namespace.c 78 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/init.h> /* init_rootfs */
  19. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  20. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  21. #include <linux/uaccess.h>
  22. #include <linux/proc_ns.h>
  23. #include <linux/magic.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/task_work.h>
  26. #include "pnode.h"
  27. #include "internal.h"
  28. static unsigned int m_hash_mask __read_mostly;
  29. static unsigned int m_hash_shift __read_mostly;
  30. static unsigned int mp_hash_mask __read_mostly;
  31. static unsigned int mp_hash_shift __read_mostly;
  32. static __initdata unsigned long mhash_entries;
  33. static int __init set_mhash_entries(char *str)
  34. {
  35. if (!str)
  36. return 0;
  37. mhash_entries = simple_strtoul(str, &str, 0);
  38. return 1;
  39. }
  40. __setup("mhash_entries=", set_mhash_entries);
  41. static __initdata unsigned long mphash_entries;
  42. static int __init set_mphash_entries(char *str)
  43. {
  44. if (!str)
  45. return 0;
  46. mphash_entries = simple_strtoul(str, &str, 0);
  47. return 1;
  48. }
  49. __setup("mphash_entries=", set_mphash_entries);
  50. static u64 event;
  51. static DEFINE_IDA(mnt_id_ida);
  52. static DEFINE_IDA(mnt_group_ida);
  53. static DEFINE_SPINLOCK(mnt_id_lock);
  54. static int mnt_id_start = 0;
  55. static int mnt_group_start = 1;
  56. static struct hlist_head *mount_hashtable __read_mostly;
  57. static struct hlist_head *mountpoint_hashtable __read_mostly;
  58. static struct kmem_cache *mnt_cache __read_mostly;
  59. static DECLARE_RWSEM(namespace_sem);
  60. /* /sys/fs */
  61. struct kobject *fs_kobj;
  62. EXPORT_SYMBOL_GPL(fs_kobj);
  63. /*
  64. * vfsmount lock may be taken for read to prevent changes to the
  65. * vfsmount hash, ie. during mountpoint lookups or walking back
  66. * up the tree.
  67. *
  68. * It should be taken for write in all cases where the vfsmount
  69. * tree or hash is modified or when a vfsmount structure is modified.
  70. */
  71. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  72. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  73. {
  74. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  75. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  76. tmp = tmp + (tmp >> m_hash_shift);
  77. return &mount_hashtable[tmp & m_hash_mask];
  78. }
  79. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  80. {
  81. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  82. tmp = tmp + (tmp >> mp_hash_shift);
  83. return &mountpoint_hashtable[tmp & mp_hash_mask];
  84. }
  85. /*
  86. * allocation is serialized by namespace_sem, but we need the spinlock to
  87. * serialize with freeing.
  88. */
  89. static int mnt_alloc_id(struct mount *mnt)
  90. {
  91. int res;
  92. retry:
  93. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  94. spin_lock(&mnt_id_lock);
  95. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  96. if (!res)
  97. mnt_id_start = mnt->mnt_id + 1;
  98. spin_unlock(&mnt_id_lock);
  99. if (res == -EAGAIN)
  100. goto retry;
  101. return res;
  102. }
  103. static void mnt_free_id(struct mount *mnt)
  104. {
  105. int id = mnt->mnt_id;
  106. spin_lock(&mnt_id_lock);
  107. ida_remove(&mnt_id_ida, id);
  108. if (mnt_id_start > id)
  109. mnt_id_start = id;
  110. spin_unlock(&mnt_id_lock);
  111. }
  112. /*
  113. * Allocate a new peer group ID
  114. *
  115. * mnt_group_ida is protected by namespace_sem
  116. */
  117. static int mnt_alloc_group_id(struct mount *mnt)
  118. {
  119. int res;
  120. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  121. return -ENOMEM;
  122. res = ida_get_new_above(&mnt_group_ida,
  123. mnt_group_start,
  124. &mnt->mnt_group_id);
  125. if (!res)
  126. mnt_group_start = mnt->mnt_group_id + 1;
  127. return res;
  128. }
  129. /*
  130. * Release a peer group ID
  131. */
  132. void mnt_release_group_id(struct mount *mnt)
  133. {
  134. int id = mnt->mnt_group_id;
  135. ida_remove(&mnt_group_ida, id);
  136. if (mnt_group_start > id)
  137. mnt_group_start = id;
  138. mnt->mnt_group_id = 0;
  139. }
  140. /*
  141. * vfsmount lock must be held for read
  142. */
  143. static inline void mnt_add_count(struct mount *mnt, int n)
  144. {
  145. #ifdef CONFIG_SMP
  146. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  147. #else
  148. preempt_disable();
  149. mnt->mnt_count += n;
  150. preempt_enable();
  151. #endif
  152. }
  153. /*
  154. * vfsmount lock must be held for write
  155. */
  156. unsigned int mnt_get_count(struct mount *mnt)
  157. {
  158. #ifdef CONFIG_SMP
  159. unsigned int count = 0;
  160. int cpu;
  161. for_each_possible_cpu(cpu) {
  162. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  163. }
  164. return count;
  165. #else
  166. return mnt->mnt_count;
  167. #endif
  168. }
  169. static void drop_mountpoint(struct fs_pin *p)
  170. {
  171. struct mount *m = container_of(p, struct mount, mnt_umount);
  172. dput(m->mnt_ex_mountpoint);
  173. pin_remove(p);
  174. mntput(&m->mnt);
  175. }
  176. static struct mount *alloc_vfsmnt(const char *name)
  177. {
  178. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  179. if (mnt) {
  180. int err;
  181. err = mnt_alloc_id(mnt);
  182. if (err)
  183. goto out_free_cache;
  184. if (name) {
  185. mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
  186. if (!mnt->mnt_devname)
  187. goto out_free_id;
  188. }
  189. #ifdef CONFIG_SMP
  190. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  191. if (!mnt->mnt_pcp)
  192. goto out_free_devname;
  193. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  194. #else
  195. mnt->mnt_count = 1;
  196. mnt->mnt_writers = 0;
  197. #endif
  198. INIT_HLIST_NODE(&mnt->mnt_hash);
  199. INIT_LIST_HEAD(&mnt->mnt_child);
  200. INIT_LIST_HEAD(&mnt->mnt_mounts);
  201. INIT_LIST_HEAD(&mnt->mnt_list);
  202. INIT_LIST_HEAD(&mnt->mnt_expire);
  203. INIT_LIST_HEAD(&mnt->mnt_share);
  204. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  205. INIT_LIST_HEAD(&mnt->mnt_slave);
  206. INIT_HLIST_NODE(&mnt->mnt_mp_list);
  207. #ifdef CONFIG_FSNOTIFY
  208. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  209. #endif
  210. init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
  211. }
  212. return mnt;
  213. #ifdef CONFIG_SMP
  214. out_free_devname:
  215. kfree_const(mnt->mnt_devname);
  216. #endif
  217. out_free_id:
  218. mnt_free_id(mnt);
  219. out_free_cache:
  220. kmem_cache_free(mnt_cache, mnt);
  221. return NULL;
  222. }
  223. /*
  224. * Most r/o checks on a fs are for operations that take
  225. * discrete amounts of time, like a write() or unlink().
  226. * We must keep track of when those operations start
  227. * (for permission checks) and when they end, so that
  228. * we can determine when writes are able to occur to
  229. * a filesystem.
  230. */
  231. /*
  232. * __mnt_is_readonly: check whether a mount is read-only
  233. * @mnt: the mount to check for its write status
  234. *
  235. * This shouldn't be used directly ouside of the VFS.
  236. * It does not guarantee that the filesystem will stay
  237. * r/w, just that it is right *now*. This can not and
  238. * should not be used in place of IS_RDONLY(inode).
  239. * mnt_want/drop_write() will _keep_ the filesystem
  240. * r/w.
  241. */
  242. int __mnt_is_readonly(struct vfsmount *mnt)
  243. {
  244. if (mnt->mnt_flags & MNT_READONLY)
  245. return 1;
  246. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  247. return 1;
  248. return 0;
  249. }
  250. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  251. static inline void mnt_inc_writers(struct mount *mnt)
  252. {
  253. #ifdef CONFIG_SMP
  254. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  255. #else
  256. mnt->mnt_writers++;
  257. #endif
  258. }
  259. static inline void mnt_dec_writers(struct mount *mnt)
  260. {
  261. #ifdef CONFIG_SMP
  262. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  263. #else
  264. mnt->mnt_writers--;
  265. #endif
  266. }
  267. static unsigned int mnt_get_writers(struct mount *mnt)
  268. {
  269. #ifdef CONFIG_SMP
  270. unsigned int count = 0;
  271. int cpu;
  272. for_each_possible_cpu(cpu) {
  273. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  274. }
  275. return count;
  276. #else
  277. return mnt->mnt_writers;
  278. #endif
  279. }
  280. static int mnt_is_readonly(struct vfsmount *mnt)
  281. {
  282. if (mnt->mnt_sb->s_readonly_remount)
  283. return 1;
  284. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  285. smp_rmb();
  286. return __mnt_is_readonly(mnt);
  287. }
  288. /*
  289. * Most r/o & frozen checks on a fs are for operations that take discrete
  290. * amounts of time, like a write() or unlink(). We must keep track of when
  291. * those operations start (for permission checks) and when they end, so that we
  292. * can determine when writes are able to occur to a filesystem.
  293. */
  294. /**
  295. * __mnt_want_write - get write access to a mount without freeze protection
  296. * @m: the mount on which to take a write
  297. *
  298. * This tells the low-level filesystem that a write is about to be performed to
  299. * it, and makes sure that writes are allowed (mnt it read-write) before
  300. * returning success. This operation does not protect against filesystem being
  301. * frozen. When the write operation is finished, __mnt_drop_write() must be
  302. * called. This is effectively a refcount.
  303. */
  304. int __mnt_want_write(struct vfsmount *m)
  305. {
  306. struct mount *mnt = real_mount(m);
  307. int ret = 0;
  308. preempt_disable();
  309. mnt_inc_writers(mnt);
  310. /*
  311. * The store to mnt_inc_writers must be visible before we pass
  312. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  313. * incremented count after it has set MNT_WRITE_HOLD.
  314. */
  315. smp_mb();
  316. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  317. cpu_relax();
  318. /*
  319. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  320. * be set to match its requirements. So we must not load that until
  321. * MNT_WRITE_HOLD is cleared.
  322. */
  323. smp_rmb();
  324. if (mnt_is_readonly(m)) {
  325. mnt_dec_writers(mnt);
  326. ret = -EROFS;
  327. }
  328. preempt_enable();
  329. return ret;
  330. }
  331. /**
  332. * mnt_want_write - get write access to a mount
  333. * @m: the mount on which to take a write
  334. *
  335. * This tells the low-level filesystem that a write is about to be performed to
  336. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  337. * is not frozen) before returning success. When the write operation is
  338. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  339. */
  340. int mnt_want_write(struct vfsmount *m)
  341. {
  342. int ret;
  343. sb_start_write(m->mnt_sb);
  344. ret = __mnt_want_write(m);
  345. if (ret)
  346. sb_end_write(m->mnt_sb);
  347. return ret;
  348. }
  349. EXPORT_SYMBOL_GPL(mnt_want_write);
  350. /**
  351. * mnt_clone_write - get write access to a mount
  352. * @mnt: the mount on which to take a write
  353. *
  354. * This is effectively like mnt_want_write, except
  355. * it must only be used to take an extra write reference
  356. * on a mountpoint that we already know has a write reference
  357. * on it. This allows some optimisation.
  358. *
  359. * After finished, mnt_drop_write must be called as usual to
  360. * drop the reference.
  361. */
  362. int mnt_clone_write(struct vfsmount *mnt)
  363. {
  364. /* superblock may be r/o */
  365. if (__mnt_is_readonly(mnt))
  366. return -EROFS;
  367. preempt_disable();
  368. mnt_inc_writers(real_mount(mnt));
  369. preempt_enable();
  370. return 0;
  371. }
  372. EXPORT_SYMBOL_GPL(mnt_clone_write);
  373. /**
  374. * __mnt_want_write_file - get write access to a file's mount
  375. * @file: the file who's mount on which to take a write
  376. *
  377. * This is like __mnt_want_write, but it takes a file and can
  378. * do some optimisations if the file is open for write already
  379. */
  380. int __mnt_want_write_file(struct file *file)
  381. {
  382. if (!(file->f_mode & FMODE_WRITER))
  383. return __mnt_want_write(file->f_path.mnt);
  384. else
  385. return mnt_clone_write(file->f_path.mnt);
  386. }
  387. /**
  388. * mnt_want_write_file - get write access to a file's mount
  389. * @file: the file who's mount on which to take a write
  390. *
  391. * This is like mnt_want_write, but it takes a file and can
  392. * do some optimisations if the file is open for write already
  393. */
  394. int mnt_want_write_file(struct file *file)
  395. {
  396. int ret;
  397. sb_start_write(file->f_path.mnt->mnt_sb);
  398. ret = __mnt_want_write_file(file);
  399. if (ret)
  400. sb_end_write(file->f_path.mnt->mnt_sb);
  401. return ret;
  402. }
  403. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  404. /**
  405. * __mnt_drop_write - give up write access to a mount
  406. * @mnt: the mount on which to give up write access
  407. *
  408. * Tells the low-level filesystem that we are done
  409. * performing writes to it. Must be matched with
  410. * __mnt_want_write() call above.
  411. */
  412. void __mnt_drop_write(struct vfsmount *mnt)
  413. {
  414. preempt_disable();
  415. mnt_dec_writers(real_mount(mnt));
  416. preempt_enable();
  417. }
  418. /**
  419. * mnt_drop_write - give up write access to a mount
  420. * @mnt: the mount on which to give up write access
  421. *
  422. * Tells the low-level filesystem that we are done performing writes to it and
  423. * also allows filesystem to be frozen again. Must be matched with
  424. * mnt_want_write() call above.
  425. */
  426. void mnt_drop_write(struct vfsmount *mnt)
  427. {
  428. __mnt_drop_write(mnt);
  429. sb_end_write(mnt->mnt_sb);
  430. }
  431. EXPORT_SYMBOL_GPL(mnt_drop_write);
  432. void __mnt_drop_write_file(struct file *file)
  433. {
  434. __mnt_drop_write(file->f_path.mnt);
  435. }
  436. void mnt_drop_write_file(struct file *file)
  437. {
  438. mnt_drop_write(file->f_path.mnt);
  439. }
  440. EXPORT_SYMBOL(mnt_drop_write_file);
  441. static int mnt_make_readonly(struct mount *mnt)
  442. {
  443. int ret = 0;
  444. lock_mount_hash();
  445. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  446. /*
  447. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  448. * should be visible before we do.
  449. */
  450. smp_mb();
  451. /*
  452. * With writers on hold, if this value is zero, then there are
  453. * definitely no active writers (although held writers may subsequently
  454. * increment the count, they'll have to wait, and decrement it after
  455. * seeing MNT_READONLY).
  456. *
  457. * It is OK to have counter incremented on one CPU and decremented on
  458. * another: the sum will add up correctly. The danger would be when we
  459. * sum up each counter, if we read a counter before it is incremented,
  460. * but then read another CPU's count which it has been subsequently
  461. * decremented from -- we would see more decrements than we should.
  462. * MNT_WRITE_HOLD protects against this scenario, because
  463. * mnt_want_write first increments count, then smp_mb, then spins on
  464. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  465. * we're counting up here.
  466. */
  467. if (mnt_get_writers(mnt) > 0)
  468. ret = -EBUSY;
  469. else
  470. mnt->mnt.mnt_flags |= MNT_READONLY;
  471. /*
  472. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  473. * that become unheld will see MNT_READONLY.
  474. */
  475. smp_wmb();
  476. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  477. unlock_mount_hash();
  478. return ret;
  479. }
  480. static void __mnt_unmake_readonly(struct mount *mnt)
  481. {
  482. lock_mount_hash();
  483. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  484. unlock_mount_hash();
  485. }
  486. int sb_prepare_remount_readonly(struct super_block *sb)
  487. {
  488. struct mount *mnt;
  489. int err = 0;
  490. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  491. if (atomic_long_read(&sb->s_remove_count))
  492. return -EBUSY;
  493. lock_mount_hash();
  494. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  495. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  496. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  497. smp_mb();
  498. if (mnt_get_writers(mnt) > 0) {
  499. err = -EBUSY;
  500. break;
  501. }
  502. }
  503. }
  504. if (!err && atomic_long_read(&sb->s_remove_count))
  505. err = -EBUSY;
  506. if (!err) {
  507. sb->s_readonly_remount = 1;
  508. smp_wmb();
  509. }
  510. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  511. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  512. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  513. }
  514. unlock_mount_hash();
  515. return err;
  516. }
  517. static void free_vfsmnt(struct mount *mnt)
  518. {
  519. kfree_const(mnt->mnt_devname);
  520. #ifdef CONFIG_SMP
  521. free_percpu(mnt->mnt_pcp);
  522. #endif
  523. kmem_cache_free(mnt_cache, mnt);
  524. }
  525. static void delayed_free_vfsmnt(struct rcu_head *head)
  526. {
  527. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  528. }
  529. /* call under rcu_read_lock */
  530. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  531. {
  532. struct mount *mnt;
  533. if (read_seqretry(&mount_lock, seq))
  534. return false;
  535. if (bastard == NULL)
  536. return true;
  537. mnt = real_mount(bastard);
  538. mnt_add_count(mnt, 1);
  539. if (likely(!read_seqretry(&mount_lock, seq)))
  540. return true;
  541. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  542. mnt_add_count(mnt, -1);
  543. return false;
  544. }
  545. rcu_read_unlock();
  546. mntput(bastard);
  547. rcu_read_lock();
  548. return false;
  549. }
  550. /*
  551. * find the first mount at @dentry on vfsmount @mnt.
  552. * call under rcu_read_lock()
  553. */
  554. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  555. {
  556. struct hlist_head *head = m_hash(mnt, dentry);
  557. struct mount *p;
  558. hlist_for_each_entry_rcu(p, head, mnt_hash)
  559. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  560. return p;
  561. return NULL;
  562. }
  563. /*
  564. * find the last mount at @dentry on vfsmount @mnt.
  565. * mount_lock must be held.
  566. */
  567. struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
  568. {
  569. struct mount *p, *res;
  570. res = p = __lookup_mnt(mnt, dentry);
  571. if (!p)
  572. goto out;
  573. hlist_for_each_entry_continue(p, mnt_hash) {
  574. if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
  575. break;
  576. res = p;
  577. }
  578. out:
  579. return res;
  580. }
  581. /*
  582. * lookup_mnt - Return the first child mount mounted at path
  583. *
  584. * "First" means first mounted chronologically. If you create the
  585. * following mounts:
  586. *
  587. * mount /dev/sda1 /mnt
  588. * mount /dev/sda2 /mnt
  589. * mount /dev/sda3 /mnt
  590. *
  591. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  592. * return successively the root dentry and vfsmount of /dev/sda1, then
  593. * /dev/sda2, then /dev/sda3, then NULL.
  594. *
  595. * lookup_mnt takes a reference to the found vfsmount.
  596. */
  597. struct vfsmount *lookup_mnt(struct path *path)
  598. {
  599. struct mount *child_mnt;
  600. struct vfsmount *m;
  601. unsigned seq;
  602. rcu_read_lock();
  603. do {
  604. seq = read_seqbegin(&mount_lock);
  605. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  606. m = child_mnt ? &child_mnt->mnt : NULL;
  607. } while (!legitimize_mnt(m, seq));
  608. rcu_read_unlock();
  609. return m;
  610. }
  611. /*
  612. * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
  613. * current mount namespace.
  614. *
  615. * The common case is dentries are not mountpoints at all and that
  616. * test is handled inline. For the slow case when we are actually
  617. * dealing with a mountpoint of some kind, walk through all of the
  618. * mounts in the current mount namespace and test to see if the dentry
  619. * is a mountpoint.
  620. *
  621. * The mount_hashtable is not usable in the context because we
  622. * need to identify all mounts that may be in the current mount
  623. * namespace not just a mount that happens to have some specified
  624. * parent mount.
  625. */
  626. bool __is_local_mountpoint(struct dentry *dentry)
  627. {
  628. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  629. struct mount *mnt;
  630. bool is_covered = false;
  631. if (!d_mountpoint(dentry))
  632. goto out;
  633. down_read(&namespace_sem);
  634. list_for_each_entry(mnt, &ns->list, mnt_list) {
  635. is_covered = (mnt->mnt_mountpoint == dentry);
  636. if (is_covered)
  637. break;
  638. }
  639. up_read(&namespace_sem);
  640. out:
  641. return is_covered;
  642. }
  643. static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
  644. {
  645. struct hlist_head *chain = mp_hash(dentry);
  646. struct mountpoint *mp;
  647. hlist_for_each_entry(mp, chain, m_hash) {
  648. if (mp->m_dentry == dentry) {
  649. /* might be worth a WARN_ON() */
  650. if (d_unlinked(dentry))
  651. return ERR_PTR(-ENOENT);
  652. mp->m_count++;
  653. return mp;
  654. }
  655. }
  656. return NULL;
  657. }
  658. static struct mountpoint *new_mountpoint(struct dentry *dentry)
  659. {
  660. struct hlist_head *chain = mp_hash(dentry);
  661. struct mountpoint *mp;
  662. int ret;
  663. mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  664. if (!mp)
  665. return ERR_PTR(-ENOMEM);
  666. ret = d_set_mounted(dentry);
  667. if (ret) {
  668. kfree(mp);
  669. return ERR_PTR(ret);
  670. }
  671. mp->m_dentry = dentry;
  672. mp->m_count = 1;
  673. hlist_add_head(&mp->m_hash, chain);
  674. INIT_HLIST_HEAD(&mp->m_list);
  675. return mp;
  676. }
  677. static void put_mountpoint(struct mountpoint *mp)
  678. {
  679. if (!--mp->m_count) {
  680. struct dentry *dentry = mp->m_dentry;
  681. BUG_ON(!hlist_empty(&mp->m_list));
  682. spin_lock(&dentry->d_lock);
  683. dentry->d_flags &= ~DCACHE_MOUNTED;
  684. spin_unlock(&dentry->d_lock);
  685. hlist_del(&mp->m_hash);
  686. kfree(mp);
  687. }
  688. }
  689. static inline int check_mnt(struct mount *mnt)
  690. {
  691. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  692. }
  693. /*
  694. * vfsmount lock must be held for write
  695. */
  696. static void touch_mnt_namespace(struct mnt_namespace *ns)
  697. {
  698. if (ns) {
  699. ns->event = ++event;
  700. wake_up_interruptible(&ns->poll);
  701. }
  702. }
  703. /*
  704. * vfsmount lock must be held for write
  705. */
  706. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  707. {
  708. if (ns && ns->event != event) {
  709. ns->event = event;
  710. wake_up_interruptible(&ns->poll);
  711. }
  712. }
  713. /*
  714. * vfsmount lock must be held for write
  715. */
  716. static void detach_mnt(struct mount *mnt, struct path *old_path)
  717. {
  718. old_path->dentry = mnt->mnt_mountpoint;
  719. old_path->mnt = &mnt->mnt_parent->mnt;
  720. mnt->mnt_parent = mnt;
  721. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  722. list_del_init(&mnt->mnt_child);
  723. hlist_del_init_rcu(&mnt->mnt_hash);
  724. hlist_del_init(&mnt->mnt_mp_list);
  725. put_mountpoint(mnt->mnt_mp);
  726. mnt->mnt_mp = NULL;
  727. }
  728. /*
  729. * vfsmount lock must be held for write
  730. */
  731. void mnt_set_mountpoint(struct mount *mnt,
  732. struct mountpoint *mp,
  733. struct mount *child_mnt)
  734. {
  735. mp->m_count++;
  736. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  737. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  738. child_mnt->mnt_parent = mnt;
  739. child_mnt->mnt_mp = mp;
  740. hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
  741. }
  742. /*
  743. * vfsmount lock must be held for write
  744. */
  745. static void attach_mnt(struct mount *mnt,
  746. struct mount *parent,
  747. struct mountpoint *mp)
  748. {
  749. mnt_set_mountpoint(parent, mp, mnt);
  750. hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
  751. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  752. }
  753. static void attach_shadowed(struct mount *mnt,
  754. struct mount *parent,
  755. struct mount *shadows)
  756. {
  757. if (shadows) {
  758. hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
  759. list_add(&mnt->mnt_child, &shadows->mnt_child);
  760. } else {
  761. hlist_add_head_rcu(&mnt->mnt_hash,
  762. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  763. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  764. }
  765. }
  766. /*
  767. * vfsmount lock must be held for write
  768. */
  769. static void commit_tree(struct mount *mnt, struct mount *shadows)
  770. {
  771. struct mount *parent = mnt->mnt_parent;
  772. struct mount *m;
  773. LIST_HEAD(head);
  774. struct mnt_namespace *n = parent->mnt_ns;
  775. BUG_ON(parent == mnt);
  776. list_add_tail(&head, &mnt->mnt_list);
  777. list_for_each_entry(m, &head, mnt_list)
  778. m->mnt_ns = n;
  779. list_splice(&head, n->list.prev);
  780. attach_shadowed(mnt, parent, shadows);
  781. touch_mnt_namespace(n);
  782. }
  783. static struct mount *next_mnt(struct mount *p, struct mount *root)
  784. {
  785. struct list_head *next = p->mnt_mounts.next;
  786. if (next == &p->mnt_mounts) {
  787. while (1) {
  788. if (p == root)
  789. return NULL;
  790. next = p->mnt_child.next;
  791. if (next != &p->mnt_parent->mnt_mounts)
  792. break;
  793. p = p->mnt_parent;
  794. }
  795. }
  796. return list_entry(next, struct mount, mnt_child);
  797. }
  798. static struct mount *skip_mnt_tree(struct mount *p)
  799. {
  800. struct list_head *prev = p->mnt_mounts.prev;
  801. while (prev != &p->mnt_mounts) {
  802. p = list_entry(prev, struct mount, mnt_child);
  803. prev = p->mnt_mounts.prev;
  804. }
  805. return p;
  806. }
  807. struct vfsmount *
  808. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  809. {
  810. struct mount *mnt;
  811. struct dentry *root;
  812. if (!type)
  813. return ERR_PTR(-ENODEV);
  814. mnt = alloc_vfsmnt(name);
  815. if (!mnt)
  816. return ERR_PTR(-ENOMEM);
  817. if (flags & MS_KERNMOUNT)
  818. mnt->mnt.mnt_flags = MNT_INTERNAL;
  819. root = mount_fs(type, flags, name, data);
  820. if (IS_ERR(root)) {
  821. mnt_free_id(mnt);
  822. free_vfsmnt(mnt);
  823. return ERR_CAST(root);
  824. }
  825. mnt->mnt.mnt_root = root;
  826. mnt->mnt.mnt_sb = root->d_sb;
  827. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  828. mnt->mnt_parent = mnt;
  829. lock_mount_hash();
  830. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  831. unlock_mount_hash();
  832. return &mnt->mnt;
  833. }
  834. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  835. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  836. int flag)
  837. {
  838. struct super_block *sb = old->mnt.mnt_sb;
  839. struct mount *mnt;
  840. int err;
  841. mnt = alloc_vfsmnt(old->mnt_devname);
  842. if (!mnt)
  843. return ERR_PTR(-ENOMEM);
  844. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  845. mnt->mnt_group_id = 0; /* not a peer of original */
  846. else
  847. mnt->mnt_group_id = old->mnt_group_id;
  848. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  849. err = mnt_alloc_group_id(mnt);
  850. if (err)
  851. goto out_free;
  852. }
  853. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
  854. /* Don't allow unprivileged users to change mount flags */
  855. if (flag & CL_UNPRIVILEGED) {
  856. mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
  857. if (mnt->mnt.mnt_flags & MNT_READONLY)
  858. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  859. if (mnt->mnt.mnt_flags & MNT_NODEV)
  860. mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
  861. if (mnt->mnt.mnt_flags & MNT_NOSUID)
  862. mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
  863. if (mnt->mnt.mnt_flags & MNT_NOEXEC)
  864. mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
  865. }
  866. /* Don't allow unprivileged users to reveal what is under a mount */
  867. if ((flag & CL_UNPRIVILEGED) &&
  868. (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
  869. mnt->mnt.mnt_flags |= MNT_LOCKED;
  870. atomic_inc(&sb->s_active);
  871. mnt->mnt.mnt_sb = sb;
  872. mnt->mnt.mnt_root = dget(root);
  873. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  874. mnt->mnt_parent = mnt;
  875. lock_mount_hash();
  876. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  877. unlock_mount_hash();
  878. if ((flag & CL_SLAVE) ||
  879. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  880. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  881. mnt->mnt_master = old;
  882. CLEAR_MNT_SHARED(mnt);
  883. } else if (!(flag & CL_PRIVATE)) {
  884. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  885. list_add(&mnt->mnt_share, &old->mnt_share);
  886. if (IS_MNT_SLAVE(old))
  887. list_add(&mnt->mnt_slave, &old->mnt_slave);
  888. mnt->mnt_master = old->mnt_master;
  889. }
  890. if (flag & CL_MAKE_SHARED)
  891. set_mnt_shared(mnt);
  892. /* stick the duplicate mount on the same expiry list
  893. * as the original if that was on one */
  894. if (flag & CL_EXPIRE) {
  895. if (!list_empty(&old->mnt_expire))
  896. list_add(&mnt->mnt_expire, &old->mnt_expire);
  897. }
  898. return mnt;
  899. out_free:
  900. mnt_free_id(mnt);
  901. free_vfsmnt(mnt);
  902. return ERR_PTR(err);
  903. }
  904. static void cleanup_mnt(struct mount *mnt)
  905. {
  906. /*
  907. * This probably indicates that somebody messed
  908. * up a mnt_want/drop_write() pair. If this
  909. * happens, the filesystem was probably unable
  910. * to make r/w->r/o transitions.
  911. */
  912. /*
  913. * The locking used to deal with mnt_count decrement provides barriers,
  914. * so mnt_get_writers() below is safe.
  915. */
  916. WARN_ON(mnt_get_writers(mnt));
  917. if (unlikely(mnt->mnt_pins.first))
  918. mnt_pin_kill(mnt);
  919. fsnotify_vfsmount_delete(&mnt->mnt);
  920. dput(mnt->mnt.mnt_root);
  921. deactivate_super(mnt->mnt.mnt_sb);
  922. mnt_free_id(mnt);
  923. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  924. }
  925. static void __cleanup_mnt(struct rcu_head *head)
  926. {
  927. cleanup_mnt(container_of(head, struct mount, mnt_rcu));
  928. }
  929. static LLIST_HEAD(delayed_mntput_list);
  930. static void delayed_mntput(struct work_struct *unused)
  931. {
  932. struct llist_node *node = llist_del_all(&delayed_mntput_list);
  933. struct llist_node *next;
  934. for (; node; node = next) {
  935. next = llist_next(node);
  936. cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
  937. }
  938. }
  939. static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
  940. static void mntput_no_expire(struct mount *mnt)
  941. {
  942. rcu_read_lock();
  943. mnt_add_count(mnt, -1);
  944. if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
  945. rcu_read_unlock();
  946. return;
  947. }
  948. lock_mount_hash();
  949. if (mnt_get_count(mnt)) {
  950. rcu_read_unlock();
  951. unlock_mount_hash();
  952. return;
  953. }
  954. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  955. rcu_read_unlock();
  956. unlock_mount_hash();
  957. return;
  958. }
  959. mnt->mnt.mnt_flags |= MNT_DOOMED;
  960. rcu_read_unlock();
  961. list_del(&mnt->mnt_instance);
  962. unlock_mount_hash();
  963. if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
  964. struct task_struct *task = current;
  965. if (likely(!(task->flags & PF_KTHREAD))) {
  966. init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
  967. if (!task_work_add(task, &mnt->mnt_rcu, true))
  968. return;
  969. }
  970. if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
  971. schedule_delayed_work(&delayed_mntput_work, 1);
  972. return;
  973. }
  974. cleanup_mnt(mnt);
  975. }
  976. void mntput(struct vfsmount *mnt)
  977. {
  978. if (mnt) {
  979. struct mount *m = real_mount(mnt);
  980. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  981. if (unlikely(m->mnt_expiry_mark))
  982. m->mnt_expiry_mark = 0;
  983. mntput_no_expire(m);
  984. }
  985. }
  986. EXPORT_SYMBOL(mntput);
  987. struct vfsmount *mntget(struct vfsmount *mnt)
  988. {
  989. if (mnt)
  990. mnt_add_count(real_mount(mnt), 1);
  991. return mnt;
  992. }
  993. EXPORT_SYMBOL(mntget);
  994. struct vfsmount *mnt_clone_internal(struct path *path)
  995. {
  996. struct mount *p;
  997. p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
  998. if (IS_ERR(p))
  999. return ERR_CAST(p);
  1000. p->mnt.mnt_flags |= MNT_INTERNAL;
  1001. return &p->mnt;
  1002. }
  1003. static inline void mangle(struct seq_file *m, const char *s)
  1004. {
  1005. seq_escape(m, s, " \t\n\\");
  1006. }
  1007. /*
  1008. * Simple .show_options callback for filesystems which don't want to
  1009. * implement more complex mount option showing.
  1010. *
  1011. * See also save_mount_options().
  1012. */
  1013. int generic_show_options(struct seq_file *m, struct dentry *root)
  1014. {
  1015. const char *options;
  1016. rcu_read_lock();
  1017. options = rcu_dereference(root->d_sb->s_options);
  1018. if (options != NULL && options[0]) {
  1019. seq_putc(m, ',');
  1020. mangle(m, options);
  1021. }
  1022. rcu_read_unlock();
  1023. return 0;
  1024. }
  1025. EXPORT_SYMBOL(generic_show_options);
  1026. /*
  1027. * If filesystem uses generic_show_options(), this function should be
  1028. * called from the fill_super() callback.
  1029. *
  1030. * The .remount_fs callback usually needs to be handled in a special
  1031. * way, to make sure, that previous options are not overwritten if the
  1032. * remount fails.
  1033. *
  1034. * Also note, that if the filesystem's .remount_fs function doesn't
  1035. * reset all options to their default value, but changes only newly
  1036. * given options, then the displayed options will not reflect reality
  1037. * any more.
  1038. */
  1039. void save_mount_options(struct super_block *sb, char *options)
  1040. {
  1041. BUG_ON(sb->s_options);
  1042. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  1043. }
  1044. EXPORT_SYMBOL(save_mount_options);
  1045. void replace_mount_options(struct super_block *sb, char *options)
  1046. {
  1047. char *old = sb->s_options;
  1048. rcu_assign_pointer(sb->s_options, options);
  1049. if (old) {
  1050. synchronize_rcu();
  1051. kfree(old);
  1052. }
  1053. }
  1054. EXPORT_SYMBOL(replace_mount_options);
  1055. #ifdef CONFIG_PROC_FS
  1056. /* iterator; we want it to have access to namespace_sem, thus here... */
  1057. static void *m_start(struct seq_file *m, loff_t *pos)
  1058. {
  1059. struct proc_mounts *p = proc_mounts(m);
  1060. down_read(&namespace_sem);
  1061. if (p->cached_event == p->ns->event) {
  1062. void *v = p->cached_mount;
  1063. if (*pos == p->cached_index)
  1064. return v;
  1065. if (*pos == p->cached_index + 1) {
  1066. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  1067. return p->cached_mount = v;
  1068. }
  1069. }
  1070. p->cached_event = p->ns->event;
  1071. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  1072. p->cached_index = *pos;
  1073. return p->cached_mount;
  1074. }
  1075. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  1076. {
  1077. struct proc_mounts *p = proc_mounts(m);
  1078. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  1079. p->cached_index = *pos;
  1080. return p->cached_mount;
  1081. }
  1082. static void m_stop(struct seq_file *m, void *v)
  1083. {
  1084. up_read(&namespace_sem);
  1085. }
  1086. static int m_show(struct seq_file *m, void *v)
  1087. {
  1088. struct proc_mounts *p = proc_mounts(m);
  1089. struct mount *r = list_entry(v, struct mount, mnt_list);
  1090. return p->show(m, &r->mnt);
  1091. }
  1092. const struct seq_operations mounts_op = {
  1093. .start = m_start,
  1094. .next = m_next,
  1095. .stop = m_stop,
  1096. .show = m_show,
  1097. };
  1098. #endif /* CONFIG_PROC_FS */
  1099. /**
  1100. * may_umount_tree - check if a mount tree is busy
  1101. * @mnt: root of mount tree
  1102. *
  1103. * This is called to check if a tree of mounts has any
  1104. * open files, pwds, chroots or sub mounts that are
  1105. * busy.
  1106. */
  1107. int may_umount_tree(struct vfsmount *m)
  1108. {
  1109. struct mount *mnt = real_mount(m);
  1110. int actual_refs = 0;
  1111. int minimum_refs = 0;
  1112. struct mount *p;
  1113. BUG_ON(!m);
  1114. /* write lock needed for mnt_get_count */
  1115. lock_mount_hash();
  1116. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1117. actual_refs += mnt_get_count(p);
  1118. minimum_refs += 2;
  1119. }
  1120. unlock_mount_hash();
  1121. if (actual_refs > minimum_refs)
  1122. return 0;
  1123. return 1;
  1124. }
  1125. EXPORT_SYMBOL(may_umount_tree);
  1126. /**
  1127. * may_umount - check if a mount point is busy
  1128. * @mnt: root of mount
  1129. *
  1130. * This is called to check if a mount point has any
  1131. * open files, pwds, chroots or sub mounts. If the
  1132. * mount has sub mounts this will return busy
  1133. * regardless of whether the sub mounts are busy.
  1134. *
  1135. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1136. * give false negatives. The main reason why it's here is that we need
  1137. * a non-destructive way to look for easily umountable filesystems.
  1138. */
  1139. int may_umount(struct vfsmount *mnt)
  1140. {
  1141. int ret = 1;
  1142. down_read(&namespace_sem);
  1143. lock_mount_hash();
  1144. if (propagate_mount_busy(real_mount(mnt), 2))
  1145. ret = 0;
  1146. unlock_mount_hash();
  1147. up_read(&namespace_sem);
  1148. return ret;
  1149. }
  1150. EXPORT_SYMBOL(may_umount);
  1151. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1152. static void namespace_unlock(void)
  1153. {
  1154. struct hlist_head head = unmounted;
  1155. if (likely(hlist_empty(&head))) {
  1156. up_write(&namespace_sem);
  1157. return;
  1158. }
  1159. head.first->pprev = &head.first;
  1160. INIT_HLIST_HEAD(&unmounted);
  1161. up_write(&namespace_sem);
  1162. synchronize_rcu();
  1163. group_pin_kill(&head);
  1164. }
  1165. static inline void namespace_lock(void)
  1166. {
  1167. down_write(&namespace_sem);
  1168. }
  1169. /*
  1170. * mount_lock must be held
  1171. * namespace_sem must be held for write
  1172. * how = 0 => just this tree, don't propagate
  1173. * how = 1 => propagate; we know that nobody else has reference to any victims
  1174. * how = 2 => lazy umount
  1175. */
  1176. void umount_tree(struct mount *mnt, int how)
  1177. {
  1178. HLIST_HEAD(tmp_list);
  1179. struct mount *p;
  1180. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1181. hlist_del_init_rcu(&p->mnt_hash);
  1182. hlist_add_head(&p->mnt_hash, &tmp_list);
  1183. }
  1184. hlist_for_each_entry(p, &tmp_list, mnt_hash)
  1185. list_del_init(&p->mnt_child);
  1186. if (how)
  1187. propagate_umount(&tmp_list);
  1188. while (!hlist_empty(&tmp_list)) {
  1189. p = hlist_entry(tmp_list.first, struct mount, mnt_hash);
  1190. hlist_del_init_rcu(&p->mnt_hash);
  1191. list_del_init(&p->mnt_expire);
  1192. list_del_init(&p->mnt_list);
  1193. __touch_mnt_namespace(p->mnt_ns);
  1194. p->mnt_ns = NULL;
  1195. if (how < 2)
  1196. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1197. pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, &unmounted);
  1198. if (mnt_has_parent(p)) {
  1199. hlist_del_init(&p->mnt_mp_list);
  1200. put_mountpoint(p->mnt_mp);
  1201. mnt_add_count(p->mnt_parent, -1);
  1202. /* old mountpoint will be dropped when we can do that */
  1203. p->mnt_ex_mountpoint = p->mnt_mountpoint;
  1204. p->mnt_mountpoint = p->mnt.mnt_root;
  1205. p->mnt_parent = p;
  1206. p->mnt_mp = NULL;
  1207. }
  1208. change_mnt_propagation(p, MS_PRIVATE);
  1209. }
  1210. }
  1211. static void shrink_submounts(struct mount *mnt);
  1212. static int do_umount(struct mount *mnt, int flags)
  1213. {
  1214. struct super_block *sb = mnt->mnt.mnt_sb;
  1215. int retval;
  1216. retval = security_sb_umount(&mnt->mnt, flags);
  1217. if (retval)
  1218. return retval;
  1219. /*
  1220. * Allow userspace to request a mountpoint be expired rather than
  1221. * unmounting unconditionally. Unmount only happens if:
  1222. * (1) the mark is already set (the mark is cleared by mntput())
  1223. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1224. */
  1225. if (flags & MNT_EXPIRE) {
  1226. if (&mnt->mnt == current->fs->root.mnt ||
  1227. flags & (MNT_FORCE | MNT_DETACH))
  1228. return -EINVAL;
  1229. /*
  1230. * probably don't strictly need the lock here if we examined
  1231. * all race cases, but it's a slowpath.
  1232. */
  1233. lock_mount_hash();
  1234. if (mnt_get_count(mnt) != 2) {
  1235. unlock_mount_hash();
  1236. return -EBUSY;
  1237. }
  1238. unlock_mount_hash();
  1239. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1240. return -EAGAIN;
  1241. }
  1242. /*
  1243. * If we may have to abort operations to get out of this
  1244. * mount, and they will themselves hold resources we must
  1245. * allow the fs to do things. In the Unix tradition of
  1246. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1247. * might fail to complete on the first run through as other tasks
  1248. * must return, and the like. Thats for the mount program to worry
  1249. * about for the moment.
  1250. */
  1251. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1252. sb->s_op->umount_begin(sb);
  1253. }
  1254. /*
  1255. * No sense to grab the lock for this test, but test itself looks
  1256. * somewhat bogus. Suggestions for better replacement?
  1257. * Ho-hum... In principle, we might treat that as umount + switch
  1258. * to rootfs. GC would eventually take care of the old vfsmount.
  1259. * Actually it makes sense, especially if rootfs would contain a
  1260. * /reboot - static binary that would close all descriptors and
  1261. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1262. */
  1263. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1264. /*
  1265. * Special case for "unmounting" root ...
  1266. * we just try to remount it readonly.
  1267. */
  1268. if (!capable(CAP_SYS_ADMIN))
  1269. return -EPERM;
  1270. down_write(&sb->s_umount);
  1271. if (!(sb->s_flags & MS_RDONLY))
  1272. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1273. up_write(&sb->s_umount);
  1274. return retval;
  1275. }
  1276. namespace_lock();
  1277. lock_mount_hash();
  1278. event++;
  1279. if (flags & MNT_DETACH) {
  1280. if (!list_empty(&mnt->mnt_list))
  1281. umount_tree(mnt, 2);
  1282. retval = 0;
  1283. } else {
  1284. shrink_submounts(mnt);
  1285. retval = -EBUSY;
  1286. if (!propagate_mount_busy(mnt, 2)) {
  1287. if (!list_empty(&mnt->mnt_list))
  1288. umount_tree(mnt, 1);
  1289. retval = 0;
  1290. }
  1291. }
  1292. unlock_mount_hash();
  1293. namespace_unlock();
  1294. return retval;
  1295. }
  1296. /*
  1297. * __detach_mounts - lazily unmount all mounts on the specified dentry
  1298. *
  1299. * During unlink, rmdir, and d_drop it is possible to loose the path
  1300. * to an existing mountpoint, and wind up leaking the mount.
  1301. * detach_mounts allows lazily unmounting those mounts instead of
  1302. * leaking them.
  1303. *
  1304. * The caller may hold dentry->d_inode->i_mutex.
  1305. */
  1306. void __detach_mounts(struct dentry *dentry)
  1307. {
  1308. struct mountpoint *mp;
  1309. struct mount *mnt;
  1310. namespace_lock();
  1311. mp = lookup_mountpoint(dentry);
  1312. if (!mp)
  1313. goto out_unlock;
  1314. lock_mount_hash();
  1315. while (!hlist_empty(&mp->m_list)) {
  1316. mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
  1317. umount_tree(mnt, 2);
  1318. }
  1319. unlock_mount_hash();
  1320. put_mountpoint(mp);
  1321. out_unlock:
  1322. namespace_unlock();
  1323. }
  1324. /*
  1325. * Is the caller allowed to modify his namespace?
  1326. */
  1327. static inline bool may_mount(void)
  1328. {
  1329. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1330. }
  1331. /*
  1332. * Now umount can handle mount points as well as block devices.
  1333. * This is important for filesystems which use unnamed block devices.
  1334. *
  1335. * We now support a flag for forced unmount like the other 'big iron'
  1336. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1337. */
  1338. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1339. {
  1340. struct path path;
  1341. struct mount *mnt;
  1342. int retval;
  1343. int lookup_flags = 0;
  1344. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1345. return -EINVAL;
  1346. if (!may_mount())
  1347. return -EPERM;
  1348. if (!(flags & UMOUNT_NOFOLLOW))
  1349. lookup_flags |= LOOKUP_FOLLOW;
  1350. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1351. if (retval)
  1352. goto out;
  1353. mnt = real_mount(path.mnt);
  1354. retval = -EINVAL;
  1355. if (path.dentry != path.mnt->mnt_root)
  1356. goto dput_and_out;
  1357. if (!check_mnt(mnt))
  1358. goto dput_and_out;
  1359. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1360. goto dput_and_out;
  1361. retval = -EPERM;
  1362. if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
  1363. goto dput_and_out;
  1364. retval = do_umount(mnt, flags);
  1365. dput_and_out:
  1366. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1367. dput(path.dentry);
  1368. mntput_no_expire(mnt);
  1369. out:
  1370. return retval;
  1371. }
  1372. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1373. /*
  1374. * The 2.0 compatible umount. No flags.
  1375. */
  1376. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1377. {
  1378. return sys_umount(name, 0);
  1379. }
  1380. #endif
  1381. static bool is_mnt_ns_file(struct dentry *dentry)
  1382. {
  1383. /* Is this a proxy for a mount namespace? */
  1384. return dentry->d_op == &ns_dentry_operations &&
  1385. dentry->d_fsdata == &mntns_operations;
  1386. }
  1387. struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
  1388. {
  1389. return container_of(ns, struct mnt_namespace, ns);
  1390. }
  1391. static bool mnt_ns_loop(struct dentry *dentry)
  1392. {
  1393. /* Could bind mounting the mount namespace inode cause a
  1394. * mount namespace loop?
  1395. */
  1396. struct mnt_namespace *mnt_ns;
  1397. if (!is_mnt_ns_file(dentry))
  1398. return false;
  1399. mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
  1400. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1401. }
  1402. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1403. int flag)
  1404. {
  1405. struct mount *res, *p, *q, *r, *parent;
  1406. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1407. return ERR_PTR(-EINVAL);
  1408. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1409. return ERR_PTR(-EINVAL);
  1410. res = q = clone_mnt(mnt, dentry, flag);
  1411. if (IS_ERR(q))
  1412. return q;
  1413. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1414. p = mnt;
  1415. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1416. struct mount *s;
  1417. if (!is_subdir(r->mnt_mountpoint, dentry))
  1418. continue;
  1419. for (s = r; s; s = next_mnt(s, r)) {
  1420. struct mount *t = NULL;
  1421. if (!(flag & CL_COPY_UNBINDABLE) &&
  1422. IS_MNT_UNBINDABLE(s)) {
  1423. s = skip_mnt_tree(s);
  1424. continue;
  1425. }
  1426. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1427. is_mnt_ns_file(s->mnt.mnt_root)) {
  1428. s = skip_mnt_tree(s);
  1429. continue;
  1430. }
  1431. while (p != s->mnt_parent) {
  1432. p = p->mnt_parent;
  1433. q = q->mnt_parent;
  1434. }
  1435. p = s;
  1436. parent = q;
  1437. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1438. if (IS_ERR(q))
  1439. goto out;
  1440. lock_mount_hash();
  1441. list_add_tail(&q->mnt_list, &res->mnt_list);
  1442. mnt_set_mountpoint(parent, p->mnt_mp, q);
  1443. if (!list_empty(&parent->mnt_mounts)) {
  1444. t = list_last_entry(&parent->mnt_mounts,
  1445. struct mount, mnt_child);
  1446. if (t->mnt_mp != p->mnt_mp)
  1447. t = NULL;
  1448. }
  1449. attach_shadowed(q, parent, t);
  1450. unlock_mount_hash();
  1451. }
  1452. }
  1453. return res;
  1454. out:
  1455. if (res) {
  1456. lock_mount_hash();
  1457. umount_tree(res, 0);
  1458. unlock_mount_hash();
  1459. }
  1460. return q;
  1461. }
  1462. /* Caller should check returned pointer for errors */
  1463. struct vfsmount *collect_mounts(struct path *path)
  1464. {
  1465. struct mount *tree;
  1466. namespace_lock();
  1467. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1468. CL_COPY_ALL | CL_PRIVATE);
  1469. namespace_unlock();
  1470. if (IS_ERR(tree))
  1471. return ERR_CAST(tree);
  1472. return &tree->mnt;
  1473. }
  1474. void drop_collected_mounts(struct vfsmount *mnt)
  1475. {
  1476. namespace_lock();
  1477. lock_mount_hash();
  1478. umount_tree(real_mount(mnt), 0);
  1479. unlock_mount_hash();
  1480. namespace_unlock();
  1481. }
  1482. /**
  1483. * clone_private_mount - create a private clone of a path
  1484. *
  1485. * This creates a new vfsmount, which will be the clone of @path. The new will
  1486. * not be attached anywhere in the namespace and will be private (i.e. changes
  1487. * to the originating mount won't be propagated into this).
  1488. *
  1489. * Release with mntput().
  1490. */
  1491. struct vfsmount *clone_private_mount(struct path *path)
  1492. {
  1493. struct mount *old_mnt = real_mount(path->mnt);
  1494. struct mount *new_mnt;
  1495. if (IS_MNT_UNBINDABLE(old_mnt))
  1496. return ERR_PTR(-EINVAL);
  1497. down_read(&namespace_sem);
  1498. new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
  1499. up_read(&namespace_sem);
  1500. if (IS_ERR(new_mnt))
  1501. return ERR_CAST(new_mnt);
  1502. return &new_mnt->mnt;
  1503. }
  1504. EXPORT_SYMBOL_GPL(clone_private_mount);
  1505. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1506. struct vfsmount *root)
  1507. {
  1508. struct mount *mnt;
  1509. int res = f(root, arg);
  1510. if (res)
  1511. return res;
  1512. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1513. res = f(&mnt->mnt, arg);
  1514. if (res)
  1515. return res;
  1516. }
  1517. return 0;
  1518. }
  1519. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1520. {
  1521. struct mount *p;
  1522. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1523. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1524. mnt_release_group_id(p);
  1525. }
  1526. }
  1527. static int invent_group_ids(struct mount *mnt, bool recurse)
  1528. {
  1529. struct mount *p;
  1530. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1531. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1532. int err = mnt_alloc_group_id(p);
  1533. if (err) {
  1534. cleanup_group_ids(mnt, p);
  1535. return err;
  1536. }
  1537. }
  1538. }
  1539. return 0;
  1540. }
  1541. /*
  1542. * @source_mnt : mount tree to be attached
  1543. * @nd : place the mount tree @source_mnt is attached
  1544. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1545. * store the parent mount and mountpoint dentry.
  1546. * (done when source_mnt is moved)
  1547. *
  1548. * NOTE: in the table below explains the semantics when a source mount
  1549. * of a given type is attached to a destination mount of a given type.
  1550. * ---------------------------------------------------------------------------
  1551. * | BIND MOUNT OPERATION |
  1552. * |**************************************************************************
  1553. * | source-->| shared | private | slave | unbindable |
  1554. * | dest | | | | |
  1555. * | | | | | | |
  1556. * | v | | | | |
  1557. * |**************************************************************************
  1558. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1559. * | | | | | |
  1560. * |non-shared| shared (+) | private | slave (*) | invalid |
  1561. * ***************************************************************************
  1562. * A bind operation clones the source mount and mounts the clone on the
  1563. * destination mount.
  1564. *
  1565. * (++) the cloned mount is propagated to all the mounts in the propagation
  1566. * tree of the destination mount and the cloned mount is added to
  1567. * the peer group of the source mount.
  1568. * (+) the cloned mount is created under the destination mount and is marked
  1569. * as shared. The cloned mount is added to the peer group of the source
  1570. * mount.
  1571. * (+++) the mount is propagated to all the mounts in the propagation tree
  1572. * of the destination mount and the cloned mount is made slave
  1573. * of the same master as that of the source mount. The cloned mount
  1574. * is marked as 'shared and slave'.
  1575. * (*) the cloned mount is made a slave of the same master as that of the
  1576. * source mount.
  1577. *
  1578. * ---------------------------------------------------------------------------
  1579. * | MOVE MOUNT OPERATION |
  1580. * |**************************************************************************
  1581. * | source-->| shared | private | slave | unbindable |
  1582. * | dest | | | | |
  1583. * | | | | | | |
  1584. * | v | | | | |
  1585. * |**************************************************************************
  1586. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1587. * | | | | | |
  1588. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1589. * ***************************************************************************
  1590. *
  1591. * (+) the mount is moved to the destination. And is then propagated to
  1592. * all the mounts in the propagation tree of the destination mount.
  1593. * (+*) the mount is moved to the destination.
  1594. * (+++) the mount is moved to the destination and is then propagated to
  1595. * all the mounts belonging to the destination mount's propagation tree.
  1596. * the mount is marked as 'shared and slave'.
  1597. * (*) the mount continues to be a slave at the new location.
  1598. *
  1599. * if the source mount is a tree, the operations explained above is
  1600. * applied to each mount in the tree.
  1601. * Must be called without spinlocks held, since this function can sleep
  1602. * in allocations.
  1603. */
  1604. static int attach_recursive_mnt(struct mount *source_mnt,
  1605. struct mount *dest_mnt,
  1606. struct mountpoint *dest_mp,
  1607. struct path *parent_path)
  1608. {
  1609. HLIST_HEAD(tree_list);
  1610. struct mount *child, *p;
  1611. struct hlist_node *n;
  1612. int err;
  1613. if (IS_MNT_SHARED(dest_mnt)) {
  1614. err = invent_group_ids(source_mnt, true);
  1615. if (err)
  1616. goto out;
  1617. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1618. lock_mount_hash();
  1619. if (err)
  1620. goto out_cleanup_ids;
  1621. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1622. set_mnt_shared(p);
  1623. } else {
  1624. lock_mount_hash();
  1625. }
  1626. if (parent_path) {
  1627. detach_mnt(source_mnt, parent_path);
  1628. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1629. touch_mnt_namespace(source_mnt->mnt_ns);
  1630. } else {
  1631. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1632. commit_tree(source_mnt, NULL);
  1633. }
  1634. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1635. struct mount *q;
  1636. hlist_del_init(&child->mnt_hash);
  1637. q = __lookup_mnt_last(&child->mnt_parent->mnt,
  1638. child->mnt_mountpoint);
  1639. commit_tree(child, q);
  1640. }
  1641. unlock_mount_hash();
  1642. return 0;
  1643. out_cleanup_ids:
  1644. while (!hlist_empty(&tree_list)) {
  1645. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1646. umount_tree(child, 0);
  1647. }
  1648. unlock_mount_hash();
  1649. cleanup_group_ids(source_mnt, NULL);
  1650. out:
  1651. return err;
  1652. }
  1653. static struct mountpoint *lock_mount(struct path *path)
  1654. {
  1655. struct vfsmount *mnt;
  1656. struct dentry *dentry = path->dentry;
  1657. retry:
  1658. mutex_lock(&dentry->d_inode->i_mutex);
  1659. if (unlikely(cant_mount(dentry))) {
  1660. mutex_unlock(&dentry->d_inode->i_mutex);
  1661. return ERR_PTR(-ENOENT);
  1662. }
  1663. namespace_lock();
  1664. mnt = lookup_mnt(path);
  1665. if (likely(!mnt)) {
  1666. struct mountpoint *mp = lookup_mountpoint(dentry);
  1667. if (!mp)
  1668. mp = new_mountpoint(dentry);
  1669. if (IS_ERR(mp)) {
  1670. namespace_unlock();
  1671. mutex_unlock(&dentry->d_inode->i_mutex);
  1672. return mp;
  1673. }
  1674. return mp;
  1675. }
  1676. namespace_unlock();
  1677. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1678. path_put(path);
  1679. path->mnt = mnt;
  1680. dentry = path->dentry = dget(mnt->mnt_root);
  1681. goto retry;
  1682. }
  1683. static void unlock_mount(struct mountpoint *where)
  1684. {
  1685. struct dentry *dentry = where->m_dentry;
  1686. put_mountpoint(where);
  1687. namespace_unlock();
  1688. mutex_unlock(&dentry->d_inode->i_mutex);
  1689. }
  1690. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1691. {
  1692. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1693. return -EINVAL;
  1694. if (d_is_dir(mp->m_dentry) !=
  1695. d_is_dir(mnt->mnt.mnt_root))
  1696. return -ENOTDIR;
  1697. return attach_recursive_mnt(mnt, p, mp, NULL);
  1698. }
  1699. /*
  1700. * Sanity check the flags to change_mnt_propagation.
  1701. */
  1702. static int flags_to_propagation_type(int flags)
  1703. {
  1704. int type = flags & ~(MS_REC | MS_SILENT);
  1705. /* Fail if any non-propagation flags are set */
  1706. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1707. return 0;
  1708. /* Only one propagation flag should be set */
  1709. if (!is_power_of_2(type))
  1710. return 0;
  1711. return type;
  1712. }
  1713. /*
  1714. * recursively change the type of the mountpoint.
  1715. */
  1716. static int do_change_type(struct path *path, int flag)
  1717. {
  1718. struct mount *m;
  1719. struct mount *mnt = real_mount(path->mnt);
  1720. int recurse = flag & MS_REC;
  1721. int type;
  1722. int err = 0;
  1723. if (path->dentry != path->mnt->mnt_root)
  1724. return -EINVAL;
  1725. type = flags_to_propagation_type(flag);
  1726. if (!type)
  1727. return -EINVAL;
  1728. namespace_lock();
  1729. if (type == MS_SHARED) {
  1730. err = invent_group_ids(mnt, recurse);
  1731. if (err)
  1732. goto out_unlock;
  1733. }
  1734. lock_mount_hash();
  1735. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1736. change_mnt_propagation(m, type);
  1737. unlock_mount_hash();
  1738. out_unlock:
  1739. namespace_unlock();
  1740. return err;
  1741. }
  1742. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1743. {
  1744. struct mount *child;
  1745. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1746. if (!is_subdir(child->mnt_mountpoint, dentry))
  1747. continue;
  1748. if (child->mnt.mnt_flags & MNT_LOCKED)
  1749. return true;
  1750. }
  1751. return false;
  1752. }
  1753. /*
  1754. * do loopback mount.
  1755. */
  1756. static int do_loopback(struct path *path, const char *old_name,
  1757. int recurse)
  1758. {
  1759. struct path old_path;
  1760. struct mount *mnt = NULL, *old, *parent;
  1761. struct mountpoint *mp;
  1762. int err;
  1763. if (!old_name || !*old_name)
  1764. return -EINVAL;
  1765. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1766. if (err)
  1767. return err;
  1768. err = -EINVAL;
  1769. if (mnt_ns_loop(old_path.dentry))
  1770. goto out;
  1771. mp = lock_mount(path);
  1772. err = PTR_ERR(mp);
  1773. if (IS_ERR(mp))
  1774. goto out;
  1775. old = real_mount(old_path.mnt);
  1776. parent = real_mount(path->mnt);
  1777. err = -EINVAL;
  1778. if (IS_MNT_UNBINDABLE(old))
  1779. goto out2;
  1780. if (!check_mnt(parent))
  1781. goto out2;
  1782. if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
  1783. goto out2;
  1784. if (!recurse && has_locked_children(old, old_path.dentry))
  1785. goto out2;
  1786. if (recurse)
  1787. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1788. else
  1789. mnt = clone_mnt(old, old_path.dentry, 0);
  1790. if (IS_ERR(mnt)) {
  1791. err = PTR_ERR(mnt);
  1792. goto out2;
  1793. }
  1794. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1795. err = graft_tree(mnt, parent, mp);
  1796. if (err) {
  1797. lock_mount_hash();
  1798. umount_tree(mnt, 0);
  1799. unlock_mount_hash();
  1800. }
  1801. out2:
  1802. unlock_mount(mp);
  1803. out:
  1804. path_put(&old_path);
  1805. return err;
  1806. }
  1807. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1808. {
  1809. int error = 0;
  1810. int readonly_request = 0;
  1811. if (ms_flags & MS_RDONLY)
  1812. readonly_request = 1;
  1813. if (readonly_request == __mnt_is_readonly(mnt))
  1814. return 0;
  1815. if (readonly_request)
  1816. error = mnt_make_readonly(real_mount(mnt));
  1817. else
  1818. __mnt_unmake_readonly(real_mount(mnt));
  1819. return error;
  1820. }
  1821. /*
  1822. * change filesystem flags. dir should be a physical root of filesystem.
  1823. * If you've mounted a non-root directory somewhere and want to do remount
  1824. * on it - tough luck.
  1825. */
  1826. static int do_remount(struct path *path, int flags, int mnt_flags,
  1827. void *data)
  1828. {
  1829. int err;
  1830. struct super_block *sb = path->mnt->mnt_sb;
  1831. struct mount *mnt = real_mount(path->mnt);
  1832. if (!check_mnt(mnt))
  1833. return -EINVAL;
  1834. if (path->dentry != path->mnt->mnt_root)
  1835. return -EINVAL;
  1836. /* Don't allow changing of locked mnt flags.
  1837. *
  1838. * No locks need to be held here while testing the various
  1839. * MNT_LOCK flags because those flags can never be cleared
  1840. * once they are set.
  1841. */
  1842. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  1843. !(mnt_flags & MNT_READONLY)) {
  1844. return -EPERM;
  1845. }
  1846. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  1847. !(mnt_flags & MNT_NODEV)) {
  1848. /* Was the nodev implicitly added in mount? */
  1849. if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
  1850. !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  1851. mnt_flags |= MNT_NODEV;
  1852. } else {
  1853. return -EPERM;
  1854. }
  1855. }
  1856. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
  1857. !(mnt_flags & MNT_NOSUID)) {
  1858. return -EPERM;
  1859. }
  1860. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
  1861. !(mnt_flags & MNT_NOEXEC)) {
  1862. return -EPERM;
  1863. }
  1864. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  1865. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
  1866. return -EPERM;
  1867. }
  1868. err = security_sb_remount(sb, data);
  1869. if (err)
  1870. return err;
  1871. down_write(&sb->s_umount);
  1872. if (flags & MS_BIND)
  1873. err = change_mount_flags(path->mnt, flags);
  1874. else if (!capable(CAP_SYS_ADMIN))
  1875. err = -EPERM;
  1876. else
  1877. err = do_remount_sb(sb, flags, data, 0);
  1878. if (!err) {
  1879. lock_mount_hash();
  1880. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  1881. mnt->mnt.mnt_flags = mnt_flags;
  1882. touch_mnt_namespace(mnt->mnt_ns);
  1883. unlock_mount_hash();
  1884. }
  1885. up_write(&sb->s_umount);
  1886. return err;
  1887. }
  1888. static inline int tree_contains_unbindable(struct mount *mnt)
  1889. {
  1890. struct mount *p;
  1891. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1892. if (IS_MNT_UNBINDABLE(p))
  1893. return 1;
  1894. }
  1895. return 0;
  1896. }
  1897. static int do_move_mount(struct path *path, const char *old_name)
  1898. {
  1899. struct path old_path, parent_path;
  1900. struct mount *p;
  1901. struct mount *old;
  1902. struct mountpoint *mp;
  1903. int err;
  1904. if (!old_name || !*old_name)
  1905. return -EINVAL;
  1906. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1907. if (err)
  1908. return err;
  1909. mp = lock_mount(path);
  1910. err = PTR_ERR(mp);
  1911. if (IS_ERR(mp))
  1912. goto out;
  1913. old = real_mount(old_path.mnt);
  1914. p = real_mount(path->mnt);
  1915. err = -EINVAL;
  1916. if (!check_mnt(p) || !check_mnt(old))
  1917. goto out1;
  1918. if (old->mnt.mnt_flags & MNT_LOCKED)
  1919. goto out1;
  1920. err = -EINVAL;
  1921. if (old_path.dentry != old_path.mnt->mnt_root)
  1922. goto out1;
  1923. if (!mnt_has_parent(old))
  1924. goto out1;
  1925. if (d_is_dir(path->dentry) !=
  1926. d_is_dir(old_path.dentry))
  1927. goto out1;
  1928. /*
  1929. * Don't move a mount residing in a shared parent.
  1930. */
  1931. if (IS_MNT_SHARED(old->mnt_parent))
  1932. goto out1;
  1933. /*
  1934. * Don't move a mount tree containing unbindable mounts to a destination
  1935. * mount which is shared.
  1936. */
  1937. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1938. goto out1;
  1939. err = -ELOOP;
  1940. for (; mnt_has_parent(p); p = p->mnt_parent)
  1941. if (p == old)
  1942. goto out1;
  1943. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  1944. if (err)
  1945. goto out1;
  1946. /* if the mount is moved, it should no longer be expire
  1947. * automatically */
  1948. list_del_init(&old->mnt_expire);
  1949. out1:
  1950. unlock_mount(mp);
  1951. out:
  1952. if (!err)
  1953. path_put(&parent_path);
  1954. path_put(&old_path);
  1955. return err;
  1956. }
  1957. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1958. {
  1959. int err;
  1960. const char *subtype = strchr(fstype, '.');
  1961. if (subtype) {
  1962. subtype++;
  1963. err = -EINVAL;
  1964. if (!subtype[0])
  1965. goto err;
  1966. } else
  1967. subtype = "";
  1968. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1969. err = -ENOMEM;
  1970. if (!mnt->mnt_sb->s_subtype)
  1971. goto err;
  1972. return mnt;
  1973. err:
  1974. mntput(mnt);
  1975. return ERR_PTR(err);
  1976. }
  1977. /*
  1978. * add a mount into a namespace's mount tree
  1979. */
  1980. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1981. {
  1982. struct mountpoint *mp;
  1983. struct mount *parent;
  1984. int err;
  1985. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  1986. mp = lock_mount(path);
  1987. if (IS_ERR(mp))
  1988. return PTR_ERR(mp);
  1989. parent = real_mount(path->mnt);
  1990. err = -EINVAL;
  1991. if (unlikely(!check_mnt(parent))) {
  1992. /* that's acceptable only for automounts done in private ns */
  1993. if (!(mnt_flags & MNT_SHRINKABLE))
  1994. goto unlock;
  1995. /* ... and for those we'd better have mountpoint still alive */
  1996. if (!parent->mnt_ns)
  1997. goto unlock;
  1998. }
  1999. /* Refuse the same filesystem on the same mount point */
  2000. err = -EBUSY;
  2001. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  2002. path->mnt->mnt_root == path->dentry)
  2003. goto unlock;
  2004. err = -EINVAL;
  2005. if (d_is_symlink(newmnt->mnt.mnt_root))
  2006. goto unlock;
  2007. newmnt->mnt.mnt_flags = mnt_flags;
  2008. err = graft_tree(newmnt, parent, mp);
  2009. unlock:
  2010. unlock_mount(mp);
  2011. return err;
  2012. }
  2013. /*
  2014. * create a new mount for userspace and request it to be added into the
  2015. * namespace's tree
  2016. */
  2017. static int do_new_mount(struct path *path, const char *fstype, int flags,
  2018. int mnt_flags, const char *name, void *data)
  2019. {
  2020. struct file_system_type *type;
  2021. struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
  2022. struct vfsmount *mnt;
  2023. int err;
  2024. if (!fstype)
  2025. return -EINVAL;
  2026. type = get_fs_type(fstype);
  2027. if (!type)
  2028. return -ENODEV;
  2029. if (user_ns != &init_user_ns) {
  2030. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  2031. put_filesystem(type);
  2032. return -EPERM;
  2033. }
  2034. /* Only in special cases allow devices from mounts
  2035. * created outside the initial user namespace.
  2036. */
  2037. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  2038. flags |= MS_NODEV;
  2039. mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
  2040. }
  2041. }
  2042. mnt = vfs_kern_mount(type, flags, name, data);
  2043. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  2044. !mnt->mnt_sb->s_subtype)
  2045. mnt = fs_set_subtype(mnt, fstype);
  2046. put_filesystem(type);
  2047. if (IS_ERR(mnt))
  2048. return PTR_ERR(mnt);
  2049. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  2050. if (err)
  2051. mntput(mnt);
  2052. return err;
  2053. }
  2054. int finish_automount(struct vfsmount *m, struct path *path)
  2055. {
  2056. struct mount *mnt = real_mount(m);
  2057. int err;
  2058. /* The new mount record should have at least 2 refs to prevent it being
  2059. * expired before we get a chance to add it
  2060. */
  2061. BUG_ON(mnt_get_count(mnt) < 2);
  2062. if (m->mnt_sb == path->mnt->mnt_sb &&
  2063. m->mnt_root == path->dentry) {
  2064. err = -ELOOP;
  2065. goto fail;
  2066. }
  2067. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  2068. if (!err)
  2069. return 0;
  2070. fail:
  2071. /* remove m from any expiration list it may be on */
  2072. if (!list_empty(&mnt->mnt_expire)) {
  2073. namespace_lock();
  2074. list_del_init(&mnt->mnt_expire);
  2075. namespace_unlock();
  2076. }
  2077. mntput(m);
  2078. mntput(m);
  2079. return err;
  2080. }
  2081. /**
  2082. * mnt_set_expiry - Put a mount on an expiration list
  2083. * @mnt: The mount to list.
  2084. * @expiry_list: The list to add the mount to.
  2085. */
  2086. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  2087. {
  2088. namespace_lock();
  2089. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  2090. namespace_unlock();
  2091. }
  2092. EXPORT_SYMBOL(mnt_set_expiry);
  2093. /*
  2094. * process a list of expirable mountpoints with the intent of discarding any
  2095. * mountpoints that aren't in use and haven't been touched since last we came
  2096. * here
  2097. */
  2098. void mark_mounts_for_expiry(struct list_head *mounts)
  2099. {
  2100. struct mount *mnt, *next;
  2101. LIST_HEAD(graveyard);
  2102. if (list_empty(mounts))
  2103. return;
  2104. namespace_lock();
  2105. lock_mount_hash();
  2106. /* extract from the expiration list every vfsmount that matches the
  2107. * following criteria:
  2108. * - only referenced by its parent vfsmount
  2109. * - still marked for expiry (marked on the last call here; marks are
  2110. * cleared by mntput())
  2111. */
  2112. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  2113. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  2114. propagate_mount_busy(mnt, 1))
  2115. continue;
  2116. list_move(&mnt->mnt_expire, &graveyard);
  2117. }
  2118. while (!list_empty(&graveyard)) {
  2119. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  2120. touch_mnt_namespace(mnt->mnt_ns);
  2121. umount_tree(mnt, 1);
  2122. }
  2123. unlock_mount_hash();
  2124. namespace_unlock();
  2125. }
  2126. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  2127. /*
  2128. * Ripoff of 'select_parent()'
  2129. *
  2130. * search the list of submounts for a given mountpoint, and move any
  2131. * shrinkable submounts to the 'graveyard' list.
  2132. */
  2133. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  2134. {
  2135. struct mount *this_parent = parent;
  2136. struct list_head *next;
  2137. int found = 0;
  2138. repeat:
  2139. next = this_parent->mnt_mounts.next;
  2140. resume:
  2141. while (next != &this_parent->mnt_mounts) {
  2142. struct list_head *tmp = next;
  2143. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  2144. next = tmp->next;
  2145. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  2146. continue;
  2147. /*
  2148. * Descend a level if the d_mounts list is non-empty.
  2149. */
  2150. if (!list_empty(&mnt->mnt_mounts)) {
  2151. this_parent = mnt;
  2152. goto repeat;
  2153. }
  2154. if (!propagate_mount_busy(mnt, 1)) {
  2155. list_move_tail(&mnt->mnt_expire, graveyard);
  2156. found++;
  2157. }
  2158. }
  2159. /*
  2160. * All done at this level ... ascend and resume the search
  2161. */
  2162. if (this_parent != parent) {
  2163. next = this_parent->mnt_child.next;
  2164. this_parent = this_parent->mnt_parent;
  2165. goto resume;
  2166. }
  2167. return found;
  2168. }
  2169. /*
  2170. * process a list of expirable mountpoints with the intent of discarding any
  2171. * submounts of a specific parent mountpoint
  2172. *
  2173. * mount_lock must be held for write
  2174. */
  2175. static void shrink_submounts(struct mount *mnt)
  2176. {
  2177. LIST_HEAD(graveyard);
  2178. struct mount *m;
  2179. /* extract submounts of 'mountpoint' from the expiration list */
  2180. while (select_submounts(mnt, &graveyard)) {
  2181. while (!list_empty(&graveyard)) {
  2182. m = list_first_entry(&graveyard, struct mount,
  2183. mnt_expire);
  2184. touch_mnt_namespace(m->mnt_ns);
  2185. umount_tree(m, 1);
  2186. }
  2187. }
  2188. }
  2189. /*
  2190. * Some copy_from_user() implementations do not return the exact number of
  2191. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2192. * Note that this function differs from copy_from_user() in that it will oops
  2193. * on bad values of `to', rather than returning a short copy.
  2194. */
  2195. static long exact_copy_from_user(void *to, const void __user * from,
  2196. unsigned long n)
  2197. {
  2198. char *t = to;
  2199. const char __user *f = from;
  2200. char c;
  2201. if (!access_ok(VERIFY_READ, from, n))
  2202. return n;
  2203. while (n) {
  2204. if (__get_user(c, f)) {
  2205. memset(t, 0, n);
  2206. break;
  2207. }
  2208. *t++ = c;
  2209. f++;
  2210. n--;
  2211. }
  2212. return n;
  2213. }
  2214. int copy_mount_options(const void __user * data, unsigned long *where)
  2215. {
  2216. int i;
  2217. unsigned long page;
  2218. unsigned long size;
  2219. *where = 0;
  2220. if (!data)
  2221. return 0;
  2222. if (!(page = __get_free_page(GFP_KERNEL)))
  2223. return -ENOMEM;
  2224. /* We only care that *some* data at the address the user
  2225. * gave us is valid. Just in case, we'll zero
  2226. * the remainder of the page.
  2227. */
  2228. /* copy_from_user cannot cross TASK_SIZE ! */
  2229. size = TASK_SIZE - (unsigned long)data;
  2230. if (size > PAGE_SIZE)
  2231. size = PAGE_SIZE;
  2232. i = size - exact_copy_from_user((void *)page, data, size);
  2233. if (!i) {
  2234. free_page(page);
  2235. return -EFAULT;
  2236. }
  2237. if (i != PAGE_SIZE)
  2238. memset((char *)page + i, 0, PAGE_SIZE - i);
  2239. *where = page;
  2240. return 0;
  2241. }
  2242. char *copy_mount_string(const void __user *data)
  2243. {
  2244. return data ? strndup_user(data, PAGE_SIZE) : NULL;
  2245. }
  2246. /*
  2247. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2248. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2249. *
  2250. * data is a (void *) that can point to any structure up to
  2251. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2252. * information (or be NULL).
  2253. *
  2254. * Pre-0.97 versions of mount() didn't have a flags word.
  2255. * When the flags word was introduced its top half was required
  2256. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2257. * Therefore, if this magic number is present, it carries no information
  2258. * and must be discarded.
  2259. */
  2260. long do_mount(const char *dev_name, const char __user *dir_name,
  2261. const char *type_page, unsigned long flags, void *data_page)
  2262. {
  2263. struct path path;
  2264. int retval = 0;
  2265. int mnt_flags = 0;
  2266. /* Discard magic */
  2267. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2268. flags &= ~MS_MGC_MSK;
  2269. /* Basic sanity checks */
  2270. if (data_page)
  2271. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2272. /* ... and get the mountpoint */
  2273. retval = user_path(dir_name, &path);
  2274. if (retval)
  2275. return retval;
  2276. retval = security_sb_mount(dev_name, &path,
  2277. type_page, flags, data_page);
  2278. if (!retval && !may_mount())
  2279. retval = -EPERM;
  2280. if (retval)
  2281. goto dput_out;
  2282. /* Default to relatime unless overriden */
  2283. if (!(flags & MS_NOATIME))
  2284. mnt_flags |= MNT_RELATIME;
  2285. /* Separate the per-mountpoint flags */
  2286. if (flags & MS_NOSUID)
  2287. mnt_flags |= MNT_NOSUID;
  2288. if (flags & MS_NODEV)
  2289. mnt_flags |= MNT_NODEV;
  2290. if (flags & MS_NOEXEC)
  2291. mnt_flags |= MNT_NOEXEC;
  2292. if (flags & MS_NOATIME)
  2293. mnt_flags |= MNT_NOATIME;
  2294. if (flags & MS_NODIRATIME)
  2295. mnt_flags |= MNT_NODIRATIME;
  2296. if (flags & MS_STRICTATIME)
  2297. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2298. if (flags & MS_RDONLY)
  2299. mnt_flags |= MNT_READONLY;
  2300. /* The default atime for remount is preservation */
  2301. if ((flags & MS_REMOUNT) &&
  2302. ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
  2303. MS_STRICTATIME)) == 0)) {
  2304. mnt_flags &= ~MNT_ATIME_MASK;
  2305. mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
  2306. }
  2307. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2308. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2309. MS_STRICTATIME);
  2310. if (flags & MS_REMOUNT)
  2311. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2312. data_page);
  2313. else if (flags & MS_BIND)
  2314. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2315. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2316. retval = do_change_type(&path, flags);
  2317. else if (flags & MS_MOVE)
  2318. retval = do_move_mount(&path, dev_name);
  2319. else
  2320. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2321. dev_name, data_page);
  2322. dput_out:
  2323. path_put(&path);
  2324. return retval;
  2325. }
  2326. static void free_mnt_ns(struct mnt_namespace *ns)
  2327. {
  2328. ns_free_inum(&ns->ns);
  2329. put_user_ns(ns->user_ns);
  2330. kfree(ns);
  2331. }
  2332. /*
  2333. * Assign a sequence number so we can detect when we attempt to bind
  2334. * mount a reference to an older mount namespace into the current
  2335. * mount namespace, preventing reference counting loops. A 64bit
  2336. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2337. * is effectively never, so we can ignore the possibility.
  2338. */
  2339. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2340. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2341. {
  2342. struct mnt_namespace *new_ns;
  2343. int ret;
  2344. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2345. if (!new_ns)
  2346. return ERR_PTR(-ENOMEM);
  2347. ret = ns_alloc_inum(&new_ns->ns);
  2348. if (ret) {
  2349. kfree(new_ns);
  2350. return ERR_PTR(ret);
  2351. }
  2352. new_ns->ns.ops = &mntns_operations;
  2353. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2354. atomic_set(&new_ns->count, 1);
  2355. new_ns->root = NULL;
  2356. INIT_LIST_HEAD(&new_ns->list);
  2357. init_waitqueue_head(&new_ns->poll);
  2358. new_ns->event = 0;
  2359. new_ns->user_ns = get_user_ns(user_ns);
  2360. return new_ns;
  2361. }
  2362. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2363. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2364. {
  2365. struct mnt_namespace *new_ns;
  2366. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2367. struct mount *p, *q;
  2368. struct mount *old;
  2369. struct mount *new;
  2370. int copy_flags;
  2371. BUG_ON(!ns);
  2372. if (likely(!(flags & CLONE_NEWNS))) {
  2373. get_mnt_ns(ns);
  2374. return ns;
  2375. }
  2376. old = ns->root;
  2377. new_ns = alloc_mnt_ns(user_ns);
  2378. if (IS_ERR(new_ns))
  2379. return new_ns;
  2380. namespace_lock();
  2381. /* First pass: copy the tree topology */
  2382. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2383. if (user_ns != ns->user_ns)
  2384. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2385. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2386. if (IS_ERR(new)) {
  2387. namespace_unlock();
  2388. free_mnt_ns(new_ns);
  2389. return ERR_CAST(new);
  2390. }
  2391. new_ns->root = new;
  2392. list_add_tail(&new_ns->list, &new->mnt_list);
  2393. /*
  2394. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2395. * as belonging to new namespace. We have already acquired a private
  2396. * fs_struct, so tsk->fs->lock is not needed.
  2397. */
  2398. p = old;
  2399. q = new;
  2400. while (p) {
  2401. q->mnt_ns = new_ns;
  2402. if (new_fs) {
  2403. if (&p->mnt == new_fs->root.mnt) {
  2404. new_fs->root.mnt = mntget(&q->mnt);
  2405. rootmnt = &p->mnt;
  2406. }
  2407. if (&p->mnt == new_fs->pwd.mnt) {
  2408. new_fs->pwd.mnt = mntget(&q->mnt);
  2409. pwdmnt = &p->mnt;
  2410. }
  2411. }
  2412. p = next_mnt(p, old);
  2413. q = next_mnt(q, new);
  2414. if (!q)
  2415. break;
  2416. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2417. p = next_mnt(p, old);
  2418. }
  2419. namespace_unlock();
  2420. if (rootmnt)
  2421. mntput(rootmnt);
  2422. if (pwdmnt)
  2423. mntput(pwdmnt);
  2424. return new_ns;
  2425. }
  2426. /**
  2427. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2428. * @mnt: pointer to the new root filesystem mountpoint
  2429. */
  2430. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2431. {
  2432. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2433. if (!IS_ERR(new_ns)) {
  2434. struct mount *mnt = real_mount(m);
  2435. mnt->mnt_ns = new_ns;
  2436. new_ns->root = mnt;
  2437. list_add(&mnt->mnt_list, &new_ns->list);
  2438. } else {
  2439. mntput(m);
  2440. }
  2441. return new_ns;
  2442. }
  2443. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2444. {
  2445. struct mnt_namespace *ns;
  2446. struct super_block *s;
  2447. struct path path;
  2448. int err;
  2449. ns = create_mnt_ns(mnt);
  2450. if (IS_ERR(ns))
  2451. return ERR_CAST(ns);
  2452. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2453. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2454. put_mnt_ns(ns);
  2455. if (err)
  2456. return ERR_PTR(err);
  2457. /* trade a vfsmount reference for active sb one */
  2458. s = path.mnt->mnt_sb;
  2459. atomic_inc(&s->s_active);
  2460. mntput(path.mnt);
  2461. /* lock the sucker */
  2462. down_write(&s->s_umount);
  2463. /* ... and return the root of (sub)tree on it */
  2464. return path.dentry;
  2465. }
  2466. EXPORT_SYMBOL(mount_subtree);
  2467. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2468. char __user *, type, unsigned long, flags, void __user *, data)
  2469. {
  2470. int ret;
  2471. char *kernel_type;
  2472. char *kernel_dev;
  2473. unsigned long data_page;
  2474. kernel_type = copy_mount_string(type);
  2475. ret = PTR_ERR(kernel_type);
  2476. if (IS_ERR(kernel_type))
  2477. goto out_type;
  2478. kernel_dev = copy_mount_string(dev_name);
  2479. ret = PTR_ERR(kernel_dev);
  2480. if (IS_ERR(kernel_dev))
  2481. goto out_dev;
  2482. ret = copy_mount_options(data, &data_page);
  2483. if (ret < 0)
  2484. goto out_data;
  2485. ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
  2486. (void *) data_page);
  2487. free_page(data_page);
  2488. out_data:
  2489. kfree(kernel_dev);
  2490. out_dev:
  2491. kfree(kernel_type);
  2492. out_type:
  2493. return ret;
  2494. }
  2495. /*
  2496. * Return true if path is reachable from root
  2497. *
  2498. * namespace_sem or mount_lock is held
  2499. */
  2500. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2501. const struct path *root)
  2502. {
  2503. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2504. dentry = mnt->mnt_mountpoint;
  2505. mnt = mnt->mnt_parent;
  2506. }
  2507. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2508. }
  2509. int path_is_under(struct path *path1, struct path *path2)
  2510. {
  2511. int res;
  2512. read_seqlock_excl(&mount_lock);
  2513. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2514. read_sequnlock_excl(&mount_lock);
  2515. return res;
  2516. }
  2517. EXPORT_SYMBOL(path_is_under);
  2518. /*
  2519. * pivot_root Semantics:
  2520. * Moves the root file system of the current process to the directory put_old,
  2521. * makes new_root as the new root file system of the current process, and sets
  2522. * root/cwd of all processes which had them on the current root to new_root.
  2523. *
  2524. * Restrictions:
  2525. * The new_root and put_old must be directories, and must not be on the
  2526. * same file system as the current process root. The put_old must be
  2527. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2528. * pointed to by put_old must yield the same directory as new_root. No other
  2529. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2530. *
  2531. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2532. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2533. * in this situation.
  2534. *
  2535. * Notes:
  2536. * - we don't move root/cwd if they are not at the root (reason: if something
  2537. * cared enough to change them, it's probably wrong to force them elsewhere)
  2538. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2539. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2540. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2541. * first.
  2542. */
  2543. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2544. const char __user *, put_old)
  2545. {
  2546. struct path new, old, parent_path, root_parent, root;
  2547. struct mount *new_mnt, *root_mnt, *old_mnt;
  2548. struct mountpoint *old_mp, *root_mp;
  2549. int error;
  2550. if (!may_mount())
  2551. return -EPERM;
  2552. error = user_path_dir(new_root, &new);
  2553. if (error)
  2554. goto out0;
  2555. error = user_path_dir(put_old, &old);
  2556. if (error)
  2557. goto out1;
  2558. error = security_sb_pivotroot(&old, &new);
  2559. if (error)
  2560. goto out2;
  2561. get_fs_root(current->fs, &root);
  2562. old_mp = lock_mount(&old);
  2563. error = PTR_ERR(old_mp);
  2564. if (IS_ERR(old_mp))
  2565. goto out3;
  2566. error = -EINVAL;
  2567. new_mnt = real_mount(new.mnt);
  2568. root_mnt = real_mount(root.mnt);
  2569. old_mnt = real_mount(old.mnt);
  2570. if (IS_MNT_SHARED(old_mnt) ||
  2571. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2572. IS_MNT_SHARED(root_mnt->mnt_parent))
  2573. goto out4;
  2574. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2575. goto out4;
  2576. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2577. goto out4;
  2578. error = -ENOENT;
  2579. if (d_unlinked(new.dentry))
  2580. goto out4;
  2581. error = -EBUSY;
  2582. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2583. goto out4; /* loop, on the same file system */
  2584. error = -EINVAL;
  2585. if (root.mnt->mnt_root != root.dentry)
  2586. goto out4; /* not a mountpoint */
  2587. if (!mnt_has_parent(root_mnt))
  2588. goto out4; /* not attached */
  2589. root_mp = root_mnt->mnt_mp;
  2590. if (new.mnt->mnt_root != new.dentry)
  2591. goto out4; /* not a mountpoint */
  2592. if (!mnt_has_parent(new_mnt))
  2593. goto out4; /* not attached */
  2594. /* make sure we can reach put_old from new_root */
  2595. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2596. goto out4;
  2597. /* make certain new is below the root */
  2598. if (!is_path_reachable(new_mnt, new.dentry, &root))
  2599. goto out4;
  2600. root_mp->m_count++; /* pin it so it won't go away */
  2601. lock_mount_hash();
  2602. detach_mnt(new_mnt, &parent_path);
  2603. detach_mnt(root_mnt, &root_parent);
  2604. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2605. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2606. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2607. }
  2608. /* mount old root on put_old */
  2609. attach_mnt(root_mnt, old_mnt, old_mp);
  2610. /* mount new_root on / */
  2611. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2612. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2613. /* A moved mount should not expire automatically */
  2614. list_del_init(&new_mnt->mnt_expire);
  2615. unlock_mount_hash();
  2616. chroot_fs_refs(&root, &new);
  2617. put_mountpoint(root_mp);
  2618. error = 0;
  2619. out4:
  2620. unlock_mount(old_mp);
  2621. if (!error) {
  2622. path_put(&root_parent);
  2623. path_put(&parent_path);
  2624. }
  2625. out3:
  2626. path_put(&root);
  2627. out2:
  2628. path_put(&old);
  2629. out1:
  2630. path_put(&new);
  2631. out0:
  2632. return error;
  2633. }
  2634. static void __init init_mount_tree(void)
  2635. {
  2636. struct vfsmount *mnt;
  2637. struct mnt_namespace *ns;
  2638. struct path root;
  2639. struct file_system_type *type;
  2640. type = get_fs_type("rootfs");
  2641. if (!type)
  2642. panic("Can't find rootfs type");
  2643. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2644. put_filesystem(type);
  2645. if (IS_ERR(mnt))
  2646. panic("Can't create rootfs");
  2647. ns = create_mnt_ns(mnt);
  2648. if (IS_ERR(ns))
  2649. panic("Can't allocate initial namespace");
  2650. init_task.nsproxy->mnt_ns = ns;
  2651. get_mnt_ns(ns);
  2652. root.mnt = mnt;
  2653. root.dentry = mnt->mnt_root;
  2654. mnt->mnt_flags |= MNT_LOCKED;
  2655. set_fs_pwd(current->fs, &root);
  2656. set_fs_root(current->fs, &root);
  2657. }
  2658. void __init mnt_init(void)
  2659. {
  2660. unsigned u;
  2661. int err;
  2662. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2663. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2664. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2665. sizeof(struct hlist_head),
  2666. mhash_entries, 19,
  2667. 0,
  2668. &m_hash_shift, &m_hash_mask, 0, 0);
  2669. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2670. sizeof(struct hlist_head),
  2671. mphash_entries, 19,
  2672. 0,
  2673. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2674. if (!mount_hashtable || !mountpoint_hashtable)
  2675. panic("Failed to allocate mount hash table\n");
  2676. for (u = 0; u <= m_hash_mask; u++)
  2677. INIT_HLIST_HEAD(&mount_hashtable[u]);
  2678. for (u = 0; u <= mp_hash_mask; u++)
  2679. INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
  2680. kernfs_init();
  2681. err = sysfs_init();
  2682. if (err)
  2683. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2684. __func__, err);
  2685. fs_kobj = kobject_create_and_add("fs", NULL);
  2686. if (!fs_kobj)
  2687. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2688. init_rootfs();
  2689. init_mount_tree();
  2690. }
  2691. void put_mnt_ns(struct mnt_namespace *ns)
  2692. {
  2693. if (!atomic_dec_and_test(&ns->count))
  2694. return;
  2695. drop_collected_mounts(&ns->root->mnt);
  2696. free_mnt_ns(ns);
  2697. }
  2698. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2699. {
  2700. struct vfsmount *mnt;
  2701. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2702. if (!IS_ERR(mnt)) {
  2703. /*
  2704. * it is a longterm mount, don't release mnt until
  2705. * we unmount before file sys is unregistered
  2706. */
  2707. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2708. }
  2709. return mnt;
  2710. }
  2711. EXPORT_SYMBOL_GPL(kern_mount_data);
  2712. void kern_unmount(struct vfsmount *mnt)
  2713. {
  2714. /* release long term mount so mount point can be released */
  2715. if (!IS_ERR_OR_NULL(mnt)) {
  2716. real_mount(mnt)->mnt_ns = NULL;
  2717. synchronize_rcu(); /* yecchhh... */
  2718. mntput(mnt);
  2719. }
  2720. }
  2721. EXPORT_SYMBOL(kern_unmount);
  2722. bool our_mnt(struct vfsmount *mnt)
  2723. {
  2724. return check_mnt(real_mount(mnt));
  2725. }
  2726. bool current_chrooted(void)
  2727. {
  2728. /* Does the current process have a non-standard root */
  2729. struct path ns_root;
  2730. struct path fs_root;
  2731. bool chrooted;
  2732. /* Find the namespace root */
  2733. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2734. ns_root.dentry = ns_root.mnt->mnt_root;
  2735. path_get(&ns_root);
  2736. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2737. ;
  2738. get_fs_root(current->fs, &fs_root);
  2739. chrooted = !path_equal(&fs_root, &ns_root);
  2740. path_put(&fs_root);
  2741. path_put(&ns_root);
  2742. return chrooted;
  2743. }
  2744. bool fs_fully_visible(struct file_system_type *type)
  2745. {
  2746. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2747. struct mount *mnt;
  2748. bool visible = false;
  2749. if (unlikely(!ns))
  2750. return false;
  2751. down_read(&namespace_sem);
  2752. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2753. struct mount *child;
  2754. if (mnt->mnt.mnt_sb->s_type != type)
  2755. continue;
  2756. /* This mount is not fully visible if there are any child mounts
  2757. * that cover anything except for empty directories.
  2758. */
  2759. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2760. struct inode *inode = child->mnt_mountpoint->d_inode;
  2761. if (!S_ISDIR(inode->i_mode))
  2762. goto next;
  2763. if (inode->i_nlink > 2)
  2764. goto next;
  2765. }
  2766. visible = true;
  2767. goto found;
  2768. next: ;
  2769. }
  2770. found:
  2771. up_read(&namespace_sem);
  2772. return visible;
  2773. }
  2774. static struct ns_common *mntns_get(struct task_struct *task)
  2775. {
  2776. struct ns_common *ns = NULL;
  2777. struct nsproxy *nsproxy;
  2778. task_lock(task);
  2779. nsproxy = task->nsproxy;
  2780. if (nsproxy) {
  2781. ns = &nsproxy->mnt_ns->ns;
  2782. get_mnt_ns(to_mnt_ns(ns));
  2783. }
  2784. task_unlock(task);
  2785. return ns;
  2786. }
  2787. static void mntns_put(struct ns_common *ns)
  2788. {
  2789. put_mnt_ns(to_mnt_ns(ns));
  2790. }
  2791. static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
  2792. {
  2793. struct fs_struct *fs = current->fs;
  2794. struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
  2795. struct path root;
  2796. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2797. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  2798. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  2799. return -EPERM;
  2800. if (fs->users != 1)
  2801. return -EINVAL;
  2802. get_mnt_ns(mnt_ns);
  2803. put_mnt_ns(nsproxy->mnt_ns);
  2804. nsproxy->mnt_ns = mnt_ns;
  2805. /* Find the root */
  2806. root.mnt = &mnt_ns->root->mnt;
  2807. root.dentry = mnt_ns->root->mnt.mnt_root;
  2808. path_get(&root);
  2809. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2810. ;
  2811. /* Update the pwd and root */
  2812. set_fs_pwd(fs, &root);
  2813. set_fs_root(fs, &root);
  2814. path_put(&root);
  2815. return 0;
  2816. }
  2817. const struct proc_ns_operations mntns_operations = {
  2818. .name = "mnt",
  2819. .type = CLONE_NEWNS,
  2820. .get = mntns_get,
  2821. .put = mntns_put,
  2822. .install = mntns_install,
  2823. };