disk-io.c 117 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/slab.h>
  29. #include <linux/migrate.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/uuid.h>
  32. #include <linux/semaphore.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  60. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  61. struct btrfs_root *root);
  62. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  63. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  64. struct extent_io_tree *dirty_pages,
  65. int mark);
  66. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  67. struct extent_io_tree *pinned_extents);
  68. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  69. static void btrfs_error_commit_super(struct btrfs_root *root);
  70. /*
  71. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  72. * is complete. This is used during reads to verify checksums, and it is used
  73. * by writes to insert metadata for new file extents after IO is complete.
  74. */
  75. struct btrfs_end_io_wq {
  76. struct bio *bio;
  77. bio_end_io_t *end_io;
  78. void *private;
  79. struct btrfs_fs_info *info;
  80. int error;
  81. enum btrfs_wq_endio_type metadata;
  82. struct list_head list;
  83. struct btrfs_work work;
  84. };
  85. static struct kmem_cache *btrfs_end_io_wq_cache;
  86. int __init btrfs_end_io_wq_init(void)
  87. {
  88. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  89. sizeof(struct btrfs_end_io_wq),
  90. 0,
  91. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  92. NULL);
  93. if (!btrfs_end_io_wq_cache)
  94. return -ENOMEM;
  95. return 0;
  96. }
  97. void btrfs_end_io_wq_exit(void)
  98. {
  99. if (btrfs_end_io_wq_cache)
  100. kmem_cache_destroy(btrfs_end_io_wq_cache);
  101. }
  102. /*
  103. * async submit bios are used to offload expensive checksumming
  104. * onto the worker threads. They checksum file and metadata bios
  105. * just before they are sent down the IO stack.
  106. */
  107. struct async_submit_bio {
  108. struct inode *inode;
  109. struct bio *bio;
  110. struct list_head list;
  111. extent_submit_bio_hook_t *submit_bio_start;
  112. extent_submit_bio_hook_t *submit_bio_done;
  113. int rw;
  114. int mirror_num;
  115. unsigned long bio_flags;
  116. /*
  117. * bio_offset is optional, can be used if the pages in the bio
  118. * can't tell us where in the file the bio should go
  119. */
  120. u64 bio_offset;
  121. struct btrfs_work work;
  122. int error;
  123. };
  124. /*
  125. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  126. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  127. * the level the eb occupies in the tree.
  128. *
  129. * Different roots are used for different purposes and may nest inside each
  130. * other and they require separate keysets. As lockdep keys should be
  131. * static, assign keysets according to the purpose of the root as indicated
  132. * by btrfs_root->objectid. This ensures that all special purpose roots
  133. * have separate keysets.
  134. *
  135. * Lock-nesting across peer nodes is always done with the immediate parent
  136. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  137. * subclass to avoid triggering lockdep warning in such cases.
  138. *
  139. * The key is set by the readpage_end_io_hook after the buffer has passed
  140. * csum validation but before the pages are unlocked. It is also set by
  141. * btrfs_init_new_buffer on freshly allocated blocks.
  142. *
  143. * We also add a check to make sure the highest level of the tree is the
  144. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  145. * needs update as well.
  146. */
  147. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  148. # if BTRFS_MAX_LEVEL != 8
  149. # error
  150. # endif
  151. static struct btrfs_lockdep_keyset {
  152. u64 id; /* root objectid */
  153. const char *name_stem; /* lock name stem */
  154. char names[BTRFS_MAX_LEVEL + 1][20];
  155. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  156. } btrfs_lockdep_keysets[] = {
  157. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  158. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  159. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  160. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  161. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  162. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  163. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  164. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  165. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  166. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  167. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  168. { .id = 0, .name_stem = "tree" },
  169. };
  170. void __init btrfs_init_lockdep(void)
  171. {
  172. int i, j;
  173. /* initialize lockdep class names */
  174. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  175. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  176. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  177. snprintf(ks->names[j], sizeof(ks->names[j]),
  178. "btrfs-%s-%02d", ks->name_stem, j);
  179. }
  180. }
  181. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  182. int level)
  183. {
  184. struct btrfs_lockdep_keyset *ks;
  185. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  186. /* find the matching keyset, id 0 is the default entry */
  187. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  188. if (ks->id == objectid)
  189. break;
  190. lockdep_set_class_and_name(&eb->lock,
  191. &ks->keys[level], ks->names[level]);
  192. }
  193. #endif
  194. /*
  195. * extents on the btree inode are pretty simple, there's one extent
  196. * that covers the entire device
  197. */
  198. static struct extent_map *btree_get_extent(struct inode *inode,
  199. struct page *page, size_t pg_offset, u64 start, u64 len,
  200. int create)
  201. {
  202. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  203. struct extent_map *em;
  204. int ret;
  205. read_lock(&em_tree->lock);
  206. em = lookup_extent_mapping(em_tree, start, len);
  207. if (em) {
  208. em->bdev =
  209. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  210. read_unlock(&em_tree->lock);
  211. goto out;
  212. }
  213. read_unlock(&em_tree->lock);
  214. em = alloc_extent_map();
  215. if (!em) {
  216. em = ERR_PTR(-ENOMEM);
  217. goto out;
  218. }
  219. em->start = 0;
  220. em->len = (u64)-1;
  221. em->block_len = (u64)-1;
  222. em->block_start = 0;
  223. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  224. write_lock(&em_tree->lock);
  225. ret = add_extent_mapping(em_tree, em, 0);
  226. if (ret == -EEXIST) {
  227. free_extent_map(em);
  228. em = lookup_extent_mapping(em_tree, start, len);
  229. if (!em)
  230. em = ERR_PTR(-EIO);
  231. } else if (ret) {
  232. free_extent_map(em);
  233. em = ERR_PTR(ret);
  234. }
  235. write_unlock(&em_tree->lock);
  236. out:
  237. return em;
  238. }
  239. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  240. {
  241. return btrfs_crc32c(seed, data, len);
  242. }
  243. void btrfs_csum_final(u32 crc, char *result)
  244. {
  245. put_unaligned_le32(~crc, result);
  246. }
  247. /*
  248. * compute the csum for a btree block, and either verify it or write it
  249. * into the csum field of the block.
  250. */
  251. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  252. int verify)
  253. {
  254. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  255. char *result = NULL;
  256. unsigned long len;
  257. unsigned long cur_len;
  258. unsigned long offset = BTRFS_CSUM_SIZE;
  259. char *kaddr;
  260. unsigned long map_start;
  261. unsigned long map_len;
  262. int err;
  263. u32 crc = ~(u32)0;
  264. unsigned long inline_result;
  265. len = buf->len - offset;
  266. while (len > 0) {
  267. err = map_private_extent_buffer(buf, offset, 32,
  268. &kaddr, &map_start, &map_len);
  269. if (err)
  270. return 1;
  271. cur_len = min(len, map_len - (offset - map_start));
  272. crc = btrfs_csum_data(kaddr + offset - map_start,
  273. crc, cur_len);
  274. len -= cur_len;
  275. offset += cur_len;
  276. }
  277. if (csum_size > sizeof(inline_result)) {
  278. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  279. if (!result)
  280. return 1;
  281. } else {
  282. result = (char *)&inline_result;
  283. }
  284. btrfs_csum_final(crc, result);
  285. if (verify) {
  286. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  287. u32 val;
  288. u32 found = 0;
  289. memcpy(&found, result, csum_size);
  290. read_extent_buffer(buf, &val, 0, csum_size);
  291. printk_ratelimited(KERN_WARNING
  292. "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
  293. "level %d\n",
  294. root->fs_info->sb->s_id, buf->start,
  295. val, found, btrfs_header_level(buf));
  296. if (result != (char *)&inline_result)
  297. kfree(result);
  298. return 1;
  299. }
  300. } else {
  301. write_extent_buffer(buf, result, 0, csum_size);
  302. }
  303. if (result != (char *)&inline_result)
  304. kfree(result);
  305. return 0;
  306. }
  307. /*
  308. * we can't consider a given block up to date unless the transid of the
  309. * block matches the transid in the parent node's pointer. This is how we
  310. * detect blocks that either didn't get written at all or got written
  311. * in the wrong place.
  312. */
  313. static int verify_parent_transid(struct extent_io_tree *io_tree,
  314. struct extent_buffer *eb, u64 parent_transid,
  315. int atomic)
  316. {
  317. struct extent_state *cached_state = NULL;
  318. int ret;
  319. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  320. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  321. return 0;
  322. if (atomic)
  323. return -EAGAIN;
  324. if (need_lock) {
  325. btrfs_tree_read_lock(eb);
  326. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  327. }
  328. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  329. 0, &cached_state);
  330. if (extent_buffer_uptodate(eb) &&
  331. btrfs_header_generation(eb) == parent_transid) {
  332. ret = 0;
  333. goto out;
  334. }
  335. printk_ratelimited(KERN_ERR
  336. "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
  337. eb->fs_info->sb->s_id, eb->start,
  338. parent_transid, btrfs_header_generation(eb));
  339. ret = 1;
  340. /*
  341. * Things reading via commit roots that don't have normal protection,
  342. * like send, can have a really old block in cache that may point at a
  343. * block that has been free'd and re-allocated. So don't clear uptodate
  344. * if we find an eb that is under IO (dirty/writeback) because we could
  345. * end up reading in the stale data and then writing it back out and
  346. * making everybody very sad.
  347. */
  348. if (!extent_buffer_under_io(eb))
  349. clear_extent_buffer_uptodate(eb);
  350. out:
  351. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  352. &cached_state, GFP_NOFS);
  353. if (need_lock)
  354. btrfs_tree_read_unlock_blocking(eb);
  355. return ret;
  356. }
  357. /*
  358. * Return 0 if the superblock checksum type matches the checksum value of that
  359. * algorithm. Pass the raw disk superblock data.
  360. */
  361. static int btrfs_check_super_csum(char *raw_disk_sb)
  362. {
  363. struct btrfs_super_block *disk_sb =
  364. (struct btrfs_super_block *)raw_disk_sb;
  365. u16 csum_type = btrfs_super_csum_type(disk_sb);
  366. int ret = 0;
  367. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  368. u32 crc = ~(u32)0;
  369. const int csum_size = sizeof(crc);
  370. char result[csum_size];
  371. /*
  372. * The super_block structure does not span the whole
  373. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  374. * is filled with zeros and is included in the checkum.
  375. */
  376. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  377. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  378. btrfs_csum_final(crc, result);
  379. if (memcmp(raw_disk_sb, result, csum_size))
  380. ret = 1;
  381. if (ret && btrfs_super_generation(disk_sb) < 10) {
  382. printk(KERN_WARNING
  383. "BTRFS: super block crcs don't match, older mkfs detected\n");
  384. ret = 0;
  385. }
  386. }
  387. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  388. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  389. csum_type);
  390. ret = 1;
  391. }
  392. return ret;
  393. }
  394. /*
  395. * helper to read a given tree block, doing retries as required when
  396. * the checksums don't match and we have alternate mirrors to try.
  397. */
  398. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  399. struct extent_buffer *eb,
  400. u64 start, u64 parent_transid)
  401. {
  402. struct extent_io_tree *io_tree;
  403. int failed = 0;
  404. int ret;
  405. int num_copies = 0;
  406. int mirror_num = 0;
  407. int failed_mirror = 0;
  408. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  409. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  410. while (1) {
  411. ret = read_extent_buffer_pages(io_tree, eb, start,
  412. WAIT_COMPLETE,
  413. btree_get_extent, mirror_num);
  414. if (!ret) {
  415. if (!verify_parent_transid(io_tree, eb,
  416. parent_transid, 0))
  417. break;
  418. else
  419. ret = -EIO;
  420. }
  421. /*
  422. * This buffer's crc is fine, but its contents are corrupted, so
  423. * there is no reason to read the other copies, they won't be
  424. * any less wrong.
  425. */
  426. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  427. break;
  428. num_copies = btrfs_num_copies(root->fs_info,
  429. eb->start, eb->len);
  430. if (num_copies == 1)
  431. break;
  432. if (!failed_mirror) {
  433. failed = 1;
  434. failed_mirror = eb->read_mirror;
  435. }
  436. mirror_num++;
  437. if (mirror_num == failed_mirror)
  438. mirror_num++;
  439. if (mirror_num > num_copies)
  440. break;
  441. }
  442. if (failed && !ret && failed_mirror)
  443. repair_eb_io_failure(root, eb, failed_mirror);
  444. return ret;
  445. }
  446. /*
  447. * checksum a dirty tree block before IO. This has extra checks to make sure
  448. * we only fill in the checksum field in the first page of a multi-page block
  449. */
  450. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  451. {
  452. u64 start = page_offset(page);
  453. u64 found_start;
  454. struct extent_buffer *eb;
  455. eb = (struct extent_buffer *)page->private;
  456. if (page != eb->pages[0])
  457. return 0;
  458. found_start = btrfs_header_bytenr(eb);
  459. if (WARN_ON(found_start != start || !PageUptodate(page)))
  460. return 0;
  461. csum_tree_block(root, eb, 0);
  462. return 0;
  463. }
  464. static int check_tree_block_fsid(struct btrfs_root *root,
  465. struct extent_buffer *eb)
  466. {
  467. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  468. u8 fsid[BTRFS_UUID_SIZE];
  469. int ret = 1;
  470. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  471. while (fs_devices) {
  472. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  473. ret = 0;
  474. break;
  475. }
  476. fs_devices = fs_devices->seed;
  477. }
  478. return ret;
  479. }
  480. #define CORRUPT(reason, eb, root, slot) \
  481. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  482. "root=%llu, slot=%d", reason, \
  483. btrfs_header_bytenr(eb), root->objectid, slot)
  484. static noinline int check_leaf(struct btrfs_root *root,
  485. struct extent_buffer *leaf)
  486. {
  487. struct btrfs_key key;
  488. struct btrfs_key leaf_key;
  489. u32 nritems = btrfs_header_nritems(leaf);
  490. int slot;
  491. if (nritems == 0)
  492. return 0;
  493. /* Check the 0 item */
  494. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  495. BTRFS_LEAF_DATA_SIZE(root)) {
  496. CORRUPT("invalid item offset size pair", leaf, root, 0);
  497. return -EIO;
  498. }
  499. /*
  500. * Check to make sure each items keys are in the correct order and their
  501. * offsets make sense. We only have to loop through nritems-1 because
  502. * we check the current slot against the next slot, which verifies the
  503. * next slot's offset+size makes sense and that the current's slot
  504. * offset is correct.
  505. */
  506. for (slot = 0; slot < nritems - 1; slot++) {
  507. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  508. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  509. /* Make sure the keys are in the right order */
  510. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  511. CORRUPT("bad key order", leaf, root, slot);
  512. return -EIO;
  513. }
  514. /*
  515. * Make sure the offset and ends are right, remember that the
  516. * item data starts at the end of the leaf and grows towards the
  517. * front.
  518. */
  519. if (btrfs_item_offset_nr(leaf, slot) !=
  520. btrfs_item_end_nr(leaf, slot + 1)) {
  521. CORRUPT("slot offset bad", leaf, root, slot);
  522. return -EIO;
  523. }
  524. /*
  525. * Check to make sure that we don't point outside of the leaf,
  526. * just incase all the items are consistent to eachother, but
  527. * all point outside of the leaf.
  528. */
  529. if (btrfs_item_end_nr(leaf, slot) >
  530. BTRFS_LEAF_DATA_SIZE(root)) {
  531. CORRUPT("slot end outside of leaf", leaf, root, slot);
  532. return -EIO;
  533. }
  534. }
  535. return 0;
  536. }
  537. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  538. u64 phy_offset, struct page *page,
  539. u64 start, u64 end, int mirror)
  540. {
  541. u64 found_start;
  542. int found_level;
  543. struct extent_buffer *eb;
  544. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  545. int ret = 0;
  546. int reads_done;
  547. if (!page->private)
  548. goto out;
  549. eb = (struct extent_buffer *)page->private;
  550. /* the pending IO might have been the only thing that kept this buffer
  551. * in memory. Make sure we have a ref for all this other checks
  552. */
  553. extent_buffer_get(eb);
  554. reads_done = atomic_dec_and_test(&eb->io_pages);
  555. if (!reads_done)
  556. goto err;
  557. eb->read_mirror = mirror;
  558. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  559. ret = -EIO;
  560. goto err;
  561. }
  562. found_start = btrfs_header_bytenr(eb);
  563. if (found_start != eb->start) {
  564. printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
  565. "%llu %llu\n",
  566. eb->fs_info->sb->s_id, found_start, eb->start);
  567. ret = -EIO;
  568. goto err;
  569. }
  570. if (check_tree_block_fsid(root, eb)) {
  571. printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
  572. eb->fs_info->sb->s_id, eb->start);
  573. ret = -EIO;
  574. goto err;
  575. }
  576. found_level = btrfs_header_level(eb);
  577. if (found_level >= BTRFS_MAX_LEVEL) {
  578. btrfs_err(root->fs_info, "bad tree block level %d",
  579. (int)btrfs_header_level(eb));
  580. ret = -EIO;
  581. goto err;
  582. }
  583. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  584. eb, found_level);
  585. ret = csum_tree_block(root, eb, 1);
  586. if (ret) {
  587. ret = -EIO;
  588. goto err;
  589. }
  590. /*
  591. * If this is a leaf block and it is corrupt, set the corrupt bit so
  592. * that we don't try and read the other copies of this block, just
  593. * return -EIO.
  594. */
  595. if (found_level == 0 && check_leaf(root, eb)) {
  596. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  597. ret = -EIO;
  598. }
  599. if (!ret)
  600. set_extent_buffer_uptodate(eb);
  601. err:
  602. if (reads_done &&
  603. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  604. btree_readahead_hook(root, eb, eb->start, ret);
  605. if (ret) {
  606. /*
  607. * our io error hook is going to dec the io pages
  608. * again, we have to make sure it has something
  609. * to decrement
  610. */
  611. atomic_inc(&eb->io_pages);
  612. clear_extent_buffer_uptodate(eb);
  613. }
  614. free_extent_buffer(eb);
  615. out:
  616. return ret;
  617. }
  618. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  619. {
  620. struct extent_buffer *eb;
  621. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  622. eb = (struct extent_buffer *)page->private;
  623. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  624. eb->read_mirror = failed_mirror;
  625. atomic_dec(&eb->io_pages);
  626. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  627. btree_readahead_hook(root, eb, eb->start, -EIO);
  628. return -EIO; /* we fixed nothing */
  629. }
  630. static void end_workqueue_bio(struct bio *bio, int err)
  631. {
  632. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  633. struct btrfs_fs_info *fs_info;
  634. struct btrfs_workqueue *wq;
  635. btrfs_work_func_t func;
  636. fs_info = end_io_wq->info;
  637. end_io_wq->error = err;
  638. if (bio->bi_rw & REQ_WRITE) {
  639. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  640. wq = fs_info->endio_meta_write_workers;
  641. func = btrfs_endio_meta_write_helper;
  642. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  643. wq = fs_info->endio_freespace_worker;
  644. func = btrfs_freespace_write_helper;
  645. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  646. wq = fs_info->endio_raid56_workers;
  647. func = btrfs_endio_raid56_helper;
  648. } else {
  649. wq = fs_info->endio_write_workers;
  650. func = btrfs_endio_write_helper;
  651. }
  652. } else {
  653. if (unlikely(end_io_wq->metadata ==
  654. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  655. wq = fs_info->endio_repair_workers;
  656. func = btrfs_endio_repair_helper;
  657. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  658. wq = fs_info->endio_raid56_workers;
  659. func = btrfs_endio_raid56_helper;
  660. } else if (end_io_wq->metadata) {
  661. wq = fs_info->endio_meta_workers;
  662. func = btrfs_endio_meta_helper;
  663. } else {
  664. wq = fs_info->endio_workers;
  665. func = btrfs_endio_helper;
  666. }
  667. }
  668. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  669. btrfs_queue_work(wq, &end_io_wq->work);
  670. }
  671. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  672. enum btrfs_wq_endio_type metadata)
  673. {
  674. struct btrfs_end_io_wq *end_io_wq;
  675. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  676. if (!end_io_wq)
  677. return -ENOMEM;
  678. end_io_wq->private = bio->bi_private;
  679. end_io_wq->end_io = bio->bi_end_io;
  680. end_io_wq->info = info;
  681. end_io_wq->error = 0;
  682. end_io_wq->bio = bio;
  683. end_io_wq->metadata = metadata;
  684. bio->bi_private = end_io_wq;
  685. bio->bi_end_io = end_workqueue_bio;
  686. return 0;
  687. }
  688. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  689. {
  690. unsigned long limit = min_t(unsigned long,
  691. info->thread_pool_size,
  692. info->fs_devices->open_devices);
  693. return 256 * limit;
  694. }
  695. static void run_one_async_start(struct btrfs_work *work)
  696. {
  697. struct async_submit_bio *async;
  698. int ret;
  699. async = container_of(work, struct async_submit_bio, work);
  700. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  701. async->mirror_num, async->bio_flags,
  702. async->bio_offset);
  703. if (ret)
  704. async->error = ret;
  705. }
  706. static void run_one_async_done(struct btrfs_work *work)
  707. {
  708. struct btrfs_fs_info *fs_info;
  709. struct async_submit_bio *async;
  710. int limit;
  711. async = container_of(work, struct async_submit_bio, work);
  712. fs_info = BTRFS_I(async->inode)->root->fs_info;
  713. limit = btrfs_async_submit_limit(fs_info);
  714. limit = limit * 2 / 3;
  715. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  716. waitqueue_active(&fs_info->async_submit_wait))
  717. wake_up(&fs_info->async_submit_wait);
  718. /* If an error occured we just want to clean up the bio and move on */
  719. if (async->error) {
  720. bio_endio(async->bio, async->error);
  721. return;
  722. }
  723. async->submit_bio_done(async->inode, async->rw, async->bio,
  724. async->mirror_num, async->bio_flags,
  725. async->bio_offset);
  726. }
  727. static void run_one_async_free(struct btrfs_work *work)
  728. {
  729. struct async_submit_bio *async;
  730. async = container_of(work, struct async_submit_bio, work);
  731. kfree(async);
  732. }
  733. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  734. int rw, struct bio *bio, int mirror_num,
  735. unsigned long bio_flags,
  736. u64 bio_offset,
  737. extent_submit_bio_hook_t *submit_bio_start,
  738. extent_submit_bio_hook_t *submit_bio_done)
  739. {
  740. struct async_submit_bio *async;
  741. async = kmalloc(sizeof(*async), GFP_NOFS);
  742. if (!async)
  743. return -ENOMEM;
  744. async->inode = inode;
  745. async->rw = rw;
  746. async->bio = bio;
  747. async->mirror_num = mirror_num;
  748. async->submit_bio_start = submit_bio_start;
  749. async->submit_bio_done = submit_bio_done;
  750. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  751. run_one_async_done, run_one_async_free);
  752. async->bio_flags = bio_flags;
  753. async->bio_offset = bio_offset;
  754. async->error = 0;
  755. atomic_inc(&fs_info->nr_async_submits);
  756. if (rw & REQ_SYNC)
  757. btrfs_set_work_high_priority(&async->work);
  758. btrfs_queue_work(fs_info->workers, &async->work);
  759. while (atomic_read(&fs_info->async_submit_draining) &&
  760. atomic_read(&fs_info->nr_async_submits)) {
  761. wait_event(fs_info->async_submit_wait,
  762. (atomic_read(&fs_info->nr_async_submits) == 0));
  763. }
  764. return 0;
  765. }
  766. static int btree_csum_one_bio(struct bio *bio)
  767. {
  768. struct bio_vec *bvec;
  769. struct btrfs_root *root;
  770. int i, ret = 0;
  771. bio_for_each_segment_all(bvec, bio, i) {
  772. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  773. ret = csum_dirty_buffer(root, bvec->bv_page);
  774. if (ret)
  775. break;
  776. }
  777. return ret;
  778. }
  779. static int __btree_submit_bio_start(struct inode *inode, int rw,
  780. struct bio *bio, int mirror_num,
  781. unsigned long bio_flags,
  782. u64 bio_offset)
  783. {
  784. /*
  785. * when we're called for a write, we're already in the async
  786. * submission context. Just jump into btrfs_map_bio
  787. */
  788. return btree_csum_one_bio(bio);
  789. }
  790. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  791. int mirror_num, unsigned long bio_flags,
  792. u64 bio_offset)
  793. {
  794. int ret;
  795. /*
  796. * when we're called for a write, we're already in the async
  797. * submission context. Just jump into btrfs_map_bio
  798. */
  799. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  800. if (ret)
  801. bio_endio(bio, ret);
  802. return ret;
  803. }
  804. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  805. {
  806. if (bio_flags & EXTENT_BIO_TREE_LOG)
  807. return 0;
  808. #ifdef CONFIG_X86
  809. if (cpu_has_xmm4_2)
  810. return 0;
  811. #endif
  812. return 1;
  813. }
  814. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  815. int mirror_num, unsigned long bio_flags,
  816. u64 bio_offset)
  817. {
  818. int async = check_async_write(inode, bio_flags);
  819. int ret;
  820. if (!(rw & REQ_WRITE)) {
  821. /*
  822. * called for a read, do the setup so that checksum validation
  823. * can happen in the async kernel threads
  824. */
  825. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  826. bio, BTRFS_WQ_ENDIO_METADATA);
  827. if (ret)
  828. goto out_w_error;
  829. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  830. mirror_num, 0);
  831. } else if (!async) {
  832. ret = btree_csum_one_bio(bio);
  833. if (ret)
  834. goto out_w_error;
  835. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  836. mirror_num, 0);
  837. } else {
  838. /*
  839. * kthread helpers are used to submit writes so that
  840. * checksumming can happen in parallel across all CPUs
  841. */
  842. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  843. inode, rw, bio, mirror_num, 0,
  844. bio_offset,
  845. __btree_submit_bio_start,
  846. __btree_submit_bio_done);
  847. }
  848. if (ret) {
  849. out_w_error:
  850. bio_endio(bio, ret);
  851. }
  852. return ret;
  853. }
  854. #ifdef CONFIG_MIGRATION
  855. static int btree_migratepage(struct address_space *mapping,
  856. struct page *newpage, struct page *page,
  857. enum migrate_mode mode)
  858. {
  859. /*
  860. * we can't safely write a btree page from here,
  861. * we haven't done the locking hook
  862. */
  863. if (PageDirty(page))
  864. return -EAGAIN;
  865. /*
  866. * Buffers may be managed in a filesystem specific way.
  867. * We must have no buffers or drop them.
  868. */
  869. if (page_has_private(page) &&
  870. !try_to_release_page(page, GFP_KERNEL))
  871. return -EAGAIN;
  872. return migrate_page(mapping, newpage, page, mode);
  873. }
  874. #endif
  875. static int btree_writepages(struct address_space *mapping,
  876. struct writeback_control *wbc)
  877. {
  878. struct btrfs_fs_info *fs_info;
  879. int ret;
  880. if (wbc->sync_mode == WB_SYNC_NONE) {
  881. if (wbc->for_kupdate)
  882. return 0;
  883. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  884. /* this is a bit racy, but that's ok */
  885. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  886. BTRFS_DIRTY_METADATA_THRESH);
  887. if (ret < 0)
  888. return 0;
  889. }
  890. return btree_write_cache_pages(mapping, wbc);
  891. }
  892. static int btree_readpage(struct file *file, struct page *page)
  893. {
  894. struct extent_io_tree *tree;
  895. tree = &BTRFS_I(page->mapping->host)->io_tree;
  896. return extent_read_full_page(tree, page, btree_get_extent, 0);
  897. }
  898. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  899. {
  900. if (PageWriteback(page) || PageDirty(page))
  901. return 0;
  902. return try_release_extent_buffer(page);
  903. }
  904. static void btree_invalidatepage(struct page *page, unsigned int offset,
  905. unsigned int length)
  906. {
  907. struct extent_io_tree *tree;
  908. tree = &BTRFS_I(page->mapping->host)->io_tree;
  909. extent_invalidatepage(tree, page, offset);
  910. btree_releasepage(page, GFP_NOFS);
  911. if (PagePrivate(page)) {
  912. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  913. "page private not zero on page %llu",
  914. (unsigned long long)page_offset(page));
  915. ClearPagePrivate(page);
  916. set_page_private(page, 0);
  917. page_cache_release(page);
  918. }
  919. }
  920. static int btree_set_page_dirty(struct page *page)
  921. {
  922. #ifdef DEBUG
  923. struct extent_buffer *eb;
  924. BUG_ON(!PagePrivate(page));
  925. eb = (struct extent_buffer *)page->private;
  926. BUG_ON(!eb);
  927. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  928. BUG_ON(!atomic_read(&eb->refs));
  929. btrfs_assert_tree_locked(eb);
  930. #endif
  931. return __set_page_dirty_nobuffers(page);
  932. }
  933. static const struct address_space_operations btree_aops = {
  934. .readpage = btree_readpage,
  935. .writepages = btree_writepages,
  936. .releasepage = btree_releasepage,
  937. .invalidatepage = btree_invalidatepage,
  938. #ifdef CONFIG_MIGRATION
  939. .migratepage = btree_migratepage,
  940. #endif
  941. .set_page_dirty = btree_set_page_dirty,
  942. };
  943. void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
  944. {
  945. struct extent_buffer *buf = NULL;
  946. struct inode *btree_inode = root->fs_info->btree_inode;
  947. buf = btrfs_find_create_tree_block(root, bytenr);
  948. if (!buf)
  949. return;
  950. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  951. buf, 0, WAIT_NONE, btree_get_extent, 0);
  952. free_extent_buffer(buf);
  953. }
  954. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
  955. int mirror_num, struct extent_buffer **eb)
  956. {
  957. struct extent_buffer *buf = NULL;
  958. struct inode *btree_inode = root->fs_info->btree_inode;
  959. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  960. int ret;
  961. buf = btrfs_find_create_tree_block(root, bytenr);
  962. if (!buf)
  963. return 0;
  964. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  965. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  966. btree_get_extent, mirror_num);
  967. if (ret) {
  968. free_extent_buffer(buf);
  969. return ret;
  970. }
  971. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  972. free_extent_buffer(buf);
  973. return -EIO;
  974. } else if (extent_buffer_uptodate(buf)) {
  975. *eb = buf;
  976. } else {
  977. free_extent_buffer(buf);
  978. }
  979. return 0;
  980. }
  981. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  982. u64 bytenr)
  983. {
  984. return find_extent_buffer(root->fs_info, bytenr);
  985. }
  986. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  987. u64 bytenr)
  988. {
  989. if (btrfs_test_is_dummy_root(root))
  990. return alloc_test_extent_buffer(root->fs_info, bytenr);
  991. return alloc_extent_buffer(root->fs_info, bytenr);
  992. }
  993. int btrfs_write_tree_block(struct extent_buffer *buf)
  994. {
  995. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  996. buf->start + buf->len - 1);
  997. }
  998. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  999. {
  1000. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1001. buf->start, buf->start + buf->len - 1);
  1002. }
  1003. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1004. u64 parent_transid)
  1005. {
  1006. struct extent_buffer *buf = NULL;
  1007. int ret;
  1008. buf = btrfs_find_create_tree_block(root, bytenr);
  1009. if (!buf)
  1010. return NULL;
  1011. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1012. if (ret) {
  1013. free_extent_buffer(buf);
  1014. return NULL;
  1015. }
  1016. return buf;
  1017. }
  1018. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1019. struct extent_buffer *buf)
  1020. {
  1021. struct btrfs_fs_info *fs_info = root->fs_info;
  1022. if (btrfs_header_generation(buf) ==
  1023. fs_info->running_transaction->transid) {
  1024. btrfs_assert_tree_locked(buf);
  1025. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1026. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1027. -buf->len,
  1028. fs_info->dirty_metadata_batch);
  1029. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1030. btrfs_set_lock_blocking(buf);
  1031. clear_extent_buffer_dirty(buf);
  1032. }
  1033. }
  1034. }
  1035. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1036. {
  1037. struct btrfs_subvolume_writers *writers;
  1038. int ret;
  1039. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1040. if (!writers)
  1041. return ERR_PTR(-ENOMEM);
  1042. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1043. if (ret < 0) {
  1044. kfree(writers);
  1045. return ERR_PTR(ret);
  1046. }
  1047. init_waitqueue_head(&writers->wait);
  1048. return writers;
  1049. }
  1050. static void
  1051. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1052. {
  1053. percpu_counter_destroy(&writers->counter);
  1054. kfree(writers);
  1055. }
  1056. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1057. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1058. u64 objectid)
  1059. {
  1060. root->node = NULL;
  1061. root->commit_root = NULL;
  1062. root->sectorsize = sectorsize;
  1063. root->nodesize = nodesize;
  1064. root->stripesize = stripesize;
  1065. root->state = 0;
  1066. root->orphan_cleanup_state = 0;
  1067. root->objectid = objectid;
  1068. root->last_trans = 0;
  1069. root->highest_objectid = 0;
  1070. root->nr_delalloc_inodes = 0;
  1071. root->nr_ordered_extents = 0;
  1072. root->name = NULL;
  1073. root->inode_tree = RB_ROOT;
  1074. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1075. root->block_rsv = NULL;
  1076. root->orphan_block_rsv = NULL;
  1077. INIT_LIST_HEAD(&root->dirty_list);
  1078. INIT_LIST_HEAD(&root->root_list);
  1079. INIT_LIST_HEAD(&root->delalloc_inodes);
  1080. INIT_LIST_HEAD(&root->delalloc_root);
  1081. INIT_LIST_HEAD(&root->ordered_extents);
  1082. INIT_LIST_HEAD(&root->ordered_root);
  1083. INIT_LIST_HEAD(&root->logged_list[0]);
  1084. INIT_LIST_HEAD(&root->logged_list[1]);
  1085. spin_lock_init(&root->orphan_lock);
  1086. spin_lock_init(&root->inode_lock);
  1087. spin_lock_init(&root->delalloc_lock);
  1088. spin_lock_init(&root->ordered_extent_lock);
  1089. spin_lock_init(&root->accounting_lock);
  1090. spin_lock_init(&root->log_extents_lock[0]);
  1091. spin_lock_init(&root->log_extents_lock[1]);
  1092. mutex_init(&root->objectid_mutex);
  1093. mutex_init(&root->log_mutex);
  1094. mutex_init(&root->ordered_extent_mutex);
  1095. mutex_init(&root->delalloc_mutex);
  1096. init_waitqueue_head(&root->log_writer_wait);
  1097. init_waitqueue_head(&root->log_commit_wait[0]);
  1098. init_waitqueue_head(&root->log_commit_wait[1]);
  1099. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1100. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1101. atomic_set(&root->log_commit[0], 0);
  1102. atomic_set(&root->log_commit[1], 0);
  1103. atomic_set(&root->log_writers, 0);
  1104. atomic_set(&root->log_batch, 0);
  1105. atomic_set(&root->orphan_inodes, 0);
  1106. atomic_set(&root->refs, 1);
  1107. atomic_set(&root->will_be_snapshoted, 0);
  1108. root->log_transid = 0;
  1109. root->log_transid_committed = -1;
  1110. root->last_log_commit = 0;
  1111. if (fs_info)
  1112. extent_io_tree_init(&root->dirty_log_pages,
  1113. fs_info->btree_inode->i_mapping);
  1114. memset(&root->root_key, 0, sizeof(root->root_key));
  1115. memset(&root->root_item, 0, sizeof(root->root_item));
  1116. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1117. if (fs_info)
  1118. root->defrag_trans_start = fs_info->generation;
  1119. else
  1120. root->defrag_trans_start = 0;
  1121. root->root_key.objectid = objectid;
  1122. root->anon_dev = 0;
  1123. spin_lock_init(&root->root_item_lock);
  1124. }
  1125. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1126. {
  1127. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1128. if (root)
  1129. root->fs_info = fs_info;
  1130. return root;
  1131. }
  1132. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1133. /* Should only be used by the testing infrastructure */
  1134. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1135. {
  1136. struct btrfs_root *root;
  1137. root = btrfs_alloc_root(NULL);
  1138. if (!root)
  1139. return ERR_PTR(-ENOMEM);
  1140. __setup_root(4096, 4096, 4096, root, NULL, 1);
  1141. set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
  1142. root->alloc_bytenr = 0;
  1143. return root;
  1144. }
  1145. #endif
  1146. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1147. struct btrfs_fs_info *fs_info,
  1148. u64 objectid)
  1149. {
  1150. struct extent_buffer *leaf;
  1151. struct btrfs_root *tree_root = fs_info->tree_root;
  1152. struct btrfs_root *root;
  1153. struct btrfs_key key;
  1154. int ret = 0;
  1155. uuid_le uuid;
  1156. root = btrfs_alloc_root(fs_info);
  1157. if (!root)
  1158. return ERR_PTR(-ENOMEM);
  1159. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1160. tree_root->stripesize, root, fs_info, objectid);
  1161. root->root_key.objectid = objectid;
  1162. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1163. root->root_key.offset = 0;
  1164. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1165. if (IS_ERR(leaf)) {
  1166. ret = PTR_ERR(leaf);
  1167. leaf = NULL;
  1168. goto fail;
  1169. }
  1170. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1171. btrfs_set_header_bytenr(leaf, leaf->start);
  1172. btrfs_set_header_generation(leaf, trans->transid);
  1173. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1174. btrfs_set_header_owner(leaf, objectid);
  1175. root->node = leaf;
  1176. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1177. BTRFS_FSID_SIZE);
  1178. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1179. btrfs_header_chunk_tree_uuid(leaf),
  1180. BTRFS_UUID_SIZE);
  1181. btrfs_mark_buffer_dirty(leaf);
  1182. root->commit_root = btrfs_root_node(root);
  1183. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1184. root->root_item.flags = 0;
  1185. root->root_item.byte_limit = 0;
  1186. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1187. btrfs_set_root_generation(&root->root_item, trans->transid);
  1188. btrfs_set_root_level(&root->root_item, 0);
  1189. btrfs_set_root_refs(&root->root_item, 1);
  1190. btrfs_set_root_used(&root->root_item, leaf->len);
  1191. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1192. btrfs_set_root_dirid(&root->root_item, 0);
  1193. uuid_le_gen(&uuid);
  1194. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1195. root->root_item.drop_level = 0;
  1196. key.objectid = objectid;
  1197. key.type = BTRFS_ROOT_ITEM_KEY;
  1198. key.offset = 0;
  1199. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1200. if (ret)
  1201. goto fail;
  1202. btrfs_tree_unlock(leaf);
  1203. return root;
  1204. fail:
  1205. if (leaf) {
  1206. btrfs_tree_unlock(leaf);
  1207. free_extent_buffer(root->commit_root);
  1208. free_extent_buffer(leaf);
  1209. }
  1210. kfree(root);
  1211. return ERR_PTR(ret);
  1212. }
  1213. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1214. struct btrfs_fs_info *fs_info)
  1215. {
  1216. struct btrfs_root *root;
  1217. struct btrfs_root *tree_root = fs_info->tree_root;
  1218. struct extent_buffer *leaf;
  1219. root = btrfs_alloc_root(fs_info);
  1220. if (!root)
  1221. return ERR_PTR(-ENOMEM);
  1222. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1223. tree_root->stripesize, root, fs_info,
  1224. BTRFS_TREE_LOG_OBJECTID);
  1225. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1226. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1227. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1228. /*
  1229. * DON'T set REF_COWS for log trees
  1230. *
  1231. * log trees do not get reference counted because they go away
  1232. * before a real commit is actually done. They do store pointers
  1233. * to file data extents, and those reference counts still get
  1234. * updated (along with back refs to the log tree).
  1235. */
  1236. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1237. NULL, 0, 0, 0);
  1238. if (IS_ERR(leaf)) {
  1239. kfree(root);
  1240. return ERR_CAST(leaf);
  1241. }
  1242. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1243. btrfs_set_header_bytenr(leaf, leaf->start);
  1244. btrfs_set_header_generation(leaf, trans->transid);
  1245. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1246. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1247. root->node = leaf;
  1248. write_extent_buffer(root->node, root->fs_info->fsid,
  1249. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1250. btrfs_mark_buffer_dirty(root->node);
  1251. btrfs_tree_unlock(root->node);
  1252. return root;
  1253. }
  1254. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1255. struct btrfs_fs_info *fs_info)
  1256. {
  1257. struct btrfs_root *log_root;
  1258. log_root = alloc_log_tree(trans, fs_info);
  1259. if (IS_ERR(log_root))
  1260. return PTR_ERR(log_root);
  1261. WARN_ON(fs_info->log_root_tree);
  1262. fs_info->log_root_tree = log_root;
  1263. return 0;
  1264. }
  1265. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1266. struct btrfs_root *root)
  1267. {
  1268. struct btrfs_root *log_root;
  1269. struct btrfs_inode_item *inode_item;
  1270. log_root = alloc_log_tree(trans, root->fs_info);
  1271. if (IS_ERR(log_root))
  1272. return PTR_ERR(log_root);
  1273. log_root->last_trans = trans->transid;
  1274. log_root->root_key.offset = root->root_key.objectid;
  1275. inode_item = &log_root->root_item.inode;
  1276. btrfs_set_stack_inode_generation(inode_item, 1);
  1277. btrfs_set_stack_inode_size(inode_item, 3);
  1278. btrfs_set_stack_inode_nlink(inode_item, 1);
  1279. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1280. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1281. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1282. WARN_ON(root->log_root);
  1283. root->log_root = log_root;
  1284. root->log_transid = 0;
  1285. root->log_transid_committed = -1;
  1286. root->last_log_commit = 0;
  1287. return 0;
  1288. }
  1289. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1290. struct btrfs_key *key)
  1291. {
  1292. struct btrfs_root *root;
  1293. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1294. struct btrfs_path *path;
  1295. u64 generation;
  1296. int ret;
  1297. path = btrfs_alloc_path();
  1298. if (!path)
  1299. return ERR_PTR(-ENOMEM);
  1300. root = btrfs_alloc_root(fs_info);
  1301. if (!root) {
  1302. ret = -ENOMEM;
  1303. goto alloc_fail;
  1304. }
  1305. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1306. tree_root->stripesize, root, fs_info, key->objectid);
  1307. ret = btrfs_find_root(tree_root, key, path,
  1308. &root->root_item, &root->root_key);
  1309. if (ret) {
  1310. if (ret > 0)
  1311. ret = -ENOENT;
  1312. goto find_fail;
  1313. }
  1314. generation = btrfs_root_generation(&root->root_item);
  1315. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1316. generation);
  1317. if (!root->node) {
  1318. ret = -ENOMEM;
  1319. goto find_fail;
  1320. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1321. ret = -EIO;
  1322. goto read_fail;
  1323. }
  1324. root->commit_root = btrfs_root_node(root);
  1325. out:
  1326. btrfs_free_path(path);
  1327. return root;
  1328. read_fail:
  1329. free_extent_buffer(root->node);
  1330. find_fail:
  1331. kfree(root);
  1332. alloc_fail:
  1333. root = ERR_PTR(ret);
  1334. goto out;
  1335. }
  1336. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1337. struct btrfs_key *location)
  1338. {
  1339. struct btrfs_root *root;
  1340. root = btrfs_read_tree_root(tree_root, location);
  1341. if (IS_ERR(root))
  1342. return root;
  1343. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1344. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1345. btrfs_check_and_init_root_item(&root->root_item);
  1346. }
  1347. return root;
  1348. }
  1349. int btrfs_init_fs_root(struct btrfs_root *root)
  1350. {
  1351. int ret;
  1352. struct btrfs_subvolume_writers *writers;
  1353. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1354. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1355. GFP_NOFS);
  1356. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1357. ret = -ENOMEM;
  1358. goto fail;
  1359. }
  1360. writers = btrfs_alloc_subvolume_writers();
  1361. if (IS_ERR(writers)) {
  1362. ret = PTR_ERR(writers);
  1363. goto fail;
  1364. }
  1365. root->subv_writers = writers;
  1366. btrfs_init_free_ino_ctl(root);
  1367. spin_lock_init(&root->ino_cache_lock);
  1368. init_waitqueue_head(&root->ino_cache_wait);
  1369. ret = get_anon_bdev(&root->anon_dev);
  1370. if (ret)
  1371. goto free_writers;
  1372. return 0;
  1373. free_writers:
  1374. btrfs_free_subvolume_writers(root->subv_writers);
  1375. fail:
  1376. kfree(root->free_ino_ctl);
  1377. kfree(root->free_ino_pinned);
  1378. return ret;
  1379. }
  1380. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1381. u64 root_id)
  1382. {
  1383. struct btrfs_root *root;
  1384. spin_lock(&fs_info->fs_roots_radix_lock);
  1385. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1386. (unsigned long)root_id);
  1387. spin_unlock(&fs_info->fs_roots_radix_lock);
  1388. return root;
  1389. }
  1390. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1391. struct btrfs_root *root)
  1392. {
  1393. int ret;
  1394. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1395. if (ret)
  1396. return ret;
  1397. spin_lock(&fs_info->fs_roots_radix_lock);
  1398. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1399. (unsigned long)root->root_key.objectid,
  1400. root);
  1401. if (ret == 0)
  1402. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1403. spin_unlock(&fs_info->fs_roots_radix_lock);
  1404. radix_tree_preload_end();
  1405. return ret;
  1406. }
  1407. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1408. struct btrfs_key *location,
  1409. bool check_ref)
  1410. {
  1411. struct btrfs_root *root;
  1412. struct btrfs_path *path;
  1413. struct btrfs_key key;
  1414. int ret;
  1415. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1416. return fs_info->tree_root;
  1417. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1418. return fs_info->extent_root;
  1419. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1420. return fs_info->chunk_root;
  1421. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1422. return fs_info->dev_root;
  1423. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1424. return fs_info->csum_root;
  1425. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1426. return fs_info->quota_root ? fs_info->quota_root :
  1427. ERR_PTR(-ENOENT);
  1428. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1429. return fs_info->uuid_root ? fs_info->uuid_root :
  1430. ERR_PTR(-ENOENT);
  1431. again:
  1432. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1433. if (root) {
  1434. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1435. return ERR_PTR(-ENOENT);
  1436. return root;
  1437. }
  1438. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1439. if (IS_ERR(root))
  1440. return root;
  1441. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1442. ret = -ENOENT;
  1443. goto fail;
  1444. }
  1445. ret = btrfs_init_fs_root(root);
  1446. if (ret)
  1447. goto fail;
  1448. path = btrfs_alloc_path();
  1449. if (!path) {
  1450. ret = -ENOMEM;
  1451. goto fail;
  1452. }
  1453. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1454. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1455. key.offset = location->objectid;
  1456. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1457. btrfs_free_path(path);
  1458. if (ret < 0)
  1459. goto fail;
  1460. if (ret == 0)
  1461. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1462. ret = btrfs_insert_fs_root(fs_info, root);
  1463. if (ret) {
  1464. if (ret == -EEXIST) {
  1465. free_fs_root(root);
  1466. goto again;
  1467. }
  1468. goto fail;
  1469. }
  1470. return root;
  1471. fail:
  1472. free_fs_root(root);
  1473. return ERR_PTR(ret);
  1474. }
  1475. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1476. {
  1477. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1478. int ret = 0;
  1479. struct btrfs_device *device;
  1480. struct backing_dev_info *bdi;
  1481. rcu_read_lock();
  1482. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1483. if (!device->bdev)
  1484. continue;
  1485. bdi = blk_get_backing_dev_info(device->bdev);
  1486. if (bdi_congested(bdi, bdi_bits)) {
  1487. ret = 1;
  1488. break;
  1489. }
  1490. }
  1491. rcu_read_unlock();
  1492. return ret;
  1493. }
  1494. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1495. {
  1496. int err;
  1497. err = bdi_setup_and_register(bdi, "btrfs");
  1498. if (err)
  1499. return err;
  1500. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
  1501. bdi->congested_fn = btrfs_congested_fn;
  1502. bdi->congested_data = info;
  1503. return 0;
  1504. }
  1505. /*
  1506. * called by the kthread helper functions to finally call the bio end_io
  1507. * functions. This is where read checksum verification actually happens
  1508. */
  1509. static void end_workqueue_fn(struct btrfs_work *work)
  1510. {
  1511. struct bio *bio;
  1512. struct btrfs_end_io_wq *end_io_wq;
  1513. int error;
  1514. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1515. bio = end_io_wq->bio;
  1516. error = end_io_wq->error;
  1517. bio->bi_private = end_io_wq->private;
  1518. bio->bi_end_io = end_io_wq->end_io;
  1519. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1520. bio_endio_nodec(bio, error);
  1521. }
  1522. static int cleaner_kthread(void *arg)
  1523. {
  1524. struct btrfs_root *root = arg;
  1525. int again;
  1526. do {
  1527. again = 0;
  1528. /* Make the cleaner go to sleep early. */
  1529. if (btrfs_need_cleaner_sleep(root))
  1530. goto sleep;
  1531. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1532. goto sleep;
  1533. /*
  1534. * Avoid the problem that we change the status of the fs
  1535. * during the above check and trylock.
  1536. */
  1537. if (btrfs_need_cleaner_sleep(root)) {
  1538. mutex_unlock(&root->fs_info->cleaner_mutex);
  1539. goto sleep;
  1540. }
  1541. btrfs_run_delayed_iputs(root);
  1542. btrfs_delete_unused_bgs(root->fs_info);
  1543. again = btrfs_clean_one_deleted_snapshot(root);
  1544. mutex_unlock(&root->fs_info->cleaner_mutex);
  1545. /*
  1546. * The defragger has dealt with the R/O remount and umount,
  1547. * needn't do anything special here.
  1548. */
  1549. btrfs_run_defrag_inodes(root->fs_info);
  1550. sleep:
  1551. if (!try_to_freeze() && !again) {
  1552. set_current_state(TASK_INTERRUPTIBLE);
  1553. if (!kthread_should_stop())
  1554. schedule();
  1555. __set_current_state(TASK_RUNNING);
  1556. }
  1557. } while (!kthread_should_stop());
  1558. return 0;
  1559. }
  1560. static int transaction_kthread(void *arg)
  1561. {
  1562. struct btrfs_root *root = arg;
  1563. struct btrfs_trans_handle *trans;
  1564. struct btrfs_transaction *cur;
  1565. u64 transid;
  1566. unsigned long now;
  1567. unsigned long delay;
  1568. bool cannot_commit;
  1569. do {
  1570. cannot_commit = false;
  1571. delay = HZ * root->fs_info->commit_interval;
  1572. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1573. spin_lock(&root->fs_info->trans_lock);
  1574. cur = root->fs_info->running_transaction;
  1575. if (!cur) {
  1576. spin_unlock(&root->fs_info->trans_lock);
  1577. goto sleep;
  1578. }
  1579. now = get_seconds();
  1580. if (cur->state < TRANS_STATE_BLOCKED &&
  1581. (now < cur->start_time ||
  1582. now - cur->start_time < root->fs_info->commit_interval)) {
  1583. spin_unlock(&root->fs_info->trans_lock);
  1584. delay = HZ * 5;
  1585. goto sleep;
  1586. }
  1587. transid = cur->transid;
  1588. spin_unlock(&root->fs_info->trans_lock);
  1589. /* If the file system is aborted, this will always fail. */
  1590. trans = btrfs_attach_transaction(root);
  1591. if (IS_ERR(trans)) {
  1592. if (PTR_ERR(trans) != -ENOENT)
  1593. cannot_commit = true;
  1594. goto sleep;
  1595. }
  1596. if (transid == trans->transid) {
  1597. btrfs_commit_transaction(trans, root);
  1598. } else {
  1599. btrfs_end_transaction(trans, root);
  1600. }
  1601. sleep:
  1602. wake_up_process(root->fs_info->cleaner_kthread);
  1603. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1604. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1605. &root->fs_info->fs_state)))
  1606. btrfs_cleanup_transaction(root);
  1607. if (!try_to_freeze()) {
  1608. set_current_state(TASK_INTERRUPTIBLE);
  1609. if (!kthread_should_stop() &&
  1610. (!btrfs_transaction_blocked(root->fs_info) ||
  1611. cannot_commit))
  1612. schedule_timeout(delay);
  1613. __set_current_state(TASK_RUNNING);
  1614. }
  1615. } while (!kthread_should_stop());
  1616. return 0;
  1617. }
  1618. /*
  1619. * this will find the highest generation in the array of
  1620. * root backups. The index of the highest array is returned,
  1621. * or -1 if we can't find anything.
  1622. *
  1623. * We check to make sure the array is valid by comparing the
  1624. * generation of the latest root in the array with the generation
  1625. * in the super block. If they don't match we pitch it.
  1626. */
  1627. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1628. {
  1629. u64 cur;
  1630. int newest_index = -1;
  1631. struct btrfs_root_backup *root_backup;
  1632. int i;
  1633. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1634. root_backup = info->super_copy->super_roots + i;
  1635. cur = btrfs_backup_tree_root_gen(root_backup);
  1636. if (cur == newest_gen)
  1637. newest_index = i;
  1638. }
  1639. /* check to see if we actually wrapped around */
  1640. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1641. root_backup = info->super_copy->super_roots;
  1642. cur = btrfs_backup_tree_root_gen(root_backup);
  1643. if (cur == newest_gen)
  1644. newest_index = 0;
  1645. }
  1646. return newest_index;
  1647. }
  1648. /*
  1649. * find the oldest backup so we know where to store new entries
  1650. * in the backup array. This will set the backup_root_index
  1651. * field in the fs_info struct
  1652. */
  1653. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1654. u64 newest_gen)
  1655. {
  1656. int newest_index = -1;
  1657. newest_index = find_newest_super_backup(info, newest_gen);
  1658. /* if there was garbage in there, just move along */
  1659. if (newest_index == -1) {
  1660. info->backup_root_index = 0;
  1661. } else {
  1662. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1663. }
  1664. }
  1665. /*
  1666. * copy all the root pointers into the super backup array.
  1667. * this will bump the backup pointer by one when it is
  1668. * done
  1669. */
  1670. static void backup_super_roots(struct btrfs_fs_info *info)
  1671. {
  1672. int next_backup;
  1673. struct btrfs_root_backup *root_backup;
  1674. int last_backup;
  1675. next_backup = info->backup_root_index;
  1676. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1677. BTRFS_NUM_BACKUP_ROOTS;
  1678. /*
  1679. * just overwrite the last backup if we're at the same generation
  1680. * this happens only at umount
  1681. */
  1682. root_backup = info->super_for_commit->super_roots + last_backup;
  1683. if (btrfs_backup_tree_root_gen(root_backup) ==
  1684. btrfs_header_generation(info->tree_root->node))
  1685. next_backup = last_backup;
  1686. root_backup = info->super_for_commit->super_roots + next_backup;
  1687. /*
  1688. * make sure all of our padding and empty slots get zero filled
  1689. * regardless of which ones we use today
  1690. */
  1691. memset(root_backup, 0, sizeof(*root_backup));
  1692. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1693. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1694. btrfs_set_backup_tree_root_gen(root_backup,
  1695. btrfs_header_generation(info->tree_root->node));
  1696. btrfs_set_backup_tree_root_level(root_backup,
  1697. btrfs_header_level(info->tree_root->node));
  1698. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1699. btrfs_set_backup_chunk_root_gen(root_backup,
  1700. btrfs_header_generation(info->chunk_root->node));
  1701. btrfs_set_backup_chunk_root_level(root_backup,
  1702. btrfs_header_level(info->chunk_root->node));
  1703. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1704. btrfs_set_backup_extent_root_gen(root_backup,
  1705. btrfs_header_generation(info->extent_root->node));
  1706. btrfs_set_backup_extent_root_level(root_backup,
  1707. btrfs_header_level(info->extent_root->node));
  1708. /*
  1709. * we might commit during log recovery, which happens before we set
  1710. * the fs_root. Make sure it is valid before we fill it in.
  1711. */
  1712. if (info->fs_root && info->fs_root->node) {
  1713. btrfs_set_backup_fs_root(root_backup,
  1714. info->fs_root->node->start);
  1715. btrfs_set_backup_fs_root_gen(root_backup,
  1716. btrfs_header_generation(info->fs_root->node));
  1717. btrfs_set_backup_fs_root_level(root_backup,
  1718. btrfs_header_level(info->fs_root->node));
  1719. }
  1720. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1721. btrfs_set_backup_dev_root_gen(root_backup,
  1722. btrfs_header_generation(info->dev_root->node));
  1723. btrfs_set_backup_dev_root_level(root_backup,
  1724. btrfs_header_level(info->dev_root->node));
  1725. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1726. btrfs_set_backup_csum_root_gen(root_backup,
  1727. btrfs_header_generation(info->csum_root->node));
  1728. btrfs_set_backup_csum_root_level(root_backup,
  1729. btrfs_header_level(info->csum_root->node));
  1730. btrfs_set_backup_total_bytes(root_backup,
  1731. btrfs_super_total_bytes(info->super_copy));
  1732. btrfs_set_backup_bytes_used(root_backup,
  1733. btrfs_super_bytes_used(info->super_copy));
  1734. btrfs_set_backup_num_devices(root_backup,
  1735. btrfs_super_num_devices(info->super_copy));
  1736. /*
  1737. * if we don't copy this out to the super_copy, it won't get remembered
  1738. * for the next commit
  1739. */
  1740. memcpy(&info->super_copy->super_roots,
  1741. &info->super_for_commit->super_roots,
  1742. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1743. }
  1744. /*
  1745. * this copies info out of the root backup array and back into
  1746. * the in-memory super block. It is meant to help iterate through
  1747. * the array, so you send it the number of backups you've already
  1748. * tried and the last backup index you used.
  1749. *
  1750. * this returns -1 when it has tried all the backups
  1751. */
  1752. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1753. struct btrfs_super_block *super,
  1754. int *num_backups_tried, int *backup_index)
  1755. {
  1756. struct btrfs_root_backup *root_backup;
  1757. int newest = *backup_index;
  1758. if (*num_backups_tried == 0) {
  1759. u64 gen = btrfs_super_generation(super);
  1760. newest = find_newest_super_backup(info, gen);
  1761. if (newest == -1)
  1762. return -1;
  1763. *backup_index = newest;
  1764. *num_backups_tried = 1;
  1765. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1766. /* we've tried all the backups, all done */
  1767. return -1;
  1768. } else {
  1769. /* jump to the next oldest backup */
  1770. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1771. BTRFS_NUM_BACKUP_ROOTS;
  1772. *backup_index = newest;
  1773. *num_backups_tried += 1;
  1774. }
  1775. root_backup = super->super_roots + newest;
  1776. btrfs_set_super_generation(super,
  1777. btrfs_backup_tree_root_gen(root_backup));
  1778. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1779. btrfs_set_super_root_level(super,
  1780. btrfs_backup_tree_root_level(root_backup));
  1781. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1782. /*
  1783. * fixme: the total bytes and num_devices need to match or we should
  1784. * need a fsck
  1785. */
  1786. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1787. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1788. return 0;
  1789. }
  1790. /* helper to cleanup workers */
  1791. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1792. {
  1793. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1794. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1795. btrfs_destroy_workqueue(fs_info->workers);
  1796. btrfs_destroy_workqueue(fs_info->endio_workers);
  1797. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1798. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1799. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1800. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1801. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1802. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1803. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1804. btrfs_destroy_workqueue(fs_info->submit_workers);
  1805. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1806. btrfs_destroy_workqueue(fs_info->caching_workers);
  1807. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1808. btrfs_destroy_workqueue(fs_info->flush_workers);
  1809. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1810. btrfs_destroy_workqueue(fs_info->extent_workers);
  1811. }
  1812. static void free_root_extent_buffers(struct btrfs_root *root)
  1813. {
  1814. if (root) {
  1815. free_extent_buffer(root->node);
  1816. free_extent_buffer(root->commit_root);
  1817. root->node = NULL;
  1818. root->commit_root = NULL;
  1819. }
  1820. }
  1821. /* helper to cleanup tree roots */
  1822. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1823. {
  1824. free_root_extent_buffers(info->tree_root);
  1825. free_root_extent_buffers(info->dev_root);
  1826. free_root_extent_buffers(info->extent_root);
  1827. free_root_extent_buffers(info->csum_root);
  1828. free_root_extent_buffers(info->quota_root);
  1829. free_root_extent_buffers(info->uuid_root);
  1830. if (chunk_root)
  1831. free_root_extent_buffers(info->chunk_root);
  1832. }
  1833. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1834. {
  1835. int ret;
  1836. struct btrfs_root *gang[8];
  1837. int i;
  1838. while (!list_empty(&fs_info->dead_roots)) {
  1839. gang[0] = list_entry(fs_info->dead_roots.next,
  1840. struct btrfs_root, root_list);
  1841. list_del(&gang[0]->root_list);
  1842. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1843. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1844. } else {
  1845. free_extent_buffer(gang[0]->node);
  1846. free_extent_buffer(gang[0]->commit_root);
  1847. btrfs_put_fs_root(gang[0]);
  1848. }
  1849. }
  1850. while (1) {
  1851. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1852. (void **)gang, 0,
  1853. ARRAY_SIZE(gang));
  1854. if (!ret)
  1855. break;
  1856. for (i = 0; i < ret; i++)
  1857. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1858. }
  1859. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1860. btrfs_free_log_root_tree(NULL, fs_info);
  1861. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1862. fs_info->pinned_extents);
  1863. }
  1864. }
  1865. int open_ctree(struct super_block *sb,
  1866. struct btrfs_fs_devices *fs_devices,
  1867. char *options)
  1868. {
  1869. u32 sectorsize;
  1870. u32 nodesize;
  1871. u32 stripesize;
  1872. u64 generation;
  1873. u64 features;
  1874. struct btrfs_key location;
  1875. struct buffer_head *bh;
  1876. struct btrfs_super_block *disk_super;
  1877. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1878. struct btrfs_root *tree_root;
  1879. struct btrfs_root *extent_root;
  1880. struct btrfs_root *csum_root;
  1881. struct btrfs_root *chunk_root;
  1882. struct btrfs_root *dev_root;
  1883. struct btrfs_root *quota_root;
  1884. struct btrfs_root *uuid_root;
  1885. struct btrfs_root *log_tree_root;
  1886. int ret;
  1887. int err = -EINVAL;
  1888. int num_backups_tried = 0;
  1889. int backup_index = 0;
  1890. int max_active;
  1891. int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1892. bool create_uuid_tree;
  1893. bool check_uuid_tree;
  1894. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1895. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1896. if (!tree_root || !chunk_root) {
  1897. err = -ENOMEM;
  1898. goto fail;
  1899. }
  1900. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1901. if (ret) {
  1902. err = ret;
  1903. goto fail;
  1904. }
  1905. ret = setup_bdi(fs_info, &fs_info->bdi);
  1906. if (ret) {
  1907. err = ret;
  1908. goto fail_srcu;
  1909. }
  1910. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  1911. if (ret) {
  1912. err = ret;
  1913. goto fail_bdi;
  1914. }
  1915. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1916. (1 + ilog2(nr_cpu_ids));
  1917. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  1918. if (ret) {
  1919. err = ret;
  1920. goto fail_dirty_metadata_bytes;
  1921. }
  1922. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  1923. if (ret) {
  1924. err = ret;
  1925. goto fail_delalloc_bytes;
  1926. }
  1927. fs_info->btree_inode = new_inode(sb);
  1928. if (!fs_info->btree_inode) {
  1929. err = -ENOMEM;
  1930. goto fail_bio_counter;
  1931. }
  1932. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1933. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1934. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  1935. INIT_LIST_HEAD(&fs_info->trans_list);
  1936. INIT_LIST_HEAD(&fs_info->dead_roots);
  1937. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1938. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  1939. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1940. spin_lock_init(&fs_info->delalloc_root_lock);
  1941. spin_lock_init(&fs_info->trans_lock);
  1942. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1943. spin_lock_init(&fs_info->delayed_iput_lock);
  1944. spin_lock_init(&fs_info->defrag_inodes_lock);
  1945. spin_lock_init(&fs_info->free_chunk_lock);
  1946. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1947. spin_lock_init(&fs_info->super_lock);
  1948. spin_lock_init(&fs_info->qgroup_op_lock);
  1949. spin_lock_init(&fs_info->buffer_lock);
  1950. spin_lock_init(&fs_info->unused_bgs_lock);
  1951. mutex_init(&fs_info->unused_bg_unpin_mutex);
  1952. rwlock_init(&fs_info->tree_mod_log_lock);
  1953. mutex_init(&fs_info->reloc_mutex);
  1954. mutex_init(&fs_info->delalloc_root_mutex);
  1955. seqlock_init(&fs_info->profiles_lock);
  1956. init_completion(&fs_info->kobj_unregister);
  1957. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1958. INIT_LIST_HEAD(&fs_info->space_info);
  1959. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1960. INIT_LIST_HEAD(&fs_info->unused_bgs);
  1961. btrfs_mapping_init(&fs_info->mapping_tree);
  1962. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1963. BTRFS_BLOCK_RSV_GLOBAL);
  1964. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1965. BTRFS_BLOCK_RSV_DELALLOC);
  1966. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1967. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1968. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1969. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1970. BTRFS_BLOCK_RSV_DELOPS);
  1971. atomic_set(&fs_info->nr_async_submits, 0);
  1972. atomic_set(&fs_info->async_delalloc_pages, 0);
  1973. atomic_set(&fs_info->async_submit_draining, 0);
  1974. atomic_set(&fs_info->nr_async_bios, 0);
  1975. atomic_set(&fs_info->defrag_running, 0);
  1976. atomic_set(&fs_info->qgroup_op_seq, 0);
  1977. atomic64_set(&fs_info->tree_mod_seq, 0);
  1978. fs_info->sb = sb;
  1979. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  1980. fs_info->metadata_ratio = 0;
  1981. fs_info->defrag_inodes = RB_ROOT;
  1982. fs_info->free_chunk_space = 0;
  1983. fs_info->tree_mod_log = RB_ROOT;
  1984. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  1985. fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
  1986. /* readahead state */
  1987. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1988. spin_lock_init(&fs_info->reada_lock);
  1989. fs_info->thread_pool_size = min_t(unsigned long,
  1990. num_online_cpus() + 2, 8);
  1991. INIT_LIST_HEAD(&fs_info->ordered_roots);
  1992. spin_lock_init(&fs_info->ordered_root_lock);
  1993. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1994. GFP_NOFS);
  1995. if (!fs_info->delayed_root) {
  1996. err = -ENOMEM;
  1997. goto fail_iput;
  1998. }
  1999. btrfs_init_delayed_root(fs_info->delayed_root);
  2000. mutex_init(&fs_info->scrub_lock);
  2001. atomic_set(&fs_info->scrubs_running, 0);
  2002. atomic_set(&fs_info->scrub_pause_req, 0);
  2003. atomic_set(&fs_info->scrubs_paused, 0);
  2004. atomic_set(&fs_info->scrub_cancel_req, 0);
  2005. init_waitqueue_head(&fs_info->replace_wait);
  2006. init_waitqueue_head(&fs_info->scrub_pause_wait);
  2007. fs_info->scrub_workers_refcnt = 0;
  2008. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2009. fs_info->check_integrity_print_mask = 0;
  2010. #endif
  2011. spin_lock_init(&fs_info->balance_lock);
  2012. mutex_init(&fs_info->balance_mutex);
  2013. atomic_set(&fs_info->balance_running, 0);
  2014. atomic_set(&fs_info->balance_pause_req, 0);
  2015. atomic_set(&fs_info->balance_cancel_req, 0);
  2016. fs_info->balance_ctl = NULL;
  2017. init_waitqueue_head(&fs_info->balance_wait_q);
  2018. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2019. sb->s_blocksize = 4096;
  2020. sb->s_blocksize_bits = blksize_bits(4096);
  2021. sb->s_bdi = &fs_info->bdi;
  2022. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  2023. set_nlink(fs_info->btree_inode, 1);
  2024. /*
  2025. * we set the i_size on the btree inode to the max possible int.
  2026. * the real end of the address space is determined by all of
  2027. * the devices in the system
  2028. */
  2029. fs_info->btree_inode->i_size = OFFSET_MAX;
  2030. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  2031. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  2032. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  2033. fs_info->btree_inode->i_mapping);
  2034. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  2035. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  2036. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  2037. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  2038. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  2039. sizeof(struct btrfs_key));
  2040. set_bit(BTRFS_INODE_DUMMY,
  2041. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  2042. btrfs_insert_inode_hash(fs_info->btree_inode);
  2043. spin_lock_init(&fs_info->block_group_cache_lock);
  2044. fs_info->block_group_cache_tree = RB_ROOT;
  2045. fs_info->first_logical_byte = (u64)-1;
  2046. extent_io_tree_init(&fs_info->freed_extents[0],
  2047. fs_info->btree_inode->i_mapping);
  2048. extent_io_tree_init(&fs_info->freed_extents[1],
  2049. fs_info->btree_inode->i_mapping);
  2050. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2051. fs_info->do_barriers = 1;
  2052. mutex_init(&fs_info->ordered_operations_mutex);
  2053. mutex_init(&fs_info->ordered_extent_flush_mutex);
  2054. mutex_init(&fs_info->tree_log_mutex);
  2055. mutex_init(&fs_info->chunk_mutex);
  2056. mutex_init(&fs_info->transaction_kthread_mutex);
  2057. mutex_init(&fs_info->cleaner_mutex);
  2058. mutex_init(&fs_info->volume_mutex);
  2059. init_rwsem(&fs_info->commit_root_sem);
  2060. init_rwsem(&fs_info->cleanup_work_sem);
  2061. init_rwsem(&fs_info->subvol_sem);
  2062. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2063. fs_info->dev_replace.lock_owner = 0;
  2064. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2065. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2066. mutex_init(&fs_info->dev_replace.lock_management_lock);
  2067. mutex_init(&fs_info->dev_replace.lock);
  2068. spin_lock_init(&fs_info->qgroup_lock);
  2069. mutex_init(&fs_info->qgroup_ioctl_lock);
  2070. fs_info->qgroup_tree = RB_ROOT;
  2071. fs_info->qgroup_op_tree = RB_ROOT;
  2072. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2073. fs_info->qgroup_seq = 1;
  2074. fs_info->quota_enabled = 0;
  2075. fs_info->pending_quota_state = 0;
  2076. fs_info->qgroup_ulist = NULL;
  2077. mutex_init(&fs_info->qgroup_rescan_lock);
  2078. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2079. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2080. init_waitqueue_head(&fs_info->transaction_throttle);
  2081. init_waitqueue_head(&fs_info->transaction_wait);
  2082. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2083. init_waitqueue_head(&fs_info->async_submit_wait);
  2084. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2085. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2086. if (ret) {
  2087. err = ret;
  2088. goto fail_alloc;
  2089. }
  2090. __setup_root(4096, 4096, 4096, tree_root,
  2091. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2092. invalidate_bdev(fs_devices->latest_bdev);
  2093. /*
  2094. * Read super block and check the signature bytes only
  2095. */
  2096. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2097. if (!bh) {
  2098. err = -EINVAL;
  2099. goto fail_alloc;
  2100. }
  2101. /*
  2102. * We want to check superblock checksum, the type is stored inside.
  2103. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2104. */
  2105. if (btrfs_check_super_csum(bh->b_data)) {
  2106. printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
  2107. err = -EINVAL;
  2108. goto fail_alloc;
  2109. }
  2110. /*
  2111. * super_copy is zeroed at allocation time and we never touch the
  2112. * following bytes up to INFO_SIZE, the checksum is calculated from
  2113. * the whole block of INFO_SIZE
  2114. */
  2115. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2116. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2117. sizeof(*fs_info->super_for_commit));
  2118. brelse(bh);
  2119. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2120. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2121. if (ret) {
  2122. printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
  2123. err = -EINVAL;
  2124. goto fail_alloc;
  2125. }
  2126. disk_super = fs_info->super_copy;
  2127. if (!btrfs_super_root(disk_super))
  2128. goto fail_alloc;
  2129. /* check FS state, whether FS is broken. */
  2130. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2131. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2132. /*
  2133. * run through our array of backup supers and setup
  2134. * our ring pointer to the oldest one
  2135. */
  2136. generation = btrfs_super_generation(disk_super);
  2137. find_oldest_super_backup(fs_info, generation);
  2138. /*
  2139. * In the long term, we'll store the compression type in the super
  2140. * block, and it'll be used for per file compression control.
  2141. */
  2142. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2143. ret = btrfs_parse_options(tree_root, options);
  2144. if (ret) {
  2145. err = ret;
  2146. goto fail_alloc;
  2147. }
  2148. features = btrfs_super_incompat_flags(disk_super) &
  2149. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2150. if (features) {
  2151. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2152. "unsupported optional features (%Lx).\n",
  2153. features);
  2154. err = -EINVAL;
  2155. goto fail_alloc;
  2156. }
  2157. /*
  2158. * Leafsize and nodesize were always equal, this is only a sanity check.
  2159. */
  2160. if (le32_to_cpu(disk_super->__unused_leafsize) !=
  2161. btrfs_super_nodesize(disk_super)) {
  2162. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2163. "blocksizes don't match. node %d leaf %d\n",
  2164. btrfs_super_nodesize(disk_super),
  2165. le32_to_cpu(disk_super->__unused_leafsize));
  2166. err = -EINVAL;
  2167. goto fail_alloc;
  2168. }
  2169. if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2170. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2171. "blocksize (%d) was too large\n",
  2172. btrfs_super_nodesize(disk_super));
  2173. err = -EINVAL;
  2174. goto fail_alloc;
  2175. }
  2176. features = btrfs_super_incompat_flags(disk_super);
  2177. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2178. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2179. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2180. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2181. printk(KERN_INFO "BTRFS: has skinny extents\n");
  2182. /*
  2183. * flag our filesystem as having big metadata blocks if
  2184. * they are bigger than the page size
  2185. */
  2186. if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
  2187. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2188. printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
  2189. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2190. }
  2191. nodesize = btrfs_super_nodesize(disk_super);
  2192. sectorsize = btrfs_super_sectorsize(disk_super);
  2193. stripesize = btrfs_super_stripesize(disk_super);
  2194. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2195. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2196. /*
  2197. * mixed block groups end up with duplicate but slightly offset
  2198. * extent buffers for the same range. It leads to corruptions
  2199. */
  2200. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2201. (sectorsize != nodesize)) {
  2202. printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
  2203. "are not allowed for mixed block groups on %s\n",
  2204. sb->s_id);
  2205. goto fail_alloc;
  2206. }
  2207. /*
  2208. * Needn't use the lock because there is no other task which will
  2209. * update the flag.
  2210. */
  2211. btrfs_set_super_incompat_flags(disk_super, features);
  2212. features = btrfs_super_compat_ro_flags(disk_super) &
  2213. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2214. if (!(sb->s_flags & MS_RDONLY) && features) {
  2215. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2216. "unsupported option features (%Lx).\n",
  2217. features);
  2218. err = -EINVAL;
  2219. goto fail_alloc;
  2220. }
  2221. max_active = fs_info->thread_pool_size;
  2222. fs_info->workers =
  2223. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  2224. max_active, 16);
  2225. fs_info->delalloc_workers =
  2226. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  2227. fs_info->flush_workers =
  2228. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  2229. fs_info->caching_workers =
  2230. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  2231. /*
  2232. * a higher idle thresh on the submit workers makes it much more
  2233. * likely that bios will be send down in a sane order to the
  2234. * devices
  2235. */
  2236. fs_info->submit_workers =
  2237. btrfs_alloc_workqueue("submit", flags,
  2238. min_t(u64, fs_devices->num_devices,
  2239. max_active), 64);
  2240. fs_info->fixup_workers =
  2241. btrfs_alloc_workqueue("fixup", flags, 1, 0);
  2242. /*
  2243. * endios are largely parallel and should have a very
  2244. * low idle thresh
  2245. */
  2246. fs_info->endio_workers =
  2247. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  2248. fs_info->endio_meta_workers =
  2249. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  2250. fs_info->endio_meta_write_workers =
  2251. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  2252. fs_info->endio_raid56_workers =
  2253. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  2254. fs_info->endio_repair_workers =
  2255. btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
  2256. fs_info->rmw_workers =
  2257. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  2258. fs_info->endio_write_workers =
  2259. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  2260. fs_info->endio_freespace_worker =
  2261. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  2262. fs_info->delayed_workers =
  2263. btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
  2264. fs_info->readahead_workers =
  2265. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  2266. fs_info->qgroup_rescan_workers =
  2267. btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
  2268. fs_info->extent_workers =
  2269. btrfs_alloc_workqueue("extent-refs", flags,
  2270. min_t(u64, fs_devices->num_devices,
  2271. max_active), 8);
  2272. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2273. fs_info->submit_workers && fs_info->flush_workers &&
  2274. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2275. fs_info->endio_meta_write_workers &&
  2276. fs_info->endio_repair_workers &&
  2277. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2278. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2279. fs_info->caching_workers && fs_info->readahead_workers &&
  2280. fs_info->fixup_workers && fs_info->delayed_workers &&
  2281. fs_info->extent_workers &&
  2282. fs_info->qgroup_rescan_workers)) {
  2283. err = -ENOMEM;
  2284. goto fail_sb_buffer;
  2285. }
  2286. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2287. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2288. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2289. tree_root->nodesize = nodesize;
  2290. tree_root->sectorsize = sectorsize;
  2291. tree_root->stripesize = stripesize;
  2292. sb->s_blocksize = sectorsize;
  2293. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2294. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2295. printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
  2296. goto fail_sb_buffer;
  2297. }
  2298. if (sectorsize != PAGE_SIZE) {
  2299. printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
  2300. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2301. goto fail_sb_buffer;
  2302. }
  2303. mutex_lock(&fs_info->chunk_mutex);
  2304. ret = btrfs_read_sys_array(tree_root);
  2305. mutex_unlock(&fs_info->chunk_mutex);
  2306. if (ret) {
  2307. printk(KERN_ERR "BTRFS: failed to read the system "
  2308. "array on %s\n", sb->s_id);
  2309. goto fail_sb_buffer;
  2310. }
  2311. generation = btrfs_super_chunk_root_generation(disk_super);
  2312. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2313. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2314. chunk_root->node = read_tree_block(chunk_root,
  2315. btrfs_super_chunk_root(disk_super),
  2316. generation);
  2317. if (!chunk_root->node ||
  2318. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2319. printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
  2320. sb->s_id);
  2321. goto fail_tree_roots;
  2322. }
  2323. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2324. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2325. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2326. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2327. ret = btrfs_read_chunk_tree(chunk_root);
  2328. if (ret) {
  2329. printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
  2330. sb->s_id);
  2331. goto fail_tree_roots;
  2332. }
  2333. /*
  2334. * keep the device that is marked to be the target device for the
  2335. * dev_replace procedure
  2336. */
  2337. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2338. if (!fs_devices->latest_bdev) {
  2339. printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
  2340. sb->s_id);
  2341. goto fail_tree_roots;
  2342. }
  2343. retry_root_backup:
  2344. generation = btrfs_super_generation(disk_super);
  2345. tree_root->node = read_tree_block(tree_root,
  2346. btrfs_super_root(disk_super),
  2347. generation);
  2348. if (!tree_root->node ||
  2349. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2350. printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
  2351. sb->s_id);
  2352. goto recovery_tree_root;
  2353. }
  2354. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2355. tree_root->commit_root = btrfs_root_node(tree_root);
  2356. btrfs_set_root_refs(&tree_root->root_item, 1);
  2357. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2358. location.type = BTRFS_ROOT_ITEM_KEY;
  2359. location.offset = 0;
  2360. extent_root = btrfs_read_tree_root(tree_root, &location);
  2361. if (IS_ERR(extent_root)) {
  2362. ret = PTR_ERR(extent_root);
  2363. goto recovery_tree_root;
  2364. }
  2365. set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
  2366. fs_info->extent_root = extent_root;
  2367. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2368. dev_root = btrfs_read_tree_root(tree_root, &location);
  2369. if (IS_ERR(dev_root)) {
  2370. ret = PTR_ERR(dev_root);
  2371. goto recovery_tree_root;
  2372. }
  2373. set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
  2374. fs_info->dev_root = dev_root;
  2375. btrfs_init_devices_late(fs_info);
  2376. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2377. csum_root = btrfs_read_tree_root(tree_root, &location);
  2378. if (IS_ERR(csum_root)) {
  2379. ret = PTR_ERR(csum_root);
  2380. goto recovery_tree_root;
  2381. }
  2382. set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
  2383. fs_info->csum_root = csum_root;
  2384. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2385. quota_root = btrfs_read_tree_root(tree_root, &location);
  2386. if (!IS_ERR(quota_root)) {
  2387. set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
  2388. fs_info->quota_enabled = 1;
  2389. fs_info->pending_quota_state = 1;
  2390. fs_info->quota_root = quota_root;
  2391. }
  2392. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2393. uuid_root = btrfs_read_tree_root(tree_root, &location);
  2394. if (IS_ERR(uuid_root)) {
  2395. ret = PTR_ERR(uuid_root);
  2396. if (ret != -ENOENT)
  2397. goto recovery_tree_root;
  2398. create_uuid_tree = true;
  2399. check_uuid_tree = false;
  2400. } else {
  2401. set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
  2402. fs_info->uuid_root = uuid_root;
  2403. create_uuid_tree = false;
  2404. check_uuid_tree =
  2405. generation != btrfs_super_uuid_tree_generation(disk_super);
  2406. }
  2407. fs_info->generation = generation;
  2408. fs_info->last_trans_committed = generation;
  2409. ret = btrfs_recover_balance(fs_info);
  2410. if (ret) {
  2411. printk(KERN_ERR "BTRFS: failed to recover balance\n");
  2412. goto fail_block_groups;
  2413. }
  2414. ret = btrfs_init_dev_stats(fs_info);
  2415. if (ret) {
  2416. printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
  2417. ret);
  2418. goto fail_block_groups;
  2419. }
  2420. ret = btrfs_init_dev_replace(fs_info);
  2421. if (ret) {
  2422. pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
  2423. goto fail_block_groups;
  2424. }
  2425. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2426. ret = btrfs_sysfs_add_one(fs_info);
  2427. if (ret) {
  2428. pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
  2429. goto fail_block_groups;
  2430. }
  2431. ret = btrfs_init_space_info(fs_info);
  2432. if (ret) {
  2433. printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
  2434. goto fail_sysfs;
  2435. }
  2436. ret = btrfs_read_block_groups(extent_root);
  2437. if (ret) {
  2438. printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
  2439. goto fail_sysfs;
  2440. }
  2441. fs_info->num_tolerated_disk_barrier_failures =
  2442. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2443. if (fs_info->fs_devices->missing_devices >
  2444. fs_info->num_tolerated_disk_barrier_failures &&
  2445. !(sb->s_flags & MS_RDONLY)) {
  2446. printk(KERN_WARNING "BTRFS: "
  2447. "too many missing devices, writeable mount is not allowed\n");
  2448. goto fail_sysfs;
  2449. }
  2450. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2451. "btrfs-cleaner");
  2452. if (IS_ERR(fs_info->cleaner_kthread))
  2453. goto fail_sysfs;
  2454. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2455. tree_root,
  2456. "btrfs-transaction");
  2457. if (IS_ERR(fs_info->transaction_kthread))
  2458. goto fail_cleaner;
  2459. if (!btrfs_test_opt(tree_root, SSD) &&
  2460. !btrfs_test_opt(tree_root, NOSSD) &&
  2461. !fs_info->fs_devices->rotating) {
  2462. printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
  2463. "mode\n");
  2464. btrfs_set_opt(fs_info->mount_opt, SSD);
  2465. }
  2466. /*
  2467. * Mount does not set all options immediatelly, we can do it now and do
  2468. * not have to wait for transaction commit
  2469. */
  2470. btrfs_apply_pending_changes(fs_info);
  2471. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2472. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2473. ret = btrfsic_mount(tree_root, fs_devices,
  2474. btrfs_test_opt(tree_root,
  2475. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2476. 1 : 0,
  2477. fs_info->check_integrity_print_mask);
  2478. if (ret)
  2479. printk(KERN_WARNING "BTRFS: failed to initialize"
  2480. " integrity check module %s\n", sb->s_id);
  2481. }
  2482. #endif
  2483. ret = btrfs_read_qgroup_config(fs_info);
  2484. if (ret)
  2485. goto fail_trans_kthread;
  2486. /* do not make disk changes in broken FS */
  2487. if (btrfs_super_log_root(disk_super) != 0) {
  2488. u64 bytenr = btrfs_super_log_root(disk_super);
  2489. if (fs_devices->rw_devices == 0) {
  2490. printk(KERN_WARNING "BTRFS: log replay required "
  2491. "on RO media\n");
  2492. err = -EIO;
  2493. goto fail_qgroup;
  2494. }
  2495. log_tree_root = btrfs_alloc_root(fs_info);
  2496. if (!log_tree_root) {
  2497. err = -ENOMEM;
  2498. goto fail_qgroup;
  2499. }
  2500. __setup_root(nodesize, sectorsize, stripesize,
  2501. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2502. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2503. generation + 1);
  2504. if (!log_tree_root->node ||
  2505. !extent_buffer_uptodate(log_tree_root->node)) {
  2506. printk(KERN_ERR "BTRFS: failed to read log tree\n");
  2507. free_extent_buffer(log_tree_root->node);
  2508. kfree(log_tree_root);
  2509. goto fail_qgroup;
  2510. }
  2511. /* returns with log_tree_root freed on success */
  2512. ret = btrfs_recover_log_trees(log_tree_root);
  2513. if (ret) {
  2514. btrfs_error(tree_root->fs_info, ret,
  2515. "Failed to recover log tree");
  2516. free_extent_buffer(log_tree_root->node);
  2517. kfree(log_tree_root);
  2518. goto fail_qgroup;
  2519. }
  2520. if (sb->s_flags & MS_RDONLY) {
  2521. ret = btrfs_commit_super(tree_root);
  2522. if (ret)
  2523. goto fail_qgroup;
  2524. }
  2525. }
  2526. ret = btrfs_find_orphan_roots(tree_root);
  2527. if (ret)
  2528. goto fail_qgroup;
  2529. if (!(sb->s_flags & MS_RDONLY)) {
  2530. ret = btrfs_cleanup_fs_roots(fs_info);
  2531. if (ret)
  2532. goto fail_qgroup;
  2533. mutex_lock(&fs_info->cleaner_mutex);
  2534. ret = btrfs_recover_relocation(tree_root);
  2535. mutex_unlock(&fs_info->cleaner_mutex);
  2536. if (ret < 0) {
  2537. printk(KERN_WARNING
  2538. "BTRFS: failed to recover relocation\n");
  2539. err = -EINVAL;
  2540. goto fail_qgroup;
  2541. }
  2542. }
  2543. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2544. location.type = BTRFS_ROOT_ITEM_KEY;
  2545. location.offset = 0;
  2546. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2547. if (IS_ERR(fs_info->fs_root)) {
  2548. err = PTR_ERR(fs_info->fs_root);
  2549. goto fail_qgroup;
  2550. }
  2551. if (sb->s_flags & MS_RDONLY)
  2552. return 0;
  2553. down_read(&fs_info->cleanup_work_sem);
  2554. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2555. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2556. up_read(&fs_info->cleanup_work_sem);
  2557. close_ctree(tree_root);
  2558. return ret;
  2559. }
  2560. up_read(&fs_info->cleanup_work_sem);
  2561. ret = btrfs_resume_balance_async(fs_info);
  2562. if (ret) {
  2563. printk(KERN_WARNING "BTRFS: failed to resume balance\n");
  2564. close_ctree(tree_root);
  2565. return ret;
  2566. }
  2567. ret = btrfs_resume_dev_replace_async(fs_info);
  2568. if (ret) {
  2569. pr_warn("BTRFS: failed to resume dev_replace\n");
  2570. close_ctree(tree_root);
  2571. return ret;
  2572. }
  2573. btrfs_qgroup_rescan_resume(fs_info);
  2574. if (create_uuid_tree) {
  2575. pr_info("BTRFS: creating UUID tree\n");
  2576. ret = btrfs_create_uuid_tree(fs_info);
  2577. if (ret) {
  2578. pr_warn("BTRFS: failed to create the UUID tree %d\n",
  2579. ret);
  2580. close_ctree(tree_root);
  2581. return ret;
  2582. }
  2583. } else if (check_uuid_tree ||
  2584. btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
  2585. pr_info("BTRFS: checking UUID tree\n");
  2586. ret = btrfs_check_uuid_tree(fs_info);
  2587. if (ret) {
  2588. pr_warn("BTRFS: failed to check the UUID tree %d\n",
  2589. ret);
  2590. close_ctree(tree_root);
  2591. return ret;
  2592. }
  2593. } else {
  2594. fs_info->update_uuid_tree_gen = 1;
  2595. }
  2596. fs_info->open = 1;
  2597. return 0;
  2598. fail_qgroup:
  2599. btrfs_free_qgroup_config(fs_info);
  2600. fail_trans_kthread:
  2601. kthread_stop(fs_info->transaction_kthread);
  2602. btrfs_cleanup_transaction(fs_info->tree_root);
  2603. btrfs_free_fs_roots(fs_info);
  2604. fail_cleaner:
  2605. kthread_stop(fs_info->cleaner_kthread);
  2606. /*
  2607. * make sure we're done with the btree inode before we stop our
  2608. * kthreads
  2609. */
  2610. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2611. fail_sysfs:
  2612. btrfs_sysfs_remove_one(fs_info);
  2613. fail_block_groups:
  2614. btrfs_put_block_group_cache(fs_info);
  2615. btrfs_free_block_groups(fs_info);
  2616. fail_tree_roots:
  2617. free_root_pointers(fs_info, 1);
  2618. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2619. fail_sb_buffer:
  2620. btrfs_stop_all_workers(fs_info);
  2621. fail_alloc:
  2622. fail_iput:
  2623. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2624. iput(fs_info->btree_inode);
  2625. fail_bio_counter:
  2626. percpu_counter_destroy(&fs_info->bio_counter);
  2627. fail_delalloc_bytes:
  2628. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2629. fail_dirty_metadata_bytes:
  2630. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2631. fail_bdi:
  2632. bdi_destroy(&fs_info->bdi);
  2633. fail_srcu:
  2634. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2635. fail:
  2636. btrfs_free_stripe_hash_table(fs_info);
  2637. btrfs_close_devices(fs_info->fs_devices);
  2638. return err;
  2639. recovery_tree_root:
  2640. if (!btrfs_test_opt(tree_root, RECOVERY))
  2641. goto fail_tree_roots;
  2642. free_root_pointers(fs_info, 0);
  2643. /* don't use the log in recovery mode, it won't be valid */
  2644. btrfs_set_super_log_root(disk_super, 0);
  2645. /* we can't trust the free space cache either */
  2646. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2647. ret = next_root_backup(fs_info, fs_info->super_copy,
  2648. &num_backups_tried, &backup_index);
  2649. if (ret == -1)
  2650. goto fail_block_groups;
  2651. goto retry_root_backup;
  2652. }
  2653. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2654. {
  2655. if (uptodate) {
  2656. set_buffer_uptodate(bh);
  2657. } else {
  2658. struct btrfs_device *device = (struct btrfs_device *)
  2659. bh->b_private;
  2660. printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
  2661. "I/O error on %s\n",
  2662. rcu_str_deref(device->name));
  2663. /* note, we dont' set_buffer_write_io_error because we have
  2664. * our own ways of dealing with the IO errors
  2665. */
  2666. clear_buffer_uptodate(bh);
  2667. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2668. }
  2669. unlock_buffer(bh);
  2670. put_bh(bh);
  2671. }
  2672. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2673. {
  2674. struct buffer_head *bh;
  2675. struct buffer_head *latest = NULL;
  2676. struct btrfs_super_block *super;
  2677. int i;
  2678. u64 transid = 0;
  2679. u64 bytenr;
  2680. /* we would like to check all the supers, but that would make
  2681. * a btrfs mount succeed after a mkfs from a different FS.
  2682. * So, we need to add a special mount option to scan for
  2683. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2684. */
  2685. for (i = 0; i < 1; i++) {
  2686. bytenr = btrfs_sb_offset(i);
  2687. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2688. i_size_read(bdev->bd_inode))
  2689. break;
  2690. bh = __bread(bdev, bytenr / 4096,
  2691. BTRFS_SUPER_INFO_SIZE);
  2692. if (!bh)
  2693. continue;
  2694. super = (struct btrfs_super_block *)bh->b_data;
  2695. if (btrfs_super_bytenr(super) != bytenr ||
  2696. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2697. brelse(bh);
  2698. continue;
  2699. }
  2700. if (!latest || btrfs_super_generation(super) > transid) {
  2701. brelse(latest);
  2702. latest = bh;
  2703. transid = btrfs_super_generation(super);
  2704. } else {
  2705. brelse(bh);
  2706. }
  2707. }
  2708. return latest;
  2709. }
  2710. /*
  2711. * this should be called twice, once with wait == 0 and
  2712. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2713. * we write are pinned.
  2714. *
  2715. * They are released when wait == 1 is done.
  2716. * max_mirrors must be the same for both runs, and it indicates how
  2717. * many supers on this one device should be written.
  2718. *
  2719. * max_mirrors == 0 means to write them all.
  2720. */
  2721. static int write_dev_supers(struct btrfs_device *device,
  2722. struct btrfs_super_block *sb,
  2723. int do_barriers, int wait, int max_mirrors)
  2724. {
  2725. struct buffer_head *bh;
  2726. int i;
  2727. int ret;
  2728. int errors = 0;
  2729. u32 crc;
  2730. u64 bytenr;
  2731. if (max_mirrors == 0)
  2732. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2733. for (i = 0; i < max_mirrors; i++) {
  2734. bytenr = btrfs_sb_offset(i);
  2735. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2736. device->commit_total_bytes)
  2737. break;
  2738. if (wait) {
  2739. bh = __find_get_block(device->bdev, bytenr / 4096,
  2740. BTRFS_SUPER_INFO_SIZE);
  2741. if (!bh) {
  2742. errors++;
  2743. continue;
  2744. }
  2745. wait_on_buffer(bh);
  2746. if (!buffer_uptodate(bh))
  2747. errors++;
  2748. /* drop our reference */
  2749. brelse(bh);
  2750. /* drop the reference from the wait == 0 run */
  2751. brelse(bh);
  2752. continue;
  2753. } else {
  2754. btrfs_set_super_bytenr(sb, bytenr);
  2755. crc = ~(u32)0;
  2756. crc = btrfs_csum_data((char *)sb +
  2757. BTRFS_CSUM_SIZE, crc,
  2758. BTRFS_SUPER_INFO_SIZE -
  2759. BTRFS_CSUM_SIZE);
  2760. btrfs_csum_final(crc, sb->csum);
  2761. /*
  2762. * one reference for us, and we leave it for the
  2763. * caller
  2764. */
  2765. bh = __getblk(device->bdev, bytenr / 4096,
  2766. BTRFS_SUPER_INFO_SIZE);
  2767. if (!bh) {
  2768. printk(KERN_ERR "BTRFS: couldn't get super "
  2769. "buffer head for bytenr %Lu\n", bytenr);
  2770. errors++;
  2771. continue;
  2772. }
  2773. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2774. /* one reference for submit_bh */
  2775. get_bh(bh);
  2776. set_buffer_uptodate(bh);
  2777. lock_buffer(bh);
  2778. bh->b_end_io = btrfs_end_buffer_write_sync;
  2779. bh->b_private = device;
  2780. }
  2781. /*
  2782. * we fua the first super. The others we allow
  2783. * to go down lazy.
  2784. */
  2785. if (i == 0)
  2786. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2787. else
  2788. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2789. if (ret)
  2790. errors++;
  2791. }
  2792. return errors < i ? 0 : -1;
  2793. }
  2794. /*
  2795. * endio for the write_dev_flush, this will wake anyone waiting
  2796. * for the barrier when it is done
  2797. */
  2798. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2799. {
  2800. if (err) {
  2801. if (err == -EOPNOTSUPP)
  2802. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2803. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2804. }
  2805. if (bio->bi_private)
  2806. complete(bio->bi_private);
  2807. bio_put(bio);
  2808. }
  2809. /*
  2810. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2811. * sent down. With wait == 1, it waits for the previous flush.
  2812. *
  2813. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2814. * capable
  2815. */
  2816. static int write_dev_flush(struct btrfs_device *device, int wait)
  2817. {
  2818. struct bio *bio;
  2819. int ret = 0;
  2820. if (device->nobarriers)
  2821. return 0;
  2822. if (wait) {
  2823. bio = device->flush_bio;
  2824. if (!bio)
  2825. return 0;
  2826. wait_for_completion(&device->flush_wait);
  2827. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2828. printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
  2829. rcu_str_deref(device->name));
  2830. device->nobarriers = 1;
  2831. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2832. ret = -EIO;
  2833. btrfs_dev_stat_inc_and_print(device,
  2834. BTRFS_DEV_STAT_FLUSH_ERRS);
  2835. }
  2836. /* drop the reference from the wait == 0 run */
  2837. bio_put(bio);
  2838. device->flush_bio = NULL;
  2839. return ret;
  2840. }
  2841. /*
  2842. * one reference for us, and we leave it for the
  2843. * caller
  2844. */
  2845. device->flush_bio = NULL;
  2846. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2847. if (!bio)
  2848. return -ENOMEM;
  2849. bio->bi_end_io = btrfs_end_empty_barrier;
  2850. bio->bi_bdev = device->bdev;
  2851. init_completion(&device->flush_wait);
  2852. bio->bi_private = &device->flush_wait;
  2853. device->flush_bio = bio;
  2854. bio_get(bio);
  2855. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2856. return 0;
  2857. }
  2858. /*
  2859. * send an empty flush down to each device in parallel,
  2860. * then wait for them
  2861. */
  2862. static int barrier_all_devices(struct btrfs_fs_info *info)
  2863. {
  2864. struct list_head *head;
  2865. struct btrfs_device *dev;
  2866. int errors_send = 0;
  2867. int errors_wait = 0;
  2868. int ret;
  2869. /* send down all the barriers */
  2870. head = &info->fs_devices->devices;
  2871. list_for_each_entry_rcu(dev, head, dev_list) {
  2872. if (dev->missing)
  2873. continue;
  2874. if (!dev->bdev) {
  2875. errors_send++;
  2876. continue;
  2877. }
  2878. if (!dev->in_fs_metadata || !dev->writeable)
  2879. continue;
  2880. ret = write_dev_flush(dev, 0);
  2881. if (ret)
  2882. errors_send++;
  2883. }
  2884. /* wait for all the barriers */
  2885. list_for_each_entry_rcu(dev, head, dev_list) {
  2886. if (dev->missing)
  2887. continue;
  2888. if (!dev->bdev) {
  2889. errors_wait++;
  2890. continue;
  2891. }
  2892. if (!dev->in_fs_metadata || !dev->writeable)
  2893. continue;
  2894. ret = write_dev_flush(dev, 1);
  2895. if (ret)
  2896. errors_wait++;
  2897. }
  2898. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2899. errors_wait > info->num_tolerated_disk_barrier_failures)
  2900. return -EIO;
  2901. return 0;
  2902. }
  2903. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2904. struct btrfs_fs_info *fs_info)
  2905. {
  2906. struct btrfs_ioctl_space_info space;
  2907. struct btrfs_space_info *sinfo;
  2908. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2909. BTRFS_BLOCK_GROUP_SYSTEM,
  2910. BTRFS_BLOCK_GROUP_METADATA,
  2911. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2912. int num_types = 4;
  2913. int i;
  2914. int c;
  2915. int num_tolerated_disk_barrier_failures =
  2916. (int)fs_info->fs_devices->num_devices;
  2917. for (i = 0; i < num_types; i++) {
  2918. struct btrfs_space_info *tmp;
  2919. sinfo = NULL;
  2920. rcu_read_lock();
  2921. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2922. if (tmp->flags == types[i]) {
  2923. sinfo = tmp;
  2924. break;
  2925. }
  2926. }
  2927. rcu_read_unlock();
  2928. if (!sinfo)
  2929. continue;
  2930. down_read(&sinfo->groups_sem);
  2931. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2932. if (!list_empty(&sinfo->block_groups[c])) {
  2933. u64 flags;
  2934. btrfs_get_block_group_info(
  2935. &sinfo->block_groups[c], &space);
  2936. if (space.total_bytes == 0 ||
  2937. space.used_bytes == 0)
  2938. continue;
  2939. flags = space.flags;
  2940. /*
  2941. * return
  2942. * 0: if dup, single or RAID0 is configured for
  2943. * any of metadata, system or data, else
  2944. * 1: if RAID5 is configured, or if RAID1 or
  2945. * RAID10 is configured and only two mirrors
  2946. * are used, else
  2947. * 2: if RAID6 is configured, else
  2948. * num_mirrors - 1: if RAID1 or RAID10 is
  2949. * configured and more than
  2950. * 2 mirrors are used.
  2951. */
  2952. if (num_tolerated_disk_barrier_failures > 0 &&
  2953. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2954. BTRFS_BLOCK_GROUP_RAID0)) ||
  2955. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2956. == 0)))
  2957. num_tolerated_disk_barrier_failures = 0;
  2958. else if (num_tolerated_disk_barrier_failures > 1) {
  2959. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2960. BTRFS_BLOCK_GROUP_RAID5 |
  2961. BTRFS_BLOCK_GROUP_RAID10)) {
  2962. num_tolerated_disk_barrier_failures = 1;
  2963. } else if (flags &
  2964. BTRFS_BLOCK_GROUP_RAID6) {
  2965. num_tolerated_disk_barrier_failures = 2;
  2966. }
  2967. }
  2968. }
  2969. }
  2970. up_read(&sinfo->groups_sem);
  2971. }
  2972. return num_tolerated_disk_barrier_failures;
  2973. }
  2974. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2975. {
  2976. struct list_head *head;
  2977. struct btrfs_device *dev;
  2978. struct btrfs_super_block *sb;
  2979. struct btrfs_dev_item *dev_item;
  2980. int ret;
  2981. int do_barriers;
  2982. int max_errors;
  2983. int total_errors = 0;
  2984. u64 flags;
  2985. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2986. backup_super_roots(root->fs_info);
  2987. sb = root->fs_info->super_for_commit;
  2988. dev_item = &sb->dev_item;
  2989. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2990. head = &root->fs_info->fs_devices->devices;
  2991. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2992. if (do_barriers) {
  2993. ret = barrier_all_devices(root->fs_info);
  2994. if (ret) {
  2995. mutex_unlock(
  2996. &root->fs_info->fs_devices->device_list_mutex);
  2997. btrfs_error(root->fs_info, ret,
  2998. "errors while submitting device barriers.");
  2999. return ret;
  3000. }
  3001. }
  3002. list_for_each_entry_rcu(dev, head, dev_list) {
  3003. if (!dev->bdev) {
  3004. total_errors++;
  3005. continue;
  3006. }
  3007. if (!dev->in_fs_metadata || !dev->writeable)
  3008. continue;
  3009. btrfs_set_stack_device_generation(dev_item, 0);
  3010. btrfs_set_stack_device_type(dev_item, dev->type);
  3011. btrfs_set_stack_device_id(dev_item, dev->devid);
  3012. btrfs_set_stack_device_total_bytes(dev_item,
  3013. dev->commit_total_bytes);
  3014. btrfs_set_stack_device_bytes_used(dev_item,
  3015. dev->commit_bytes_used);
  3016. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3017. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3018. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3019. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3020. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3021. flags = btrfs_super_flags(sb);
  3022. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3023. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3024. if (ret)
  3025. total_errors++;
  3026. }
  3027. if (total_errors > max_errors) {
  3028. btrfs_err(root->fs_info, "%d errors while writing supers",
  3029. total_errors);
  3030. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3031. /* FUA is masked off if unsupported and can't be the reason */
  3032. btrfs_error(root->fs_info, -EIO,
  3033. "%d errors while writing supers", total_errors);
  3034. return -EIO;
  3035. }
  3036. total_errors = 0;
  3037. list_for_each_entry_rcu(dev, head, dev_list) {
  3038. if (!dev->bdev)
  3039. continue;
  3040. if (!dev->in_fs_metadata || !dev->writeable)
  3041. continue;
  3042. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3043. if (ret)
  3044. total_errors++;
  3045. }
  3046. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3047. if (total_errors > max_errors) {
  3048. btrfs_error(root->fs_info, -EIO,
  3049. "%d errors while writing supers", total_errors);
  3050. return -EIO;
  3051. }
  3052. return 0;
  3053. }
  3054. int write_ctree_super(struct btrfs_trans_handle *trans,
  3055. struct btrfs_root *root, int max_mirrors)
  3056. {
  3057. return write_all_supers(root, max_mirrors);
  3058. }
  3059. /* Drop a fs root from the radix tree and free it. */
  3060. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3061. struct btrfs_root *root)
  3062. {
  3063. spin_lock(&fs_info->fs_roots_radix_lock);
  3064. radix_tree_delete(&fs_info->fs_roots_radix,
  3065. (unsigned long)root->root_key.objectid);
  3066. spin_unlock(&fs_info->fs_roots_radix_lock);
  3067. if (btrfs_root_refs(&root->root_item) == 0)
  3068. synchronize_srcu(&fs_info->subvol_srcu);
  3069. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3070. btrfs_free_log(NULL, root);
  3071. if (root->free_ino_pinned)
  3072. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3073. if (root->free_ino_ctl)
  3074. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3075. free_fs_root(root);
  3076. }
  3077. static void free_fs_root(struct btrfs_root *root)
  3078. {
  3079. iput(root->ino_cache_inode);
  3080. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3081. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3082. root->orphan_block_rsv = NULL;
  3083. if (root->anon_dev)
  3084. free_anon_bdev(root->anon_dev);
  3085. if (root->subv_writers)
  3086. btrfs_free_subvolume_writers(root->subv_writers);
  3087. free_extent_buffer(root->node);
  3088. free_extent_buffer(root->commit_root);
  3089. kfree(root->free_ino_ctl);
  3090. kfree(root->free_ino_pinned);
  3091. kfree(root->name);
  3092. btrfs_put_fs_root(root);
  3093. }
  3094. void btrfs_free_fs_root(struct btrfs_root *root)
  3095. {
  3096. free_fs_root(root);
  3097. }
  3098. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3099. {
  3100. u64 root_objectid = 0;
  3101. struct btrfs_root *gang[8];
  3102. int i = 0;
  3103. int err = 0;
  3104. unsigned int ret = 0;
  3105. int index;
  3106. while (1) {
  3107. index = srcu_read_lock(&fs_info->subvol_srcu);
  3108. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3109. (void **)gang, root_objectid,
  3110. ARRAY_SIZE(gang));
  3111. if (!ret) {
  3112. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3113. break;
  3114. }
  3115. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3116. for (i = 0; i < ret; i++) {
  3117. /* Avoid to grab roots in dead_roots */
  3118. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3119. gang[i] = NULL;
  3120. continue;
  3121. }
  3122. /* grab all the search result for later use */
  3123. gang[i] = btrfs_grab_fs_root(gang[i]);
  3124. }
  3125. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3126. for (i = 0; i < ret; i++) {
  3127. if (!gang[i])
  3128. continue;
  3129. root_objectid = gang[i]->root_key.objectid;
  3130. err = btrfs_orphan_cleanup(gang[i]);
  3131. if (err)
  3132. break;
  3133. btrfs_put_fs_root(gang[i]);
  3134. }
  3135. root_objectid++;
  3136. }
  3137. /* release the uncleaned roots due to error */
  3138. for (; i < ret; i++) {
  3139. if (gang[i])
  3140. btrfs_put_fs_root(gang[i]);
  3141. }
  3142. return err;
  3143. }
  3144. int btrfs_commit_super(struct btrfs_root *root)
  3145. {
  3146. struct btrfs_trans_handle *trans;
  3147. mutex_lock(&root->fs_info->cleaner_mutex);
  3148. btrfs_run_delayed_iputs(root);
  3149. mutex_unlock(&root->fs_info->cleaner_mutex);
  3150. wake_up_process(root->fs_info->cleaner_kthread);
  3151. /* wait until ongoing cleanup work done */
  3152. down_write(&root->fs_info->cleanup_work_sem);
  3153. up_write(&root->fs_info->cleanup_work_sem);
  3154. trans = btrfs_join_transaction(root);
  3155. if (IS_ERR(trans))
  3156. return PTR_ERR(trans);
  3157. return btrfs_commit_transaction(trans, root);
  3158. }
  3159. void close_ctree(struct btrfs_root *root)
  3160. {
  3161. struct btrfs_fs_info *fs_info = root->fs_info;
  3162. int ret;
  3163. fs_info->closing = 1;
  3164. smp_mb();
  3165. /* wait for the uuid_scan task to finish */
  3166. down(&fs_info->uuid_tree_rescan_sem);
  3167. /* avoid complains from lockdep et al., set sem back to initial state */
  3168. up(&fs_info->uuid_tree_rescan_sem);
  3169. /* pause restriper - we want to resume on mount */
  3170. btrfs_pause_balance(fs_info);
  3171. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3172. btrfs_scrub_cancel(fs_info);
  3173. /* wait for any defraggers to finish */
  3174. wait_event(fs_info->transaction_wait,
  3175. (atomic_read(&fs_info->defrag_running) == 0));
  3176. /* clear out the rbtree of defraggable inodes */
  3177. btrfs_cleanup_defrag_inodes(fs_info);
  3178. cancel_work_sync(&fs_info->async_reclaim_work);
  3179. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3180. ret = btrfs_commit_super(root);
  3181. if (ret)
  3182. btrfs_err(root->fs_info, "commit super ret %d", ret);
  3183. }
  3184. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3185. btrfs_error_commit_super(root);
  3186. kthread_stop(fs_info->transaction_kthread);
  3187. kthread_stop(fs_info->cleaner_kthread);
  3188. fs_info->closing = 2;
  3189. smp_mb();
  3190. btrfs_free_qgroup_config(root->fs_info);
  3191. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3192. btrfs_info(root->fs_info, "at unmount delalloc count %lld",
  3193. percpu_counter_sum(&fs_info->delalloc_bytes));
  3194. }
  3195. btrfs_sysfs_remove_one(fs_info);
  3196. btrfs_free_fs_roots(fs_info);
  3197. btrfs_put_block_group_cache(fs_info);
  3198. btrfs_free_block_groups(fs_info);
  3199. /*
  3200. * we must make sure there is not any read request to
  3201. * submit after we stopping all workers.
  3202. */
  3203. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3204. btrfs_stop_all_workers(fs_info);
  3205. fs_info->open = 0;
  3206. free_root_pointers(fs_info, 1);
  3207. iput(fs_info->btree_inode);
  3208. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3209. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3210. btrfsic_unmount(root, fs_info->fs_devices);
  3211. #endif
  3212. btrfs_close_devices(fs_info->fs_devices);
  3213. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3214. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3215. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3216. percpu_counter_destroy(&fs_info->bio_counter);
  3217. bdi_destroy(&fs_info->bdi);
  3218. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3219. btrfs_free_stripe_hash_table(fs_info);
  3220. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3221. root->orphan_block_rsv = NULL;
  3222. lock_chunks(root);
  3223. while (!list_empty(&fs_info->pinned_chunks)) {
  3224. struct extent_map *em;
  3225. em = list_first_entry(&fs_info->pinned_chunks,
  3226. struct extent_map, list);
  3227. list_del_init(&em->list);
  3228. free_extent_map(em);
  3229. }
  3230. unlock_chunks(root);
  3231. }
  3232. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3233. int atomic)
  3234. {
  3235. int ret;
  3236. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3237. ret = extent_buffer_uptodate(buf);
  3238. if (!ret)
  3239. return ret;
  3240. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3241. parent_transid, atomic);
  3242. if (ret == -EAGAIN)
  3243. return ret;
  3244. return !ret;
  3245. }
  3246. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3247. {
  3248. return set_extent_buffer_uptodate(buf);
  3249. }
  3250. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3251. {
  3252. struct btrfs_root *root;
  3253. u64 transid = btrfs_header_generation(buf);
  3254. int was_dirty;
  3255. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3256. /*
  3257. * This is a fast path so only do this check if we have sanity tests
  3258. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3259. * outside of the sanity tests.
  3260. */
  3261. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3262. return;
  3263. #endif
  3264. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3265. btrfs_assert_tree_locked(buf);
  3266. if (transid != root->fs_info->generation)
  3267. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3268. "found %llu running %llu\n",
  3269. buf->start, transid, root->fs_info->generation);
  3270. was_dirty = set_extent_buffer_dirty(buf);
  3271. if (!was_dirty)
  3272. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3273. buf->len,
  3274. root->fs_info->dirty_metadata_batch);
  3275. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3276. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3277. btrfs_print_leaf(root, buf);
  3278. ASSERT(0);
  3279. }
  3280. #endif
  3281. }
  3282. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3283. int flush_delayed)
  3284. {
  3285. /*
  3286. * looks as though older kernels can get into trouble with
  3287. * this code, they end up stuck in balance_dirty_pages forever
  3288. */
  3289. int ret;
  3290. if (current->flags & PF_MEMALLOC)
  3291. return;
  3292. if (flush_delayed)
  3293. btrfs_balance_delayed_items(root);
  3294. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3295. BTRFS_DIRTY_METADATA_THRESH);
  3296. if (ret > 0) {
  3297. balance_dirty_pages_ratelimited(
  3298. root->fs_info->btree_inode->i_mapping);
  3299. }
  3300. return;
  3301. }
  3302. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3303. {
  3304. __btrfs_btree_balance_dirty(root, 1);
  3305. }
  3306. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3307. {
  3308. __btrfs_btree_balance_dirty(root, 0);
  3309. }
  3310. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3311. {
  3312. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3313. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3314. }
  3315. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3316. int read_only)
  3317. {
  3318. struct btrfs_super_block *sb = fs_info->super_copy;
  3319. int ret = 0;
  3320. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3321. printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
  3322. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3323. ret = -EINVAL;
  3324. }
  3325. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3326. printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
  3327. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3328. ret = -EINVAL;
  3329. }
  3330. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3331. printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
  3332. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3333. ret = -EINVAL;
  3334. }
  3335. /*
  3336. * The common minimum, we don't know if we can trust the nodesize/sectorsize
  3337. * items yet, they'll be verified later. Issue just a warning.
  3338. */
  3339. if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
  3340. printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
  3341. btrfs_super_root(sb));
  3342. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
  3343. printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
  3344. btrfs_super_chunk_root(sb));
  3345. if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
  3346. printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
  3347. btrfs_super_log_root(sb));
  3348. /*
  3349. * Check the lower bound, the alignment and other constraints are
  3350. * checked later.
  3351. */
  3352. if (btrfs_super_nodesize(sb) < 4096) {
  3353. printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
  3354. btrfs_super_nodesize(sb));
  3355. ret = -EINVAL;
  3356. }
  3357. if (btrfs_super_sectorsize(sb) < 4096) {
  3358. printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
  3359. btrfs_super_sectorsize(sb));
  3360. ret = -EINVAL;
  3361. }
  3362. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3363. printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
  3364. fs_info->fsid, sb->dev_item.fsid);
  3365. ret = -EINVAL;
  3366. }
  3367. /*
  3368. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3369. * done later
  3370. */
  3371. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3372. printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
  3373. btrfs_super_num_devices(sb));
  3374. if (btrfs_super_num_devices(sb) == 0) {
  3375. printk(KERN_ERR "BTRFS: number of devices is 0\n");
  3376. ret = -EINVAL;
  3377. }
  3378. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3379. printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
  3380. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3381. ret = -EINVAL;
  3382. }
  3383. /*
  3384. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3385. * and one chunk
  3386. */
  3387. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3388. printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
  3389. btrfs_super_sys_array_size(sb),
  3390. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3391. ret = -EINVAL;
  3392. }
  3393. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3394. + sizeof(struct btrfs_chunk)) {
  3395. printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
  3396. btrfs_super_sys_array_size(sb),
  3397. sizeof(struct btrfs_disk_key)
  3398. + sizeof(struct btrfs_chunk));
  3399. ret = -EINVAL;
  3400. }
  3401. /*
  3402. * The generation is a global counter, we'll trust it more than the others
  3403. * but it's still possible that it's the one that's wrong.
  3404. */
  3405. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3406. printk(KERN_WARNING
  3407. "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
  3408. btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
  3409. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3410. && btrfs_super_cache_generation(sb) != (u64)-1)
  3411. printk(KERN_WARNING
  3412. "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
  3413. btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
  3414. return ret;
  3415. }
  3416. static void btrfs_error_commit_super(struct btrfs_root *root)
  3417. {
  3418. mutex_lock(&root->fs_info->cleaner_mutex);
  3419. btrfs_run_delayed_iputs(root);
  3420. mutex_unlock(&root->fs_info->cleaner_mutex);
  3421. down_write(&root->fs_info->cleanup_work_sem);
  3422. up_write(&root->fs_info->cleanup_work_sem);
  3423. /* cleanup FS via transaction */
  3424. btrfs_cleanup_transaction(root);
  3425. }
  3426. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3427. {
  3428. struct btrfs_ordered_extent *ordered;
  3429. spin_lock(&root->ordered_extent_lock);
  3430. /*
  3431. * This will just short circuit the ordered completion stuff which will
  3432. * make sure the ordered extent gets properly cleaned up.
  3433. */
  3434. list_for_each_entry(ordered, &root->ordered_extents,
  3435. root_extent_list)
  3436. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3437. spin_unlock(&root->ordered_extent_lock);
  3438. }
  3439. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3440. {
  3441. struct btrfs_root *root;
  3442. struct list_head splice;
  3443. INIT_LIST_HEAD(&splice);
  3444. spin_lock(&fs_info->ordered_root_lock);
  3445. list_splice_init(&fs_info->ordered_roots, &splice);
  3446. while (!list_empty(&splice)) {
  3447. root = list_first_entry(&splice, struct btrfs_root,
  3448. ordered_root);
  3449. list_move_tail(&root->ordered_root,
  3450. &fs_info->ordered_roots);
  3451. spin_unlock(&fs_info->ordered_root_lock);
  3452. btrfs_destroy_ordered_extents(root);
  3453. cond_resched();
  3454. spin_lock(&fs_info->ordered_root_lock);
  3455. }
  3456. spin_unlock(&fs_info->ordered_root_lock);
  3457. }
  3458. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3459. struct btrfs_root *root)
  3460. {
  3461. struct rb_node *node;
  3462. struct btrfs_delayed_ref_root *delayed_refs;
  3463. struct btrfs_delayed_ref_node *ref;
  3464. int ret = 0;
  3465. delayed_refs = &trans->delayed_refs;
  3466. spin_lock(&delayed_refs->lock);
  3467. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3468. spin_unlock(&delayed_refs->lock);
  3469. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3470. return ret;
  3471. }
  3472. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3473. struct btrfs_delayed_ref_head *head;
  3474. bool pin_bytes = false;
  3475. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3476. href_node);
  3477. if (!mutex_trylock(&head->mutex)) {
  3478. atomic_inc(&head->node.refs);
  3479. spin_unlock(&delayed_refs->lock);
  3480. mutex_lock(&head->mutex);
  3481. mutex_unlock(&head->mutex);
  3482. btrfs_put_delayed_ref(&head->node);
  3483. spin_lock(&delayed_refs->lock);
  3484. continue;
  3485. }
  3486. spin_lock(&head->lock);
  3487. while ((node = rb_first(&head->ref_root)) != NULL) {
  3488. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  3489. rb_node);
  3490. ref->in_tree = 0;
  3491. rb_erase(&ref->rb_node, &head->ref_root);
  3492. atomic_dec(&delayed_refs->num_entries);
  3493. btrfs_put_delayed_ref(ref);
  3494. }
  3495. if (head->must_insert_reserved)
  3496. pin_bytes = true;
  3497. btrfs_free_delayed_extent_op(head->extent_op);
  3498. delayed_refs->num_heads--;
  3499. if (head->processing == 0)
  3500. delayed_refs->num_heads_ready--;
  3501. atomic_dec(&delayed_refs->num_entries);
  3502. head->node.in_tree = 0;
  3503. rb_erase(&head->href_node, &delayed_refs->href_root);
  3504. spin_unlock(&head->lock);
  3505. spin_unlock(&delayed_refs->lock);
  3506. mutex_unlock(&head->mutex);
  3507. if (pin_bytes)
  3508. btrfs_pin_extent(root, head->node.bytenr,
  3509. head->node.num_bytes, 1);
  3510. btrfs_put_delayed_ref(&head->node);
  3511. cond_resched();
  3512. spin_lock(&delayed_refs->lock);
  3513. }
  3514. spin_unlock(&delayed_refs->lock);
  3515. return ret;
  3516. }
  3517. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3518. {
  3519. struct btrfs_inode *btrfs_inode;
  3520. struct list_head splice;
  3521. INIT_LIST_HEAD(&splice);
  3522. spin_lock(&root->delalloc_lock);
  3523. list_splice_init(&root->delalloc_inodes, &splice);
  3524. while (!list_empty(&splice)) {
  3525. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3526. delalloc_inodes);
  3527. list_del_init(&btrfs_inode->delalloc_inodes);
  3528. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3529. &btrfs_inode->runtime_flags);
  3530. spin_unlock(&root->delalloc_lock);
  3531. btrfs_invalidate_inodes(btrfs_inode->root);
  3532. spin_lock(&root->delalloc_lock);
  3533. }
  3534. spin_unlock(&root->delalloc_lock);
  3535. }
  3536. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3537. {
  3538. struct btrfs_root *root;
  3539. struct list_head splice;
  3540. INIT_LIST_HEAD(&splice);
  3541. spin_lock(&fs_info->delalloc_root_lock);
  3542. list_splice_init(&fs_info->delalloc_roots, &splice);
  3543. while (!list_empty(&splice)) {
  3544. root = list_first_entry(&splice, struct btrfs_root,
  3545. delalloc_root);
  3546. list_del_init(&root->delalloc_root);
  3547. root = btrfs_grab_fs_root(root);
  3548. BUG_ON(!root);
  3549. spin_unlock(&fs_info->delalloc_root_lock);
  3550. btrfs_destroy_delalloc_inodes(root);
  3551. btrfs_put_fs_root(root);
  3552. spin_lock(&fs_info->delalloc_root_lock);
  3553. }
  3554. spin_unlock(&fs_info->delalloc_root_lock);
  3555. }
  3556. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3557. struct extent_io_tree *dirty_pages,
  3558. int mark)
  3559. {
  3560. int ret;
  3561. struct extent_buffer *eb;
  3562. u64 start = 0;
  3563. u64 end;
  3564. while (1) {
  3565. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3566. mark, NULL);
  3567. if (ret)
  3568. break;
  3569. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3570. while (start <= end) {
  3571. eb = btrfs_find_tree_block(root, start);
  3572. start += root->nodesize;
  3573. if (!eb)
  3574. continue;
  3575. wait_on_extent_buffer_writeback(eb);
  3576. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3577. &eb->bflags))
  3578. clear_extent_buffer_dirty(eb);
  3579. free_extent_buffer_stale(eb);
  3580. }
  3581. }
  3582. return ret;
  3583. }
  3584. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3585. struct extent_io_tree *pinned_extents)
  3586. {
  3587. struct extent_io_tree *unpin;
  3588. u64 start;
  3589. u64 end;
  3590. int ret;
  3591. bool loop = true;
  3592. unpin = pinned_extents;
  3593. again:
  3594. while (1) {
  3595. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3596. EXTENT_DIRTY, NULL);
  3597. if (ret)
  3598. break;
  3599. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3600. btrfs_error_unpin_extent_range(root, start, end);
  3601. cond_resched();
  3602. }
  3603. if (loop) {
  3604. if (unpin == &root->fs_info->freed_extents[0])
  3605. unpin = &root->fs_info->freed_extents[1];
  3606. else
  3607. unpin = &root->fs_info->freed_extents[0];
  3608. loop = false;
  3609. goto again;
  3610. }
  3611. return 0;
  3612. }
  3613. static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
  3614. struct btrfs_fs_info *fs_info)
  3615. {
  3616. struct btrfs_ordered_extent *ordered;
  3617. spin_lock(&fs_info->trans_lock);
  3618. while (!list_empty(&cur_trans->pending_ordered)) {
  3619. ordered = list_first_entry(&cur_trans->pending_ordered,
  3620. struct btrfs_ordered_extent,
  3621. trans_list);
  3622. list_del_init(&ordered->trans_list);
  3623. spin_unlock(&fs_info->trans_lock);
  3624. btrfs_put_ordered_extent(ordered);
  3625. spin_lock(&fs_info->trans_lock);
  3626. }
  3627. spin_unlock(&fs_info->trans_lock);
  3628. }
  3629. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3630. struct btrfs_root *root)
  3631. {
  3632. btrfs_destroy_delayed_refs(cur_trans, root);
  3633. cur_trans->state = TRANS_STATE_COMMIT_START;
  3634. wake_up(&root->fs_info->transaction_blocked_wait);
  3635. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3636. wake_up(&root->fs_info->transaction_wait);
  3637. btrfs_free_pending_ordered(cur_trans, root->fs_info);
  3638. btrfs_destroy_delayed_inodes(root);
  3639. btrfs_assert_delayed_root_empty(root);
  3640. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3641. EXTENT_DIRTY);
  3642. btrfs_destroy_pinned_extent(root,
  3643. root->fs_info->pinned_extents);
  3644. cur_trans->state =TRANS_STATE_COMPLETED;
  3645. wake_up(&cur_trans->commit_wait);
  3646. /*
  3647. memset(cur_trans, 0, sizeof(*cur_trans));
  3648. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3649. */
  3650. }
  3651. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3652. {
  3653. struct btrfs_transaction *t;
  3654. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3655. spin_lock(&root->fs_info->trans_lock);
  3656. while (!list_empty(&root->fs_info->trans_list)) {
  3657. t = list_first_entry(&root->fs_info->trans_list,
  3658. struct btrfs_transaction, list);
  3659. if (t->state >= TRANS_STATE_COMMIT_START) {
  3660. atomic_inc(&t->use_count);
  3661. spin_unlock(&root->fs_info->trans_lock);
  3662. btrfs_wait_for_commit(root, t->transid);
  3663. btrfs_put_transaction(t);
  3664. spin_lock(&root->fs_info->trans_lock);
  3665. continue;
  3666. }
  3667. if (t == root->fs_info->running_transaction) {
  3668. t->state = TRANS_STATE_COMMIT_DOING;
  3669. spin_unlock(&root->fs_info->trans_lock);
  3670. /*
  3671. * We wait for 0 num_writers since we don't hold a trans
  3672. * handle open currently for this transaction.
  3673. */
  3674. wait_event(t->writer_wait,
  3675. atomic_read(&t->num_writers) == 0);
  3676. } else {
  3677. spin_unlock(&root->fs_info->trans_lock);
  3678. }
  3679. btrfs_cleanup_one_transaction(t, root);
  3680. spin_lock(&root->fs_info->trans_lock);
  3681. if (t == root->fs_info->running_transaction)
  3682. root->fs_info->running_transaction = NULL;
  3683. list_del_init(&t->list);
  3684. spin_unlock(&root->fs_info->trans_lock);
  3685. btrfs_put_transaction(t);
  3686. trace_btrfs_transaction_commit(root);
  3687. spin_lock(&root->fs_info->trans_lock);
  3688. }
  3689. spin_unlock(&root->fs_info->trans_lock);
  3690. btrfs_destroy_all_ordered_extents(root->fs_info);
  3691. btrfs_destroy_delayed_inodes(root);
  3692. btrfs_assert_delayed_root_empty(root);
  3693. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3694. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3695. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3696. return 0;
  3697. }
  3698. static struct extent_io_ops btree_extent_io_ops = {
  3699. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3700. .readpage_io_failed_hook = btree_io_failed_hook,
  3701. .submit_bio_hook = btree_submit_bio_hook,
  3702. /* note we're sharing with inode.c for the merge bio hook */
  3703. .merge_bio_hook = btrfs_merge_bio_hook,
  3704. };