direct-io.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333
  1. /*
  2. * fs/direct-io.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. *
  6. * O_DIRECT
  7. *
  8. * 04Jul2002 Andrew Morton
  9. * Initial version
  10. * 11Sep2002 janetinc@us.ibm.com
  11. * added readv/writev support.
  12. * 29Oct2002 Andrew Morton
  13. * rewrote bio_add_page() support.
  14. * 30Oct2002 pbadari@us.ibm.com
  15. * added support for non-aligned IO.
  16. * 06Nov2002 pbadari@us.ibm.com
  17. * added asynchronous IO support.
  18. * 21Jul2003 nathans@sgi.com
  19. * added IO completion notifier.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/types.h>
  24. #include <linux/fs.h>
  25. #include <linux/mm.h>
  26. #include <linux/slab.h>
  27. #include <linux/highmem.h>
  28. #include <linux/pagemap.h>
  29. #include <linux/task_io_accounting_ops.h>
  30. #include <linux/bio.h>
  31. #include <linux/wait.h>
  32. #include <linux/err.h>
  33. #include <linux/blkdev.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/rwsem.h>
  36. #include <linux/uio.h>
  37. #include <linux/atomic.h>
  38. #include <linux/prefetch.h>
  39. #include <linux/aio.h>
  40. /*
  41. * How many user pages to map in one call to get_user_pages(). This determines
  42. * the size of a structure in the slab cache
  43. */
  44. #define DIO_PAGES 64
  45. /*
  46. * This code generally works in units of "dio_blocks". A dio_block is
  47. * somewhere between the hard sector size and the filesystem block size. it
  48. * is determined on a per-invocation basis. When talking to the filesystem
  49. * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
  50. * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
  51. * to bio_block quantities by shifting left by blkfactor.
  52. *
  53. * If blkfactor is zero then the user's request was aligned to the filesystem's
  54. * blocksize.
  55. */
  56. /* dio_state only used in the submission path */
  57. struct dio_submit {
  58. struct bio *bio; /* bio under assembly */
  59. unsigned blkbits; /* doesn't change */
  60. unsigned blkfactor; /* When we're using an alignment which
  61. is finer than the filesystem's soft
  62. blocksize, this specifies how much
  63. finer. blkfactor=2 means 1/4-block
  64. alignment. Does not change */
  65. unsigned start_zero_done; /* flag: sub-blocksize zeroing has
  66. been performed at the start of a
  67. write */
  68. int pages_in_io; /* approximate total IO pages */
  69. sector_t block_in_file; /* Current offset into the underlying
  70. file in dio_block units. */
  71. unsigned blocks_available; /* At block_in_file. changes */
  72. int reap_counter; /* rate limit reaping */
  73. sector_t final_block_in_request;/* doesn't change */
  74. int boundary; /* prev block is at a boundary */
  75. get_block_t *get_block; /* block mapping function */
  76. dio_submit_t *submit_io; /* IO submition function */
  77. loff_t logical_offset_in_bio; /* current first logical block in bio */
  78. sector_t final_block_in_bio; /* current final block in bio + 1 */
  79. sector_t next_block_for_io; /* next block to be put under IO,
  80. in dio_blocks units */
  81. /*
  82. * Deferred addition of a page to the dio. These variables are
  83. * private to dio_send_cur_page(), submit_page_section() and
  84. * dio_bio_add_page().
  85. */
  86. struct page *cur_page; /* The page */
  87. unsigned cur_page_offset; /* Offset into it, in bytes */
  88. unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
  89. sector_t cur_page_block; /* Where it starts */
  90. loff_t cur_page_fs_offset; /* Offset in file */
  91. struct iov_iter *iter;
  92. /*
  93. * Page queue. These variables belong to dio_refill_pages() and
  94. * dio_get_page().
  95. */
  96. unsigned head; /* next page to process */
  97. unsigned tail; /* last valid page + 1 */
  98. size_t from, to;
  99. };
  100. /* dio_state communicated between submission path and end_io */
  101. struct dio {
  102. int flags; /* doesn't change */
  103. int rw;
  104. struct inode *inode;
  105. loff_t i_size; /* i_size when submitted */
  106. dio_iodone_t *end_io; /* IO completion function */
  107. void *private; /* copy from map_bh.b_private */
  108. /* BIO completion state */
  109. spinlock_t bio_lock; /* protects BIO fields below */
  110. int page_errors; /* errno from get_user_pages() */
  111. int is_async; /* is IO async ? */
  112. bool defer_completion; /* defer AIO completion to workqueue? */
  113. int io_error; /* IO error in completion path */
  114. unsigned long refcount; /* direct_io_worker() and bios */
  115. struct bio *bio_list; /* singly linked via bi_private */
  116. struct task_struct *waiter; /* waiting task (NULL if none) */
  117. /* AIO related stuff */
  118. struct kiocb *iocb; /* kiocb */
  119. ssize_t result; /* IO result */
  120. /*
  121. * pages[] (and any fields placed after it) are not zeroed out at
  122. * allocation time. Don't add new fields after pages[] unless you
  123. * wish that they not be zeroed.
  124. */
  125. union {
  126. struct page *pages[DIO_PAGES]; /* page buffer */
  127. struct work_struct complete_work;/* deferred AIO completion */
  128. };
  129. } ____cacheline_aligned_in_smp;
  130. static struct kmem_cache *dio_cache __read_mostly;
  131. /*
  132. * How many pages are in the queue?
  133. */
  134. static inline unsigned dio_pages_present(struct dio_submit *sdio)
  135. {
  136. return sdio->tail - sdio->head;
  137. }
  138. /*
  139. * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
  140. */
  141. static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
  142. {
  143. ssize_t ret;
  144. ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
  145. &sdio->from);
  146. if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
  147. struct page *page = ZERO_PAGE(0);
  148. /*
  149. * A memory fault, but the filesystem has some outstanding
  150. * mapped blocks. We need to use those blocks up to avoid
  151. * leaking stale data in the file.
  152. */
  153. if (dio->page_errors == 0)
  154. dio->page_errors = ret;
  155. page_cache_get(page);
  156. dio->pages[0] = page;
  157. sdio->head = 0;
  158. sdio->tail = 1;
  159. sdio->from = 0;
  160. sdio->to = PAGE_SIZE;
  161. return 0;
  162. }
  163. if (ret >= 0) {
  164. iov_iter_advance(sdio->iter, ret);
  165. ret += sdio->from;
  166. sdio->head = 0;
  167. sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
  168. sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
  169. return 0;
  170. }
  171. return ret;
  172. }
  173. /*
  174. * Get another userspace page. Returns an ERR_PTR on error. Pages are
  175. * buffered inside the dio so that we can call get_user_pages() against a
  176. * decent number of pages, less frequently. To provide nicer use of the
  177. * L1 cache.
  178. */
  179. static inline struct page *dio_get_page(struct dio *dio,
  180. struct dio_submit *sdio)
  181. {
  182. if (dio_pages_present(sdio) == 0) {
  183. int ret;
  184. ret = dio_refill_pages(dio, sdio);
  185. if (ret)
  186. return ERR_PTR(ret);
  187. BUG_ON(dio_pages_present(sdio) == 0);
  188. }
  189. return dio->pages[sdio->head];
  190. }
  191. /**
  192. * dio_complete() - called when all DIO BIO I/O has been completed
  193. * @offset: the byte offset in the file of the completed operation
  194. *
  195. * This drops i_dio_count, lets interested parties know that a DIO operation
  196. * has completed, and calculates the resulting return code for the operation.
  197. *
  198. * It lets the filesystem know if it registered an interest earlier via
  199. * get_block. Pass the private field of the map buffer_head so that
  200. * filesystems can use it to hold additional state between get_block calls and
  201. * dio_complete.
  202. */
  203. static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
  204. bool is_async)
  205. {
  206. ssize_t transferred = 0;
  207. /*
  208. * AIO submission can race with bio completion to get here while
  209. * expecting to have the last io completed by bio completion.
  210. * In that case -EIOCBQUEUED is in fact not an error we want
  211. * to preserve through this call.
  212. */
  213. if (ret == -EIOCBQUEUED)
  214. ret = 0;
  215. if (dio->result) {
  216. transferred = dio->result;
  217. /* Check for short read case */
  218. if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
  219. transferred = dio->i_size - offset;
  220. }
  221. if (ret == 0)
  222. ret = dio->page_errors;
  223. if (ret == 0)
  224. ret = dio->io_error;
  225. if (ret == 0)
  226. ret = transferred;
  227. if (dio->end_io && dio->result)
  228. dio->end_io(dio->iocb, offset, transferred, dio->private);
  229. inode_dio_done(dio->inode);
  230. if (is_async) {
  231. if (dio->rw & WRITE) {
  232. int err;
  233. err = generic_write_sync(dio->iocb->ki_filp, offset,
  234. transferred);
  235. if (err < 0 && ret > 0)
  236. ret = err;
  237. }
  238. aio_complete(dio->iocb, ret, 0);
  239. }
  240. kmem_cache_free(dio_cache, dio);
  241. return ret;
  242. }
  243. static void dio_aio_complete_work(struct work_struct *work)
  244. {
  245. struct dio *dio = container_of(work, struct dio, complete_work);
  246. dio_complete(dio, dio->iocb->ki_pos, 0, true);
  247. }
  248. static int dio_bio_complete(struct dio *dio, struct bio *bio);
  249. /*
  250. * Asynchronous IO callback.
  251. */
  252. static void dio_bio_end_aio(struct bio *bio, int error)
  253. {
  254. struct dio *dio = bio->bi_private;
  255. unsigned long remaining;
  256. unsigned long flags;
  257. /* cleanup the bio */
  258. dio_bio_complete(dio, bio);
  259. spin_lock_irqsave(&dio->bio_lock, flags);
  260. remaining = --dio->refcount;
  261. if (remaining == 1 && dio->waiter)
  262. wake_up_process(dio->waiter);
  263. spin_unlock_irqrestore(&dio->bio_lock, flags);
  264. if (remaining == 0) {
  265. if (dio->result && dio->defer_completion) {
  266. INIT_WORK(&dio->complete_work, dio_aio_complete_work);
  267. queue_work(dio->inode->i_sb->s_dio_done_wq,
  268. &dio->complete_work);
  269. } else {
  270. dio_complete(dio, dio->iocb->ki_pos, 0, true);
  271. }
  272. }
  273. }
  274. /*
  275. * The BIO completion handler simply queues the BIO up for the process-context
  276. * handler.
  277. *
  278. * During I/O bi_private points at the dio. After I/O, bi_private is used to
  279. * implement a singly-linked list of completed BIOs, at dio->bio_list.
  280. */
  281. static void dio_bio_end_io(struct bio *bio, int error)
  282. {
  283. struct dio *dio = bio->bi_private;
  284. unsigned long flags;
  285. spin_lock_irqsave(&dio->bio_lock, flags);
  286. bio->bi_private = dio->bio_list;
  287. dio->bio_list = bio;
  288. if (--dio->refcount == 1 && dio->waiter)
  289. wake_up_process(dio->waiter);
  290. spin_unlock_irqrestore(&dio->bio_lock, flags);
  291. }
  292. /**
  293. * dio_end_io - handle the end io action for the given bio
  294. * @bio: The direct io bio thats being completed
  295. * @error: Error if there was one
  296. *
  297. * This is meant to be called by any filesystem that uses their own dio_submit_t
  298. * so that the DIO specific endio actions are dealt with after the filesystem
  299. * has done it's completion work.
  300. */
  301. void dio_end_io(struct bio *bio, int error)
  302. {
  303. struct dio *dio = bio->bi_private;
  304. if (dio->is_async)
  305. dio_bio_end_aio(bio, error);
  306. else
  307. dio_bio_end_io(bio, error);
  308. }
  309. EXPORT_SYMBOL_GPL(dio_end_io);
  310. static inline void
  311. dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
  312. struct block_device *bdev,
  313. sector_t first_sector, int nr_vecs)
  314. {
  315. struct bio *bio;
  316. /*
  317. * bio_alloc() is guaranteed to return a bio when called with
  318. * __GFP_WAIT and we request a valid number of vectors.
  319. */
  320. bio = bio_alloc(GFP_KERNEL, nr_vecs);
  321. bio->bi_bdev = bdev;
  322. bio->bi_iter.bi_sector = first_sector;
  323. if (dio->is_async)
  324. bio->bi_end_io = dio_bio_end_aio;
  325. else
  326. bio->bi_end_io = dio_bio_end_io;
  327. sdio->bio = bio;
  328. sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
  329. }
  330. /*
  331. * In the AIO read case we speculatively dirty the pages before starting IO.
  332. * During IO completion, any of these pages which happen to have been written
  333. * back will be redirtied by bio_check_pages_dirty().
  334. *
  335. * bios hold a dio reference between submit_bio and ->end_io.
  336. */
  337. static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
  338. {
  339. struct bio *bio = sdio->bio;
  340. unsigned long flags;
  341. bio->bi_private = dio;
  342. spin_lock_irqsave(&dio->bio_lock, flags);
  343. dio->refcount++;
  344. spin_unlock_irqrestore(&dio->bio_lock, flags);
  345. if (dio->is_async && dio->rw == READ)
  346. bio_set_pages_dirty(bio);
  347. if (sdio->submit_io)
  348. sdio->submit_io(dio->rw, bio, dio->inode,
  349. sdio->logical_offset_in_bio);
  350. else
  351. submit_bio(dio->rw, bio);
  352. sdio->bio = NULL;
  353. sdio->boundary = 0;
  354. sdio->logical_offset_in_bio = 0;
  355. }
  356. /*
  357. * Release any resources in case of a failure
  358. */
  359. static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
  360. {
  361. while (sdio->head < sdio->tail)
  362. page_cache_release(dio->pages[sdio->head++]);
  363. }
  364. /*
  365. * Wait for the next BIO to complete. Remove it and return it. NULL is
  366. * returned once all BIOs have been completed. This must only be called once
  367. * all bios have been issued so that dio->refcount can only decrease. This
  368. * requires that that the caller hold a reference on the dio.
  369. */
  370. static struct bio *dio_await_one(struct dio *dio)
  371. {
  372. unsigned long flags;
  373. struct bio *bio = NULL;
  374. spin_lock_irqsave(&dio->bio_lock, flags);
  375. /*
  376. * Wait as long as the list is empty and there are bios in flight. bio
  377. * completion drops the count, maybe adds to the list, and wakes while
  378. * holding the bio_lock so we don't need set_current_state()'s barrier
  379. * and can call it after testing our condition.
  380. */
  381. while (dio->refcount > 1 && dio->bio_list == NULL) {
  382. __set_current_state(TASK_UNINTERRUPTIBLE);
  383. dio->waiter = current;
  384. spin_unlock_irqrestore(&dio->bio_lock, flags);
  385. io_schedule();
  386. /* wake up sets us TASK_RUNNING */
  387. spin_lock_irqsave(&dio->bio_lock, flags);
  388. dio->waiter = NULL;
  389. }
  390. if (dio->bio_list) {
  391. bio = dio->bio_list;
  392. dio->bio_list = bio->bi_private;
  393. }
  394. spin_unlock_irqrestore(&dio->bio_lock, flags);
  395. return bio;
  396. }
  397. /*
  398. * Process one completed BIO. No locks are held.
  399. */
  400. static int dio_bio_complete(struct dio *dio, struct bio *bio)
  401. {
  402. const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  403. struct bio_vec *bvec;
  404. unsigned i;
  405. if (!uptodate)
  406. dio->io_error = -EIO;
  407. if (dio->is_async && dio->rw == READ) {
  408. bio_check_pages_dirty(bio); /* transfers ownership */
  409. } else {
  410. bio_for_each_segment_all(bvec, bio, i) {
  411. struct page *page = bvec->bv_page;
  412. if (dio->rw == READ && !PageCompound(page))
  413. set_page_dirty_lock(page);
  414. page_cache_release(page);
  415. }
  416. bio_put(bio);
  417. }
  418. return uptodate ? 0 : -EIO;
  419. }
  420. /*
  421. * Wait on and process all in-flight BIOs. This must only be called once
  422. * all bios have been issued so that the refcount can only decrease.
  423. * This just waits for all bios to make it through dio_bio_complete. IO
  424. * errors are propagated through dio->io_error and should be propagated via
  425. * dio_complete().
  426. */
  427. static void dio_await_completion(struct dio *dio)
  428. {
  429. struct bio *bio;
  430. do {
  431. bio = dio_await_one(dio);
  432. if (bio)
  433. dio_bio_complete(dio, bio);
  434. } while (bio);
  435. }
  436. /*
  437. * A really large O_DIRECT read or write can generate a lot of BIOs. So
  438. * to keep the memory consumption sane we periodically reap any completed BIOs
  439. * during the BIO generation phase.
  440. *
  441. * This also helps to limit the peak amount of pinned userspace memory.
  442. */
  443. static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
  444. {
  445. int ret = 0;
  446. if (sdio->reap_counter++ >= 64) {
  447. while (dio->bio_list) {
  448. unsigned long flags;
  449. struct bio *bio;
  450. int ret2;
  451. spin_lock_irqsave(&dio->bio_lock, flags);
  452. bio = dio->bio_list;
  453. dio->bio_list = bio->bi_private;
  454. spin_unlock_irqrestore(&dio->bio_lock, flags);
  455. ret2 = dio_bio_complete(dio, bio);
  456. if (ret == 0)
  457. ret = ret2;
  458. }
  459. sdio->reap_counter = 0;
  460. }
  461. return ret;
  462. }
  463. /*
  464. * Create workqueue for deferred direct IO completions. We allocate the
  465. * workqueue when it's first needed. This avoids creating workqueue for
  466. * filesystems that don't need it and also allows us to create the workqueue
  467. * late enough so the we can include s_id in the name of the workqueue.
  468. */
  469. static int sb_init_dio_done_wq(struct super_block *sb)
  470. {
  471. struct workqueue_struct *old;
  472. struct workqueue_struct *wq = alloc_workqueue("dio/%s",
  473. WQ_MEM_RECLAIM, 0,
  474. sb->s_id);
  475. if (!wq)
  476. return -ENOMEM;
  477. /*
  478. * This has to be atomic as more DIOs can race to create the workqueue
  479. */
  480. old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
  481. /* Someone created workqueue before us? Free ours... */
  482. if (old)
  483. destroy_workqueue(wq);
  484. return 0;
  485. }
  486. static int dio_set_defer_completion(struct dio *dio)
  487. {
  488. struct super_block *sb = dio->inode->i_sb;
  489. if (dio->defer_completion)
  490. return 0;
  491. dio->defer_completion = true;
  492. if (!sb->s_dio_done_wq)
  493. return sb_init_dio_done_wq(sb);
  494. return 0;
  495. }
  496. /*
  497. * Call into the fs to map some more disk blocks. We record the current number
  498. * of available blocks at sdio->blocks_available. These are in units of the
  499. * fs blocksize, (1 << inode->i_blkbits).
  500. *
  501. * The fs is allowed to map lots of blocks at once. If it wants to do that,
  502. * it uses the passed inode-relative block number as the file offset, as usual.
  503. *
  504. * get_block() is passed the number of i_blkbits-sized blocks which direct_io
  505. * has remaining to do. The fs should not map more than this number of blocks.
  506. *
  507. * If the fs has mapped a lot of blocks, it should populate bh->b_size to
  508. * indicate how much contiguous disk space has been made available at
  509. * bh->b_blocknr.
  510. *
  511. * If *any* of the mapped blocks are new, then the fs must set buffer_new().
  512. * This isn't very efficient...
  513. *
  514. * In the case of filesystem holes: the fs may return an arbitrarily-large
  515. * hole by returning an appropriate value in b_size and by clearing
  516. * buffer_mapped(). However the direct-io code will only process holes one
  517. * block at a time - it will repeatedly call get_block() as it walks the hole.
  518. */
  519. static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
  520. struct buffer_head *map_bh)
  521. {
  522. int ret;
  523. sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
  524. sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
  525. unsigned long fs_count; /* Number of filesystem-sized blocks */
  526. int create;
  527. unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
  528. /*
  529. * If there was a memory error and we've overwritten all the
  530. * mapped blocks then we can now return that memory error
  531. */
  532. ret = dio->page_errors;
  533. if (ret == 0) {
  534. BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
  535. fs_startblk = sdio->block_in_file >> sdio->blkfactor;
  536. fs_endblk = (sdio->final_block_in_request - 1) >>
  537. sdio->blkfactor;
  538. fs_count = fs_endblk - fs_startblk + 1;
  539. map_bh->b_state = 0;
  540. map_bh->b_size = fs_count << i_blkbits;
  541. /*
  542. * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
  543. * forbid block creations: only overwrites are permitted.
  544. * We will return early to the caller once we see an
  545. * unmapped buffer head returned, and the caller will fall
  546. * back to buffered I/O.
  547. *
  548. * Otherwise the decision is left to the get_blocks method,
  549. * which may decide to handle it or also return an unmapped
  550. * buffer head.
  551. */
  552. create = dio->rw & WRITE;
  553. if (dio->flags & DIO_SKIP_HOLES) {
  554. if (sdio->block_in_file < (i_size_read(dio->inode) >>
  555. sdio->blkbits))
  556. create = 0;
  557. }
  558. ret = (*sdio->get_block)(dio->inode, fs_startblk,
  559. map_bh, create);
  560. /* Store for completion */
  561. dio->private = map_bh->b_private;
  562. if (ret == 0 && buffer_defer_completion(map_bh))
  563. ret = dio_set_defer_completion(dio);
  564. }
  565. return ret;
  566. }
  567. /*
  568. * There is no bio. Make one now.
  569. */
  570. static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
  571. sector_t start_sector, struct buffer_head *map_bh)
  572. {
  573. sector_t sector;
  574. int ret, nr_pages;
  575. ret = dio_bio_reap(dio, sdio);
  576. if (ret)
  577. goto out;
  578. sector = start_sector << (sdio->blkbits - 9);
  579. nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
  580. BUG_ON(nr_pages <= 0);
  581. dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
  582. sdio->boundary = 0;
  583. out:
  584. return ret;
  585. }
  586. /*
  587. * Attempt to put the current chunk of 'cur_page' into the current BIO. If
  588. * that was successful then update final_block_in_bio and take a ref against
  589. * the just-added page.
  590. *
  591. * Return zero on success. Non-zero means the caller needs to start a new BIO.
  592. */
  593. static inline int dio_bio_add_page(struct dio_submit *sdio)
  594. {
  595. int ret;
  596. ret = bio_add_page(sdio->bio, sdio->cur_page,
  597. sdio->cur_page_len, sdio->cur_page_offset);
  598. if (ret == sdio->cur_page_len) {
  599. /*
  600. * Decrement count only, if we are done with this page
  601. */
  602. if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
  603. sdio->pages_in_io--;
  604. page_cache_get(sdio->cur_page);
  605. sdio->final_block_in_bio = sdio->cur_page_block +
  606. (sdio->cur_page_len >> sdio->blkbits);
  607. ret = 0;
  608. } else {
  609. ret = 1;
  610. }
  611. return ret;
  612. }
  613. /*
  614. * Put cur_page under IO. The section of cur_page which is described by
  615. * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
  616. * starts on-disk at cur_page_block.
  617. *
  618. * We take a ref against the page here (on behalf of its presence in the bio).
  619. *
  620. * The caller of this function is responsible for removing cur_page from the
  621. * dio, and for dropping the refcount which came from that presence.
  622. */
  623. static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
  624. struct buffer_head *map_bh)
  625. {
  626. int ret = 0;
  627. if (sdio->bio) {
  628. loff_t cur_offset = sdio->cur_page_fs_offset;
  629. loff_t bio_next_offset = sdio->logical_offset_in_bio +
  630. sdio->bio->bi_iter.bi_size;
  631. /*
  632. * See whether this new request is contiguous with the old.
  633. *
  634. * Btrfs cannot handle having logically non-contiguous requests
  635. * submitted. For example if you have
  636. *
  637. * Logical: [0-4095][HOLE][8192-12287]
  638. * Physical: [0-4095] [4096-8191]
  639. *
  640. * We cannot submit those pages together as one BIO. So if our
  641. * current logical offset in the file does not equal what would
  642. * be the next logical offset in the bio, submit the bio we
  643. * have.
  644. */
  645. if (sdio->final_block_in_bio != sdio->cur_page_block ||
  646. cur_offset != bio_next_offset)
  647. dio_bio_submit(dio, sdio);
  648. }
  649. if (sdio->bio == NULL) {
  650. ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
  651. if (ret)
  652. goto out;
  653. }
  654. if (dio_bio_add_page(sdio) != 0) {
  655. dio_bio_submit(dio, sdio);
  656. ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
  657. if (ret == 0) {
  658. ret = dio_bio_add_page(sdio);
  659. BUG_ON(ret != 0);
  660. }
  661. }
  662. out:
  663. return ret;
  664. }
  665. /*
  666. * An autonomous function to put a chunk of a page under deferred IO.
  667. *
  668. * The caller doesn't actually know (or care) whether this piece of page is in
  669. * a BIO, or is under IO or whatever. We just take care of all possible
  670. * situations here. The separation between the logic of do_direct_IO() and
  671. * that of submit_page_section() is important for clarity. Please don't break.
  672. *
  673. * The chunk of page starts on-disk at blocknr.
  674. *
  675. * We perform deferred IO, by recording the last-submitted page inside our
  676. * private part of the dio structure. If possible, we just expand the IO
  677. * across that page here.
  678. *
  679. * If that doesn't work out then we put the old page into the bio and add this
  680. * page to the dio instead.
  681. */
  682. static inline int
  683. submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
  684. unsigned offset, unsigned len, sector_t blocknr,
  685. struct buffer_head *map_bh)
  686. {
  687. int ret = 0;
  688. if (dio->rw & WRITE) {
  689. /*
  690. * Read accounting is performed in submit_bio()
  691. */
  692. task_io_account_write(len);
  693. }
  694. /*
  695. * Can we just grow the current page's presence in the dio?
  696. */
  697. if (sdio->cur_page == page &&
  698. sdio->cur_page_offset + sdio->cur_page_len == offset &&
  699. sdio->cur_page_block +
  700. (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
  701. sdio->cur_page_len += len;
  702. goto out;
  703. }
  704. /*
  705. * If there's a deferred page already there then send it.
  706. */
  707. if (sdio->cur_page) {
  708. ret = dio_send_cur_page(dio, sdio, map_bh);
  709. page_cache_release(sdio->cur_page);
  710. sdio->cur_page = NULL;
  711. if (ret)
  712. return ret;
  713. }
  714. page_cache_get(page); /* It is in dio */
  715. sdio->cur_page = page;
  716. sdio->cur_page_offset = offset;
  717. sdio->cur_page_len = len;
  718. sdio->cur_page_block = blocknr;
  719. sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
  720. out:
  721. /*
  722. * If sdio->boundary then we want to schedule the IO now to
  723. * avoid metadata seeks.
  724. */
  725. if (sdio->boundary) {
  726. ret = dio_send_cur_page(dio, sdio, map_bh);
  727. dio_bio_submit(dio, sdio);
  728. page_cache_release(sdio->cur_page);
  729. sdio->cur_page = NULL;
  730. }
  731. return ret;
  732. }
  733. /*
  734. * Clean any dirty buffers in the blockdev mapping which alias newly-created
  735. * file blocks. Only called for S_ISREG files - blockdevs do not set
  736. * buffer_new
  737. */
  738. static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
  739. {
  740. unsigned i;
  741. unsigned nblocks;
  742. nblocks = map_bh->b_size >> dio->inode->i_blkbits;
  743. for (i = 0; i < nblocks; i++) {
  744. unmap_underlying_metadata(map_bh->b_bdev,
  745. map_bh->b_blocknr + i);
  746. }
  747. }
  748. /*
  749. * If we are not writing the entire block and get_block() allocated
  750. * the block for us, we need to fill-in the unused portion of the
  751. * block with zeros. This happens only if user-buffer, fileoffset or
  752. * io length is not filesystem block-size multiple.
  753. *
  754. * `end' is zero if we're doing the start of the IO, 1 at the end of the
  755. * IO.
  756. */
  757. static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
  758. int end, struct buffer_head *map_bh)
  759. {
  760. unsigned dio_blocks_per_fs_block;
  761. unsigned this_chunk_blocks; /* In dio_blocks */
  762. unsigned this_chunk_bytes;
  763. struct page *page;
  764. sdio->start_zero_done = 1;
  765. if (!sdio->blkfactor || !buffer_new(map_bh))
  766. return;
  767. dio_blocks_per_fs_block = 1 << sdio->blkfactor;
  768. this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
  769. if (!this_chunk_blocks)
  770. return;
  771. /*
  772. * We need to zero out part of an fs block. It is either at the
  773. * beginning or the end of the fs block.
  774. */
  775. if (end)
  776. this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
  777. this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
  778. page = ZERO_PAGE(0);
  779. if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
  780. sdio->next_block_for_io, map_bh))
  781. return;
  782. sdio->next_block_for_io += this_chunk_blocks;
  783. }
  784. /*
  785. * Walk the user pages, and the file, mapping blocks to disk and generating
  786. * a sequence of (page,offset,len,block) mappings. These mappings are injected
  787. * into submit_page_section(), which takes care of the next stage of submission
  788. *
  789. * Direct IO against a blockdev is different from a file. Because we can
  790. * happily perform page-sized but 512-byte aligned IOs. It is important that
  791. * blockdev IO be able to have fine alignment and large sizes.
  792. *
  793. * So what we do is to permit the ->get_block function to populate bh.b_size
  794. * with the size of IO which is permitted at this offset and this i_blkbits.
  795. *
  796. * For best results, the blockdev should be set up with 512-byte i_blkbits and
  797. * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
  798. * fine alignment but still allows this function to work in PAGE_SIZE units.
  799. */
  800. static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
  801. struct buffer_head *map_bh)
  802. {
  803. const unsigned blkbits = sdio->blkbits;
  804. int ret = 0;
  805. while (sdio->block_in_file < sdio->final_block_in_request) {
  806. struct page *page;
  807. size_t from, to;
  808. page = dio_get_page(dio, sdio);
  809. if (IS_ERR(page)) {
  810. ret = PTR_ERR(page);
  811. goto out;
  812. }
  813. from = sdio->head ? 0 : sdio->from;
  814. to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
  815. sdio->head++;
  816. while (from < to) {
  817. unsigned this_chunk_bytes; /* # of bytes mapped */
  818. unsigned this_chunk_blocks; /* # of blocks */
  819. unsigned u;
  820. if (sdio->blocks_available == 0) {
  821. /*
  822. * Need to go and map some more disk
  823. */
  824. unsigned long blkmask;
  825. unsigned long dio_remainder;
  826. ret = get_more_blocks(dio, sdio, map_bh);
  827. if (ret) {
  828. page_cache_release(page);
  829. goto out;
  830. }
  831. if (!buffer_mapped(map_bh))
  832. goto do_holes;
  833. sdio->blocks_available =
  834. map_bh->b_size >> sdio->blkbits;
  835. sdio->next_block_for_io =
  836. map_bh->b_blocknr << sdio->blkfactor;
  837. if (buffer_new(map_bh))
  838. clean_blockdev_aliases(dio, map_bh);
  839. if (!sdio->blkfactor)
  840. goto do_holes;
  841. blkmask = (1 << sdio->blkfactor) - 1;
  842. dio_remainder = (sdio->block_in_file & blkmask);
  843. /*
  844. * If we are at the start of IO and that IO
  845. * starts partway into a fs-block,
  846. * dio_remainder will be non-zero. If the IO
  847. * is a read then we can simply advance the IO
  848. * cursor to the first block which is to be
  849. * read. But if the IO is a write and the
  850. * block was newly allocated we cannot do that;
  851. * the start of the fs block must be zeroed out
  852. * on-disk
  853. */
  854. if (!buffer_new(map_bh))
  855. sdio->next_block_for_io += dio_remainder;
  856. sdio->blocks_available -= dio_remainder;
  857. }
  858. do_holes:
  859. /* Handle holes */
  860. if (!buffer_mapped(map_bh)) {
  861. loff_t i_size_aligned;
  862. /* AKPM: eargh, -ENOTBLK is a hack */
  863. if (dio->rw & WRITE) {
  864. page_cache_release(page);
  865. return -ENOTBLK;
  866. }
  867. /*
  868. * Be sure to account for a partial block as the
  869. * last block in the file
  870. */
  871. i_size_aligned = ALIGN(i_size_read(dio->inode),
  872. 1 << blkbits);
  873. if (sdio->block_in_file >=
  874. i_size_aligned >> blkbits) {
  875. /* We hit eof */
  876. page_cache_release(page);
  877. goto out;
  878. }
  879. zero_user(page, from, 1 << blkbits);
  880. sdio->block_in_file++;
  881. from += 1 << blkbits;
  882. dio->result += 1 << blkbits;
  883. goto next_block;
  884. }
  885. /*
  886. * If we're performing IO which has an alignment which
  887. * is finer than the underlying fs, go check to see if
  888. * we must zero out the start of this block.
  889. */
  890. if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
  891. dio_zero_block(dio, sdio, 0, map_bh);
  892. /*
  893. * Work out, in this_chunk_blocks, how much disk we
  894. * can add to this page
  895. */
  896. this_chunk_blocks = sdio->blocks_available;
  897. u = (to - from) >> blkbits;
  898. if (this_chunk_blocks > u)
  899. this_chunk_blocks = u;
  900. u = sdio->final_block_in_request - sdio->block_in_file;
  901. if (this_chunk_blocks > u)
  902. this_chunk_blocks = u;
  903. this_chunk_bytes = this_chunk_blocks << blkbits;
  904. BUG_ON(this_chunk_bytes == 0);
  905. if (this_chunk_blocks == sdio->blocks_available)
  906. sdio->boundary = buffer_boundary(map_bh);
  907. ret = submit_page_section(dio, sdio, page,
  908. from,
  909. this_chunk_bytes,
  910. sdio->next_block_for_io,
  911. map_bh);
  912. if (ret) {
  913. page_cache_release(page);
  914. goto out;
  915. }
  916. sdio->next_block_for_io += this_chunk_blocks;
  917. sdio->block_in_file += this_chunk_blocks;
  918. from += this_chunk_bytes;
  919. dio->result += this_chunk_bytes;
  920. sdio->blocks_available -= this_chunk_blocks;
  921. next_block:
  922. BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
  923. if (sdio->block_in_file == sdio->final_block_in_request)
  924. break;
  925. }
  926. /* Drop the ref which was taken in get_user_pages() */
  927. page_cache_release(page);
  928. }
  929. out:
  930. return ret;
  931. }
  932. static inline int drop_refcount(struct dio *dio)
  933. {
  934. int ret2;
  935. unsigned long flags;
  936. /*
  937. * Sync will always be dropping the final ref and completing the
  938. * operation. AIO can if it was a broken operation described above or
  939. * in fact if all the bios race to complete before we get here. In
  940. * that case dio_complete() translates the EIOCBQUEUED into the proper
  941. * return code that the caller will hand to aio_complete().
  942. *
  943. * This is managed by the bio_lock instead of being an atomic_t so that
  944. * completion paths can drop their ref and use the remaining count to
  945. * decide to wake the submission path atomically.
  946. */
  947. spin_lock_irqsave(&dio->bio_lock, flags);
  948. ret2 = --dio->refcount;
  949. spin_unlock_irqrestore(&dio->bio_lock, flags);
  950. return ret2;
  951. }
  952. /*
  953. * This is a library function for use by filesystem drivers.
  954. *
  955. * The locking rules are governed by the flags parameter:
  956. * - if the flags value contains DIO_LOCKING we use a fancy locking
  957. * scheme for dumb filesystems.
  958. * For writes this function is called under i_mutex and returns with
  959. * i_mutex held, for reads, i_mutex is not held on entry, but it is
  960. * taken and dropped again before returning.
  961. * - if the flags value does NOT contain DIO_LOCKING we don't use any
  962. * internal locking but rather rely on the filesystem to synchronize
  963. * direct I/O reads/writes versus each other and truncate.
  964. *
  965. * To help with locking against truncate we incremented the i_dio_count
  966. * counter before starting direct I/O, and decrement it once we are done.
  967. * Truncate can wait for it to reach zero to provide exclusion. It is
  968. * expected that filesystem provide exclusion between new direct I/O
  969. * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
  970. * but other filesystems need to take care of this on their own.
  971. *
  972. * NOTE: if you pass "sdio" to anything by pointer make sure that function
  973. * is always inlined. Otherwise gcc is unable to split the structure into
  974. * individual fields and will generate much worse code. This is important
  975. * for the whole file.
  976. */
  977. static inline ssize_t
  978. do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
  979. struct block_device *bdev, struct iov_iter *iter, loff_t offset,
  980. get_block_t get_block, dio_iodone_t end_io,
  981. dio_submit_t submit_io, int flags)
  982. {
  983. unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
  984. unsigned blkbits = i_blkbits;
  985. unsigned blocksize_mask = (1 << blkbits) - 1;
  986. ssize_t retval = -EINVAL;
  987. size_t count = iov_iter_count(iter);
  988. loff_t end = offset + count;
  989. struct dio *dio;
  990. struct dio_submit sdio = { 0, };
  991. struct buffer_head map_bh = { 0, };
  992. struct blk_plug plug;
  993. unsigned long align = offset | iov_iter_alignment(iter);
  994. if (rw & WRITE)
  995. rw = WRITE_ODIRECT;
  996. /*
  997. * Avoid references to bdev if not absolutely needed to give
  998. * the early prefetch in the caller enough time.
  999. */
  1000. if (align & blocksize_mask) {
  1001. if (bdev)
  1002. blkbits = blksize_bits(bdev_logical_block_size(bdev));
  1003. blocksize_mask = (1 << blkbits) - 1;
  1004. if (align & blocksize_mask)
  1005. goto out;
  1006. }
  1007. /* watch out for a 0 len io from a tricksy fs */
  1008. if (rw == READ && !iov_iter_count(iter))
  1009. return 0;
  1010. dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
  1011. retval = -ENOMEM;
  1012. if (!dio)
  1013. goto out;
  1014. /*
  1015. * Believe it or not, zeroing out the page array caused a .5%
  1016. * performance regression in a database benchmark. So, we take
  1017. * care to only zero out what's needed.
  1018. */
  1019. memset(dio, 0, offsetof(struct dio, pages));
  1020. dio->flags = flags;
  1021. if (dio->flags & DIO_LOCKING) {
  1022. if (rw == READ) {
  1023. struct address_space *mapping =
  1024. iocb->ki_filp->f_mapping;
  1025. /* will be released by direct_io_worker */
  1026. mutex_lock(&inode->i_mutex);
  1027. retval = filemap_write_and_wait_range(mapping, offset,
  1028. end - 1);
  1029. if (retval) {
  1030. mutex_unlock(&inode->i_mutex);
  1031. kmem_cache_free(dio_cache, dio);
  1032. goto out;
  1033. }
  1034. }
  1035. }
  1036. /*
  1037. * For file extending writes updating i_size before data writeouts
  1038. * complete can expose uninitialized blocks in dumb filesystems.
  1039. * In that case we need to wait for I/O completion even if asked
  1040. * for an asynchronous write.
  1041. */
  1042. if (is_sync_kiocb(iocb))
  1043. dio->is_async = false;
  1044. else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
  1045. (rw & WRITE) && end > i_size_read(inode))
  1046. dio->is_async = false;
  1047. else
  1048. dio->is_async = true;
  1049. dio->inode = inode;
  1050. dio->rw = rw;
  1051. /*
  1052. * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
  1053. * so that we can call ->fsync.
  1054. */
  1055. if (dio->is_async && (rw & WRITE) &&
  1056. ((iocb->ki_filp->f_flags & O_DSYNC) ||
  1057. IS_SYNC(iocb->ki_filp->f_mapping->host))) {
  1058. retval = dio_set_defer_completion(dio);
  1059. if (retval) {
  1060. /*
  1061. * We grab i_mutex only for reads so we don't have
  1062. * to release it here
  1063. */
  1064. kmem_cache_free(dio_cache, dio);
  1065. goto out;
  1066. }
  1067. }
  1068. /*
  1069. * Will be decremented at I/O completion time.
  1070. */
  1071. atomic_inc(&inode->i_dio_count);
  1072. retval = 0;
  1073. sdio.blkbits = blkbits;
  1074. sdio.blkfactor = i_blkbits - blkbits;
  1075. sdio.block_in_file = offset >> blkbits;
  1076. sdio.get_block = get_block;
  1077. dio->end_io = end_io;
  1078. sdio.submit_io = submit_io;
  1079. sdio.final_block_in_bio = -1;
  1080. sdio.next_block_for_io = -1;
  1081. dio->iocb = iocb;
  1082. dio->i_size = i_size_read(inode);
  1083. spin_lock_init(&dio->bio_lock);
  1084. dio->refcount = 1;
  1085. sdio.iter = iter;
  1086. sdio.final_block_in_request =
  1087. (offset + iov_iter_count(iter)) >> blkbits;
  1088. /*
  1089. * In case of non-aligned buffers, we may need 2 more
  1090. * pages since we need to zero out first and last block.
  1091. */
  1092. if (unlikely(sdio.blkfactor))
  1093. sdio.pages_in_io = 2;
  1094. sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
  1095. blk_start_plug(&plug);
  1096. retval = do_direct_IO(dio, &sdio, &map_bh);
  1097. if (retval)
  1098. dio_cleanup(dio, &sdio);
  1099. if (retval == -ENOTBLK) {
  1100. /*
  1101. * The remaining part of the request will be
  1102. * be handled by buffered I/O when we return
  1103. */
  1104. retval = 0;
  1105. }
  1106. /*
  1107. * There may be some unwritten disk at the end of a part-written
  1108. * fs-block-sized block. Go zero that now.
  1109. */
  1110. dio_zero_block(dio, &sdio, 1, &map_bh);
  1111. if (sdio.cur_page) {
  1112. ssize_t ret2;
  1113. ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
  1114. if (retval == 0)
  1115. retval = ret2;
  1116. page_cache_release(sdio.cur_page);
  1117. sdio.cur_page = NULL;
  1118. }
  1119. if (sdio.bio)
  1120. dio_bio_submit(dio, &sdio);
  1121. blk_finish_plug(&plug);
  1122. /*
  1123. * It is possible that, we return short IO due to end of file.
  1124. * In that case, we need to release all the pages we got hold on.
  1125. */
  1126. dio_cleanup(dio, &sdio);
  1127. /*
  1128. * All block lookups have been performed. For READ requests
  1129. * we can let i_mutex go now that its achieved its purpose
  1130. * of protecting us from looking up uninitialized blocks.
  1131. */
  1132. if (rw == READ && (dio->flags & DIO_LOCKING))
  1133. mutex_unlock(&dio->inode->i_mutex);
  1134. /*
  1135. * The only time we want to leave bios in flight is when a successful
  1136. * partial aio read or full aio write have been setup. In that case
  1137. * bio completion will call aio_complete. The only time it's safe to
  1138. * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
  1139. * This had *better* be the only place that raises -EIOCBQUEUED.
  1140. */
  1141. BUG_ON(retval == -EIOCBQUEUED);
  1142. if (dio->is_async && retval == 0 && dio->result &&
  1143. (rw == READ || dio->result == count))
  1144. retval = -EIOCBQUEUED;
  1145. else
  1146. dio_await_completion(dio);
  1147. if (drop_refcount(dio) == 0) {
  1148. retval = dio_complete(dio, offset, retval, false);
  1149. } else
  1150. BUG_ON(retval != -EIOCBQUEUED);
  1151. out:
  1152. return retval;
  1153. }
  1154. ssize_t
  1155. __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
  1156. struct block_device *bdev, struct iov_iter *iter, loff_t offset,
  1157. get_block_t get_block, dio_iodone_t end_io,
  1158. dio_submit_t submit_io, int flags)
  1159. {
  1160. /*
  1161. * The block device state is needed in the end to finally
  1162. * submit everything. Since it's likely to be cache cold
  1163. * prefetch it here as first thing to hide some of the
  1164. * latency.
  1165. *
  1166. * Attempt to prefetch the pieces we likely need later.
  1167. */
  1168. prefetch(&bdev->bd_disk->part_tbl);
  1169. prefetch(bdev->bd_queue);
  1170. prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
  1171. return do_blockdev_direct_IO(rw, iocb, inode, bdev, iter, offset,
  1172. get_block, end_io, submit_io, flags);
  1173. }
  1174. EXPORT_SYMBOL(__blockdev_direct_IO);
  1175. static __init int dio_init(void)
  1176. {
  1177. dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
  1178. return 0;
  1179. }
  1180. module_init(dio_init)