sync_child_event(child_event, child);
  6497. free_event(child_event);
  6498. } else {
  6499. child_event->state = PERF_EVENT_STATE_EXIT;
  6500. perf_event_wakeup(child_event);
  6501. }
  6502. }
  6503. static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
  6504. {
  6505. struct perf_event *child_event, *next;
  6506. struct perf_event_context *child_ctx, *clone_ctx = NULL;
  6507. unsigned long flags;
  6508. if (likely(!child->perf_event_ctxp[ctxn])) {
  6509. perf_event_task(child, NULL, 0);
  6510. return;
  6511. }
  6512. local_irq_save(flags);
  6513. /*
  6514. * We can't reschedule here because interrupts are disabled,
  6515. * and either child is current or it is a task that can't be
  6516. * scheduled, so we are now safe from rescheduling changing
  6517. * our context.
  6518. */
  6519. child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
  6520. /*
  6521. * Take the context lock here so that if find_get_context is
  6522. * reading child->perf_event_ctxp, we wait until it has
  6523. * incremented the context's refcount before we do put_ctx below.
  6524. */
  6525. raw_spin_lock(&child_ctx->lock);
  6526. task_ctx_sched_out(child_ctx);
  6527. child->perf_event_ctxp[ctxn] = NULL;
  6528. /*
  6529. * If this context is a clone; unclone it so it can't get
  6530. * swapped to another process while we're removing all
  6531. * the events from it.
  6532. */
  6533. clone_ctx = unclone_ctx(child_ctx);
  6534. update_context_time(child_ctx);
  6535. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  6536. if (clone_ctx)
  6537. put_ctx(clone_ctx);
  6538. /*
  6539. * Report the task dead after unscheduling the events so that we
  6540. * won't get any samples after PERF_RECORD_EXIT. We can however still
  6541. * get a few PERF_RECORD_READ events.
  6542. */
  6543. perf_event_task(child, child_ctx, 0);
  6544. /*
  6545. * We can recurse on the same lock type through:
  6546. *
  6547. * __perf_event_exit_task()
  6548. * sync_child_event()
  6549. * put_event()
  6550. * mutex_lock(&ctx->mutex)
  6551. *
  6552. * But since its the parent context it won't be the same instance.
  6553. */
  6554. mutex_lock(&child_ctx->mutex);
  6555. list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
  6556. __perf_event_exit_task(child_event, child_ctx, child);
  6557. mutex_unlock(&child_ctx->mutex);
  6558. put_ctx(child_ctx);
  6559. }
  6560. /*
  6561. * When a child task exits, feed back event values to parent events.
  6562. */
  6563. void perf_event_exit_task(struct task_struct *child)
  6564. {
  6565. struct perf_event *event, *tmp;
  6566. int ctxn;
  6567. mutex_lock(&child->perf_event_mutex);
  6568. list_for_each_entry_safe(event, tmp, &child->perf_event_list,
  6569. owner_entry) {
  6570. list_del_init(&event->owner_entry);
  6571. /*
  6572. * Ensure the list deletion is visible before we clear
  6573. * the owner, closes a race against perf_release() where
  6574. * we need to serialize on the owner->perf_event_mutex.
  6575. */
  6576. smp_wmb();
  6577. event->owner = NULL;
  6578. }
  6579. mutex_unlock(&child->perf_event_mutex);
  6580. for_each_task_context_nr(ctxn)
  6581. perf_event_exit_task_context(child, ctxn);
  6582. }
  6583. static void perf_free_event(struct perf_event *event,
  6584. struct perf_event_context *ctx)
  6585. {
  6586. struct perf_event *parent = event->parent;
  6587. if (WARN_ON_ONCE(!parent))
  6588. return;
  6589. mutex_lock(&parent->child_mutex);
  6590. list_del_init(&event->child_list);
  6591. mutex_unlock(&parent->child_mutex);
  6592. put_event(parent);
  6593. raw_spin_lock_irq(&ctx->lock);
  6594. perf_group_detach(event);
  6595. list_del_event(event, ctx);
  6596. raw_spin_unlock_irq(&ctx->lock);
  6597. free_event(event);
  6598. }
  6599. /*
  6600. * Free an unexposed, unused context as created by inheritance by
  6601. * perf_event_init_task below, used by fork() in case of fail.
  6602. *
  6603. * Not all locks are strictly required, but take them anyway to be nice and
  6604. * help out with the lockdep assertions.
  6605. */
  6606. void perf_event_free_task(struct task_struct *task)
  6607. {
  6608. struct perf_event_context *ctx;
  6609. struct perf_event *event, *tmp;
  6610. int ctxn;
  6611. for_each_task_context_nr(ctxn) {
  6612. ctx = task->perf_event_ctxp[ctxn];
  6613. if (!ctx)
  6614. continue;
  6615. mutex_lock(&ctx->mutex);
  6616. again:
  6617. list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
  6618. group_entry)
  6619. perf_free_event(event, ctx);
  6620. list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
  6621. group_entry)
  6622. perf_free_event(event, ctx);
  6623. if (!list_empty(&ctx->pinned_groups) ||
  6624. !list_empty(&ctx->flexible_groups))
  6625. goto again;
  6626. mutex_unlock(&ctx->mutex);
  6627. put_ctx(ctx);
  6628. }
  6629. }
  6630. void perf_event_delayed_put(struct task_struct *task)
  6631. {
  6632. int ctxn;
  6633. for_each_task_context_nr(ctxn)
  6634. WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
  6635. }
  6636. /*
  6637. * inherit a event from parent task to child task:
  6638. */
  6639. static struct perf_event *
  6640. inherit_event(struct perf_event *parent_event,
  6641. struct task_struct *parent,
  6642. struct perf_event_context *parent_ctx,
  6643. struct task_struct *child,
  6644. struct perf_event *group_leader,
  6645. struct perf_event_context *child_ctx)
  6646. {
  6647. enum perf_event_active_state parent_state = parent_event->state;
  6648. struct perf_event *child_event;
  6649. unsigned long flags;
  6650. /*
  6651. * Instead of creating recursive hierarchies of events,
  6652. * we link inherited events back to the original parent,
  6653. * which has a filp for sure, which we use as the reference
  6654. * count:
  6655. */
  6656. if (parent_event->parent)
  6657. parent_event = parent_event->parent;
  6658. child_event = perf_event_alloc(&parent_event->attr,
  6659. parent_event->cpu,
  6660. child,
  6661. group_leader, parent_event,
  6662. NULL, NULL);
  6663. if (IS_ERR(child_event))
  6664. return child_event;
  6665. if (is_orphaned_event(parent_event) ||
  6666. !atomic_long_inc_not_zero(&parent_event->refcount)) {
  6667. free_event(child_event);
  6668. return NULL;
  6669. }
  6670. get_ctx(child_ctx);
  6671. /*
  6672. * Make the child state follow the state of the parent event,
  6673. * not its attr.disabled bit. We hold the parent's mutex,
  6674. * so we won't race with perf_event_{en, dis}able_family.
  6675. */
  6676. if (parent_state >= PERF_EVENT_STATE_INACTIVE)
  6677. child_event->state = PERF_EVENT_STATE_INACTIVE;
  6678. else
  6679. child_event->state = PERF_EVENT_STATE_OFF;
  6680. if (parent_event->attr.freq) {
  6681. u64 sample_period = parent_event->hw.sample_period;
  6682. struct hw_perf_event *hwc = &child_event->hw;
  6683. hwc->sample_period = sample_period;
  6684. hwc->last_period = sample_period;
  6685. local64_set(&hwc->period_left, sample_period);
  6686. }
  6687. child_event->ctx = child_ctx;
  6688. child_event->overflow_handler = parent_event->overflow_handler;
  6689. child_event->overflow_handler_context
  6690. = parent_event->overflow_handler_context;
  6691. /*
  6692. * Precalculate sample_data sizes
  6693. */
  6694. perf_event__header_size(child_event);
  6695. perf_event__id_header_size(child_event);
  6696. /*
  6697. * Link it up in the child's context:
  6698. */
  6699. raw_spin_lock_irqsave(&child_ctx->lock, flags);
  6700. add_event_to_ctx(child_event, child_ctx);
  6701. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  6702. /*
  6703. * Link this into the parent event's child list
  6704. */
  6705. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  6706. mutex_lock(&parent_event->child_mutex);
  6707. list_add_tail(&child_event->child_list, &parent_event->child_list);
  6708. mutex_unlock(&parent_event->child_mutex);
  6709. return child_event;
  6710. }
  6711. static int inherit_group(struct perf_event *parent_event,
  6712. struct task_struct *parent,
  6713. struct perf_event_context *parent_ctx,
  6714. struct task_struct *child,
  6715. struct perf_event_context *child_ctx)
  6716. {
  6717. struct perf_event *leader;
  6718. struct perf_event *sub;
  6719. struct perf_event *child_ctr;
  6720. leader = inherit_event(parent_event, parent, parent_ctx,
  6721. child, NULL, child_ctx);
  6722. if (IS_ERR(leader))
  6723. return PTR_ERR(leader);
  6724. list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
  6725. child_ctr = inherit_event(sub, parent, parent_ctx,
  6726. child, leader, child_ctx);
  6727. if (IS_ERR(child_ctr))
  6728. return PTR_ERR(child_ctr);
  6729. }
  6730. return 0;
  6731. }
  6732. static int
  6733. inherit_task_group(struct perf_event *event, struct task_struct *parent,
  6734. struct perf_event_context *parent_ctx,
  6735. struct task_struct *child, int ctxn,
  6736. int *inherited_all)
  6737. {
  6738. int ret;
  6739. struct perf_event_context *child_ctx;
  6740. if (!event->attr.inherit) {
  6741. *inherited_all = 0;
  6742. return 0;
  6743. }
  6744. child_ctx = child->perf_event_ctxp[ctxn];
  6745. if (!child_ctx) {
  6746. /*
  6747. * This is executed from the parent task context, so
  6748. * inherit events that have been marked for cloning.
  6749. * First allocate and initialize a context for the
  6750. * child.
  6751. */
  6752. child_ctx = alloc_perf_context(parent_ctx->pmu, child);
  6753. if (!child_ctx)
  6754. return -ENOMEM;
  6755. child->perf_event_ctxp[ctxn] = child_ctx;
  6756. }
  6757. ret = inherit_group(event, parent, parent_ctx,
  6758. child, child_ctx);
  6759. if (ret)
  6760. *inherited_all = 0;
  6761. return ret;
  6762. }
  6763. /*
  6764. * Initialize the perf_event context in task_struct
  6765. */
  6766. static int perf_event_init_context(struct task_struct *child, int ctxn)
  6767. {
  6768. struct perf_event_context *child_ctx, *parent_ctx;
  6769. struct perf_event_context *cloned_ctx;
  6770. struct perf_event *event;
  6771. struct task_struct *parent = current;
  6772. int inherited_all = 1;
  6773. unsigned long flags;
  6774. int ret = 0;
  6775. if (likely(!parent->perf_event_ctxp[ctxn]))
  6776. return 0;
  6777. /*
  6778. * If the parent's context is a clone, pin it so it won't get
  6779. * swapped under us.
  6780. */
  6781. parent_ctx = perf_pin_task_context(parent, ctxn);
  6782. if (!parent_ctx)
  6783. return 0;
  6784. /*
  6785. * No need to check if parent_ctx != NULL here; since we saw
  6786. * it non-NULL earlier, the only reason for it to become NULL
  6787. * is if we exit, and since we're currently in the middle of
  6788. * a fork we can't be exiting at the same time.
  6789. */
  6790. /*
  6791. * Lock the parent list. No need to lock the child - not PID
  6792. * hashed yet and not running, so nobody can access it.
  6793. */
  6794. mutex_lock(&parent_ctx->mutex);
  6795. /*
  6796. * We dont have to disable NMIs - we are only looking at
  6797. * the list, not manipulating it:
  6798. */
  6799. list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
  6800. ret = inherit_task_group(event, parent, parent_ctx,
  6801. child, ctxn, &inherited_all);
  6802. if (ret)
  6803. break;
  6804. }
  6805. /*
  6806. * We can't hold ctx->lock when iterating the ->flexible_group list due
  6807. * to allocations, but we need to prevent rotation because
  6808. * rotate_ctx() will change the list from interrupt context.
  6809. */
  6810. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  6811. parent_ctx->rotate_disable = 1;
  6812. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  6813. list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
  6814. ret = inherit_task_group(event, parent, parent_ctx,
  6815. child, ctxn, &inherited_all);
  6816. if (ret)
  6817. break;
  6818. }
  6819. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  6820. parent_ctx->rotate_disable = 0;
  6821. child_ctx = child->perf_event_ctxp[ctxn];
  6822. if (child_ctx && inherited_all) {
  6823. /*
  6824. * Mark the child context as a clone of the parent
  6825. * context, or of whatever the parent is a clone of.
  6826. *
  6827. * Note that if the parent is a clone, the holding of
  6828. * parent_ctx->lock avoids it from being uncloned.
  6829. */
  6830. cloned_ctx = parent_ctx->parent_ctx;
  6831. if (cloned_ctx) {
  6832. child_ctx->parent_ctx = cloned_ctx;
  6833. child_ctx->parent_gen = parent_ctx->parent_gen;
  6834. } else {
  6835. child_ctx->parent_ctx = parent_ctx;
  6836. child_ctx->parent_gen = parent_ctx->generation;
  6837. }
  6838. get_ctx(child_ctx->parent_ctx);
  6839. }
  6840. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  6841. mutex_unlock(&parent_ctx->mutex);
  6842. perf_unpin_context(parent_ctx);
  6843. put_ctx(parent_ctx);
  6844. return ret;
  6845. }
  6846. /*
  6847. * Initialize the perf_event context in task_struct
  6848. */
  6849. int perf_event_init_task(struct task_struct *child)
  6850. {
  6851. int ctxn, ret;
  6852. memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
  6853. mutex_init(&child->perf_event_mutex);
  6854. INIT_LIST_HEAD(&child->perf_event_list);
  6855. for_each_task_context_nr(ctxn) {
  6856. ret = perf_event_init_context(child, ctxn);
  6857. if (ret) {
  6858. perf_event_free_task(child);
  6859. return ret;
  6860. }
  6861. }
  6862. return 0;
  6863. }
  6864. static void __init perf_event_init_all_cpus(void)
  6865. {
  6866. struct swevent_htable *swhash;
  6867. int cpu;
  6868. for_each_possible_cpu(cpu) {
  6869. swhash = &per_cpu(swevent_htable, cpu);
  6870. mutex_init(&swhash->hlist_mutex);
  6871. INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
  6872. }
  6873. }
  6874. static void perf_event_init_cpu(int cpu)
  6875. {
  6876. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  6877. mutex_lock(&swhash->hlist_mutex);
  6878. swhash->online = true;
  6879. if (swhash->hlist_refcount > 0) {
  6880. struct swevent_hlist *hlist;
  6881. hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
  6882. WARN_ON(!hlist);
  6883. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  6884. }
  6885. mutex_unlock(&swhash->hlist_mutex);
  6886. }
  6887. #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
  6888. static void __perf_event_exit_context(void *__info)
  6889. {
  6890. struct remove_event re = { .detach_group = true };
  6891. struct perf_event_context *ctx = __info;
  6892. rcu_read_lock();
  6893. list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
  6894. __perf_remove_from_context(&re);
  6895. rcu_read_unlock();
  6896. }
  6897. static void perf_event_exit_cpu_context(int cpu)
  6898. {
  6899. struct perf_event_context *ctx;
  6900. struct pmu *pmu;
  6901. int idx;
  6902. idx = srcu_read_lock(&pmus_srcu);
  6903. list_for_each_entry_rcu(pmu, &pmus, entry) {
  6904. ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
  6905. mutex_lock(&ctx->mutex);
  6906. smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
  6907. mutex_unlock(&ctx->mutex);
  6908. }
  6909. srcu_read_unlock(&pmus_srcu, idx);
  6910. }
  6911. static void perf_event_exit_cpu(int cpu)
  6912. {
  6913. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  6914. perf_event_exit_cpu_context(cpu);
  6915. mutex_lock(&swhash->hlist_mutex);
  6916. swhash->online = false;
  6917. swevent_hlist_release(swhash);
  6918. mutex_unlock(&swhash->hlist_mutex);
  6919. }
  6920. #else
  6921. static inline void perf_event_exit_cpu(int cpu) { }
  6922. #endif
  6923. static int
  6924. perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
  6925. {
  6926. int cpu;
  6927. for_each_online_cpu(cpu)
  6928. perf_event_exit_cpu(cpu);
  6929. return NOTIFY_OK;
  6930. }
  6931. /*
  6932. * Run the perf reboot notifier at the very last possible moment so that
  6933. * the generic watchdog code runs as long as possible.
  6934. */
  6935. static struct notifier_block perf_reboot_notifier = {
  6936. .notifier_call = perf_reboot,
  6937. .priority = INT_MIN,
  6938. };
  6939. static int
  6940. perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
  6941. {
  6942. unsigned int cpu = (long)hcpu;
  6943. switch (action & ~CPU_TASKS_FROZEN) {
  6944. case CPU_UP_PREPARE:
  6945. case CPU_DOWN_FAILED:
  6946. perf_event_init_cpu(cpu);
  6947. break;
  6948. case CPU_UP_CANCELED:
  6949. case CPU_DOWN_PREPARE:
  6950. perf_event_exit_cpu(cpu);
  6951. break;
  6952. default:
  6953. break;
  6954. }
  6955. return NOTIFY_OK;
  6956. }
  6957. void __init perf_event_init(void)
  6958. {
  6959. int ret;
  6960. idr_init(&pmu_idr);
  6961. perf_event_init_all_cpus();
  6962. init_srcu_struct(&pmus_srcu);
  6963. perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
  6964. perf_pmu_register(&perf_cpu_clock, NULL, -1);
  6965. perf_pmu_register(&perf_task_clock, NULL, -1);
  6966. perf_tp_register();
  6967. perf_cpu_notifier(perf_cpu_notify);
  6968. register_reboot_notifier(&perf_reboot_notifier);
  6969. ret = init_hw_breakpoint();
  6970. WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
  6971. /* do not patch jump label more than once per second */
  6972. jump_label_rate_limit(&perf_sched_events, HZ);
  6973. /*
  6974. * Build time assertion that we keep the data_head at the intended
  6975. * location. IOW, validation we got the __reserved[] size right.
  6976. */
  6977. BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
  6978. != 1024);
  6979. }
  6980. ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
  6981. char *page)
  6982. {
  6983. struct perf_pmu_events_attr *pmu_attr =
  6984. container_of(attr, struct perf_pmu_events_attr, attr);
  6985. if (pmu_attr->event_str)
  6986. return sprintf(page, "%s\n", pmu_attr->event_str);
  6987. return 0;
  6988. }
  6989. static int __init perf_event_sysfs_init(void)
  6990. {
  6991. struct pmu *pmu;
  6992. int ret;
  6993. mutex_lock(&pmus_lock);
  6994. ret = bus_register(&pmu_bus);
  6995. if (ret)
  6996. goto unlock;
  6997. list_for_each_entry(pmu, &pmus, entry) {
  6998. if (!pmu->name || pmu->type < 0)
  6999. continue;
  7000. ret = pmu_dev_alloc(pmu);
  7001. WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
  7002. }
  7003. pmu_bus_running = 1;
  7004. ret = 0;
  7005. unlock:
  7006. mutex_unlock(&pmus_lock);
  7007. return ret;
  7008. }
  7009. device_initcall(perf_event_sysfs_init);
  7010. #ifdef CONFIG_CGROUP_PERF
  7011. static struct cgroup_subsys_state *
  7012. perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  7013. {
  7014. struct perf_cgroup *jc;
  7015. jc = kzalloc(sizeof(*jc), GFP_KERNEL);
  7016. if (!jc)
  7017. return ERR_PTR(-ENOMEM);
  7018. jc->info = alloc_percpu(struct perf_cgroup_info);
  7019. if (!jc->info) {
  7020. kfree(jc);
  7021. return ERR_PTR(-ENOMEM);
  7022. }
  7023. return &jc->css;
  7024. }
  7025. static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
  7026. {
  7027. struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
  7028. free_percpu(jc->info);
  7029. kfree(jc);
  7030. }
  7031. static int __perf_cgroup_move(void *info)
  7032. {
  7033. struct task_struct *task = info;
  7034. perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
  7035. return 0;
  7036. }
  7037. static void perf_cgroup_attach(struct cgroup_subsys_state *css,
  7038. struct cgroup_taskset *tset)
  7039. {
  7040. struct task_struct *task;
  7041. cgroup_taskset_for_each(task, tset)
  7042. task_function_call(task, __perf_cgroup_move, task);
  7043. }
  7044. static void perf_cgroup_exit(struct cgroup_subsys_state *css,
  7045. struct cgroup_subsys_state *old_css,
  7046. struct task_struct *task)
  7047. {
  7048. /*
  7049. * cgroup_exit() is called in the copy_process() failure path.
  7050. * Ignore this case since the task hasn't ran yet, this avoids
  7051. * trying to poke a half freed task state from generic code.
  7052. */
  7053. if (!(task->flags & PF_EXITING))
  7054. return;
  7055. task_function_call(task, __perf_cgroup_move, task);
  7056. }
  7057. struct cgroup_subsys perf_event_cgrp_subsys = {
  7058. .css_alloc = perf_cgroup_css_alloc,
  7059. .css_free = perf_cgroup_css_free,
  7060. .exit = perf_cgroup_exit,
  7061. .attach = perf_cgroup_attach,
  7062. };
  7063. #endif /* CONFIG_CGROUP_PERF */