file.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946
  1. /*
  2. * linux/fs/nfs/file.c
  3. *
  4. * Copyright (C) 1992 Rick Sladkey
  5. *
  6. * Changes Copyright (C) 1994 by Florian La Roche
  7. * - Do not copy data too often around in the kernel.
  8. * - In nfs_file_read the return value of kmalloc wasn't checked.
  9. * - Put in a better version of read look-ahead buffering. Original idea
  10. * and implementation by Wai S Kok elekokws@ee.nus.sg.
  11. *
  12. * Expire cache on write to a file by Wai S Kok (Oct 1994).
  13. *
  14. * Total rewrite of read side for new NFS buffer cache.. Linus.
  15. *
  16. * nfs regular file handling functions
  17. */
  18. #include <linux/module.h>
  19. #include <linux/time.h>
  20. #include <linux/kernel.h>
  21. #include <linux/errno.h>
  22. #include <linux/fcntl.h>
  23. #include <linux/stat.h>
  24. #include <linux/nfs_fs.h>
  25. #include <linux/nfs_mount.h>
  26. #include <linux/mm.h>
  27. #include <linux/pagemap.h>
  28. #include <linux/aio.h>
  29. #include <linux/gfp.h>
  30. #include <linux/swap.h>
  31. #include <asm/uaccess.h>
  32. #include "delegation.h"
  33. #include "internal.h"
  34. #include "iostat.h"
  35. #include "fscache.h"
  36. #include "pnfs.h"
  37. #include "nfstrace.h"
  38. #define NFSDBG_FACILITY NFSDBG_FILE
  39. static const struct vm_operations_struct nfs_file_vm_ops;
  40. /* Hack for future NFS swap support */
  41. #ifndef IS_SWAPFILE
  42. # define IS_SWAPFILE(inode) (0)
  43. #endif
  44. int nfs_check_flags(int flags)
  45. {
  46. if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
  47. return -EINVAL;
  48. return 0;
  49. }
  50. EXPORT_SYMBOL_GPL(nfs_check_flags);
  51. /*
  52. * Open file
  53. */
  54. static int
  55. nfs_file_open(struct inode *inode, struct file *filp)
  56. {
  57. int res;
  58. dprintk("NFS: open file(%pD2)\n", filp);
  59. nfs_inc_stats(inode, NFSIOS_VFSOPEN);
  60. res = nfs_check_flags(filp->f_flags);
  61. if (res)
  62. return res;
  63. res = nfs_open(inode, filp);
  64. return res;
  65. }
  66. int
  67. nfs_file_release(struct inode *inode, struct file *filp)
  68. {
  69. dprintk("NFS: release(%pD2)\n", filp);
  70. nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
  71. return nfs_release(inode, filp);
  72. }
  73. EXPORT_SYMBOL_GPL(nfs_file_release);
  74. /**
  75. * nfs_revalidate_size - Revalidate the file size
  76. * @inode - pointer to inode struct
  77. * @file - pointer to struct file
  78. *
  79. * Revalidates the file length. This is basically a wrapper around
  80. * nfs_revalidate_inode() that takes into account the fact that we may
  81. * have cached writes (in which case we don't care about the server's
  82. * idea of what the file length is), or O_DIRECT (in which case we
  83. * shouldn't trust the cache).
  84. */
  85. static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
  86. {
  87. struct nfs_server *server = NFS_SERVER(inode);
  88. struct nfs_inode *nfsi = NFS_I(inode);
  89. if (nfs_have_delegated_attributes(inode))
  90. goto out_noreval;
  91. if (filp->f_flags & O_DIRECT)
  92. goto force_reval;
  93. if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
  94. goto force_reval;
  95. if (nfs_attribute_timeout(inode))
  96. goto force_reval;
  97. out_noreval:
  98. return 0;
  99. force_reval:
  100. return __nfs_revalidate_inode(server, inode);
  101. }
  102. loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
  103. {
  104. dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
  105. filp, offset, whence);
  106. /*
  107. * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
  108. * the cached file length
  109. */
  110. if (whence != SEEK_SET && whence != SEEK_CUR) {
  111. struct inode *inode = filp->f_mapping->host;
  112. int retval = nfs_revalidate_file_size(inode, filp);
  113. if (retval < 0)
  114. return (loff_t)retval;
  115. }
  116. return generic_file_llseek(filp, offset, whence);
  117. }
  118. EXPORT_SYMBOL_GPL(nfs_file_llseek);
  119. /*
  120. * Flush all dirty pages, and check for write errors.
  121. */
  122. int
  123. nfs_file_flush(struct file *file, fl_owner_t id)
  124. {
  125. struct inode *inode = file_inode(file);
  126. dprintk("NFS: flush(%pD2)\n", file);
  127. nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
  128. if ((file->f_mode & FMODE_WRITE) == 0)
  129. return 0;
  130. /*
  131. * If we're holding a write delegation, then just start the i/o
  132. * but don't wait for completion (or send a commit).
  133. */
  134. if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
  135. return filemap_fdatawrite(file->f_mapping);
  136. /* Flush writes to the server and return any errors */
  137. return vfs_fsync(file, 0);
  138. }
  139. EXPORT_SYMBOL_GPL(nfs_file_flush);
  140. ssize_t
  141. nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
  142. {
  143. struct inode *inode = file_inode(iocb->ki_filp);
  144. ssize_t result;
  145. if (iocb->ki_filp->f_flags & O_DIRECT)
  146. return nfs_file_direct_read(iocb, to, iocb->ki_pos);
  147. dprintk("NFS: read(%pD2, %zu@%lu)\n",
  148. iocb->ki_filp,
  149. iov_iter_count(to), (unsigned long) iocb->ki_pos);
  150. result = nfs_revalidate_mapping_protected(inode, iocb->ki_filp->f_mapping);
  151. if (!result) {
  152. result = generic_file_read_iter(iocb, to);
  153. if (result > 0)
  154. nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
  155. }
  156. return result;
  157. }
  158. EXPORT_SYMBOL_GPL(nfs_file_read);
  159. ssize_t
  160. nfs_file_splice_read(struct file *filp, loff_t *ppos,
  161. struct pipe_inode_info *pipe, size_t count,
  162. unsigned int flags)
  163. {
  164. struct inode *inode = file_inode(filp);
  165. ssize_t res;
  166. dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
  167. filp, (unsigned long) count, (unsigned long long) *ppos);
  168. res = nfs_revalidate_mapping_protected(inode, filp->f_mapping);
  169. if (!res) {
  170. res = generic_file_splice_read(filp, ppos, pipe, count, flags);
  171. if (res > 0)
  172. nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
  173. }
  174. return res;
  175. }
  176. EXPORT_SYMBOL_GPL(nfs_file_splice_read);
  177. int
  178. nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
  179. {
  180. struct inode *inode = file_inode(file);
  181. int status;
  182. dprintk("NFS: mmap(%pD2)\n", file);
  183. /* Note: generic_file_mmap() returns ENOSYS on nommu systems
  184. * so we call that before revalidating the mapping
  185. */
  186. status = generic_file_mmap(file, vma);
  187. if (!status) {
  188. vma->vm_ops = &nfs_file_vm_ops;
  189. status = nfs_revalidate_mapping(inode, file->f_mapping);
  190. }
  191. return status;
  192. }
  193. EXPORT_SYMBOL_GPL(nfs_file_mmap);
  194. /*
  195. * Flush any dirty pages for this process, and check for write errors.
  196. * The return status from this call provides a reliable indication of
  197. * whether any write errors occurred for this process.
  198. *
  199. * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
  200. * disk, but it retrieves and clears ctx->error after synching, despite
  201. * the two being set at the same time in nfs_context_set_write_error().
  202. * This is because the former is used to notify the _next_ call to
  203. * nfs_file_write() that a write error occurred, and hence cause it to
  204. * fall back to doing a synchronous write.
  205. */
  206. int
  207. nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
  208. {
  209. struct nfs_open_context *ctx = nfs_file_open_context(file);
  210. struct inode *inode = file_inode(file);
  211. int have_error, do_resend, status;
  212. int ret = 0;
  213. dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
  214. nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
  215. do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
  216. have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
  217. status = nfs_commit_inode(inode, FLUSH_SYNC);
  218. have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
  219. if (have_error) {
  220. ret = xchg(&ctx->error, 0);
  221. if (ret)
  222. goto out;
  223. }
  224. if (status < 0) {
  225. ret = status;
  226. goto out;
  227. }
  228. do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
  229. if (do_resend)
  230. ret = -EAGAIN;
  231. out:
  232. return ret;
  233. }
  234. EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
  235. static int
  236. nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
  237. {
  238. int ret;
  239. struct inode *inode = file_inode(file);
  240. trace_nfs_fsync_enter(inode);
  241. do {
  242. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  243. if (ret != 0)
  244. break;
  245. mutex_lock(&inode->i_mutex);
  246. ret = nfs_file_fsync_commit(file, start, end, datasync);
  247. mutex_unlock(&inode->i_mutex);
  248. /*
  249. * If nfs_file_fsync_commit detected a server reboot, then
  250. * resend all dirty pages that might have been covered by
  251. * the NFS_CONTEXT_RESEND_WRITES flag
  252. */
  253. start = 0;
  254. end = LLONG_MAX;
  255. } while (ret == -EAGAIN);
  256. trace_nfs_fsync_exit(inode, ret);
  257. return ret;
  258. }
  259. /*
  260. * Decide whether a read/modify/write cycle may be more efficient
  261. * then a modify/write/read cycle when writing to a page in the
  262. * page cache.
  263. *
  264. * The modify/write/read cycle may occur if a page is read before
  265. * being completely filled by the writer. In this situation, the
  266. * page must be completely written to stable storage on the server
  267. * before it can be refilled by reading in the page from the server.
  268. * This can lead to expensive, small, FILE_SYNC mode writes being
  269. * done.
  270. *
  271. * It may be more efficient to read the page first if the file is
  272. * open for reading in addition to writing, the page is not marked
  273. * as Uptodate, it is not dirty or waiting to be committed,
  274. * indicating that it was previously allocated and then modified,
  275. * that there were valid bytes of data in that range of the file,
  276. * and that the new data won't completely replace the old data in
  277. * that range of the file.
  278. */
  279. static int nfs_want_read_modify_write(struct file *file, struct page *page,
  280. loff_t pos, unsigned len)
  281. {
  282. unsigned int pglen = nfs_page_length(page);
  283. unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
  284. unsigned int end = offset + len;
  285. if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
  286. if (!PageUptodate(page))
  287. return 1;
  288. return 0;
  289. }
  290. if ((file->f_mode & FMODE_READ) && /* open for read? */
  291. !PageUptodate(page) && /* Uptodate? */
  292. !PagePrivate(page) && /* i/o request already? */
  293. pglen && /* valid bytes of file? */
  294. (end < pglen || offset)) /* replace all valid bytes? */
  295. return 1;
  296. return 0;
  297. }
  298. /*
  299. * This does the "real" work of the write. We must allocate and lock the
  300. * page to be sent back to the generic routine, which then copies the
  301. * data from user space.
  302. *
  303. * If the writer ends up delaying the write, the writer needs to
  304. * increment the page use counts until he is done with the page.
  305. */
  306. static int nfs_write_begin(struct file *file, struct address_space *mapping,
  307. loff_t pos, unsigned len, unsigned flags,
  308. struct page **pagep, void **fsdata)
  309. {
  310. int ret;
  311. pgoff_t index = pos >> PAGE_CACHE_SHIFT;
  312. struct page *page;
  313. int once_thru = 0;
  314. dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
  315. file, mapping->host->i_ino, len, (long long) pos);
  316. start:
  317. /*
  318. * Prevent starvation issues if someone is doing a consistency
  319. * sync-to-disk
  320. */
  321. ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
  322. nfs_wait_bit_killable, TASK_KILLABLE);
  323. if (ret)
  324. return ret;
  325. /*
  326. * Wait for O_DIRECT to complete
  327. */
  328. nfs_inode_dio_wait(mapping->host);
  329. page = grab_cache_page_write_begin(mapping, index, flags);
  330. if (!page)
  331. return -ENOMEM;
  332. *pagep = page;
  333. ret = nfs_flush_incompatible(file, page);
  334. if (ret) {
  335. unlock_page(page);
  336. page_cache_release(page);
  337. } else if (!once_thru &&
  338. nfs_want_read_modify_write(file, page, pos, len)) {
  339. once_thru = 1;
  340. ret = nfs_readpage(file, page);
  341. page_cache_release(page);
  342. if (!ret)
  343. goto start;
  344. }
  345. return ret;
  346. }
  347. static int nfs_write_end(struct file *file, struct address_space *mapping,
  348. loff_t pos, unsigned len, unsigned copied,
  349. struct page *page, void *fsdata)
  350. {
  351. unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
  352. struct nfs_open_context *ctx = nfs_file_open_context(file);
  353. int status;
  354. dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
  355. file, mapping->host->i_ino, len, (long long) pos);
  356. /*
  357. * Zero any uninitialised parts of the page, and then mark the page
  358. * as up to date if it turns out that we're extending the file.
  359. */
  360. if (!PageUptodate(page)) {
  361. unsigned pglen = nfs_page_length(page);
  362. unsigned end = offset + len;
  363. if (pglen == 0) {
  364. zero_user_segments(page, 0, offset,
  365. end, PAGE_CACHE_SIZE);
  366. SetPageUptodate(page);
  367. } else if (end >= pglen) {
  368. zero_user_segment(page, end, PAGE_CACHE_SIZE);
  369. if (offset == 0)
  370. SetPageUptodate(page);
  371. } else
  372. zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
  373. }
  374. status = nfs_updatepage(file, page, offset, copied);
  375. unlock_page(page);
  376. page_cache_release(page);
  377. if (status < 0)
  378. return status;
  379. NFS_I(mapping->host)->write_io += copied;
  380. if (nfs_ctx_key_to_expire(ctx)) {
  381. status = nfs_wb_all(mapping->host);
  382. if (status < 0)
  383. return status;
  384. }
  385. return copied;
  386. }
  387. /*
  388. * Partially or wholly invalidate a page
  389. * - Release the private state associated with a page if undergoing complete
  390. * page invalidation
  391. * - Called if either PG_private or PG_fscache is set on the page
  392. * - Caller holds page lock
  393. */
  394. static void nfs_invalidate_page(struct page *page, unsigned int offset,
  395. unsigned int length)
  396. {
  397. dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
  398. page, offset, length);
  399. if (offset != 0 || length < PAGE_CACHE_SIZE)
  400. return;
  401. /* Cancel any unstarted writes on this page */
  402. nfs_wb_page_cancel(page_file_mapping(page)->host, page);
  403. nfs_fscache_invalidate_page(page, page->mapping->host);
  404. }
  405. /*
  406. * Attempt to release the private state associated with a page
  407. * - Called if either PG_private or PG_fscache is set on the page
  408. * - Caller holds page lock
  409. * - Return true (may release page) or false (may not)
  410. */
  411. static int nfs_release_page(struct page *page, gfp_t gfp)
  412. {
  413. struct address_space *mapping = page->mapping;
  414. dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
  415. /* Always try to initiate a 'commit' if relevant, but only
  416. * wait for it if __GFP_WAIT is set. Even then, only wait 1
  417. * second and only if the 'bdi' is not congested.
  418. * Waiting indefinitely can cause deadlocks when the NFS
  419. * server is on this machine, when a new TCP connection is
  420. * needed and in other rare cases. There is no particular
  421. * need to wait extensively here. A short wait has the
  422. * benefit that someone else can worry about the freezer.
  423. */
  424. if (mapping) {
  425. struct nfs_server *nfss = NFS_SERVER(mapping->host);
  426. nfs_commit_inode(mapping->host, 0);
  427. if ((gfp & __GFP_WAIT) &&
  428. !bdi_write_congested(&nfss->backing_dev_info)) {
  429. wait_on_page_bit_killable_timeout(page, PG_private,
  430. HZ);
  431. if (PagePrivate(page))
  432. set_bdi_congested(&nfss->backing_dev_info,
  433. BLK_RW_ASYNC);
  434. }
  435. }
  436. /* If PagePrivate() is set, then the page is not freeable */
  437. if (PagePrivate(page))
  438. return 0;
  439. return nfs_fscache_release_page(page, gfp);
  440. }
  441. static void nfs_check_dirty_writeback(struct page *page,
  442. bool *dirty, bool *writeback)
  443. {
  444. struct nfs_inode *nfsi;
  445. struct address_space *mapping = page_file_mapping(page);
  446. if (!mapping || PageSwapCache(page))
  447. return;
  448. /*
  449. * Check if an unstable page is currently being committed and
  450. * if so, have the VM treat it as if the page is under writeback
  451. * so it will not block due to pages that will shortly be freeable.
  452. */
  453. nfsi = NFS_I(mapping->host);
  454. if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
  455. *writeback = true;
  456. return;
  457. }
  458. /*
  459. * If PagePrivate() is set, then the page is not freeable and as the
  460. * inode is not being committed, it's not going to be cleaned in the
  461. * near future so treat it as dirty
  462. */
  463. if (PagePrivate(page))
  464. *dirty = true;
  465. }
  466. /*
  467. * Attempt to clear the private state associated with a page when an error
  468. * occurs that requires the cached contents of an inode to be written back or
  469. * destroyed
  470. * - Called if either PG_private or fscache is set on the page
  471. * - Caller holds page lock
  472. * - Return 0 if successful, -error otherwise
  473. */
  474. static int nfs_launder_page(struct page *page)
  475. {
  476. struct inode *inode = page_file_mapping(page)->host;
  477. struct nfs_inode *nfsi = NFS_I(inode);
  478. dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
  479. inode->i_ino, (long long)page_offset(page));
  480. nfs_fscache_wait_on_page_write(nfsi, page);
  481. return nfs_wb_page(inode, page);
  482. }
  483. #ifdef CONFIG_NFS_SWAP
  484. static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
  485. sector_t *span)
  486. {
  487. int ret;
  488. struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
  489. *span = sis->pages;
  490. rcu_read_lock();
  491. ret = xs_swapper(rcu_dereference(clnt->cl_xprt), 1);
  492. rcu_read_unlock();
  493. return ret;
  494. }
  495. static void nfs_swap_deactivate(struct file *file)
  496. {
  497. struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
  498. rcu_read_lock();
  499. xs_swapper(rcu_dereference(clnt->cl_xprt), 0);
  500. rcu_read_unlock();
  501. }
  502. #endif
  503. const struct address_space_operations nfs_file_aops = {
  504. .readpage = nfs_readpage,
  505. .readpages = nfs_readpages,
  506. .set_page_dirty = __set_page_dirty_nobuffers,
  507. .writepage = nfs_writepage,
  508. .writepages = nfs_writepages,
  509. .write_begin = nfs_write_begin,
  510. .write_end = nfs_write_end,
  511. .invalidatepage = nfs_invalidate_page,
  512. .releasepage = nfs_release_page,
  513. .direct_IO = nfs_direct_IO,
  514. .migratepage = nfs_migrate_page,
  515. .launder_page = nfs_launder_page,
  516. .is_dirty_writeback = nfs_check_dirty_writeback,
  517. .error_remove_page = generic_error_remove_page,
  518. #ifdef CONFIG_NFS_SWAP
  519. .swap_activate = nfs_swap_activate,
  520. .swap_deactivate = nfs_swap_deactivate,
  521. #endif
  522. };
  523. /*
  524. * Notification that a PTE pointing to an NFS page is about to be made
  525. * writable, implying that someone is about to modify the page through a
  526. * shared-writable mapping
  527. */
  528. static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
  529. {
  530. struct page *page = vmf->page;
  531. struct file *filp = vma->vm_file;
  532. struct inode *inode = file_inode(filp);
  533. unsigned pagelen;
  534. int ret = VM_FAULT_NOPAGE;
  535. struct address_space *mapping;
  536. dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
  537. filp, filp->f_mapping->host->i_ino,
  538. (long long)page_offset(page));
  539. /* make sure the cache has finished storing the page */
  540. nfs_fscache_wait_on_page_write(NFS_I(inode), page);
  541. wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
  542. nfs_wait_bit_killable, TASK_KILLABLE);
  543. lock_page(page);
  544. mapping = page_file_mapping(page);
  545. if (mapping != inode->i_mapping)
  546. goto out_unlock;
  547. wait_on_page_writeback(page);
  548. pagelen = nfs_page_length(page);
  549. if (pagelen == 0)
  550. goto out_unlock;
  551. ret = VM_FAULT_LOCKED;
  552. if (nfs_flush_incompatible(filp, page) == 0 &&
  553. nfs_updatepage(filp, page, 0, pagelen) == 0)
  554. goto out;
  555. ret = VM_FAULT_SIGBUS;
  556. out_unlock:
  557. unlock_page(page);
  558. out:
  559. return ret;
  560. }
  561. static const struct vm_operations_struct nfs_file_vm_ops = {
  562. .fault = filemap_fault,
  563. .map_pages = filemap_map_pages,
  564. .page_mkwrite = nfs_vm_page_mkwrite,
  565. };
  566. static int nfs_need_sync_write(struct file *filp, struct inode *inode)
  567. {
  568. struct nfs_open_context *ctx;
  569. if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
  570. return 1;
  571. ctx = nfs_file_open_context(filp);
  572. if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
  573. nfs_ctx_key_to_expire(ctx))
  574. return 1;
  575. return 0;
  576. }
  577. ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
  578. {
  579. struct file *file = iocb->ki_filp;
  580. struct inode *inode = file_inode(file);
  581. unsigned long written = 0;
  582. ssize_t result;
  583. size_t count = iov_iter_count(from);
  584. loff_t pos = iocb->ki_pos;
  585. result = nfs_key_timeout_notify(file, inode);
  586. if (result)
  587. return result;
  588. if (file->f_flags & O_DIRECT)
  589. return nfs_file_direct_write(iocb, from, pos);
  590. dprintk("NFS: write(%pD2, %zu@%Ld)\n",
  591. file, count, (long long) pos);
  592. result = -EBUSY;
  593. if (IS_SWAPFILE(inode))
  594. goto out_swapfile;
  595. /*
  596. * O_APPEND implies that we must revalidate the file length.
  597. */
  598. if (file->f_flags & O_APPEND) {
  599. result = nfs_revalidate_file_size(inode, file);
  600. if (result)
  601. goto out;
  602. }
  603. result = count;
  604. if (!count)
  605. goto out;
  606. result = generic_file_write_iter(iocb, from);
  607. if (result > 0)
  608. written = result;
  609. /* Return error values for O_DSYNC and IS_SYNC() */
  610. if (result >= 0 && nfs_need_sync_write(file, inode)) {
  611. int err = vfs_fsync(file, 0);
  612. if (err < 0)
  613. result = err;
  614. }
  615. if (result > 0)
  616. nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
  617. out:
  618. return result;
  619. out_swapfile:
  620. printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
  621. goto out;
  622. }
  623. EXPORT_SYMBOL_GPL(nfs_file_write);
  624. static int
  625. do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
  626. {
  627. struct inode *inode = filp->f_mapping->host;
  628. int status = 0;
  629. unsigned int saved_type = fl->fl_type;
  630. /* Try local locking first */
  631. posix_test_lock(filp, fl);
  632. if (fl->fl_type != F_UNLCK) {
  633. /* found a conflict */
  634. goto out;
  635. }
  636. fl->fl_type = saved_type;
  637. if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
  638. goto out_noconflict;
  639. if (is_local)
  640. goto out_noconflict;
  641. status = NFS_PROTO(inode)->lock(filp, cmd, fl);
  642. out:
  643. return status;
  644. out_noconflict:
  645. fl->fl_type = F_UNLCK;
  646. goto out;
  647. }
  648. static int do_vfs_lock(struct file *file, struct file_lock *fl)
  649. {
  650. int res = 0;
  651. switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
  652. case FL_POSIX:
  653. res = posix_lock_file_wait(file, fl);
  654. break;
  655. case FL_FLOCK:
  656. res = flock_lock_file_wait(file, fl);
  657. break;
  658. default:
  659. BUG();
  660. }
  661. return res;
  662. }
  663. static int
  664. do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
  665. {
  666. struct inode *inode = filp->f_mapping->host;
  667. struct nfs_lock_context *l_ctx;
  668. int status;
  669. /*
  670. * Flush all pending writes before doing anything
  671. * with locks..
  672. */
  673. nfs_sync_mapping(filp->f_mapping);
  674. l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
  675. if (!IS_ERR(l_ctx)) {
  676. status = nfs_iocounter_wait(&l_ctx->io_count);
  677. nfs_put_lock_context(l_ctx);
  678. if (status < 0)
  679. return status;
  680. }
  681. /* NOTE: special case
  682. * If we're signalled while cleaning up locks on process exit, we
  683. * still need to complete the unlock.
  684. */
  685. /*
  686. * Use local locking if mounted with "-onolock" or with appropriate
  687. * "-olocal_lock="
  688. */
  689. if (!is_local)
  690. status = NFS_PROTO(inode)->lock(filp, cmd, fl);
  691. else
  692. status = do_vfs_lock(filp, fl);
  693. return status;
  694. }
  695. static int
  696. is_time_granular(struct timespec *ts) {
  697. return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
  698. }
  699. static int
  700. do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
  701. {
  702. struct inode *inode = filp->f_mapping->host;
  703. int status;
  704. /*
  705. * Flush all pending writes before doing anything
  706. * with locks..
  707. */
  708. status = nfs_sync_mapping(filp->f_mapping);
  709. if (status != 0)
  710. goto out;
  711. /*
  712. * Use local locking if mounted with "-onolock" or with appropriate
  713. * "-olocal_lock="
  714. */
  715. if (!is_local)
  716. status = NFS_PROTO(inode)->lock(filp, cmd, fl);
  717. else
  718. status = do_vfs_lock(filp, fl);
  719. if (status < 0)
  720. goto out;
  721. /*
  722. * Revalidate the cache if the server has time stamps granular
  723. * enough to detect subsecond changes. Otherwise, clear the
  724. * cache to prevent missing any changes.
  725. *
  726. * This makes locking act as a cache coherency point.
  727. */
  728. nfs_sync_mapping(filp->f_mapping);
  729. if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
  730. if (is_time_granular(&NFS_SERVER(inode)->time_delta))
  731. __nfs_revalidate_inode(NFS_SERVER(inode), inode);
  732. else
  733. nfs_zap_caches(inode);
  734. }
  735. out:
  736. return status;
  737. }
  738. /*
  739. * Lock a (portion of) a file
  740. */
  741. int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
  742. {
  743. struct inode *inode = filp->f_mapping->host;
  744. int ret = -ENOLCK;
  745. int is_local = 0;
  746. dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
  747. filp, fl->fl_type, fl->fl_flags,
  748. (long long)fl->fl_start, (long long)fl->fl_end);
  749. nfs_inc_stats(inode, NFSIOS_VFSLOCK);
  750. /* No mandatory locks over NFS */
  751. if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
  752. goto out_err;
  753. if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
  754. is_local = 1;
  755. if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
  756. ret = NFS_PROTO(inode)->lock_check_bounds(fl);
  757. if (ret < 0)
  758. goto out_err;
  759. }
  760. if (IS_GETLK(cmd))
  761. ret = do_getlk(filp, cmd, fl, is_local);
  762. else if (fl->fl_type == F_UNLCK)
  763. ret = do_unlk(filp, cmd, fl, is_local);
  764. else
  765. ret = do_setlk(filp, cmd, fl, is_local);
  766. out_err:
  767. return ret;
  768. }
  769. EXPORT_SYMBOL_GPL(nfs_lock);
  770. /*
  771. * Lock a (portion of) a file
  772. */
  773. int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
  774. {
  775. struct inode *inode = filp->f_mapping->host;
  776. int is_local = 0;
  777. dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
  778. filp, fl->fl_type, fl->fl_flags);
  779. if (!(fl->fl_flags & FL_FLOCK))
  780. return -ENOLCK;
  781. /*
  782. * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
  783. * any standard. In principle we might be able to support LOCK_MAND
  784. * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
  785. * NFS code is not set up for it.
  786. */
  787. if (fl->fl_type & LOCK_MAND)
  788. return -EINVAL;
  789. if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
  790. is_local = 1;
  791. /* We're simulating flock() locks using posix locks on the server */
  792. if (fl->fl_type == F_UNLCK)
  793. return do_unlk(filp, cmd, fl, is_local);
  794. return do_setlk(filp, cmd, fl, is_local);
  795. }
  796. EXPORT_SYMBOL_GPL(nfs_flock);
  797. const struct file_operations nfs_file_operations = {
  798. .llseek = nfs_file_llseek,
  799. .read = new_sync_read,
  800. .write = new_sync_write,
  801. .read_iter = nfs_file_read,
  802. .write_iter = nfs_file_write,
  803. .mmap = nfs_file_mmap,
  804. .open = nfs_file_open,
  805. .flush = nfs_file_flush,
  806. .release = nfs_file_release,
  807. .fsync = nfs_file_fsync,
  808. .lock = nfs_lock,
  809. .flock = nfs_flock,
  810. .splice_read = nfs_file_splice_read,
  811. .splice_write = iter_file_splice_write,
  812. .check_flags = nfs_check_flags,
  813. .setlease = simple_nosetlease,
  814. };
  815. EXPORT_SYMBOL_GPL(nfs_file_operations);