cpuset.c 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/export.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <linux/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. #include <linux/wait.h>
  61. struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
  62. /* See "Frequency meter" comments, below. */
  63. struct fmeter {
  64. int cnt; /* unprocessed events count */
  65. int val; /* most recent output value */
  66. time_t time; /* clock (secs) when val computed */
  67. spinlock_t lock; /* guards read or write of above */
  68. };
  69. struct cpuset {
  70. struct cgroup_subsys_state css;
  71. unsigned long flags; /* "unsigned long" so bitops work */
  72. /*
  73. * On default hierarchy:
  74. *
  75. * The user-configured masks can only be changed by writing to
  76. * cpuset.cpus and cpuset.mems, and won't be limited by the
  77. * parent masks.
  78. *
  79. * The effective masks is the real masks that apply to the tasks
  80. * in the cpuset. They may be changed if the configured masks are
  81. * changed or hotplug happens.
  82. *
  83. * effective_mask == configured_mask & parent's effective_mask,
  84. * and if it ends up empty, it will inherit the parent's mask.
  85. *
  86. *
  87. * On legacy hierachy:
  88. *
  89. * The user-configured masks are always the same with effective masks.
  90. */
  91. /* user-configured CPUs and Memory Nodes allow to tasks */
  92. cpumask_var_t cpus_allowed;
  93. nodemask_t mems_allowed;
  94. /* effective CPUs and Memory Nodes allow to tasks */
  95. cpumask_var_t effective_cpus;
  96. nodemask_t effective_mems;
  97. /*
  98. * This is old Memory Nodes tasks took on.
  99. *
  100. * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
  101. * - A new cpuset's old_mems_allowed is initialized when some
  102. * task is moved into it.
  103. * - old_mems_allowed is used in cpuset_migrate_mm() when we change
  104. * cpuset.mems_allowed and have tasks' nodemask updated, and
  105. * then old_mems_allowed is updated to mems_allowed.
  106. */
  107. nodemask_t old_mems_allowed;
  108. struct fmeter fmeter; /* memory_pressure filter */
  109. /*
  110. * Tasks are being attached to this cpuset. Used to prevent
  111. * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
  112. */
  113. int attach_in_progress;
  114. /* partition number for rebuild_sched_domains() */
  115. int pn;
  116. /* for custom sched domain */
  117. int relax_domain_level;
  118. };
  119. static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
  120. {
  121. return css ? container_of(css, struct cpuset, css) : NULL;
  122. }
  123. /* Retrieve the cpuset for a task */
  124. static inline struct cpuset *task_cs(struct task_struct *task)
  125. {
  126. return css_cs(task_css(task, cpuset_cgrp_id));
  127. }
  128. static inline struct cpuset *parent_cs(struct cpuset *cs)
  129. {
  130. return css_cs(cs->css.parent);
  131. }
  132. #ifdef CONFIG_NUMA
  133. static inline bool task_has_mempolicy(struct task_struct *task)
  134. {
  135. return task->mempolicy;
  136. }
  137. #else
  138. static inline bool task_has_mempolicy(struct task_struct *task)
  139. {
  140. return false;
  141. }
  142. #endif
  143. /* bits in struct cpuset flags field */
  144. typedef enum {
  145. CS_ONLINE,
  146. CS_CPU_EXCLUSIVE,
  147. CS_MEM_EXCLUSIVE,
  148. CS_MEM_HARDWALL,
  149. CS_MEMORY_MIGRATE,
  150. CS_SCHED_LOAD_BALANCE,
  151. CS_SPREAD_PAGE,
  152. CS_SPREAD_SLAB,
  153. } cpuset_flagbits_t;
  154. /* convenient tests for these bits */
  155. static inline bool is_cpuset_online(const struct cpuset *cs)
  156. {
  157. return test_bit(CS_ONLINE, &cs->flags);
  158. }
  159. static inline int is_cpu_exclusive(const struct cpuset *cs)
  160. {
  161. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  162. }
  163. static inline int is_mem_exclusive(const struct cpuset *cs)
  164. {
  165. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  166. }
  167. static inline int is_mem_hardwall(const struct cpuset *cs)
  168. {
  169. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  170. }
  171. static inline int is_sched_load_balance(const struct cpuset *cs)
  172. {
  173. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  174. }
  175. static inline int is_memory_migrate(const struct cpuset *cs)
  176. {
  177. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  178. }
  179. static inline int is_spread_page(const struct cpuset *cs)
  180. {
  181. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  182. }
  183. static inline int is_spread_slab(const struct cpuset *cs)
  184. {
  185. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  186. }
  187. static struct cpuset top_cpuset = {
  188. .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
  189. (1 << CS_MEM_EXCLUSIVE)),
  190. };
  191. /**
  192. * cpuset_for_each_child - traverse online children of a cpuset
  193. * @child_cs: loop cursor pointing to the current child
  194. * @pos_css: used for iteration
  195. * @parent_cs: target cpuset to walk children of
  196. *
  197. * Walk @child_cs through the online children of @parent_cs. Must be used
  198. * with RCU read locked.
  199. */
  200. #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
  201. css_for_each_child((pos_css), &(parent_cs)->css) \
  202. if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
  203. /**
  204. * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
  205. * @des_cs: loop cursor pointing to the current descendant
  206. * @pos_css: used for iteration
  207. * @root_cs: target cpuset to walk ancestor of
  208. *
  209. * Walk @des_cs through the online descendants of @root_cs. Must be used
  210. * with RCU read locked. The caller may modify @pos_css by calling
  211. * css_rightmost_descendant() to skip subtree. @root_cs is included in the
  212. * iteration and the first node to be visited.
  213. */
  214. #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
  215. css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
  216. if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
  217. /*
  218. * There are two global locks guarding cpuset structures - cpuset_mutex and
  219. * callback_lock. We also require taking task_lock() when dereferencing a
  220. * task's cpuset pointer. See "The task_lock() exception", at the end of this
  221. * comment.
  222. *
  223. * A task must hold both locks to modify cpusets. If a task holds
  224. * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
  225. * is the only task able to also acquire callback_lock and be able to
  226. * modify cpusets. It can perform various checks on the cpuset structure
  227. * first, knowing nothing will change. It can also allocate memory while
  228. * just holding cpuset_mutex. While it is performing these checks, various
  229. * callback routines can briefly acquire callback_lock to query cpusets.
  230. * Once it is ready to make the changes, it takes callback_lock, blocking
  231. * everyone else.
  232. *
  233. * Calls to the kernel memory allocator can not be made while holding
  234. * callback_lock, as that would risk double tripping on callback_lock
  235. * from one of the callbacks into the cpuset code from within
  236. * __alloc_pages().
  237. *
  238. * If a task is only holding callback_lock, then it has read-only
  239. * access to cpusets.
  240. *
  241. * Now, the task_struct fields mems_allowed and mempolicy may be changed
  242. * by other task, we use alloc_lock in the task_struct fields to protect
  243. * them.
  244. *
  245. * The cpuset_common_file_read() handlers only hold callback_lock across
  246. * small pieces of code, such as when reading out possibly multi-word
  247. * cpumasks and nodemasks.
  248. *
  249. * Accessing a task's cpuset should be done in accordance with the
  250. * guidelines for accessing subsystem state in kernel/cgroup.c
  251. */
  252. static DEFINE_MUTEX(cpuset_mutex);
  253. static DEFINE_SPINLOCK(callback_lock);
  254. /*
  255. * CPU / memory hotplug is handled asynchronously.
  256. */
  257. static void cpuset_hotplug_workfn(struct work_struct *work);
  258. static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
  259. static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
  260. /*
  261. * This is ugly, but preserves the userspace API for existing cpuset
  262. * users. If someone tries to mount the "cpuset" filesystem, we
  263. * silently switch it to mount "cgroup" instead
  264. */
  265. static struct dentry *cpuset_mount(struct file_system_type *fs_type,
  266. int flags, const char *unused_dev_name, void *data)
  267. {
  268. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  269. struct dentry *ret = ERR_PTR(-ENODEV);
  270. if (cgroup_fs) {
  271. char mountopts[] =
  272. "cpuset,noprefix,"
  273. "release_agent=/sbin/cpuset_release_agent";
  274. ret = cgroup_fs->mount(cgroup_fs, flags,
  275. unused_dev_name, mountopts);
  276. put_filesystem(cgroup_fs);
  277. }
  278. return ret;
  279. }
  280. static struct file_system_type cpuset_fs_type = {
  281. .name = "cpuset",
  282. .mount = cpuset_mount,
  283. };
  284. /*
  285. * Return in pmask the portion of a cpusets's cpus_allowed that
  286. * are online. If none are online, walk up the cpuset hierarchy
  287. * until we find one that does have some online cpus. The top
  288. * cpuset always has some cpus online.
  289. *
  290. * One way or another, we guarantee to return some non-empty subset
  291. * of cpu_online_mask.
  292. *
  293. * Call with callback_lock or cpuset_mutex held.
  294. */
  295. static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
  296. {
  297. while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
  298. cs = parent_cs(cs);
  299. cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
  300. }
  301. /*
  302. * Return in *pmask the portion of a cpusets's mems_allowed that
  303. * are online, with memory. If none are online with memory, walk
  304. * up the cpuset hierarchy until we find one that does have some
  305. * online mems. The top cpuset always has some mems online.
  306. *
  307. * One way or another, we guarantee to return some non-empty subset
  308. * of node_states[N_MEMORY].
  309. *
  310. * Call with callback_lock or cpuset_mutex held.
  311. */
  312. static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
  313. {
  314. while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
  315. cs = parent_cs(cs);
  316. nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
  317. }
  318. /*
  319. * update task's spread flag if cpuset's page/slab spread flag is set
  320. *
  321. * Call with callback_lock or cpuset_mutex held.
  322. */
  323. static void cpuset_update_task_spread_flag(struct cpuset *cs,
  324. struct task_struct *tsk)
  325. {
  326. if (is_spread_page(cs))
  327. task_set_spread_page(tsk);
  328. else
  329. task_clear_spread_page(tsk);
  330. if (is_spread_slab(cs))
  331. task_set_spread_slab(tsk);
  332. else
  333. task_clear_spread_slab(tsk);
  334. }
  335. /*
  336. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  337. *
  338. * One cpuset is a subset of another if all its allowed CPUs and
  339. * Memory Nodes are a subset of the other, and its exclusive flags
  340. * are only set if the other's are set. Call holding cpuset_mutex.
  341. */
  342. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  343. {
  344. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  345. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  346. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  347. is_mem_exclusive(p) <= is_mem_exclusive(q);
  348. }
  349. /**
  350. * alloc_trial_cpuset - allocate a trial cpuset
  351. * @cs: the cpuset that the trial cpuset duplicates
  352. */
  353. static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
  354. {
  355. struct cpuset *trial;
  356. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  357. if (!trial)
  358. return NULL;
  359. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
  360. goto free_cs;
  361. if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
  362. goto free_cpus;
  363. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  364. cpumask_copy(trial->effective_cpus, cs->effective_cpus);
  365. return trial;
  366. free_cpus:
  367. free_cpumask_var(trial->cpus_allowed);
  368. free_cs:
  369. kfree(trial);
  370. return NULL;
  371. }
  372. /**
  373. * free_trial_cpuset - free the trial cpuset
  374. * @trial: the trial cpuset to be freed
  375. */
  376. static void free_trial_cpuset(struct cpuset *trial)
  377. {
  378. free_cpumask_var(trial->effective_cpus);
  379. free_cpumask_var(trial->cpus_allowed);
  380. kfree(trial);
  381. }
  382. /*
  383. * validate_change() - Used to validate that any proposed cpuset change
  384. * follows the structural rules for cpusets.
  385. *
  386. * If we replaced the flag and mask values of the current cpuset
  387. * (cur) with those values in the trial cpuset (trial), would
  388. * our various subset and exclusive rules still be valid? Presumes
  389. * cpuset_mutex held.
  390. *
  391. * 'cur' is the address of an actual, in-use cpuset. Operations
  392. * such as list traversal that depend on the actual address of the
  393. * cpuset in the list must use cur below, not trial.
  394. *
  395. * 'trial' is the address of bulk structure copy of cur, with
  396. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  397. * or flags changed to new, trial values.
  398. *
  399. * Return 0 if valid, -errno if not.
  400. */
  401. static int validate_change(struct cpuset *cur, struct cpuset *trial)
  402. {
  403. struct cgroup_subsys_state *css;
  404. struct cpuset *c, *par;
  405. int ret;
  406. rcu_read_lock();
  407. /* Each of our child cpusets must be a subset of us */
  408. ret = -EBUSY;
  409. cpuset_for_each_child(c, css, cur)
  410. if (!is_cpuset_subset(c, trial))
  411. goto out;
  412. /* Remaining checks don't apply to root cpuset */
  413. ret = 0;
  414. if (cur == &top_cpuset)
  415. goto out;
  416. par = parent_cs(cur);
  417. /* On legacy hiearchy, we must be a subset of our parent cpuset. */
  418. ret = -EACCES;
  419. if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par))
  420. goto out;
  421. /*
  422. * If either I or some sibling (!= me) is exclusive, we can't
  423. * overlap
  424. */
  425. ret = -EINVAL;
  426. cpuset_for_each_child(c, css, par) {
  427. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  428. c != cur &&
  429. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  430. goto out;
  431. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  432. c != cur &&
  433. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  434. goto out;
  435. }
  436. /*
  437. * Cpusets with tasks - existing or newly being attached - can't
  438. * be changed to have empty cpus_allowed or mems_allowed.
  439. */
  440. ret = -ENOSPC;
  441. if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
  442. if (!cpumask_empty(cur->cpus_allowed) &&
  443. cpumask_empty(trial->cpus_allowed))
  444. goto out;
  445. if (!nodes_empty(cur->mems_allowed) &&
  446. nodes_empty(trial->mems_allowed))
  447. goto out;
  448. }
  449. /*
  450. * We can't shrink if we won't have enough room for SCHED_DEADLINE
  451. * tasks.
  452. */
  453. ret = -EBUSY;
  454. if (is_cpu_exclusive(cur) &&
  455. !cpuset_cpumask_can_shrink(cur->cpus_allowed,
  456. trial->cpus_allowed))
  457. goto out;
  458. ret = 0;
  459. out:
  460. rcu_read_unlock();
  461. return ret;
  462. }
  463. #ifdef CONFIG_SMP
  464. /*
  465. * Helper routine for generate_sched_domains().
  466. * Do cpusets a, b have overlapping effective cpus_allowed masks?
  467. */
  468. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  469. {
  470. return cpumask_intersects(a->effective_cpus, b->effective_cpus);
  471. }
  472. static void
  473. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  474. {
  475. if (dattr->relax_domain_level < c->relax_domain_level)
  476. dattr->relax_domain_level = c->relax_domain_level;
  477. return;
  478. }
  479. static void update_domain_attr_tree(struct sched_domain_attr *dattr,
  480. struct cpuset *root_cs)
  481. {
  482. struct cpuset *cp;
  483. struct cgroup_subsys_state *pos_css;
  484. rcu_read_lock();
  485. cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
  486. /* skip the whole subtree if @cp doesn't have any CPU */
  487. if (cpumask_empty(cp->cpus_allowed)) {
  488. pos_css = css_rightmost_descendant(pos_css);
  489. continue;
  490. }
  491. if (is_sched_load_balance(cp))
  492. update_domain_attr(dattr, cp);
  493. }
  494. rcu_read_unlock();
  495. }
  496. /*
  497. * generate_sched_domains()
  498. *
  499. * This function builds a partial partition of the systems CPUs
  500. * A 'partial partition' is a set of non-overlapping subsets whose
  501. * union is a subset of that set.
  502. * The output of this function needs to be passed to kernel/sched/core.c
  503. * partition_sched_domains() routine, which will rebuild the scheduler's
  504. * load balancing domains (sched domains) as specified by that partial
  505. * partition.
  506. *
  507. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  508. * for a background explanation of this.
  509. *
  510. * Does not return errors, on the theory that the callers of this
  511. * routine would rather not worry about failures to rebuild sched
  512. * domains when operating in the severe memory shortage situations
  513. * that could cause allocation failures below.
  514. *
  515. * Must be called with cpuset_mutex held.
  516. *
  517. * The three key local variables below are:
  518. * q - a linked-list queue of cpuset pointers, used to implement a
  519. * top-down scan of all cpusets. This scan loads a pointer
  520. * to each cpuset marked is_sched_load_balance into the
  521. * array 'csa'. For our purposes, rebuilding the schedulers
  522. * sched domains, we can ignore !is_sched_load_balance cpusets.
  523. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  524. * that need to be load balanced, for convenient iterative
  525. * access by the subsequent code that finds the best partition,
  526. * i.e the set of domains (subsets) of CPUs such that the
  527. * cpus_allowed of every cpuset marked is_sched_load_balance
  528. * is a subset of one of these domains, while there are as
  529. * many such domains as possible, each as small as possible.
  530. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  531. * the kernel/sched/core.c routine partition_sched_domains() in a
  532. * convenient format, that can be easily compared to the prior
  533. * value to determine what partition elements (sched domains)
  534. * were changed (added or removed.)
  535. *
  536. * Finding the best partition (set of domains):
  537. * The triple nested loops below over i, j, k scan over the
  538. * load balanced cpusets (using the array of cpuset pointers in
  539. * csa[]) looking for pairs of cpusets that have overlapping
  540. * cpus_allowed, but which don't have the same 'pn' partition
  541. * number and gives them in the same partition number. It keeps
  542. * looping on the 'restart' label until it can no longer find
  543. * any such pairs.
  544. *
  545. * The union of the cpus_allowed masks from the set of
  546. * all cpusets having the same 'pn' value then form the one
  547. * element of the partition (one sched domain) to be passed to
  548. * partition_sched_domains().
  549. */
  550. static int generate_sched_domains(cpumask_var_t **domains,
  551. struct sched_domain_attr **attributes)
  552. {
  553. struct cpuset *cp; /* scans q */
  554. struct cpuset **csa; /* array of all cpuset ptrs */
  555. int csn; /* how many cpuset ptrs in csa so far */
  556. int i, j, k; /* indices for partition finding loops */
  557. cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
  558. struct sched_domain_attr *dattr; /* attributes for custom domains */
  559. int ndoms = 0; /* number of sched domains in result */
  560. int nslot; /* next empty doms[] struct cpumask slot */
  561. struct cgroup_subsys_state *pos_css;
  562. doms = NULL;
  563. dattr = NULL;
  564. csa = NULL;
  565. /* Special case for the 99% of systems with one, full, sched domain */
  566. if (is_sched_load_balance(&top_cpuset)) {
  567. ndoms = 1;
  568. doms = alloc_sched_domains(ndoms);
  569. if (!doms)
  570. goto done;
  571. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  572. if (dattr) {
  573. *dattr = SD_ATTR_INIT;
  574. update_domain_attr_tree(dattr, &top_cpuset);
  575. }
  576. cpumask_copy(doms[0], top_cpuset.effective_cpus);
  577. goto done;
  578. }
  579. csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
  580. if (!csa)
  581. goto done;
  582. csn = 0;
  583. rcu_read_lock();
  584. cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
  585. if (cp == &top_cpuset)
  586. continue;
  587. /*
  588. * Continue traversing beyond @cp iff @cp has some CPUs and
  589. * isn't load balancing. The former is obvious. The
  590. * latter: All child cpusets contain a subset of the
  591. * parent's cpus, so just skip them, and then we call
  592. * update_domain_attr_tree() to calc relax_domain_level of
  593. * the corresponding sched domain.
  594. */
  595. if (!cpumask_empty(cp->cpus_allowed) &&
  596. !is_sched_load_balance(cp))
  597. continue;
  598. if (is_sched_load_balance(cp))
  599. csa[csn++] = cp;
  600. /* skip @cp's subtree */
  601. pos_css = css_rightmost_descendant(pos_css);
  602. }
  603. rcu_read_unlock();
  604. for (i = 0; i < csn; i++)
  605. csa[i]->pn = i;
  606. ndoms = csn;
  607. restart:
  608. /* Find the best partition (set of sched domains) */
  609. for (i = 0; i < csn; i++) {
  610. struct cpuset *a = csa[i];
  611. int apn = a->pn;
  612. for (j = 0; j < csn; j++) {
  613. struct cpuset *b = csa[j];
  614. int bpn = b->pn;
  615. if (apn != bpn && cpusets_overlap(a, b)) {
  616. for (k = 0; k < csn; k++) {
  617. struct cpuset *c = csa[k];
  618. if (c->pn == bpn)
  619. c->pn = apn;
  620. }
  621. ndoms--; /* one less element */
  622. goto restart;
  623. }
  624. }
  625. }
  626. /*
  627. * Now we know how many domains to create.
  628. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  629. */
  630. doms = alloc_sched_domains(ndoms);
  631. if (!doms)
  632. goto done;
  633. /*
  634. * The rest of the code, including the scheduler, can deal with
  635. * dattr==NULL case. No need to abort if alloc fails.
  636. */
  637. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  638. for (nslot = 0, i = 0; i < csn; i++) {
  639. struct cpuset *a = csa[i];
  640. struct cpumask *dp;
  641. int apn = a->pn;
  642. if (apn < 0) {
  643. /* Skip completed partitions */
  644. continue;
  645. }
  646. dp = doms[nslot];
  647. if (nslot == ndoms) {
  648. static int warnings = 10;
  649. if (warnings) {
  650. pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
  651. nslot, ndoms, csn, i, apn);
  652. warnings--;
  653. }
  654. continue;
  655. }
  656. cpumask_clear(dp);
  657. if (dattr)
  658. *(dattr + nslot) = SD_ATTR_INIT;
  659. for (j = i; j < csn; j++) {
  660. struct cpuset *b = csa[j];
  661. if (apn == b->pn) {
  662. cpumask_or(dp, dp, b->effective_cpus);
  663. if (dattr)
  664. update_domain_attr_tree(dattr + nslot, b);
  665. /* Done with this partition */
  666. b->pn = -1;
  667. }
  668. }
  669. nslot++;
  670. }
  671. BUG_ON(nslot != ndoms);
  672. done:
  673. kfree(csa);
  674. /*
  675. * Fallback to the default domain if kmalloc() failed.
  676. * See comments in partition_sched_domains().
  677. */
  678. if (doms == NULL)
  679. ndoms = 1;
  680. *domains = doms;
  681. *attributes = dattr;
  682. return ndoms;
  683. }
  684. /*
  685. * Rebuild scheduler domains.
  686. *
  687. * If the flag 'sched_load_balance' of any cpuset with non-empty
  688. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  689. * which has that flag enabled, or if any cpuset with a non-empty
  690. * 'cpus' is removed, then call this routine to rebuild the
  691. * scheduler's dynamic sched domains.
  692. *
  693. * Call with cpuset_mutex held. Takes get_online_cpus().
  694. */
  695. static void rebuild_sched_domains_locked(void)
  696. {
  697. struct sched_domain_attr *attr;
  698. cpumask_var_t *doms;
  699. int ndoms;
  700. lockdep_assert_held(&cpuset_mutex);
  701. get_online_cpus();
  702. /*
  703. * We have raced with CPU hotplug. Don't do anything to avoid
  704. * passing doms with offlined cpu to partition_sched_domains().
  705. * Anyways, hotplug work item will rebuild sched domains.
  706. */
  707. if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
  708. goto out;
  709. /* Generate domain masks and attrs */
  710. ndoms = generate_sched_domains(&doms, &attr);
  711. /* Have scheduler rebuild the domains */
  712. partition_sched_domains(ndoms, doms, attr);
  713. out:
  714. put_online_cpus();
  715. }
  716. #else /* !CONFIG_SMP */
  717. static void rebuild_sched_domains_locked(void)
  718. {
  719. }
  720. #endif /* CONFIG_SMP */
  721. void rebuild_sched_domains(void)
  722. {
  723. mutex_lock(&cpuset_mutex);
  724. rebuild_sched_domains_locked();
  725. mutex_unlock(&cpuset_mutex);
  726. }
  727. /**
  728. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  729. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  730. *
  731. * Iterate through each task of @cs updating its cpus_allowed to the
  732. * effective cpuset's. As this function is called with cpuset_mutex held,
  733. * cpuset membership stays stable.
  734. */
  735. static void update_tasks_cpumask(struct cpuset *cs)
  736. {
  737. struct css_task_iter it;
  738. struct task_struct *task;
  739. css_task_iter_start(&cs->css, &it);
  740. while ((task = css_task_iter_next(&it)))
  741. set_cpus_allowed_ptr(task, cs->effective_cpus);
  742. css_task_iter_end(&it);
  743. }
  744. /*
  745. * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
  746. * @cs: the cpuset to consider
  747. * @new_cpus: temp variable for calculating new effective_cpus
  748. *
  749. * When congifured cpumask is changed, the effective cpumasks of this cpuset
  750. * and all its descendants need to be updated.
  751. *
  752. * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
  753. *
  754. * Called with cpuset_mutex held
  755. */
  756. static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
  757. {
  758. struct cpuset *cp;
  759. struct cgroup_subsys_state *pos_css;
  760. bool need_rebuild_sched_domains = false;
  761. rcu_read_lock();
  762. cpuset_for_each_descendant_pre(cp, pos_css, cs) {
  763. struct cpuset *parent = parent_cs(cp);
  764. cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
  765. /*
  766. * If it becomes empty, inherit the effective mask of the
  767. * parent, which is guaranteed to have some CPUs.
  768. */
  769. if (cgroup_on_dfl(cp->css.cgroup) && cpumask_empty(new_cpus))
  770. cpumask_copy(new_cpus, parent->effective_cpus);
  771. /* Skip the whole subtree if the cpumask remains the same. */
  772. if (cpumask_equal(new_cpus, cp->effective_cpus)) {
  773. pos_css = css_rightmost_descendant(pos_css);
  774. continue;
  775. }
  776. if (!css_tryget_online(&cp->css))
  777. continue;
  778. rcu_read_unlock();
  779. spin_lock_irq(&callback_lock);
  780. cpumask_copy(cp->effective_cpus, new_cpus);
  781. spin_unlock_irq(&callback_lock);
  782. WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
  783. !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
  784. update_tasks_cpumask(cp);
  785. /*
  786. * If the effective cpumask of any non-empty cpuset is changed,
  787. * we need to rebuild sched domains.
  788. */
  789. if (!cpumask_empty(cp->cpus_allowed) &&
  790. is_sched_load_balance(cp))
  791. need_rebuild_sched_domains = true;
  792. rcu_read_lock();
  793. css_put(&cp->css);
  794. }
  795. rcu_read_unlock();
  796. if (need_rebuild_sched_domains)
  797. rebuild_sched_domains_locked();
  798. }
  799. /**
  800. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  801. * @cs: the cpuset to consider
  802. * @trialcs: trial cpuset
  803. * @buf: buffer of cpu numbers written to this cpuset
  804. */
  805. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  806. const char *buf)
  807. {
  808. int retval;
  809. /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
  810. if (cs == &top_cpuset)
  811. return -EACCES;
  812. /*
  813. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  814. * Since cpulist_parse() fails on an empty mask, we special case
  815. * that parsing. The validate_change() call ensures that cpusets
  816. * with tasks have cpus.
  817. */
  818. if (!*buf) {
  819. cpumask_clear(trialcs->cpus_allowed);
  820. } else {
  821. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  822. if (retval < 0)
  823. return retval;
  824. if (!cpumask_subset(trialcs->cpus_allowed,
  825. top_cpuset.cpus_allowed))
  826. return -EINVAL;
  827. }
  828. /* Nothing to do if the cpus didn't change */
  829. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  830. return 0;
  831. retval = validate_change(cs, trialcs);
  832. if (retval < 0)
  833. return retval;
  834. spin_lock_irq(&callback_lock);
  835. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  836. spin_unlock_irq(&callback_lock);
  837. /* use trialcs->cpus_allowed as a temp variable */
  838. update_cpumasks_hier(cs, trialcs->cpus_allowed);
  839. return 0;
  840. }
  841. /*
  842. * cpuset_migrate_mm
  843. *
  844. * Migrate memory region from one set of nodes to another.
  845. *
  846. * Temporarilly set tasks mems_allowed to target nodes of migration,
  847. * so that the migration code can allocate pages on these nodes.
  848. *
  849. * While the mm_struct we are migrating is typically from some
  850. * other task, the task_struct mems_allowed that we are hacking
  851. * is for our current task, which must allocate new pages for that
  852. * migrating memory region.
  853. */
  854. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  855. const nodemask_t *to)
  856. {
  857. struct task_struct *tsk = current;
  858. tsk->mems_allowed = *to;
  859. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  860. rcu_read_lock();
  861. guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
  862. rcu_read_unlock();
  863. }
  864. /*
  865. * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
  866. * @tsk: the task to change
  867. * @newmems: new nodes that the task will be set
  868. *
  869. * In order to avoid seeing no nodes if the old and new nodes are disjoint,
  870. * we structure updates as setting all new allowed nodes, then clearing newly
  871. * disallowed ones.
  872. */
  873. static void cpuset_change_task_nodemask(struct task_struct *tsk,
  874. nodemask_t *newmems)
  875. {
  876. bool need_loop;
  877. /*
  878. * Allow tasks that have access to memory reserves because they have
  879. * been OOM killed to get memory anywhere.
  880. */
  881. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  882. return;
  883. if (current->flags & PF_EXITING) /* Let dying task have memory */
  884. return;
  885. task_lock(tsk);
  886. /*
  887. * Determine if a loop is necessary if another thread is doing
  888. * read_mems_allowed_begin(). If at least one node remains unchanged and
  889. * tsk does not have a mempolicy, then an empty nodemask will not be
  890. * possible when mems_allowed is larger than a word.
  891. */
  892. need_loop = task_has_mempolicy(tsk) ||
  893. !nodes_intersects(*newmems, tsk->mems_allowed);
  894. if (need_loop) {
  895. local_irq_disable();
  896. write_seqcount_begin(&tsk->mems_allowed_seq);
  897. }
  898. nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
  899. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
  900. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
  901. tsk->mems_allowed = *newmems;
  902. if (need_loop) {
  903. write_seqcount_end(&tsk->mems_allowed_seq);
  904. local_irq_enable();
  905. }
  906. task_unlock(tsk);
  907. }
  908. static void *cpuset_being_rebound;
  909. /**
  910. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  911. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  912. *
  913. * Iterate through each task of @cs updating its mems_allowed to the
  914. * effective cpuset's. As this function is called with cpuset_mutex held,
  915. * cpuset membership stays stable.
  916. */
  917. static void update_tasks_nodemask(struct cpuset *cs)
  918. {
  919. static nodemask_t newmems; /* protected by cpuset_mutex */
  920. struct css_task_iter it;
  921. struct task_struct *task;
  922. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  923. guarantee_online_mems(cs, &newmems);
  924. /*
  925. * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
  926. * take while holding tasklist_lock. Forks can happen - the
  927. * mpol_dup() cpuset_being_rebound check will catch such forks,
  928. * and rebind their vma mempolicies too. Because we still hold
  929. * the global cpuset_mutex, we know that no other rebind effort
  930. * will be contending for the global variable cpuset_being_rebound.
  931. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  932. * is idempotent. Also migrate pages in each mm to new nodes.
  933. */
  934. css_task_iter_start(&cs->css, &it);
  935. while ((task = css_task_iter_next(&it))) {
  936. struct mm_struct *mm;
  937. bool migrate;
  938. cpuset_change_task_nodemask(task, &newmems);
  939. mm = get_task_mm(task);
  940. if (!mm)
  941. continue;
  942. migrate = is_memory_migrate(cs);
  943. mpol_rebind_mm(mm, &cs->mems_allowed);
  944. if (migrate)
  945. cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
  946. mmput(mm);
  947. }
  948. css_task_iter_end(&it);
  949. /*
  950. * All the tasks' nodemasks have been updated, update
  951. * cs->old_mems_allowed.
  952. */
  953. cs->old_mems_allowed = newmems;
  954. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  955. cpuset_being_rebound = NULL;
  956. }
  957. /*
  958. * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
  959. * @cs: the cpuset to consider
  960. * @new_mems: a temp variable for calculating new effective_mems
  961. *
  962. * When configured nodemask is changed, the effective nodemasks of this cpuset
  963. * and all its descendants need to be updated.
  964. *
  965. * On legacy hiearchy, effective_mems will be the same with mems_allowed.
  966. *
  967. * Called with cpuset_mutex held
  968. */
  969. static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
  970. {
  971. struct cpuset *cp;
  972. struct cgroup_subsys_state *pos_css;
  973. rcu_read_lock();
  974. cpuset_for_each_descendant_pre(cp, pos_css, cs) {
  975. struct cpuset *parent = parent_cs(cp);
  976. nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
  977. /*
  978. * If it becomes empty, inherit the effective mask of the
  979. * parent, which is guaranteed to have some MEMs.
  980. */
  981. if (cgroup_on_dfl(cp->css.cgroup) && nodes_empty(*new_mems))
  982. *new_mems = parent->effective_mems;
  983. /* Skip the whole subtree if the nodemask remains the same. */
  984. if (nodes_equal(*new_mems, cp->effective_mems)) {
  985. pos_css = css_rightmost_descendant(pos_css);
  986. continue;
  987. }
  988. if (!css_tryget_online(&cp->css))
  989. continue;
  990. rcu_read_unlock();
  991. spin_lock_irq(&callback_lock);
  992. cp->effective_mems = *new_mems;
  993. spin_unlock_irq(&callback_lock);
  994. WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
  995. !nodes_equal(cp->mems_allowed, cp->effective_mems));
  996. update_tasks_nodemask(cp);
  997. rcu_read_lock();
  998. css_put(&cp->css);
  999. }
  1000. rcu_read_unlock();
  1001. }
  1002. /*
  1003. * Handle user request to change the 'mems' memory placement
  1004. * of a cpuset. Needs to validate the request, update the
  1005. * cpusets mems_allowed, and for each task in the cpuset,
  1006. * update mems_allowed and rebind task's mempolicy and any vma
  1007. * mempolicies and if the cpuset is marked 'memory_migrate',
  1008. * migrate the tasks pages to the new memory.
  1009. *
  1010. * Call with cpuset_mutex held. May take callback_lock during call.
  1011. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  1012. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  1013. * their mempolicies to the cpusets new mems_allowed.
  1014. */
  1015. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  1016. const char *buf)
  1017. {
  1018. int retval;
  1019. /*
  1020. * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
  1021. * it's read-only
  1022. */
  1023. if (cs == &top_cpuset) {
  1024. retval = -EACCES;
  1025. goto done;
  1026. }
  1027. /*
  1028. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  1029. * Since nodelist_parse() fails on an empty mask, we special case
  1030. * that parsing. The validate_change() call ensures that cpusets
  1031. * with tasks have memory.
  1032. */
  1033. if (!*buf) {
  1034. nodes_clear(trialcs->mems_allowed);
  1035. } else {
  1036. retval = nodelist_parse(buf, trialcs->mems_allowed);
  1037. if (retval < 0)
  1038. goto done;
  1039. if (!nodes_subset(trialcs->mems_allowed,
  1040. top_cpuset.mems_allowed)) {
  1041. retval = -EINVAL;
  1042. goto done;
  1043. }
  1044. }
  1045. if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
  1046. retval = 0; /* Too easy - nothing to do */
  1047. goto done;
  1048. }
  1049. retval = validate_change(cs, trialcs);
  1050. if (retval < 0)
  1051. goto done;
  1052. spin_lock_irq(&callback_lock);
  1053. cs->mems_allowed = trialcs->mems_allowed;
  1054. spin_unlock_irq(&callback_lock);
  1055. /* use trialcs->mems_allowed as a temp variable */
  1056. update_nodemasks_hier(cs, &cs->mems_allowed);
  1057. done:
  1058. return retval;
  1059. }
  1060. int current_cpuset_is_being_rebound(void)
  1061. {
  1062. int ret;
  1063. rcu_read_lock();
  1064. ret = task_cs(current) == cpuset_being_rebound;
  1065. rcu_read_unlock();
  1066. return ret;
  1067. }
  1068. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1069. {
  1070. #ifdef CONFIG_SMP
  1071. if (val < -1 || val >= sched_domain_level_max)
  1072. return -EINVAL;
  1073. #endif
  1074. if (val != cs->relax_domain_level) {
  1075. cs->relax_domain_level = val;
  1076. if (!cpumask_empty(cs->cpus_allowed) &&
  1077. is_sched_load_balance(cs))
  1078. rebuild_sched_domains_locked();
  1079. }
  1080. return 0;
  1081. }
  1082. /**
  1083. * update_tasks_flags - update the spread flags of tasks in the cpuset.
  1084. * @cs: the cpuset in which each task's spread flags needs to be changed
  1085. *
  1086. * Iterate through each task of @cs updating its spread flags. As this
  1087. * function is called with cpuset_mutex held, cpuset membership stays
  1088. * stable.
  1089. */
  1090. static void update_tasks_flags(struct cpuset *cs)
  1091. {
  1092. struct css_task_iter it;
  1093. struct task_struct *task;
  1094. css_task_iter_start(&cs->css, &it);
  1095. while ((task = css_task_iter_next(&it)))
  1096. cpuset_update_task_spread_flag(cs, task);
  1097. css_task_iter_end(&it);
  1098. }
  1099. /*
  1100. * update_flag - read a 0 or a 1 in a file and update associated flag
  1101. * bit: the bit to update (see cpuset_flagbits_t)
  1102. * cs: the cpuset to update
  1103. * turning_on: whether the flag is being set or cleared
  1104. *
  1105. * Call with cpuset_mutex held.
  1106. */
  1107. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1108. int turning_on)
  1109. {
  1110. struct cpuset *trialcs;
  1111. int balance_flag_changed;
  1112. int spread_flag_changed;
  1113. int err;
  1114. trialcs = alloc_trial_cpuset(cs);
  1115. if (!trialcs)
  1116. return -ENOMEM;
  1117. if (turning_on)
  1118. set_bit(bit, &trialcs->flags);
  1119. else
  1120. clear_bit(bit, &trialcs->flags);
  1121. err = validate_change(cs, trialcs);
  1122. if (err < 0)
  1123. goto out;
  1124. balance_flag_changed = (is_sched_load_balance(cs) !=
  1125. is_sched_load_balance(trialcs));
  1126. spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
  1127. || (is_spread_page(cs) != is_spread_page(trialcs)));
  1128. spin_lock_irq(&callback_lock);
  1129. cs->flags = trialcs->flags;
  1130. spin_unlock_irq(&callback_lock);
  1131. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1132. rebuild_sched_domains_locked();
  1133. if (spread_flag_changed)
  1134. update_tasks_flags(cs);
  1135. out:
  1136. free_trial_cpuset(trialcs);
  1137. return err;
  1138. }
  1139. /*
  1140. * Frequency meter - How fast is some event occurring?
  1141. *
  1142. * These routines manage a digitally filtered, constant time based,
  1143. * event frequency meter. There are four routines:
  1144. * fmeter_init() - initialize a frequency meter.
  1145. * fmeter_markevent() - called each time the event happens.
  1146. * fmeter_getrate() - returns the recent rate of such events.
  1147. * fmeter_update() - internal routine used to update fmeter.
  1148. *
  1149. * A common data structure is passed to each of these routines,
  1150. * which is used to keep track of the state required to manage the
  1151. * frequency meter and its digital filter.
  1152. *
  1153. * The filter works on the number of events marked per unit time.
  1154. * The filter is single-pole low-pass recursive (IIR). The time unit
  1155. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1156. * simulate 3 decimal digits of precision (multiplied by 1000).
  1157. *
  1158. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1159. * has a half-life of 10 seconds, meaning that if the events quit
  1160. * happening, then the rate returned from the fmeter_getrate()
  1161. * will be cut in half each 10 seconds, until it converges to zero.
  1162. *
  1163. * It is not worth doing a real infinitely recursive filter. If more
  1164. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1165. * just compute FM_MAXTICKS ticks worth, by which point the level
  1166. * will be stable.
  1167. *
  1168. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1169. * arithmetic overflow in the fmeter_update() routine.
  1170. *
  1171. * Given the simple 32 bit integer arithmetic used, this meter works
  1172. * best for reporting rates between one per millisecond (msec) and
  1173. * one per 32 (approx) seconds. At constant rates faster than one
  1174. * per msec it maxes out at values just under 1,000,000. At constant
  1175. * rates between one per msec, and one per second it will stabilize
  1176. * to a value N*1000, where N is the rate of events per second.
  1177. * At constant rates between one per second and one per 32 seconds,
  1178. * it will be choppy, moving up on the seconds that have an event,
  1179. * and then decaying until the next event. At rates slower than
  1180. * about one in 32 seconds, it decays all the way back to zero between
  1181. * each event.
  1182. */
  1183. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1184. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1185. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1186. #define FM_SCALE 1000 /* faux fixed point scale */
  1187. /* Initialize a frequency meter */
  1188. static void fmeter_init(struct fmeter *fmp)
  1189. {
  1190. fmp->cnt = 0;
  1191. fmp->val = 0;
  1192. fmp->time = 0;
  1193. spin_lock_init(&fmp->lock);
  1194. }
  1195. /* Internal meter update - process cnt events and update value */
  1196. static void fmeter_update(struct fmeter *fmp)
  1197. {
  1198. time_t now = get_seconds();
  1199. time_t ticks = now - fmp->time;
  1200. if (ticks == 0)
  1201. return;
  1202. ticks = min(FM_MAXTICKS, ticks);
  1203. while (ticks-- > 0)
  1204. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1205. fmp->time = now;
  1206. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1207. fmp->cnt = 0;
  1208. }
  1209. /* Process any previous ticks, then bump cnt by one (times scale). */
  1210. static void fmeter_markevent(struct fmeter *fmp)
  1211. {
  1212. spin_lock(&fmp->lock);
  1213. fmeter_update(fmp);
  1214. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1215. spin_unlock(&fmp->lock);
  1216. }
  1217. /* Process any previous ticks, then return current value. */
  1218. static int fmeter_getrate(struct fmeter *fmp)
  1219. {
  1220. int val;
  1221. spin_lock(&fmp->lock);
  1222. fmeter_update(fmp);
  1223. val = fmp->val;
  1224. spin_unlock(&fmp->lock);
  1225. return val;
  1226. }
  1227. static struct cpuset *cpuset_attach_old_cs;
  1228. /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
  1229. static int cpuset_can_attach(struct cgroup_subsys_state *css,
  1230. struct cgroup_taskset *tset)
  1231. {
  1232. struct cpuset *cs = css_cs(css);
  1233. struct task_struct *task;
  1234. int ret;
  1235. /* used later by cpuset_attach() */
  1236. cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
  1237. mutex_lock(&cpuset_mutex);
  1238. /* allow moving tasks into an empty cpuset if on default hierarchy */
  1239. ret = -ENOSPC;
  1240. if (!cgroup_on_dfl(css->cgroup) &&
  1241. (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
  1242. goto out_unlock;
  1243. cgroup_taskset_for_each(task, tset) {
  1244. ret = task_can_attach(task, cs->cpus_allowed);
  1245. if (ret)
  1246. goto out_unlock;
  1247. ret = security_task_setscheduler(task);
  1248. if (ret)
  1249. goto out_unlock;
  1250. }
  1251. /*
  1252. * Mark attach is in progress. This makes validate_change() fail
  1253. * changes which zero cpus/mems_allowed.
  1254. */
  1255. cs->attach_in_progress++;
  1256. ret = 0;
  1257. out_unlock:
  1258. mutex_unlock(&cpuset_mutex);
  1259. return ret;
  1260. }
  1261. static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
  1262. struct cgroup_taskset *tset)
  1263. {
  1264. mutex_lock(&cpuset_mutex);
  1265. css_cs(css)->attach_in_progress--;
  1266. mutex_unlock(&cpuset_mutex);
  1267. }
  1268. /*
  1269. * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
  1270. * but we can't allocate it dynamically there. Define it global and
  1271. * allocate from cpuset_init().
  1272. */
  1273. static cpumask_var_t cpus_attach;
  1274. static void cpuset_attach(struct cgroup_subsys_state *css,
  1275. struct cgroup_taskset *tset)
  1276. {
  1277. /* static buf protected by cpuset_mutex */
  1278. static nodemask_t cpuset_attach_nodemask_to;
  1279. struct mm_struct *mm;
  1280. struct task_struct *task;
  1281. struct task_struct *leader = cgroup_taskset_first(tset);
  1282. struct cpuset *cs = css_cs(css);
  1283. struct cpuset *oldcs = cpuset_attach_old_cs;
  1284. mutex_lock(&cpuset_mutex);
  1285. /* prepare for attach */
  1286. if (cs == &top_cpuset)
  1287. cpumask_copy(cpus_attach, cpu_possible_mask);
  1288. else
  1289. guarantee_online_cpus(cs, cpus_attach);
  1290. guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
  1291. cgroup_taskset_for_each(task, tset) {
  1292. /*
  1293. * can_attach beforehand should guarantee that this doesn't
  1294. * fail. TODO: have a better way to handle failure here
  1295. */
  1296. WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
  1297. cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
  1298. cpuset_update_task_spread_flag(cs, task);
  1299. }
  1300. /*
  1301. * Change mm, possibly for multiple threads in a threadgroup. This is
  1302. * expensive and may sleep.
  1303. */
  1304. cpuset_attach_nodemask_to = cs->effective_mems;
  1305. mm = get_task_mm(leader);
  1306. if (mm) {
  1307. mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
  1308. /*
  1309. * old_mems_allowed is the same with mems_allowed here, except
  1310. * if this task is being moved automatically due to hotplug.
  1311. * In that case @mems_allowed has been updated and is empty,
  1312. * so @old_mems_allowed is the right nodesets that we migrate
  1313. * mm from.
  1314. */
  1315. if (is_memory_migrate(cs)) {
  1316. cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
  1317. &cpuset_attach_nodemask_to);
  1318. }
  1319. mmput(mm);
  1320. }
  1321. cs->old_mems_allowed = cpuset_attach_nodemask_to;
  1322. cs->attach_in_progress--;
  1323. if (!cs->attach_in_progress)
  1324. wake_up(&cpuset_attach_wq);
  1325. mutex_unlock(&cpuset_mutex);
  1326. }
  1327. /* The various types of files and directories in a cpuset file system */
  1328. typedef enum {
  1329. FILE_MEMORY_MIGRATE,
  1330. FILE_CPULIST,
  1331. FILE_MEMLIST,
  1332. FILE_EFFECTIVE_CPULIST,
  1333. FILE_EFFECTIVE_MEMLIST,
  1334. FILE_CPU_EXCLUSIVE,
  1335. FILE_MEM_EXCLUSIVE,
  1336. FILE_MEM_HARDWALL,
  1337. FILE_SCHED_LOAD_BALANCE,
  1338. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1339. FILE_MEMORY_PRESSURE_ENABLED,
  1340. FILE_MEMORY_PRESSURE,
  1341. FILE_SPREAD_PAGE,
  1342. FILE_SPREAD_SLAB,
  1343. } cpuset_filetype_t;
  1344. static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
  1345. u64 val)
  1346. {
  1347. struct cpuset *cs = css_cs(css);
  1348. cpuset_filetype_t type = cft->private;
  1349. int retval = 0;
  1350. mutex_lock(&cpuset_mutex);
  1351. if (!is_cpuset_online(cs)) {
  1352. retval = -ENODEV;
  1353. goto out_unlock;
  1354. }
  1355. switch (type) {
  1356. case FILE_CPU_EXCLUSIVE:
  1357. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1358. break;
  1359. case FILE_MEM_EXCLUSIVE:
  1360. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1361. break;
  1362. case FILE_MEM_HARDWALL:
  1363. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1364. break;
  1365. case FILE_SCHED_LOAD_BALANCE:
  1366. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1367. break;
  1368. case FILE_MEMORY_MIGRATE:
  1369. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1370. break;
  1371. case FILE_MEMORY_PRESSURE_ENABLED:
  1372. cpuset_memory_pressure_enabled = !!val;
  1373. break;
  1374. case FILE_MEMORY_PRESSURE:
  1375. retval = -EACCES;
  1376. break;
  1377. case FILE_SPREAD_PAGE:
  1378. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1379. break;
  1380. case FILE_SPREAD_SLAB:
  1381. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1382. break;
  1383. default:
  1384. retval = -EINVAL;
  1385. break;
  1386. }
  1387. out_unlock:
  1388. mutex_unlock(&cpuset_mutex);
  1389. return retval;
  1390. }
  1391. static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
  1392. s64 val)
  1393. {
  1394. struct cpuset *cs = css_cs(css);
  1395. cpuset_filetype_t type = cft->private;
  1396. int retval = -ENODEV;
  1397. mutex_lock(&cpuset_mutex);
  1398. if (!is_cpuset_online(cs))
  1399. goto out_unlock;
  1400. switch (type) {
  1401. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1402. retval = update_relax_domain_level(cs, val);
  1403. break;
  1404. default:
  1405. retval = -EINVAL;
  1406. break;
  1407. }
  1408. out_unlock:
  1409. mutex_unlock(&cpuset_mutex);
  1410. return retval;
  1411. }
  1412. /*
  1413. * Common handling for a write to a "cpus" or "mems" file.
  1414. */
  1415. static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
  1416. char *buf, size_t nbytes, loff_t off)
  1417. {
  1418. struct cpuset *cs = css_cs(of_css(of));
  1419. struct cpuset *trialcs;
  1420. int retval = -ENODEV;
  1421. buf = strstrip(buf);
  1422. /*
  1423. * CPU or memory hotunplug may leave @cs w/o any execution
  1424. * resources, in which case the hotplug code asynchronously updates
  1425. * configuration and transfers all tasks to the nearest ancestor
  1426. * which can execute.
  1427. *
  1428. * As writes to "cpus" or "mems" may restore @cs's execution
  1429. * resources, wait for the previously scheduled operations before
  1430. * proceeding, so that we don't end up keep removing tasks added
  1431. * after execution capability is restored.
  1432. *
  1433. * cpuset_hotplug_work calls back into cgroup core via
  1434. * cgroup_transfer_tasks() and waiting for it from a cgroupfs
  1435. * operation like this one can lead to a deadlock through kernfs
  1436. * active_ref protection. Let's break the protection. Losing the
  1437. * protection is okay as we check whether @cs is online after
  1438. * grabbing cpuset_mutex anyway. This only happens on the legacy
  1439. * hierarchies.
  1440. */
  1441. css_get(&cs->css);
  1442. kernfs_break_active_protection(of->kn);
  1443. flush_work(&cpuset_hotplug_work);
  1444. mutex_lock(&cpuset_mutex);
  1445. if (!is_cpuset_online(cs))
  1446. goto out_unlock;
  1447. trialcs = alloc_trial_cpuset(cs);
  1448. if (!trialcs) {
  1449. retval = -ENOMEM;
  1450. goto out_unlock;
  1451. }
  1452. switch (of_cft(of)->private) {
  1453. case FILE_CPULIST:
  1454. retval = update_cpumask(cs, trialcs, buf);
  1455. break;
  1456. case FILE_MEMLIST:
  1457. retval = update_nodemask(cs, trialcs, buf);
  1458. break;
  1459. default:
  1460. retval = -EINVAL;
  1461. break;
  1462. }
  1463. free_trial_cpuset(trialcs);
  1464. out_unlock:
  1465. mutex_unlock(&cpuset_mutex);
  1466. kernfs_unbreak_active_protection(of->kn);
  1467. css_put(&cs->css);
  1468. return retval ?: nbytes;
  1469. }
  1470. /*
  1471. * These ascii lists should be read in a single call, by using a user
  1472. * buffer large enough to hold the entire map. If read in smaller
  1473. * chunks, there is no guarantee of atomicity. Since the display format
  1474. * used, list of ranges of sequential numbers, is variable length,
  1475. * and since these maps can change value dynamically, one could read
  1476. * gibberish by doing partial reads while a list was changing.
  1477. */
  1478. static int cpuset_common_seq_show(struct seq_file *sf, void *v)
  1479. {
  1480. struct cpuset *cs = css_cs(seq_css(sf));
  1481. cpuset_filetype_t type = seq_cft(sf)->private;
  1482. int ret = 0;
  1483. spin_lock_irq(&callback_lock);
  1484. switch (type) {
  1485. case FILE_CPULIST:
  1486. seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
  1487. break;
  1488. case FILE_MEMLIST:
  1489. seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
  1490. break;
  1491. case FILE_EFFECTIVE_CPULIST:
  1492. seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
  1493. break;
  1494. case FILE_EFFECTIVE_MEMLIST:
  1495. seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
  1496. break;
  1497. default:
  1498. ret = -EINVAL;
  1499. }
  1500. spin_unlock_irq(&callback_lock);
  1501. return ret;
  1502. }
  1503. static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
  1504. {
  1505. struct cpuset *cs = css_cs(css);
  1506. cpuset_filetype_t type = cft->private;
  1507. switch (type) {
  1508. case FILE_CPU_EXCLUSIVE:
  1509. return is_cpu_exclusive(cs);
  1510. case FILE_MEM_EXCLUSIVE:
  1511. return is_mem_exclusive(cs);
  1512. case FILE_MEM_HARDWALL:
  1513. return is_mem_hardwall(cs);
  1514. case FILE_SCHED_LOAD_BALANCE:
  1515. return is_sched_load_balance(cs);
  1516. case FILE_MEMORY_MIGRATE:
  1517. return is_memory_migrate(cs);
  1518. case FILE_MEMORY_PRESSURE_ENABLED:
  1519. return cpuset_memory_pressure_enabled;
  1520. case FILE_MEMORY_PRESSURE:
  1521. return fmeter_getrate(&cs->fmeter);
  1522. case FILE_SPREAD_PAGE:
  1523. return is_spread_page(cs);
  1524. case FILE_SPREAD_SLAB:
  1525. return is_spread_slab(cs);
  1526. default:
  1527. BUG();
  1528. }
  1529. /* Unreachable but makes gcc happy */
  1530. return 0;
  1531. }
  1532. static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
  1533. {
  1534. struct cpuset *cs = css_cs(css);
  1535. cpuset_filetype_t type = cft->private;
  1536. switch (type) {
  1537. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1538. return cs->relax_domain_level;
  1539. default:
  1540. BUG();
  1541. }
  1542. /* Unrechable but makes gcc happy */
  1543. return 0;
  1544. }
  1545. /*
  1546. * for the common functions, 'private' gives the type of file
  1547. */
  1548. static struct cftype files[] = {
  1549. {
  1550. .name = "cpus",
  1551. .seq_show = cpuset_common_seq_show,
  1552. .write = cpuset_write_resmask,
  1553. .max_write_len = (100U + 6 * NR_CPUS),
  1554. .private = FILE_CPULIST,
  1555. },
  1556. {
  1557. .name = "mems",
  1558. .seq_show = cpuset_common_seq_show,
  1559. .write = cpuset_write_resmask,
  1560. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1561. .private = FILE_MEMLIST,
  1562. },
  1563. {
  1564. .name = "effective_cpus",
  1565. .seq_show = cpuset_common_seq_show,
  1566. .private = FILE_EFFECTIVE_CPULIST,
  1567. },
  1568. {
  1569. .name = "effective_mems",
  1570. .seq_show = cpuset_common_seq_show,
  1571. .private = FILE_EFFECTIVE_MEMLIST,
  1572. },
  1573. {
  1574. .name = "cpu_exclusive",
  1575. .read_u64 = cpuset_read_u64,
  1576. .write_u64 = cpuset_write_u64,
  1577. .private = FILE_CPU_EXCLUSIVE,
  1578. },
  1579. {
  1580. .name = "mem_exclusive",
  1581. .read_u64 = cpuset_read_u64,
  1582. .write_u64 = cpuset_write_u64,
  1583. .private = FILE_MEM_EXCLUSIVE,
  1584. },
  1585. {
  1586. .name = "mem_hardwall",
  1587. .read_u64 = cpuset_read_u64,
  1588. .write_u64 = cpuset_write_u64,
  1589. .private = FILE_MEM_HARDWALL,
  1590. },
  1591. {
  1592. .name = "sched_load_balance",
  1593. .read_u64 = cpuset_read_u64,
  1594. .write_u64 = cpuset_write_u64,
  1595. .private = FILE_SCHED_LOAD_BALANCE,
  1596. },
  1597. {
  1598. .name = "sched_relax_domain_level",
  1599. .read_s64 = cpuset_read_s64,
  1600. .write_s64 = cpuset_write_s64,
  1601. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1602. },
  1603. {
  1604. .name = "memory_migrate",
  1605. .read_u64 = cpuset_read_u64,
  1606. .write_u64 = cpuset_write_u64,
  1607. .private = FILE_MEMORY_MIGRATE,
  1608. },
  1609. {
  1610. .name = "memory_pressure",
  1611. .read_u64 = cpuset_read_u64,
  1612. .write_u64 = cpuset_write_u64,
  1613. .private = FILE_MEMORY_PRESSURE,
  1614. .mode = S_IRUGO,
  1615. },
  1616. {
  1617. .name = "memory_spread_page",
  1618. .read_u64 = cpuset_read_u64,
  1619. .write_u64 = cpuset_write_u64,
  1620. .private = FILE_SPREAD_PAGE,
  1621. },
  1622. {
  1623. .name = "memory_spread_slab",
  1624. .read_u64 = cpuset_read_u64,
  1625. .write_u64 = cpuset_write_u64,
  1626. .private = FILE_SPREAD_SLAB,
  1627. },
  1628. {
  1629. .name = "memory_pressure_enabled",
  1630. .flags = CFTYPE_ONLY_ON_ROOT,
  1631. .read_u64 = cpuset_read_u64,
  1632. .write_u64 = cpuset_write_u64,
  1633. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1634. },
  1635. { } /* terminate */
  1636. };
  1637. /*
  1638. * cpuset_css_alloc - allocate a cpuset css
  1639. * cgrp: control group that the new cpuset will be part of
  1640. */
  1641. static struct cgroup_subsys_state *
  1642. cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
  1643. {
  1644. struct cpuset *cs;
  1645. if (!parent_css)
  1646. return &top_cpuset.css;
  1647. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  1648. if (!cs)
  1649. return ERR_PTR(-ENOMEM);
  1650. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
  1651. goto free_cs;
  1652. if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
  1653. goto free_cpus;
  1654. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1655. cpumask_clear(cs->cpus_allowed);
  1656. nodes_clear(cs->mems_allowed);
  1657. cpumask_clear(cs->effective_cpus);
  1658. nodes_clear(cs->effective_mems);
  1659. fmeter_init(&cs->fmeter);
  1660. cs->relax_domain_level = -1;
  1661. return &cs->css;
  1662. free_cpus:
  1663. free_cpumask_var(cs->cpus_allowed);
  1664. free_cs:
  1665. kfree(cs);
  1666. return ERR_PTR(-ENOMEM);
  1667. }
  1668. static int cpuset_css_online(struct cgroup_subsys_state *css)
  1669. {
  1670. struct cpuset *cs = css_cs(css);
  1671. struct cpuset *parent = parent_cs(cs);
  1672. struct cpuset *tmp_cs;
  1673. struct cgroup_subsys_state *pos_css;
  1674. if (!parent)
  1675. return 0;
  1676. mutex_lock(&cpuset_mutex);
  1677. set_bit(CS_ONLINE, &cs->flags);
  1678. if (is_spread_page(parent))
  1679. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1680. if (is_spread_slab(parent))
  1681. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1682. cpuset_inc();
  1683. spin_lock_irq(&callback_lock);
  1684. if (cgroup_on_dfl(cs->css.cgroup)) {
  1685. cpumask_copy(cs->effective_cpus, parent->effective_cpus);
  1686. cs->effective_mems = parent->effective_mems;
  1687. }
  1688. spin_unlock_irq(&callback_lock);
  1689. if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
  1690. goto out_unlock;
  1691. /*
  1692. * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
  1693. * set. This flag handling is implemented in cgroup core for
  1694. * histrical reasons - the flag may be specified during mount.
  1695. *
  1696. * Currently, if any sibling cpusets have exclusive cpus or mem, we
  1697. * refuse to clone the configuration - thereby refusing the task to
  1698. * be entered, and as a result refusing the sys_unshare() or
  1699. * clone() which initiated it. If this becomes a problem for some
  1700. * users who wish to allow that scenario, then this could be
  1701. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1702. * (and likewise for mems) to the new cgroup.
  1703. */
  1704. rcu_read_lock();
  1705. cpuset_for_each_child(tmp_cs, pos_css, parent) {
  1706. if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
  1707. rcu_read_unlock();
  1708. goto out_unlock;
  1709. }
  1710. }
  1711. rcu_read_unlock();
  1712. spin_lock_irq(&callback_lock);
  1713. cs->mems_allowed = parent->mems_allowed;
  1714. cs->effective_mems = parent->mems_allowed;
  1715. cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
  1716. cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
  1717. spin_unlock_irq(&callback_lock);
  1718. out_unlock:
  1719. mutex_unlock(&cpuset_mutex);
  1720. return 0;
  1721. }
  1722. /*
  1723. * If the cpuset being removed has its flag 'sched_load_balance'
  1724. * enabled, then simulate turning sched_load_balance off, which
  1725. * will call rebuild_sched_domains_locked().
  1726. */
  1727. static void cpuset_css_offline(struct cgroup_subsys_state *css)
  1728. {
  1729. struct cpuset *cs = css_cs(css);
  1730. mutex_lock(&cpuset_mutex);
  1731. if (is_sched_load_balance(cs))
  1732. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1733. cpuset_dec();
  1734. clear_bit(CS_ONLINE, &cs->flags);
  1735. mutex_unlock(&cpuset_mutex);
  1736. }
  1737. static void cpuset_css_free(struct cgroup_subsys_state *css)
  1738. {
  1739. struct cpuset *cs = css_cs(css);
  1740. free_cpumask_var(cs->effective_cpus);
  1741. free_cpumask_var(cs->cpus_allowed);
  1742. kfree(cs);
  1743. }
  1744. static void cpuset_bind(struct cgroup_subsys_state *root_css)
  1745. {
  1746. mutex_lock(&cpuset_mutex);
  1747. spin_lock_irq(&callback_lock);
  1748. if (cgroup_on_dfl(root_css->cgroup)) {
  1749. cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
  1750. top_cpuset.mems_allowed = node_possible_map;
  1751. } else {
  1752. cpumask_copy(top_cpuset.cpus_allowed,
  1753. top_cpuset.effective_cpus);
  1754. top_cpuset.mems_allowed = top_cpuset.effective_mems;
  1755. }
  1756. spin_unlock_irq(&callback_lock);
  1757. mutex_unlock(&cpuset_mutex);
  1758. }
  1759. struct cgroup_subsys cpuset_cgrp_subsys = {
  1760. .css_alloc = cpuset_css_alloc,
  1761. .css_online = cpuset_css_online,
  1762. .css_offline = cpuset_css_offline,
  1763. .css_free = cpuset_css_free,
  1764. .can_attach = cpuset_can_attach,
  1765. .cancel_attach = cpuset_cancel_attach,
  1766. .attach = cpuset_attach,
  1767. .bind = cpuset_bind,
  1768. .legacy_cftypes = files,
  1769. .early_init = 1,
  1770. };
  1771. /**
  1772. * cpuset_init - initialize cpusets at system boot
  1773. *
  1774. * Description: Initialize top_cpuset and the cpuset internal file system,
  1775. **/
  1776. int __init cpuset_init(void)
  1777. {
  1778. int err = 0;
  1779. if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
  1780. BUG();
  1781. if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
  1782. BUG();
  1783. cpumask_setall(top_cpuset.cpus_allowed);
  1784. nodes_setall(top_cpuset.mems_allowed);
  1785. cpumask_setall(top_cpuset.effective_cpus);
  1786. nodes_setall(top_cpuset.effective_mems);
  1787. fmeter_init(&top_cpuset.fmeter);
  1788. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1789. top_cpuset.relax_domain_level = -1;
  1790. err = register_filesystem(&cpuset_fs_type);
  1791. if (err < 0)
  1792. return err;
  1793. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1794. BUG();
  1795. return 0;
  1796. }
  1797. /*
  1798. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1799. * or memory nodes, we need to walk over the cpuset hierarchy,
  1800. * removing that CPU or node from all cpusets. If this removes the
  1801. * last CPU or node from a cpuset, then move the tasks in the empty
  1802. * cpuset to its next-highest non-empty parent.
  1803. */
  1804. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1805. {
  1806. struct cpuset *parent;
  1807. /*
  1808. * Find its next-highest non-empty parent, (top cpuset
  1809. * has online cpus, so can't be empty).
  1810. */
  1811. parent = parent_cs(cs);
  1812. while (cpumask_empty(parent->cpus_allowed) ||
  1813. nodes_empty(parent->mems_allowed))
  1814. parent = parent_cs(parent);
  1815. if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
  1816. pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
  1817. pr_cont_cgroup_name(cs->css.cgroup);
  1818. pr_cont("\n");
  1819. }
  1820. }
  1821. static void
  1822. hotplug_update_tasks_legacy(struct cpuset *cs,
  1823. struct cpumask *new_cpus, nodemask_t *new_mems,
  1824. bool cpus_updated, bool mems_updated)
  1825. {
  1826. bool is_empty;
  1827. spin_lock_irq(&callback_lock);
  1828. cpumask_copy(cs->cpus_allowed, new_cpus);
  1829. cpumask_copy(cs->effective_cpus, new_cpus);
  1830. cs->mems_allowed = *new_mems;
  1831. cs->effective_mems = *new_mems;
  1832. spin_unlock_irq(&callback_lock);
  1833. /*
  1834. * Don't call update_tasks_cpumask() if the cpuset becomes empty,
  1835. * as the tasks will be migratecd to an ancestor.
  1836. */
  1837. if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
  1838. update_tasks_cpumask(cs);
  1839. if (mems_updated && !nodes_empty(cs->mems_allowed))
  1840. update_tasks_nodemask(cs);
  1841. is_empty = cpumask_empty(cs->cpus_allowed) ||
  1842. nodes_empty(cs->mems_allowed);
  1843. mutex_unlock(&cpuset_mutex);
  1844. /*
  1845. * Move tasks to the nearest ancestor with execution resources,
  1846. * This is full cgroup operation which will also call back into
  1847. * cpuset. Should be done outside any lock.
  1848. */
  1849. if (is_empty)
  1850. remove_tasks_in_empty_cpuset(cs);
  1851. mutex_lock(&cpuset_mutex);
  1852. }
  1853. static void
  1854. hotplug_update_tasks(struct cpuset *cs,
  1855. struct cpumask *new_cpus, nodemask_t *new_mems,
  1856. bool cpus_updated, bool mems_updated)
  1857. {
  1858. if (cpumask_empty(new_cpus))
  1859. cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
  1860. if (nodes_empty(*new_mems))
  1861. *new_mems = parent_cs(cs)->effective_mems;
  1862. spin_lock_irq(&callback_lock);
  1863. cpumask_copy(cs->effective_cpus, new_cpus);
  1864. cs->effective_mems = *new_mems;
  1865. spin_unlock_irq(&callback_lock);
  1866. if (cpus_updated)
  1867. update_tasks_cpumask(cs);
  1868. if (mems_updated)
  1869. update_tasks_nodemask(cs);
  1870. }
  1871. /**
  1872. * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
  1873. * @cs: cpuset in interest
  1874. *
  1875. * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
  1876. * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
  1877. * all its tasks are moved to the nearest ancestor with both resources.
  1878. */
  1879. static void cpuset_hotplug_update_tasks(struct cpuset *cs)
  1880. {
  1881. static cpumask_t new_cpus;
  1882. static nodemask_t new_mems;
  1883. bool cpus_updated;
  1884. bool mems_updated;
  1885. retry:
  1886. wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
  1887. mutex_lock(&cpuset_mutex);
  1888. /*
  1889. * We have raced with task attaching. We wait until attaching
  1890. * is finished, so we won't attach a task to an empty cpuset.
  1891. */
  1892. if (cs->attach_in_progress) {
  1893. mutex_unlock(&cpuset_mutex);
  1894. goto retry;
  1895. }
  1896. cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
  1897. nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
  1898. cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
  1899. mems_updated = !nodes_equal(new_mems, cs->effective_mems);
  1900. if (cgroup_on_dfl(cs->css.cgroup))
  1901. hotplug_update_tasks(cs, &new_cpus, &new_mems,
  1902. cpus_updated, mems_updated);
  1903. else
  1904. hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
  1905. cpus_updated, mems_updated);
  1906. mutex_unlock(&cpuset_mutex);
  1907. }
  1908. /**
  1909. * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
  1910. *
  1911. * This function is called after either CPU or memory configuration has
  1912. * changed and updates cpuset accordingly. The top_cpuset is always
  1913. * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
  1914. * order to make cpusets transparent (of no affect) on systems that are
  1915. * actively using CPU hotplug but making no active use of cpusets.
  1916. *
  1917. * Non-root cpusets are only affected by offlining. If any CPUs or memory
  1918. * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
  1919. * all descendants.
  1920. *
  1921. * Note that CPU offlining during suspend is ignored. We don't modify
  1922. * cpusets across suspend/resume cycles at all.
  1923. */
  1924. static void cpuset_hotplug_workfn(struct work_struct *work)
  1925. {
  1926. static cpumask_t new_cpus;
  1927. static nodemask_t new_mems;
  1928. bool cpus_updated, mems_updated;
  1929. bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup);
  1930. mutex_lock(&cpuset_mutex);
  1931. /* fetch the available cpus/mems and find out which changed how */
  1932. cpumask_copy(&new_cpus, cpu_active_mask);
  1933. new_mems = node_states[N_MEMORY];
  1934. cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
  1935. mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
  1936. /* synchronize cpus_allowed to cpu_active_mask */
  1937. if (cpus_updated) {
  1938. spin_lock_irq(&callback_lock);
  1939. if (!on_dfl)
  1940. cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
  1941. cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
  1942. spin_unlock_irq(&callback_lock);
  1943. /* we don't mess with cpumasks of tasks in top_cpuset */
  1944. }
  1945. /* synchronize mems_allowed to N_MEMORY */
  1946. if (mems_updated) {
  1947. spin_lock_irq(&callback_lock);
  1948. if (!on_dfl)
  1949. top_cpuset.mems_allowed = new_mems;
  1950. top_cpuset.effective_mems = new_mems;
  1951. spin_unlock_irq(&callback_lock);
  1952. update_tasks_nodemask(&top_cpuset);
  1953. }
  1954. mutex_unlock(&cpuset_mutex);
  1955. /* if cpus or mems changed, we need to propagate to descendants */
  1956. if (cpus_updated || mems_updated) {
  1957. struct cpuset *cs;
  1958. struct cgroup_subsys_state *pos_css;
  1959. rcu_read_lock();
  1960. cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
  1961. if (cs == &top_cpuset || !css_tryget_online(&cs->css))
  1962. continue;
  1963. rcu_read_unlock();
  1964. cpuset_hotplug_update_tasks(cs);
  1965. rcu_read_lock();
  1966. css_put(&cs->css);
  1967. }
  1968. rcu_read_unlock();
  1969. }
  1970. /* rebuild sched domains if cpus_allowed has changed */
  1971. if (cpus_updated)
  1972. rebuild_sched_domains();
  1973. }
  1974. void cpuset_update_active_cpus(bool cpu_online)
  1975. {
  1976. /*
  1977. * We're inside cpu hotplug critical region which usually nests
  1978. * inside cgroup synchronization. Bounce actual hotplug processing
  1979. * to a work item to avoid reverse locking order.
  1980. *
  1981. * We still need to do partition_sched_domains() synchronously;
  1982. * otherwise, the scheduler will get confused and put tasks to the
  1983. * dead CPU. Fall back to the default single domain.
  1984. * cpuset_hotplug_workfn() will rebuild it as necessary.
  1985. */
  1986. partition_sched_domains(1, NULL, NULL);
  1987. schedule_work(&cpuset_hotplug_work);
  1988. }
  1989. /*
  1990. * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
  1991. * Call this routine anytime after node_states[N_MEMORY] changes.
  1992. * See cpuset_update_active_cpus() for CPU hotplug handling.
  1993. */
  1994. static int cpuset_track_online_nodes(struct notifier_block *self,
  1995. unsigned long action, void *arg)
  1996. {
  1997. schedule_work(&cpuset_hotplug_work);
  1998. return NOTIFY_OK;
  1999. }
  2000. static struct notifier_block cpuset_track_online_nodes_nb = {
  2001. .notifier_call = cpuset_track_online_nodes,
  2002. .priority = 10, /* ??! */
  2003. };
  2004. /**
  2005. * cpuset_init_smp - initialize cpus_allowed
  2006. *
  2007. * Description: Finish top cpuset after cpu, node maps are initialized
  2008. */
  2009. void __init cpuset_init_smp(void)
  2010. {
  2011. cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
  2012. top_cpuset.mems_allowed = node_states[N_MEMORY];
  2013. top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
  2014. cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
  2015. top_cpuset.effective_mems = node_states[N_MEMORY];
  2016. register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
  2017. }
  2018. /**
  2019. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  2020. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  2021. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  2022. *
  2023. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  2024. * attached to the specified @tsk. Guaranteed to return some non-empty
  2025. * subset of cpu_online_mask, even if this means going outside the
  2026. * tasks cpuset.
  2027. **/
  2028. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  2029. {
  2030. unsigned long flags;
  2031. spin_lock_irqsave(&callback_lock, flags);
  2032. rcu_read_lock();
  2033. guarantee_online_cpus(task_cs(tsk), pmask);
  2034. rcu_read_unlock();
  2035. spin_unlock_irqrestore(&callback_lock, flags);
  2036. }
  2037. void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
  2038. {
  2039. rcu_read_lock();
  2040. do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
  2041. rcu_read_unlock();
  2042. /*
  2043. * We own tsk->cpus_allowed, nobody can change it under us.
  2044. *
  2045. * But we used cs && cs->cpus_allowed lockless and thus can
  2046. * race with cgroup_attach_task() or update_cpumask() and get
  2047. * the wrong tsk->cpus_allowed. However, both cases imply the
  2048. * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
  2049. * which takes task_rq_lock().
  2050. *
  2051. * If we are called after it dropped the lock we must see all
  2052. * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
  2053. * set any mask even if it is not right from task_cs() pov,
  2054. * the pending set_cpus_allowed_ptr() will fix things.
  2055. *
  2056. * select_fallback_rq() will fix things ups and set cpu_possible_mask
  2057. * if required.
  2058. */
  2059. }
  2060. void __init cpuset_init_current_mems_allowed(void)
  2061. {
  2062. nodes_setall(current->mems_allowed);
  2063. }
  2064. /**
  2065. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  2066. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  2067. *
  2068. * Description: Returns the nodemask_t mems_allowed of the cpuset
  2069. * attached to the specified @tsk. Guaranteed to return some non-empty
  2070. * subset of node_states[N_MEMORY], even if this means going outside the
  2071. * tasks cpuset.
  2072. **/
  2073. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  2074. {
  2075. nodemask_t mask;
  2076. unsigned long flags;
  2077. spin_lock_irqsave(&callback_lock, flags);
  2078. rcu_read_lock();
  2079. guarantee_online_mems(task_cs(tsk), &mask);
  2080. rcu_read_unlock();
  2081. spin_unlock_irqrestore(&callback_lock, flags);
  2082. return mask;
  2083. }
  2084. /**
  2085. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  2086. * @nodemask: the nodemask to be checked
  2087. *
  2088. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  2089. */
  2090. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  2091. {
  2092. return nodes_intersects(*nodemask, current->mems_allowed);
  2093. }
  2094. /*
  2095. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  2096. * mem_hardwall ancestor to the specified cpuset. Call holding
  2097. * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
  2098. * (an unusual configuration), then returns the root cpuset.
  2099. */
  2100. static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
  2101. {
  2102. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
  2103. cs = parent_cs(cs);
  2104. return cs;
  2105. }
  2106. /**
  2107. * cpuset_node_allowed - Can we allocate on a memory node?
  2108. * @node: is this an allowed node?
  2109. * @gfp_mask: memory allocation flags
  2110. *
  2111. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2112. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2113. * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
  2114. * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
  2115. * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
  2116. * flag, yes.
  2117. * Otherwise, no.
  2118. *
  2119. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2120. * by forcibly using a zonelist starting at a specified node, and by
  2121. * (in get_page_from_freelist()) refusing to consider the zones for
  2122. * any node on the zonelist except the first. By the time any such
  2123. * calls get to this routine, we should just shut up and say 'yes'.
  2124. *
  2125. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  2126. * and do not allow allocations outside the current tasks cpuset
  2127. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  2128. * GFP_KERNEL allocations are not so marked, so can escape to the
  2129. * nearest enclosing hardwalled ancestor cpuset.
  2130. *
  2131. * Scanning up parent cpusets requires callback_lock. The
  2132. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  2133. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  2134. * current tasks mems_allowed came up empty on the first pass over
  2135. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  2136. * cpuset are short of memory, might require taking the callback_lock.
  2137. *
  2138. * The first call here from mm/page_alloc:get_page_from_freelist()
  2139. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  2140. * so no allocation on a node outside the cpuset is allowed (unless
  2141. * in interrupt, of course).
  2142. *
  2143. * The second pass through get_page_from_freelist() doesn't even call
  2144. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  2145. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  2146. * in alloc_flags. That logic and the checks below have the combined
  2147. * affect that:
  2148. * in_interrupt - any node ok (current task context irrelevant)
  2149. * GFP_ATOMIC - any node ok
  2150. * TIF_MEMDIE - any node ok
  2151. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  2152. * GFP_USER - only nodes in current tasks mems allowed ok.
  2153. */
  2154. int __cpuset_node_allowed(int node, gfp_t gfp_mask)
  2155. {
  2156. struct cpuset *cs; /* current cpuset ancestors */
  2157. int allowed; /* is allocation in zone z allowed? */
  2158. unsigned long flags;
  2159. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2160. return 1;
  2161. if (node_isset(node, current->mems_allowed))
  2162. return 1;
  2163. /*
  2164. * Allow tasks that have access to memory reserves because they have
  2165. * been OOM killed to get memory anywhere.
  2166. */
  2167. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2168. return 1;
  2169. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2170. return 0;
  2171. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2172. return 1;
  2173. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2174. spin_lock_irqsave(&callback_lock, flags);
  2175. rcu_read_lock();
  2176. cs = nearest_hardwall_ancestor(task_cs(current));
  2177. allowed = node_isset(node, cs->mems_allowed);
  2178. rcu_read_unlock();
  2179. spin_unlock_irqrestore(&callback_lock, flags);
  2180. return allowed;
  2181. }
  2182. /**
  2183. * cpuset_mem_spread_node() - On which node to begin search for a file page
  2184. * cpuset_slab_spread_node() - On which node to begin search for a slab page
  2185. *
  2186. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2187. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2188. * and if the memory allocation used cpuset_mem_spread_node()
  2189. * to determine on which node to start looking, as it will for
  2190. * certain page cache or slab cache pages such as used for file
  2191. * system buffers and inode caches, then instead of starting on the
  2192. * local node to look for a free page, rather spread the starting
  2193. * node around the tasks mems_allowed nodes.
  2194. *
  2195. * We don't have to worry about the returned node being offline
  2196. * because "it can't happen", and even if it did, it would be ok.
  2197. *
  2198. * The routines calling guarantee_online_mems() are careful to
  2199. * only set nodes in task->mems_allowed that are online. So it
  2200. * should not be possible for the following code to return an
  2201. * offline node. But if it did, that would be ok, as this routine
  2202. * is not returning the node where the allocation must be, only
  2203. * the node where the search should start. The zonelist passed to
  2204. * __alloc_pages() will include all nodes. If the slab allocator
  2205. * is passed an offline node, it will fall back to the local node.
  2206. * See kmem_cache_alloc_node().
  2207. */
  2208. static int cpuset_spread_node(int *rotor)
  2209. {
  2210. int node;
  2211. node = next_node(*rotor, current->mems_allowed);
  2212. if (node == MAX_NUMNODES)
  2213. node = first_node(current->mems_allowed);
  2214. *rotor = node;
  2215. return node;
  2216. }
  2217. int cpuset_mem_spread_node(void)
  2218. {
  2219. if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
  2220. current->cpuset_mem_spread_rotor =
  2221. node_random(&current->mems_allowed);
  2222. return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
  2223. }
  2224. int cpuset_slab_spread_node(void)
  2225. {
  2226. if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
  2227. current->cpuset_slab_spread_rotor =
  2228. node_random(&current->mems_allowed);
  2229. return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
  2230. }
  2231. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2232. /**
  2233. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2234. * @tsk1: pointer to task_struct of some task.
  2235. * @tsk2: pointer to task_struct of some other task.
  2236. *
  2237. * Description: Return true if @tsk1's mems_allowed intersects the
  2238. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2239. * one of the task's memory usage might impact the memory available
  2240. * to the other.
  2241. **/
  2242. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2243. const struct task_struct *tsk2)
  2244. {
  2245. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2246. }
  2247. /**
  2248. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2249. * @tsk: pointer to task_struct of some task.
  2250. *
  2251. * Description: Prints @task's name, cpuset name, and cached copy of its
  2252. * mems_allowed to the kernel log.
  2253. */
  2254. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2255. {
  2256. struct cgroup *cgrp;
  2257. rcu_read_lock();
  2258. cgrp = task_cs(tsk)->css.cgroup;
  2259. pr_info("%s cpuset=", tsk->comm);
  2260. pr_cont_cgroup_name(cgrp);
  2261. pr_cont(" mems_allowed=%*pbl\n", nodemask_pr_args(&tsk->mems_allowed));
  2262. rcu_read_unlock();
  2263. }
  2264. /*
  2265. * Collection of memory_pressure is suppressed unless
  2266. * this flag is enabled by writing "1" to the special
  2267. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2268. */
  2269. int cpuset_memory_pressure_enabled __read_mostly;
  2270. /**
  2271. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2272. *
  2273. * Keep a running average of the rate of synchronous (direct)
  2274. * page reclaim efforts initiated by tasks in each cpuset.
  2275. *
  2276. * This represents the rate at which some task in the cpuset
  2277. * ran low on memory on all nodes it was allowed to use, and
  2278. * had to enter the kernels page reclaim code in an effort to
  2279. * create more free memory by tossing clean pages or swapping
  2280. * or writing dirty pages.
  2281. *
  2282. * Display to user space in the per-cpuset read-only file
  2283. * "memory_pressure". Value displayed is an integer
  2284. * representing the recent rate of entry into the synchronous
  2285. * (direct) page reclaim by any task attached to the cpuset.
  2286. **/
  2287. void __cpuset_memory_pressure_bump(void)
  2288. {
  2289. rcu_read_lock();
  2290. fmeter_markevent(&task_cs(current)->fmeter);
  2291. rcu_read_unlock();
  2292. }
  2293. #ifdef CONFIG_PROC_PID_CPUSET
  2294. /*
  2295. * proc_cpuset_show()
  2296. * - Print tasks cpuset path into seq_file.
  2297. * - Used for /proc/<pid>/cpuset.
  2298. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2299. * doesn't really matter if tsk->cpuset changes after we read it,
  2300. * and we take cpuset_mutex, keeping cpuset_attach() from changing it
  2301. * anyway.
  2302. */
  2303. int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
  2304. struct pid *pid, struct task_struct *tsk)
  2305. {
  2306. char *buf, *p;
  2307. struct cgroup_subsys_state *css;
  2308. int retval;
  2309. retval = -ENOMEM;
  2310. buf = kmalloc(PATH_MAX, GFP_KERNEL);
  2311. if (!buf)
  2312. goto out;
  2313. retval = -ENAMETOOLONG;
  2314. rcu_read_lock();
  2315. css = task_css(tsk, cpuset_cgrp_id);
  2316. p = cgroup_path(css->cgroup, buf, PATH_MAX);
  2317. rcu_read_unlock();
  2318. if (!p)
  2319. goto out_free;
  2320. seq_puts(m, p);
  2321. seq_putc(m, '\n');
  2322. retval = 0;
  2323. out_free:
  2324. kfree(buf);
  2325. out:
  2326. return retval;
  2327. }
  2328. #endif /* CONFIG_PROC_PID_CPUSET */
  2329. /* Display task mems_allowed in /proc/<pid>/status file. */
  2330. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2331. {
  2332. seq_printf(m, "Mems_allowed:\t%*pb\n",
  2333. nodemask_pr_args(&task->mems_allowed));
  2334. seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
  2335. nodemask_pr_args(&task->mems_allowed));
  2336. }