huge_memory.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/sched/coredump.h>
  11. #include <linux/sched/numa_balancing.h>
  12. #include <linux/highmem.h>
  13. #include <linux/hugetlb.h>
  14. #include <linux/mmu_notifier.h>
  15. #include <linux/rmap.h>
  16. #include <linux/swap.h>
  17. #include <linux/shrinker.h>
  18. #include <linux/mm_inline.h>
  19. #include <linux/swapops.h>
  20. #include <linux/dax.h>
  21. #include <linux/khugepaged.h>
  22. #include <linux/freezer.h>
  23. #include <linux/pfn_t.h>
  24. #include <linux/mman.h>
  25. #include <linux/memremap.h>
  26. #include <linux/pagemap.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/migrate.h>
  29. #include <linux/hashtable.h>
  30. #include <linux/userfaultfd_k.h>
  31. #include <linux/page_idle.h>
  32. #include <linux/shmem_fs.h>
  33. #include <asm/tlb.h>
  34. #include <asm/pgalloc.h>
  35. #include "internal.h"
  36. /*
  37. * By default transparent hugepage support is disabled in order that avoid
  38. * to risk increase the memory footprint of applications without a guaranteed
  39. * benefit. When transparent hugepage support is enabled, is for all mappings,
  40. * and khugepaged scans all mappings.
  41. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  42. * for all hugepage allocations.
  43. */
  44. unsigned long transparent_hugepage_flags __read_mostly =
  45. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  46. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  47. #endif
  48. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  49. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  50. #endif
  51. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  52. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  53. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  54. static struct shrinker deferred_split_shrinker;
  55. static atomic_t huge_zero_refcount;
  56. struct page *huge_zero_page __read_mostly;
  57. static struct page *get_huge_zero_page(void)
  58. {
  59. struct page *zero_page;
  60. retry:
  61. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  62. return READ_ONCE(huge_zero_page);
  63. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  64. HPAGE_PMD_ORDER);
  65. if (!zero_page) {
  66. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  67. return NULL;
  68. }
  69. count_vm_event(THP_ZERO_PAGE_ALLOC);
  70. preempt_disable();
  71. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  72. preempt_enable();
  73. __free_pages(zero_page, compound_order(zero_page));
  74. goto retry;
  75. }
  76. /* We take additional reference here. It will be put back by shrinker */
  77. atomic_set(&huge_zero_refcount, 2);
  78. preempt_enable();
  79. return READ_ONCE(huge_zero_page);
  80. }
  81. static void put_huge_zero_page(void)
  82. {
  83. /*
  84. * Counter should never go to zero here. Only shrinker can put
  85. * last reference.
  86. */
  87. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  88. }
  89. struct page *mm_get_huge_zero_page(struct mm_struct *mm)
  90. {
  91. if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  92. return READ_ONCE(huge_zero_page);
  93. if (!get_huge_zero_page())
  94. return NULL;
  95. if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  96. put_huge_zero_page();
  97. return READ_ONCE(huge_zero_page);
  98. }
  99. void mm_put_huge_zero_page(struct mm_struct *mm)
  100. {
  101. if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  102. put_huge_zero_page();
  103. }
  104. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  105. struct shrink_control *sc)
  106. {
  107. /* we can free zero page only if last reference remains */
  108. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  109. }
  110. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  111. struct shrink_control *sc)
  112. {
  113. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  114. struct page *zero_page = xchg(&huge_zero_page, NULL);
  115. BUG_ON(zero_page == NULL);
  116. __free_pages(zero_page, compound_order(zero_page));
  117. return HPAGE_PMD_NR;
  118. }
  119. return 0;
  120. }
  121. static struct shrinker huge_zero_page_shrinker = {
  122. .count_objects = shrink_huge_zero_page_count,
  123. .scan_objects = shrink_huge_zero_page_scan,
  124. .seeks = DEFAULT_SEEKS,
  125. };
  126. #ifdef CONFIG_SYSFS
  127. static ssize_t enabled_show(struct kobject *kobj,
  128. struct kobj_attribute *attr, char *buf)
  129. {
  130. if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
  131. return sprintf(buf, "[always] madvise never\n");
  132. else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
  133. return sprintf(buf, "always [madvise] never\n");
  134. else
  135. return sprintf(buf, "always madvise [never]\n");
  136. }
  137. static ssize_t enabled_store(struct kobject *kobj,
  138. struct kobj_attribute *attr,
  139. const char *buf, size_t count)
  140. {
  141. ssize_t ret = count;
  142. if (!memcmp("always", buf,
  143. min(sizeof("always")-1, count))) {
  144. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  145. set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  146. } else if (!memcmp("madvise", buf,
  147. min(sizeof("madvise")-1, count))) {
  148. clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  149. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  150. } else if (!memcmp("never", buf,
  151. min(sizeof("never")-1, count))) {
  152. clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  153. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  154. } else
  155. ret = -EINVAL;
  156. if (ret > 0) {
  157. int err = start_stop_khugepaged();
  158. if (err)
  159. ret = err;
  160. }
  161. return ret;
  162. }
  163. static struct kobj_attribute enabled_attr =
  164. __ATTR(enabled, 0644, enabled_show, enabled_store);
  165. ssize_t single_hugepage_flag_show(struct kobject *kobj,
  166. struct kobj_attribute *attr, char *buf,
  167. enum transparent_hugepage_flag flag)
  168. {
  169. return sprintf(buf, "%d\n",
  170. !!test_bit(flag, &transparent_hugepage_flags));
  171. }
  172. ssize_t single_hugepage_flag_store(struct kobject *kobj,
  173. struct kobj_attribute *attr,
  174. const char *buf, size_t count,
  175. enum transparent_hugepage_flag flag)
  176. {
  177. unsigned long value;
  178. int ret;
  179. ret = kstrtoul(buf, 10, &value);
  180. if (ret < 0)
  181. return ret;
  182. if (value > 1)
  183. return -EINVAL;
  184. if (value)
  185. set_bit(flag, &transparent_hugepage_flags);
  186. else
  187. clear_bit(flag, &transparent_hugepage_flags);
  188. return count;
  189. }
  190. static ssize_t defrag_show(struct kobject *kobj,
  191. struct kobj_attribute *attr, char *buf)
  192. {
  193. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  194. return sprintf(buf, "[always] defer defer+madvise madvise never\n");
  195. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  196. return sprintf(buf, "always [defer] defer+madvise madvise never\n");
  197. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
  198. return sprintf(buf, "always defer [defer+madvise] madvise never\n");
  199. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  200. return sprintf(buf, "always defer defer+madvise [madvise] never\n");
  201. return sprintf(buf, "always defer defer+madvise madvise [never]\n");
  202. }
  203. static ssize_t defrag_store(struct kobject *kobj,
  204. struct kobj_attribute *attr,
  205. const char *buf, size_t count)
  206. {
  207. if (!memcmp("always", buf,
  208. min(sizeof("always")-1, count))) {
  209. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  210. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  211. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  212. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  213. } else if (!memcmp("defer", buf,
  214. min(sizeof("defer")-1, count))) {
  215. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  216. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  217. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  218. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  219. } else if (!memcmp("defer+madvise", buf,
  220. min(sizeof("defer+madvise")-1, count))) {
  221. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  222. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  223. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  224. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  225. } else if (!memcmp("madvise", buf,
  226. min(sizeof("madvise")-1, count))) {
  227. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  228. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  229. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  230. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  231. } else if (!memcmp("never", buf,
  232. min(sizeof("never")-1, count))) {
  233. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  234. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  235. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  236. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  237. } else
  238. return -EINVAL;
  239. return count;
  240. }
  241. static struct kobj_attribute defrag_attr =
  242. __ATTR(defrag, 0644, defrag_show, defrag_store);
  243. static ssize_t use_zero_page_show(struct kobject *kobj,
  244. struct kobj_attribute *attr, char *buf)
  245. {
  246. return single_hugepage_flag_show(kobj, attr, buf,
  247. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  248. }
  249. static ssize_t use_zero_page_store(struct kobject *kobj,
  250. struct kobj_attribute *attr, const char *buf, size_t count)
  251. {
  252. return single_hugepage_flag_store(kobj, attr, buf, count,
  253. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  254. }
  255. static struct kobj_attribute use_zero_page_attr =
  256. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  257. static ssize_t hpage_pmd_size_show(struct kobject *kobj,
  258. struct kobj_attribute *attr, char *buf)
  259. {
  260. return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
  261. }
  262. static struct kobj_attribute hpage_pmd_size_attr =
  263. __ATTR_RO(hpage_pmd_size);
  264. #ifdef CONFIG_DEBUG_VM
  265. static ssize_t debug_cow_show(struct kobject *kobj,
  266. struct kobj_attribute *attr, char *buf)
  267. {
  268. return single_hugepage_flag_show(kobj, attr, buf,
  269. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  270. }
  271. static ssize_t debug_cow_store(struct kobject *kobj,
  272. struct kobj_attribute *attr,
  273. const char *buf, size_t count)
  274. {
  275. return single_hugepage_flag_store(kobj, attr, buf, count,
  276. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  277. }
  278. static struct kobj_attribute debug_cow_attr =
  279. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  280. #endif /* CONFIG_DEBUG_VM */
  281. static struct attribute *hugepage_attr[] = {
  282. &enabled_attr.attr,
  283. &defrag_attr.attr,
  284. &use_zero_page_attr.attr,
  285. &hpage_pmd_size_attr.attr,
  286. #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
  287. &shmem_enabled_attr.attr,
  288. #endif
  289. #ifdef CONFIG_DEBUG_VM
  290. &debug_cow_attr.attr,
  291. #endif
  292. NULL,
  293. };
  294. static struct attribute_group hugepage_attr_group = {
  295. .attrs = hugepage_attr,
  296. };
  297. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  298. {
  299. int err;
  300. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  301. if (unlikely(!*hugepage_kobj)) {
  302. pr_err("failed to create transparent hugepage kobject\n");
  303. return -ENOMEM;
  304. }
  305. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  306. if (err) {
  307. pr_err("failed to register transparent hugepage group\n");
  308. goto delete_obj;
  309. }
  310. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  311. if (err) {
  312. pr_err("failed to register transparent hugepage group\n");
  313. goto remove_hp_group;
  314. }
  315. return 0;
  316. remove_hp_group:
  317. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  318. delete_obj:
  319. kobject_put(*hugepage_kobj);
  320. return err;
  321. }
  322. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  323. {
  324. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  325. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  326. kobject_put(hugepage_kobj);
  327. }
  328. #else
  329. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  330. {
  331. return 0;
  332. }
  333. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  334. {
  335. }
  336. #endif /* CONFIG_SYSFS */
  337. static int __init hugepage_init(void)
  338. {
  339. int err;
  340. struct kobject *hugepage_kobj;
  341. if (!has_transparent_hugepage()) {
  342. transparent_hugepage_flags = 0;
  343. return -EINVAL;
  344. }
  345. /*
  346. * hugepages can't be allocated by the buddy allocator
  347. */
  348. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
  349. /*
  350. * we use page->mapping and page->index in second tail page
  351. * as list_head: assuming THP order >= 2
  352. */
  353. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
  354. err = hugepage_init_sysfs(&hugepage_kobj);
  355. if (err)
  356. goto err_sysfs;
  357. err = khugepaged_init();
  358. if (err)
  359. goto err_slab;
  360. err = register_shrinker(&huge_zero_page_shrinker);
  361. if (err)
  362. goto err_hzp_shrinker;
  363. err = register_shrinker(&deferred_split_shrinker);
  364. if (err)
  365. goto err_split_shrinker;
  366. /*
  367. * By default disable transparent hugepages on smaller systems,
  368. * where the extra memory used could hurt more than TLB overhead
  369. * is likely to save. The admin can still enable it through /sys.
  370. */
  371. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  372. transparent_hugepage_flags = 0;
  373. return 0;
  374. }
  375. err = start_stop_khugepaged();
  376. if (err)
  377. goto err_khugepaged;
  378. return 0;
  379. err_khugepaged:
  380. unregister_shrinker(&deferred_split_shrinker);
  381. err_split_shrinker:
  382. unregister_shrinker(&huge_zero_page_shrinker);
  383. err_hzp_shrinker:
  384. khugepaged_destroy();
  385. err_slab:
  386. hugepage_exit_sysfs(hugepage_kobj);
  387. err_sysfs:
  388. return err;
  389. }
  390. subsys_initcall(hugepage_init);
  391. static int __init setup_transparent_hugepage(char *str)
  392. {
  393. int ret = 0;
  394. if (!str)
  395. goto out;
  396. if (!strcmp(str, "always")) {
  397. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  398. &transparent_hugepage_flags);
  399. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  400. &transparent_hugepage_flags);
  401. ret = 1;
  402. } else if (!strcmp(str, "madvise")) {
  403. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  404. &transparent_hugepage_flags);
  405. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  406. &transparent_hugepage_flags);
  407. ret = 1;
  408. } else if (!strcmp(str, "never")) {
  409. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  410. &transparent_hugepage_flags);
  411. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  412. &transparent_hugepage_flags);
  413. ret = 1;
  414. }
  415. out:
  416. if (!ret)
  417. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  418. return ret;
  419. }
  420. __setup("transparent_hugepage=", setup_transparent_hugepage);
  421. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  422. {
  423. if (likely(vma->vm_flags & VM_WRITE))
  424. pmd = pmd_mkwrite(pmd);
  425. return pmd;
  426. }
  427. static inline struct list_head *page_deferred_list(struct page *page)
  428. {
  429. /*
  430. * ->lru in the tail pages is occupied by compound_head.
  431. * Let's use ->mapping + ->index in the second tail page as list_head.
  432. */
  433. return (struct list_head *)&page[2].mapping;
  434. }
  435. void prep_transhuge_page(struct page *page)
  436. {
  437. /*
  438. * we use page->mapping and page->indexlru in second tail page
  439. * as list_head: assuming THP order >= 2
  440. */
  441. INIT_LIST_HEAD(page_deferred_list(page));
  442. set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
  443. }
  444. unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
  445. loff_t off, unsigned long flags, unsigned long size)
  446. {
  447. unsigned long addr;
  448. loff_t off_end = off + len;
  449. loff_t off_align = round_up(off, size);
  450. unsigned long len_pad;
  451. if (off_end <= off_align || (off_end - off_align) < size)
  452. return 0;
  453. len_pad = len + size;
  454. if (len_pad < len || (off + len_pad) < off)
  455. return 0;
  456. addr = current->mm->get_unmapped_area(filp, 0, len_pad,
  457. off >> PAGE_SHIFT, flags);
  458. if (IS_ERR_VALUE(addr))
  459. return 0;
  460. addr += (off - addr) & (size - 1);
  461. return addr;
  462. }
  463. unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
  464. unsigned long len, unsigned long pgoff, unsigned long flags)
  465. {
  466. loff_t off = (loff_t)pgoff << PAGE_SHIFT;
  467. if (addr)
  468. goto out;
  469. if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
  470. goto out;
  471. addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
  472. if (addr)
  473. return addr;
  474. out:
  475. return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
  476. }
  477. EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
  478. static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
  479. gfp_t gfp)
  480. {
  481. struct vm_area_struct *vma = vmf->vma;
  482. struct mem_cgroup *memcg;
  483. pgtable_t pgtable;
  484. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  485. VM_BUG_ON_PAGE(!PageCompound(page), page);
  486. if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
  487. put_page(page);
  488. count_vm_event(THP_FAULT_FALLBACK);
  489. return VM_FAULT_FALLBACK;
  490. }
  491. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  492. if (unlikely(!pgtable)) {
  493. mem_cgroup_cancel_charge(page, memcg, true);
  494. put_page(page);
  495. return VM_FAULT_OOM;
  496. }
  497. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  498. /*
  499. * The memory barrier inside __SetPageUptodate makes sure that
  500. * clear_huge_page writes become visible before the set_pmd_at()
  501. * write.
  502. */
  503. __SetPageUptodate(page);
  504. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  505. if (unlikely(!pmd_none(*vmf->pmd))) {
  506. spin_unlock(vmf->ptl);
  507. mem_cgroup_cancel_charge(page, memcg, true);
  508. put_page(page);
  509. pte_free(vma->vm_mm, pgtable);
  510. } else {
  511. pmd_t entry;
  512. /* Deliver the page fault to userland */
  513. if (userfaultfd_missing(vma)) {
  514. int ret;
  515. spin_unlock(vmf->ptl);
  516. mem_cgroup_cancel_charge(page, memcg, true);
  517. put_page(page);
  518. pte_free(vma->vm_mm, pgtable);
  519. ret = handle_userfault(vmf, VM_UFFD_MISSING);
  520. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  521. return ret;
  522. }
  523. entry = mk_huge_pmd(page, vma->vm_page_prot);
  524. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  525. page_add_new_anon_rmap(page, vma, haddr, true);
  526. mem_cgroup_commit_charge(page, memcg, false, true);
  527. lru_cache_add_active_or_unevictable(page, vma);
  528. pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
  529. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
  530. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  531. atomic_long_inc(&vma->vm_mm->nr_ptes);
  532. spin_unlock(vmf->ptl);
  533. count_vm_event(THP_FAULT_ALLOC);
  534. }
  535. return 0;
  536. }
  537. /*
  538. * always: directly stall for all thp allocations
  539. * defer: wake kswapd and fail if not immediately available
  540. * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
  541. * fail if not immediately available
  542. * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
  543. * available
  544. * never: never stall for any thp allocation
  545. */
  546. static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
  547. {
  548. const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
  549. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  550. return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
  551. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  552. return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
  553. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
  554. return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
  555. __GFP_KSWAPD_RECLAIM);
  556. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  557. return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
  558. 0);
  559. return GFP_TRANSHUGE_LIGHT;
  560. }
  561. /* Caller must hold page table lock. */
  562. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  563. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  564. struct page *zero_page)
  565. {
  566. pmd_t entry;
  567. if (!pmd_none(*pmd))
  568. return false;
  569. entry = mk_pmd(zero_page, vma->vm_page_prot);
  570. entry = pmd_mkhuge(entry);
  571. if (pgtable)
  572. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  573. set_pmd_at(mm, haddr, pmd, entry);
  574. atomic_long_inc(&mm->nr_ptes);
  575. return true;
  576. }
  577. int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
  578. {
  579. struct vm_area_struct *vma = vmf->vma;
  580. gfp_t gfp;
  581. struct page *page;
  582. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  583. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  584. return VM_FAULT_FALLBACK;
  585. if (unlikely(anon_vma_prepare(vma)))
  586. return VM_FAULT_OOM;
  587. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  588. return VM_FAULT_OOM;
  589. if (!(vmf->flags & FAULT_FLAG_WRITE) &&
  590. !mm_forbids_zeropage(vma->vm_mm) &&
  591. transparent_hugepage_use_zero_page()) {
  592. pgtable_t pgtable;
  593. struct page *zero_page;
  594. bool set;
  595. int ret;
  596. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  597. if (unlikely(!pgtable))
  598. return VM_FAULT_OOM;
  599. zero_page = mm_get_huge_zero_page(vma->vm_mm);
  600. if (unlikely(!zero_page)) {
  601. pte_free(vma->vm_mm, pgtable);
  602. count_vm_event(THP_FAULT_FALLBACK);
  603. return VM_FAULT_FALLBACK;
  604. }
  605. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  606. ret = 0;
  607. set = false;
  608. if (pmd_none(*vmf->pmd)) {
  609. if (userfaultfd_missing(vma)) {
  610. spin_unlock(vmf->ptl);
  611. ret = handle_userfault(vmf, VM_UFFD_MISSING);
  612. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  613. } else {
  614. set_huge_zero_page(pgtable, vma->vm_mm, vma,
  615. haddr, vmf->pmd, zero_page);
  616. spin_unlock(vmf->ptl);
  617. set = true;
  618. }
  619. } else
  620. spin_unlock(vmf->ptl);
  621. if (!set)
  622. pte_free(vma->vm_mm, pgtable);
  623. return ret;
  624. }
  625. gfp = alloc_hugepage_direct_gfpmask(vma);
  626. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  627. if (unlikely(!page)) {
  628. count_vm_event(THP_FAULT_FALLBACK);
  629. return VM_FAULT_FALLBACK;
  630. }
  631. prep_transhuge_page(page);
  632. return __do_huge_pmd_anonymous_page(vmf, page, gfp);
  633. }
  634. static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  635. pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
  636. {
  637. struct mm_struct *mm = vma->vm_mm;
  638. pmd_t entry;
  639. spinlock_t *ptl;
  640. ptl = pmd_lock(mm, pmd);
  641. entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
  642. if (pfn_t_devmap(pfn))
  643. entry = pmd_mkdevmap(entry);
  644. if (write) {
  645. entry = pmd_mkyoung(pmd_mkdirty(entry));
  646. entry = maybe_pmd_mkwrite(entry, vma);
  647. }
  648. set_pmd_at(mm, addr, pmd, entry);
  649. update_mmu_cache_pmd(vma, addr, pmd);
  650. spin_unlock(ptl);
  651. }
  652. int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  653. pmd_t *pmd, pfn_t pfn, bool write)
  654. {
  655. pgprot_t pgprot = vma->vm_page_prot;
  656. /*
  657. * If we had pmd_special, we could avoid all these restrictions,
  658. * but we need to be consistent with PTEs and architectures that
  659. * can't support a 'special' bit.
  660. */
  661. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  662. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  663. (VM_PFNMAP|VM_MIXEDMAP));
  664. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  665. BUG_ON(!pfn_t_devmap(pfn));
  666. if (addr < vma->vm_start || addr >= vma->vm_end)
  667. return VM_FAULT_SIGBUS;
  668. track_pfn_insert(vma, &pgprot, pfn);
  669. insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
  670. return VM_FAULT_NOPAGE;
  671. }
  672. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
  673. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  674. static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
  675. {
  676. if (likely(vma->vm_flags & VM_WRITE))
  677. pud = pud_mkwrite(pud);
  678. return pud;
  679. }
  680. static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
  681. pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
  682. {
  683. struct mm_struct *mm = vma->vm_mm;
  684. pud_t entry;
  685. spinlock_t *ptl;
  686. ptl = pud_lock(mm, pud);
  687. entry = pud_mkhuge(pfn_t_pud(pfn, prot));
  688. if (pfn_t_devmap(pfn))
  689. entry = pud_mkdevmap(entry);
  690. if (write) {
  691. entry = pud_mkyoung(pud_mkdirty(entry));
  692. entry = maybe_pud_mkwrite(entry, vma);
  693. }
  694. set_pud_at(mm, addr, pud, entry);
  695. update_mmu_cache_pud(vma, addr, pud);
  696. spin_unlock(ptl);
  697. }
  698. int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
  699. pud_t *pud, pfn_t pfn, bool write)
  700. {
  701. pgprot_t pgprot = vma->vm_page_prot;
  702. /*
  703. * If we had pud_special, we could avoid all these restrictions,
  704. * but we need to be consistent with PTEs and architectures that
  705. * can't support a 'special' bit.
  706. */
  707. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  708. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  709. (VM_PFNMAP|VM_MIXEDMAP));
  710. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  711. BUG_ON(!pfn_t_devmap(pfn));
  712. if (addr < vma->vm_start || addr >= vma->vm_end)
  713. return VM_FAULT_SIGBUS;
  714. track_pfn_insert(vma, &pgprot, pfn);
  715. insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
  716. return VM_FAULT_NOPAGE;
  717. }
  718. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
  719. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  720. static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
  721. pmd_t *pmd)
  722. {
  723. pmd_t _pmd;
  724. /*
  725. * We should set the dirty bit only for FOLL_WRITE but for now
  726. * the dirty bit in the pmd is meaningless. And if the dirty
  727. * bit will become meaningful and we'll only set it with
  728. * FOLL_WRITE, an atomic set_bit will be required on the pmd to
  729. * set the young bit, instead of the current set_pmd_at.
  730. */
  731. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  732. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  733. pmd, _pmd, 1))
  734. update_mmu_cache_pmd(vma, addr, pmd);
  735. }
  736. struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
  737. pmd_t *pmd, int flags)
  738. {
  739. unsigned long pfn = pmd_pfn(*pmd);
  740. struct mm_struct *mm = vma->vm_mm;
  741. struct dev_pagemap *pgmap;
  742. struct page *page;
  743. assert_spin_locked(pmd_lockptr(mm, pmd));
  744. /*
  745. * When we COW a devmap PMD entry, we split it into PTEs, so we should
  746. * not be in this function with `flags & FOLL_COW` set.
  747. */
  748. WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
  749. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  750. return NULL;
  751. if (pmd_present(*pmd) && pmd_devmap(*pmd))
  752. /* pass */;
  753. else
  754. return NULL;
  755. if (flags & FOLL_TOUCH)
  756. touch_pmd(vma, addr, pmd);
  757. /*
  758. * device mapped pages can only be returned if the
  759. * caller will manage the page reference count.
  760. */
  761. if (!(flags & FOLL_GET))
  762. return ERR_PTR(-EEXIST);
  763. pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
  764. pgmap = get_dev_pagemap(pfn, NULL);
  765. if (!pgmap)
  766. return ERR_PTR(-EFAULT);
  767. page = pfn_to_page(pfn);
  768. get_page(page);
  769. put_dev_pagemap(pgmap);
  770. return page;
  771. }
  772. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  773. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  774. struct vm_area_struct *vma)
  775. {
  776. spinlock_t *dst_ptl, *src_ptl;
  777. struct page *src_page;
  778. pmd_t pmd;
  779. pgtable_t pgtable = NULL;
  780. int ret = -ENOMEM;
  781. /* Skip if can be re-fill on fault */
  782. if (!vma_is_anonymous(vma))
  783. return 0;
  784. pgtable = pte_alloc_one(dst_mm, addr);
  785. if (unlikely(!pgtable))
  786. goto out;
  787. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  788. src_ptl = pmd_lockptr(src_mm, src_pmd);
  789. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  790. ret = -EAGAIN;
  791. pmd = *src_pmd;
  792. if (unlikely(!pmd_trans_huge(pmd))) {
  793. pte_free(dst_mm, pgtable);
  794. goto out_unlock;
  795. }
  796. /*
  797. * When page table lock is held, the huge zero pmd should not be
  798. * under splitting since we don't split the page itself, only pmd to
  799. * a page table.
  800. */
  801. if (is_huge_zero_pmd(pmd)) {
  802. struct page *zero_page;
  803. /*
  804. * get_huge_zero_page() will never allocate a new page here,
  805. * since we already have a zero page to copy. It just takes a
  806. * reference.
  807. */
  808. zero_page = mm_get_huge_zero_page(dst_mm);
  809. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  810. zero_page);
  811. ret = 0;
  812. goto out_unlock;
  813. }
  814. src_page = pmd_page(pmd);
  815. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  816. get_page(src_page);
  817. page_dup_rmap(src_page, true);
  818. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  819. atomic_long_inc(&dst_mm->nr_ptes);
  820. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  821. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  822. pmd = pmd_mkold(pmd_wrprotect(pmd));
  823. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  824. ret = 0;
  825. out_unlock:
  826. spin_unlock(src_ptl);
  827. spin_unlock(dst_ptl);
  828. out:
  829. return ret;
  830. }
  831. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  832. static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
  833. pud_t *pud)
  834. {
  835. pud_t _pud;
  836. /*
  837. * We should set the dirty bit only for FOLL_WRITE but for now
  838. * the dirty bit in the pud is meaningless. And if the dirty
  839. * bit will become meaningful and we'll only set it with
  840. * FOLL_WRITE, an atomic set_bit will be required on the pud to
  841. * set the young bit, instead of the current set_pud_at.
  842. */
  843. _pud = pud_mkyoung(pud_mkdirty(*pud));
  844. if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
  845. pud, _pud, 1))
  846. update_mmu_cache_pud(vma, addr, pud);
  847. }
  848. struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
  849. pud_t *pud, int flags)
  850. {
  851. unsigned long pfn = pud_pfn(*pud);
  852. struct mm_struct *mm = vma->vm_mm;
  853. struct dev_pagemap *pgmap;
  854. struct page *page;
  855. assert_spin_locked(pud_lockptr(mm, pud));
  856. if (flags & FOLL_WRITE && !pud_write(*pud))
  857. return NULL;
  858. if (pud_present(*pud) && pud_devmap(*pud))
  859. /* pass */;
  860. else
  861. return NULL;
  862. if (flags & FOLL_TOUCH)
  863. touch_pud(vma, addr, pud);
  864. /*
  865. * device mapped pages can only be returned if the
  866. * caller will manage the page reference count.
  867. */
  868. if (!(flags & FOLL_GET))
  869. return ERR_PTR(-EEXIST);
  870. pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
  871. pgmap = get_dev_pagemap(pfn, NULL);
  872. if (!pgmap)
  873. return ERR_PTR(-EFAULT);
  874. page = pfn_to_page(pfn);
  875. get_page(page);
  876. put_dev_pagemap(pgmap);
  877. return page;
  878. }
  879. int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  880. pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
  881. struct vm_area_struct *vma)
  882. {
  883. spinlock_t *dst_ptl, *src_ptl;
  884. pud_t pud;
  885. int ret;
  886. dst_ptl = pud_lock(dst_mm, dst_pud);
  887. src_ptl = pud_lockptr(src_mm, src_pud);
  888. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  889. ret = -EAGAIN;
  890. pud = *src_pud;
  891. if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
  892. goto out_unlock;
  893. /*
  894. * When page table lock is held, the huge zero pud should not be
  895. * under splitting since we don't split the page itself, only pud to
  896. * a page table.
  897. */
  898. if (is_huge_zero_pud(pud)) {
  899. /* No huge zero pud yet */
  900. }
  901. pudp_set_wrprotect(src_mm, addr, src_pud);
  902. pud = pud_mkold(pud_wrprotect(pud));
  903. set_pud_at(dst_mm, addr, dst_pud, pud);
  904. ret = 0;
  905. out_unlock:
  906. spin_unlock(src_ptl);
  907. spin_unlock(dst_ptl);
  908. return ret;
  909. }
  910. void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
  911. {
  912. pud_t entry;
  913. unsigned long haddr;
  914. bool write = vmf->flags & FAULT_FLAG_WRITE;
  915. vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
  916. if (unlikely(!pud_same(*vmf->pud, orig_pud)))
  917. goto unlock;
  918. entry = pud_mkyoung(orig_pud);
  919. if (write)
  920. entry = pud_mkdirty(entry);
  921. haddr = vmf->address & HPAGE_PUD_MASK;
  922. if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
  923. update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
  924. unlock:
  925. spin_unlock(vmf->ptl);
  926. }
  927. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  928. void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
  929. {
  930. pmd_t entry;
  931. unsigned long haddr;
  932. bool write = vmf->flags & FAULT_FLAG_WRITE;
  933. vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
  934. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  935. goto unlock;
  936. entry = pmd_mkyoung(orig_pmd);
  937. if (write)
  938. entry = pmd_mkdirty(entry);
  939. haddr = vmf->address & HPAGE_PMD_MASK;
  940. if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
  941. update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
  942. unlock:
  943. spin_unlock(vmf->ptl);
  944. }
  945. static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
  946. struct page *page)
  947. {
  948. struct vm_area_struct *vma = vmf->vma;
  949. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  950. struct mem_cgroup *memcg;
  951. pgtable_t pgtable;
  952. pmd_t _pmd;
  953. int ret = 0, i;
  954. struct page **pages;
  955. unsigned long mmun_start; /* For mmu_notifiers */
  956. unsigned long mmun_end; /* For mmu_notifiers */
  957. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  958. GFP_KERNEL);
  959. if (unlikely(!pages)) {
  960. ret |= VM_FAULT_OOM;
  961. goto out;
  962. }
  963. for (i = 0; i < HPAGE_PMD_NR; i++) {
  964. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
  965. vmf->address, page_to_nid(page));
  966. if (unlikely(!pages[i] ||
  967. mem_cgroup_try_charge(pages[i], vma->vm_mm,
  968. GFP_KERNEL, &memcg, false))) {
  969. if (pages[i])
  970. put_page(pages[i]);
  971. while (--i >= 0) {
  972. memcg = (void *)page_private(pages[i]);
  973. set_page_private(pages[i], 0);
  974. mem_cgroup_cancel_charge(pages[i], memcg,
  975. false);
  976. put_page(pages[i]);
  977. }
  978. kfree(pages);
  979. ret |= VM_FAULT_OOM;
  980. goto out;
  981. }
  982. set_page_private(pages[i], (unsigned long)memcg);
  983. }
  984. for (i = 0; i < HPAGE_PMD_NR; i++) {
  985. copy_user_highpage(pages[i], page + i,
  986. haddr + PAGE_SIZE * i, vma);
  987. __SetPageUptodate(pages[i]);
  988. cond_resched();
  989. }
  990. mmun_start = haddr;
  991. mmun_end = haddr + HPAGE_PMD_SIZE;
  992. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  993. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  994. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  995. goto out_free_pages;
  996. VM_BUG_ON_PAGE(!PageHead(page), page);
  997. pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
  998. /* leave pmd empty until pte is filled */
  999. pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
  1000. pmd_populate(vma->vm_mm, &_pmd, pgtable);
  1001. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1002. pte_t entry;
  1003. entry = mk_pte(pages[i], vma->vm_page_prot);
  1004. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1005. memcg = (void *)page_private(pages[i]);
  1006. set_page_private(pages[i], 0);
  1007. page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
  1008. mem_cgroup_commit_charge(pages[i], memcg, false, false);
  1009. lru_cache_add_active_or_unevictable(pages[i], vma);
  1010. vmf->pte = pte_offset_map(&_pmd, haddr);
  1011. VM_BUG_ON(!pte_none(*vmf->pte));
  1012. set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
  1013. pte_unmap(vmf->pte);
  1014. }
  1015. kfree(pages);
  1016. smp_wmb(); /* make pte visible before pmd */
  1017. pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
  1018. page_remove_rmap(page, true);
  1019. spin_unlock(vmf->ptl);
  1020. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  1021. ret |= VM_FAULT_WRITE;
  1022. put_page(page);
  1023. out:
  1024. return ret;
  1025. out_free_pages:
  1026. spin_unlock(vmf->ptl);
  1027. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  1028. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1029. memcg = (void *)page_private(pages[i]);
  1030. set_page_private(pages[i], 0);
  1031. mem_cgroup_cancel_charge(pages[i], memcg, false);
  1032. put_page(pages[i]);
  1033. }
  1034. kfree(pages);
  1035. goto out;
  1036. }
  1037. int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
  1038. {
  1039. struct vm_area_struct *vma = vmf->vma;
  1040. struct page *page = NULL, *new_page;
  1041. struct mem_cgroup *memcg;
  1042. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1043. unsigned long mmun_start; /* For mmu_notifiers */
  1044. unsigned long mmun_end; /* For mmu_notifiers */
  1045. gfp_t huge_gfp; /* for allocation and charge */
  1046. int ret = 0;
  1047. vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
  1048. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  1049. if (is_huge_zero_pmd(orig_pmd))
  1050. goto alloc;
  1051. spin_lock(vmf->ptl);
  1052. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  1053. goto out_unlock;
  1054. page = pmd_page(orig_pmd);
  1055. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  1056. /*
  1057. * We can only reuse the page if nobody else maps the huge page or it's
  1058. * part.
  1059. */
  1060. if (page_trans_huge_mapcount(page, NULL) == 1) {
  1061. pmd_t entry;
  1062. entry = pmd_mkyoung(orig_pmd);
  1063. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1064. if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
  1065. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1066. ret |= VM_FAULT_WRITE;
  1067. goto out_unlock;
  1068. }
  1069. get_page(page);
  1070. spin_unlock(vmf->ptl);
  1071. alloc:
  1072. if (transparent_hugepage_enabled(vma) &&
  1073. !transparent_hugepage_debug_cow()) {
  1074. huge_gfp = alloc_hugepage_direct_gfpmask(vma);
  1075. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  1076. } else
  1077. new_page = NULL;
  1078. if (likely(new_page)) {
  1079. prep_transhuge_page(new_page);
  1080. } else {
  1081. if (!page) {
  1082. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1083. ret |= VM_FAULT_FALLBACK;
  1084. } else {
  1085. ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
  1086. if (ret & VM_FAULT_OOM) {
  1087. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1088. ret |= VM_FAULT_FALLBACK;
  1089. }
  1090. put_page(page);
  1091. }
  1092. count_vm_event(THP_FAULT_FALLBACK);
  1093. goto out;
  1094. }
  1095. if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
  1096. huge_gfp, &memcg, true))) {
  1097. put_page(new_page);
  1098. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1099. if (page)
  1100. put_page(page);
  1101. ret |= VM_FAULT_FALLBACK;
  1102. count_vm_event(THP_FAULT_FALLBACK);
  1103. goto out;
  1104. }
  1105. count_vm_event(THP_FAULT_ALLOC);
  1106. if (!page)
  1107. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1108. else
  1109. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1110. __SetPageUptodate(new_page);
  1111. mmun_start = haddr;
  1112. mmun_end = haddr + HPAGE_PMD_SIZE;
  1113. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  1114. spin_lock(vmf->ptl);
  1115. if (page)
  1116. put_page(page);
  1117. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
  1118. spin_unlock(vmf->ptl);
  1119. mem_cgroup_cancel_charge(new_page, memcg, true);
  1120. put_page(new_page);
  1121. goto out_mn;
  1122. } else {
  1123. pmd_t entry;
  1124. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1125. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1126. pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
  1127. page_add_new_anon_rmap(new_page, vma, haddr, true);
  1128. mem_cgroup_commit_charge(new_page, memcg, false, true);
  1129. lru_cache_add_active_or_unevictable(new_page, vma);
  1130. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
  1131. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1132. if (!page) {
  1133. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1134. } else {
  1135. VM_BUG_ON_PAGE(!PageHead(page), page);
  1136. page_remove_rmap(page, true);
  1137. put_page(page);
  1138. }
  1139. ret |= VM_FAULT_WRITE;
  1140. }
  1141. spin_unlock(vmf->ptl);
  1142. out_mn:
  1143. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  1144. out:
  1145. return ret;
  1146. out_unlock:
  1147. spin_unlock(vmf->ptl);
  1148. return ret;
  1149. }
  1150. /*
  1151. * FOLL_FORCE can write to even unwritable pmd's, but only
  1152. * after we've gone through a COW cycle and they are dirty.
  1153. */
  1154. static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
  1155. {
  1156. return pmd_write(pmd) ||
  1157. ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
  1158. }
  1159. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1160. unsigned long addr,
  1161. pmd_t *pmd,
  1162. unsigned int flags)
  1163. {
  1164. struct mm_struct *mm = vma->vm_mm;
  1165. struct page *page = NULL;
  1166. assert_spin_locked(pmd_lockptr(mm, pmd));
  1167. if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
  1168. goto out;
  1169. /* Avoid dumping huge zero page */
  1170. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1171. return ERR_PTR(-EFAULT);
  1172. /* Full NUMA hinting faults to serialise migration in fault paths */
  1173. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  1174. goto out;
  1175. page = pmd_page(*pmd);
  1176. VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
  1177. if (flags & FOLL_TOUCH)
  1178. touch_pmd(vma, addr, pmd);
  1179. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1180. /*
  1181. * We don't mlock() pte-mapped THPs. This way we can avoid
  1182. * leaking mlocked pages into non-VM_LOCKED VMAs.
  1183. *
  1184. * For anon THP:
  1185. *
  1186. * In most cases the pmd is the only mapping of the page as we
  1187. * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
  1188. * writable private mappings in populate_vma_page_range().
  1189. *
  1190. * The only scenario when we have the page shared here is if we
  1191. * mlocking read-only mapping shared over fork(). We skip
  1192. * mlocking such pages.
  1193. *
  1194. * For file THP:
  1195. *
  1196. * We can expect PageDoubleMap() to be stable under page lock:
  1197. * for file pages we set it in page_add_file_rmap(), which
  1198. * requires page to be locked.
  1199. */
  1200. if (PageAnon(page) && compound_mapcount(page) != 1)
  1201. goto skip_mlock;
  1202. if (PageDoubleMap(page) || !page->mapping)
  1203. goto skip_mlock;
  1204. if (!trylock_page(page))
  1205. goto skip_mlock;
  1206. lru_add_drain();
  1207. if (page->mapping && !PageDoubleMap(page))
  1208. mlock_vma_page(page);
  1209. unlock_page(page);
  1210. }
  1211. skip_mlock:
  1212. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1213. VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
  1214. if (flags & FOLL_GET)
  1215. get_page(page);
  1216. out:
  1217. return page;
  1218. }
  1219. /* NUMA hinting page fault entry point for trans huge pmds */
  1220. int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
  1221. {
  1222. struct vm_area_struct *vma = vmf->vma;
  1223. struct anon_vma *anon_vma = NULL;
  1224. struct page *page;
  1225. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1226. int page_nid = -1, this_nid = numa_node_id();
  1227. int target_nid, last_cpupid = -1;
  1228. bool page_locked;
  1229. bool migrated = false;
  1230. bool was_writable;
  1231. int flags = 0;
  1232. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  1233. if (unlikely(!pmd_same(pmd, *vmf->pmd)))
  1234. goto out_unlock;
  1235. /*
  1236. * If there are potential migrations, wait for completion and retry
  1237. * without disrupting NUMA hinting information. Do not relock and
  1238. * check_same as the page may no longer be mapped.
  1239. */
  1240. if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
  1241. page = pmd_page(*vmf->pmd);
  1242. spin_unlock(vmf->ptl);
  1243. wait_on_page_locked(page);
  1244. goto out;
  1245. }
  1246. page = pmd_page(pmd);
  1247. BUG_ON(is_huge_zero_page(page));
  1248. page_nid = page_to_nid(page);
  1249. last_cpupid = page_cpupid_last(page);
  1250. count_vm_numa_event(NUMA_HINT_FAULTS);
  1251. if (page_nid == this_nid) {
  1252. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1253. flags |= TNF_FAULT_LOCAL;
  1254. }
  1255. /* See similar comment in do_numa_page for explanation */
  1256. if (!pmd_savedwrite(pmd))
  1257. flags |= TNF_NO_GROUP;
  1258. /*
  1259. * Acquire the page lock to serialise THP migrations but avoid dropping
  1260. * page_table_lock if at all possible
  1261. */
  1262. page_locked = trylock_page(page);
  1263. target_nid = mpol_misplaced(page, vma, haddr);
  1264. if (target_nid == -1) {
  1265. /* If the page was locked, there are no parallel migrations */
  1266. if (page_locked)
  1267. goto clear_pmdnuma;
  1268. }
  1269. /* Migration could have started since the pmd_trans_migrating check */
  1270. if (!page_locked) {
  1271. spin_unlock(vmf->ptl);
  1272. wait_on_page_locked(page);
  1273. page_nid = -1;
  1274. goto out;
  1275. }
  1276. /*
  1277. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1278. * to serialises splits
  1279. */
  1280. get_page(page);
  1281. spin_unlock(vmf->ptl);
  1282. anon_vma = page_lock_anon_vma_read(page);
  1283. /* Confirm the PMD did not change while page_table_lock was released */
  1284. spin_lock(vmf->ptl);
  1285. if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
  1286. unlock_page(page);
  1287. put_page(page);
  1288. page_nid = -1;
  1289. goto out_unlock;
  1290. }
  1291. /* Bail if we fail to protect against THP splits for any reason */
  1292. if (unlikely(!anon_vma)) {
  1293. put_page(page);
  1294. page_nid = -1;
  1295. goto clear_pmdnuma;
  1296. }
  1297. /*
  1298. * Migrate the THP to the requested node, returns with page unlocked
  1299. * and access rights restored.
  1300. */
  1301. spin_unlock(vmf->ptl);
  1302. migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
  1303. vmf->pmd, pmd, vmf->address, page, target_nid);
  1304. if (migrated) {
  1305. flags |= TNF_MIGRATED;
  1306. page_nid = target_nid;
  1307. } else
  1308. flags |= TNF_MIGRATE_FAIL;
  1309. goto out;
  1310. clear_pmdnuma:
  1311. BUG_ON(!PageLocked(page));
  1312. was_writable = pmd_savedwrite(pmd);
  1313. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1314. pmd = pmd_mkyoung(pmd);
  1315. if (was_writable)
  1316. pmd = pmd_mkwrite(pmd);
  1317. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
  1318. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1319. unlock_page(page);
  1320. out_unlock:
  1321. spin_unlock(vmf->ptl);
  1322. out:
  1323. if (anon_vma)
  1324. page_unlock_anon_vma_read(anon_vma);
  1325. if (page_nid != -1)
  1326. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
  1327. flags);
  1328. return 0;
  1329. }
  1330. /*
  1331. * Return true if we do MADV_FREE successfully on entire pmd page.
  1332. * Otherwise, return false.
  1333. */
  1334. bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1335. pmd_t *pmd, unsigned long addr, unsigned long next)
  1336. {
  1337. spinlock_t *ptl;
  1338. pmd_t orig_pmd;
  1339. struct page *page;
  1340. struct mm_struct *mm = tlb->mm;
  1341. bool ret = false;
  1342. tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
  1343. ptl = pmd_trans_huge_lock(pmd, vma);
  1344. if (!ptl)
  1345. goto out_unlocked;
  1346. orig_pmd = *pmd;
  1347. if (is_huge_zero_pmd(orig_pmd))
  1348. goto out;
  1349. page = pmd_page(orig_pmd);
  1350. /*
  1351. * If other processes are mapping this page, we couldn't discard
  1352. * the page unless they all do MADV_FREE so let's skip the page.
  1353. */
  1354. if (page_mapcount(page) != 1)
  1355. goto out;
  1356. if (!trylock_page(page))
  1357. goto out;
  1358. /*
  1359. * If user want to discard part-pages of THP, split it so MADV_FREE
  1360. * will deactivate only them.
  1361. */
  1362. if (next - addr != HPAGE_PMD_SIZE) {
  1363. get_page(page);
  1364. spin_unlock(ptl);
  1365. split_huge_page(page);
  1366. put_page(page);
  1367. unlock_page(page);
  1368. goto out_unlocked;
  1369. }
  1370. if (PageDirty(page))
  1371. ClearPageDirty(page);
  1372. unlock_page(page);
  1373. if (PageActive(page))
  1374. deactivate_page(page);
  1375. if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
  1376. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1377. tlb->fullmm);
  1378. orig_pmd = pmd_mkold(orig_pmd);
  1379. orig_pmd = pmd_mkclean(orig_pmd);
  1380. set_pmd_at(mm, addr, pmd, orig_pmd);
  1381. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1382. }
  1383. ret = true;
  1384. out:
  1385. spin_unlock(ptl);
  1386. out_unlocked:
  1387. return ret;
  1388. }
  1389. static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
  1390. {
  1391. pgtable_t pgtable;
  1392. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1393. pte_free(mm, pgtable);
  1394. atomic_long_dec(&mm->nr_ptes);
  1395. }
  1396. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1397. pmd_t *pmd, unsigned long addr)
  1398. {
  1399. pmd_t orig_pmd;
  1400. spinlock_t *ptl;
  1401. tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
  1402. ptl = __pmd_trans_huge_lock(pmd, vma);
  1403. if (!ptl)
  1404. return 0;
  1405. /*
  1406. * For architectures like ppc64 we look at deposited pgtable
  1407. * when calling pmdp_huge_get_and_clear. So do the
  1408. * pgtable_trans_huge_withdraw after finishing pmdp related
  1409. * operations.
  1410. */
  1411. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1412. tlb->fullmm);
  1413. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1414. if (vma_is_dax(vma)) {
  1415. spin_unlock(ptl);
  1416. if (is_huge_zero_pmd(orig_pmd))
  1417. tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
  1418. } else if (is_huge_zero_pmd(orig_pmd)) {
  1419. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1420. atomic_long_dec(&tlb->mm->nr_ptes);
  1421. spin_unlock(ptl);
  1422. tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
  1423. } else {
  1424. struct page *page = pmd_page(orig_pmd);
  1425. page_remove_rmap(page, true);
  1426. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1427. VM_BUG_ON_PAGE(!PageHead(page), page);
  1428. if (PageAnon(page)) {
  1429. pgtable_t pgtable;
  1430. pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
  1431. pte_free(tlb->mm, pgtable);
  1432. atomic_long_dec(&tlb->mm->nr_ptes);
  1433. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1434. } else {
  1435. if (arch_needs_pgtable_deposit())
  1436. zap_deposited_table(tlb->mm, pmd);
  1437. add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
  1438. }
  1439. spin_unlock(ptl);
  1440. tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
  1441. }
  1442. return 1;
  1443. }
  1444. #ifndef pmd_move_must_withdraw
  1445. static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
  1446. spinlock_t *old_pmd_ptl,
  1447. struct vm_area_struct *vma)
  1448. {
  1449. /*
  1450. * With split pmd lock we also need to move preallocated
  1451. * PTE page table if new_pmd is on different PMD page table.
  1452. *
  1453. * We also don't deposit and withdraw tables for file pages.
  1454. */
  1455. return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
  1456. }
  1457. #endif
  1458. bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
  1459. unsigned long new_addr, unsigned long old_end,
  1460. pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
  1461. {
  1462. spinlock_t *old_ptl, *new_ptl;
  1463. pmd_t pmd;
  1464. struct mm_struct *mm = vma->vm_mm;
  1465. bool force_flush = false;
  1466. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1467. (new_addr & ~HPAGE_PMD_MASK) ||
  1468. old_end - old_addr < HPAGE_PMD_SIZE)
  1469. return false;
  1470. /*
  1471. * The destination pmd shouldn't be established, free_pgtables()
  1472. * should have release it.
  1473. */
  1474. if (WARN_ON(!pmd_none(*new_pmd))) {
  1475. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1476. return false;
  1477. }
  1478. /*
  1479. * We don't have to worry about the ordering of src and dst
  1480. * ptlocks because exclusive mmap_sem prevents deadlock.
  1481. */
  1482. old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
  1483. if (old_ptl) {
  1484. new_ptl = pmd_lockptr(mm, new_pmd);
  1485. if (new_ptl != old_ptl)
  1486. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1487. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1488. if (pmd_present(pmd) && pmd_dirty(pmd))
  1489. force_flush = true;
  1490. VM_BUG_ON(!pmd_none(*new_pmd));
  1491. if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
  1492. pgtable_t pgtable;
  1493. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1494. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1495. }
  1496. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1497. if (new_ptl != old_ptl)
  1498. spin_unlock(new_ptl);
  1499. if (force_flush)
  1500. flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
  1501. else
  1502. *need_flush = true;
  1503. spin_unlock(old_ptl);
  1504. return true;
  1505. }
  1506. return false;
  1507. }
  1508. /*
  1509. * Returns
  1510. * - 0 if PMD could not be locked
  1511. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1512. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1513. */
  1514. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1515. unsigned long addr, pgprot_t newprot, int prot_numa)
  1516. {
  1517. struct mm_struct *mm = vma->vm_mm;
  1518. spinlock_t *ptl;
  1519. int ret = 0;
  1520. ptl = __pmd_trans_huge_lock(pmd, vma);
  1521. if (ptl) {
  1522. pmd_t entry;
  1523. bool preserve_write = prot_numa && pmd_write(*pmd);
  1524. ret = 1;
  1525. /*
  1526. * Avoid trapping faults against the zero page. The read-only
  1527. * data is likely to be read-cached on the local CPU and
  1528. * local/remote hits to the zero page are not interesting.
  1529. */
  1530. if (prot_numa && is_huge_zero_pmd(*pmd)) {
  1531. spin_unlock(ptl);
  1532. return ret;
  1533. }
  1534. if (!prot_numa || !pmd_protnone(*pmd)) {
  1535. entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
  1536. entry = pmd_modify(entry, newprot);
  1537. if (preserve_write)
  1538. entry = pmd_mk_savedwrite(entry);
  1539. ret = HPAGE_PMD_NR;
  1540. set_pmd_at(mm, addr, pmd, entry);
  1541. BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
  1542. pmd_write(entry));
  1543. }
  1544. spin_unlock(ptl);
  1545. }
  1546. return ret;
  1547. }
  1548. /*
  1549. * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
  1550. *
  1551. * Note that if it returns page table lock pointer, this routine returns without
  1552. * unlocking page table lock. So callers must unlock it.
  1553. */
  1554. spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1555. {
  1556. spinlock_t *ptl;
  1557. ptl = pmd_lock(vma->vm_mm, pmd);
  1558. if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
  1559. return ptl;
  1560. spin_unlock(ptl);
  1561. return NULL;
  1562. }
  1563. /*
  1564. * Returns true if a given pud maps a thp, false otherwise.
  1565. *
  1566. * Note that if it returns true, this routine returns without unlocking page
  1567. * table lock. So callers must unlock it.
  1568. */
  1569. spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
  1570. {
  1571. spinlock_t *ptl;
  1572. ptl = pud_lock(vma->vm_mm, pud);
  1573. if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
  1574. return ptl;
  1575. spin_unlock(ptl);
  1576. return NULL;
  1577. }
  1578. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  1579. int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1580. pud_t *pud, unsigned long addr)
  1581. {
  1582. pud_t orig_pud;
  1583. spinlock_t *ptl;
  1584. ptl = __pud_trans_huge_lock(pud, vma);
  1585. if (!ptl)
  1586. return 0;
  1587. /*
  1588. * For architectures like ppc64 we look at deposited pgtable
  1589. * when calling pudp_huge_get_and_clear. So do the
  1590. * pgtable_trans_huge_withdraw after finishing pudp related
  1591. * operations.
  1592. */
  1593. orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
  1594. tlb->fullmm);
  1595. tlb_remove_pud_tlb_entry(tlb, pud, addr);
  1596. if (vma_is_dax(vma)) {
  1597. spin_unlock(ptl);
  1598. /* No zero page support yet */
  1599. } else {
  1600. /* No support for anonymous PUD pages yet */
  1601. BUG();
  1602. }
  1603. return 1;
  1604. }
  1605. static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
  1606. unsigned long haddr)
  1607. {
  1608. VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
  1609. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  1610. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
  1611. VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
  1612. count_vm_event(THP_SPLIT_PUD);
  1613. pudp_huge_clear_flush_notify(vma, haddr, pud);
  1614. }
  1615. void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
  1616. unsigned long address)
  1617. {
  1618. spinlock_t *ptl;
  1619. struct mm_struct *mm = vma->vm_mm;
  1620. unsigned long haddr = address & HPAGE_PUD_MASK;
  1621. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
  1622. ptl = pud_lock(mm, pud);
  1623. if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
  1624. goto out;
  1625. __split_huge_pud_locked(vma, pud, haddr);
  1626. out:
  1627. spin_unlock(ptl);
  1628. mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
  1629. }
  1630. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  1631. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  1632. unsigned long haddr, pmd_t *pmd)
  1633. {
  1634. struct mm_struct *mm = vma->vm_mm;
  1635. pgtable_t pgtable;
  1636. pmd_t _pmd;
  1637. int i;
  1638. /* leave pmd empty until pte is filled */
  1639. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1640. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1641. pmd_populate(mm, &_pmd, pgtable);
  1642. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1643. pte_t *pte, entry;
  1644. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  1645. entry = pte_mkspecial(entry);
  1646. pte = pte_offset_map(&_pmd, haddr);
  1647. VM_BUG_ON(!pte_none(*pte));
  1648. set_pte_at(mm, haddr, pte, entry);
  1649. pte_unmap(pte);
  1650. }
  1651. smp_wmb(); /* make pte visible before pmd */
  1652. pmd_populate(mm, pmd, pgtable);
  1653. }
  1654. static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
  1655. unsigned long haddr, bool freeze)
  1656. {
  1657. struct mm_struct *mm = vma->vm_mm;
  1658. struct page *page;
  1659. pgtable_t pgtable;
  1660. pmd_t _pmd;
  1661. bool young, write, dirty, soft_dirty;
  1662. unsigned long addr;
  1663. int i;
  1664. VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
  1665. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  1666. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
  1667. VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
  1668. count_vm_event(THP_SPLIT_PMD);
  1669. if (!vma_is_anonymous(vma)) {
  1670. _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1671. /*
  1672. * We are going to unmap this huge page. So
  1673. * just go ahead and zap it
  1674. */
  1675. if (arch_needs_pgtable_deposit())
  1676. zap_deposited_table(mm, pmd);
  1677. if (vma_is_dax(vma))
  1678. return;
  1679. page = pmd_page(_pmd);
  1680. if (!PageReferenced(page) && pmd_young(_pmd))
  1681. SetPageReferenced(page);
  1682. page_remove_rmap(page, true);
  1683. put_page(page);
  1684. add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
  1685. return;
  1686. } else if (is_huge_zero_pmd(*pmd)) {
  1687. return __split_huge_zero_page_pmd(vma, haddr, pmd);
  1688. }
  1689. page = pmd_page(*pmd);
  1690. VM_BUG_ON_PAGE(!page_count(page), page);
  1691. page_ref_add(page, HPAGE_PMD_NR - 1);
  1692. write = pmd_write(*pmd);
  1693. young = pmd_young(*pmd);
  1694. dirty = pmd_dirty(*pmd);
  1695. soft_dirty = pmd_soft_dirty(*pmd);
  1696. pmdp_huge_split_prepare(vma, haddr, pmd);
  1697. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1698. pmd_populate(mm, &_pmd, pgtable);
  1699. for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
  1700. pte_t entry, *pte;
  1701. /*
  1702. * Note that NUMA hinting access restrictions are not
  1703. * transferred to avoid any possibility of altering
  1704. * permissions across VMAs.
  1705. */
  1706. if (freeze) {
  1707. swp_entry_t swp_entry;
  1708. swp_entry = make_migration_entry(page + i, write);
  1709. entry = swp_entry_to_pte(swp_entry);
  1710. if (soft_dirty)
  1711. entry = pte_swp_mksoft_dirty(entry);
  1712. } else {
  1713. entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
  1714. entry = maybe_mkwrite(entry, vma);
  1715. if (!write)
  1716. entry = pte_wrprotect(entry);
  1717. if (!young)
  1718. entry = pte_mkold(entry);
  1719. if (soft_dirty)
  1720. entry = pte_mksoft_dirty(entry);
  1721. }
  1722. if (dirty)
  1723. SetPageDirty(page + i);
  1724. pte = pte_offset_map(&_pmd, addr);
  1725. BUG_ON(!pte_none(*pte));
  1726. set_pte_at(mm, addr, pte, entry);
  1727. atomic_inc(&page[i]._mapcount);
  1728. pte_unmap(pte);
  1729. }
  1730. /*
  1731. * Set PG_double_map before dropping compound_mapcount to avoid
  1732. * false-negative page_mapped().
  1733. */
  1734. if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
  1735. for (i = 0; i < HPAGE_PMD_NR; i++)
  1736. atomic_inc(&page[i]._mapcount);
  1737. }
  1738. if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
  1739. /* Last compound_mapcount is gone. */
  1740. __dec_node_page_state(page, NR_ANON_THPS);
  1741. if (TestClearPageDoubleMap(page)) {
  1742. /* No need in mapcount reference anymore */
  1743. for (i = 0; i < HPAGE_PMD_NR; i++)
  1744. atomic_dec(&page[i]._mapcount);
  1745. }
  1746. }
  1747. smp_wmb(); /* make pte visible before pmd */
  1748. /*
  1749. * Up to this point the pmd is present and huge and userland has the
  1750. * whole access to the hugepage during the split (which happens in
  1751. * place). If we overwrite the pmd with the not-huge version pointing
  1752. * to the pte here (which of course we could if all CPUs were bug
  1753. * free), userland could trigger a small page size TLB miss on the
  1754. * small sized TLB while the hugepage TLB entry is still established in
  1755. * the huge TLB. Some CPU doesn't like that.
  1756. * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
  1757. * 383 on page 93. Intel should be safe but is also warns that it's
  1758. * only safe if the permission and cache attributes of the two entries
  1759. * loaded in the two TLB is identical (which should be the case here).
  1760. * But it is generally safer to never allow small and huge TLB entries
  1761. * for the same virtual address to be loaded simultaneously. So instead
  1762. * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
  1763. * current pmd notpresent (atomically because here the pmd_trans_huge
  1764. * and pmd_trans_splitting must remain set at all times on the pmd
  1765. * until the split is complete for this pmd), then we flush the SMP TLB
  1766. * and finally we write the non-huge version of the pmd entry with
  1767. * pmd_populate.
  1768. */
  1769. pmdp_invalidate(vma, haddr, pmd);
  1770. pmd_populate(mm, pmd, pgtable);
  1771. if (freeze) {
  1772. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1773. page_remove_rmap(page + i, false);
  1774. put_page(page + i);
  1775. }
  1776. }
  1777. }
  1778. void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1779. unsigned long address, bool freeze, struct page *page)
  1780. {
  1781. spinlock_t *ptl;
  1782. struct mm_struct *mm = vma->vm_mm;
  1783. unsigned long haddr = address & HPAGE_PMD_MASK;
  1784. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
  1785. ptl = pmd_lock(mm, pmd);
  1786. /*
  1787. * If caller asks to setup a migration entries, we need a page to check
  1788. * pmd against. Otherwise we can end up replacing wrong page.
  1789. */
  1790. VM_BUG_ON(freeze && !page);
  1791. if (page && page != pmd_page(*pmd))
  1792. goto out;
  1793. if (pmd_trans_huge(*pmd)) {
  1794. page = pmd_page(*pmd);
  1795. if (PageMlocked(page))
  1796. clear_page_mlock(page);
  1797. } else if (!pmd_devmap(*pmd))
  1798. goto out;
  1799. __split_huge_pmd_locked(vma, pmd, haddr, freeze);
  1800. out:
  1801. spin_unlock(ptl);
  1802. mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
  1803. }
  1804. void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
  1805. bool freeze, struct page *page)
  1806. {
  1807. pgd_t *pgd;
  1808. pud_t *pud;
  1809. pmd_t *pmd;
  1810. pgd = pgd_offset(vma->vm_mm, address);
  1811. if (!pgd_present(*pgd))
  1812. return;
  1813. pud = pud_offset(pgd, address);
  1814. if (!pud_present(*pud))
  1815. return;
  1816. pmd = pmd_offset(pud, address);
  1817. __split_huge_pmd(vma, pmd, address, freeze, page);
  1818. }
  1819. void vma_adjust_trans_huge(struct vm_area_struct *vma,
  1820. unsigned long start,
  1821. unsigned long end,
  1822. long adjust_next)
  1823. {
  1824. /*
  1825. * If the new start address isn't hpage aligned and it could
  1826. * previously contain an hugepage: check if we need to split
  1827. * an huge pmd.
  1828. */
  1829. if (start & ~HPAGE_PMD_MASK &&
  1830. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  1831. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  1832. split_huge_pmd_address(vma, start, false, NULL);
  1833. /*
  1834. * If the new end address isn't hpage aligned and it could
  1835. * previously contain an hugepage: check if we need to split
  1836. * an huge pmd.
  1837. */
  1838. if (end & ~HPAGE_PMD_MASK &&
  1839. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  1840. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  1841. split_huge_pmd_address(vma, end, false, NULL);
  1842. /*
  1843. * If we're also updating the vma->vm_next->vm_start, if the new
  1844. * vm_next->vm_start isn't page aligned and it could previously
  1845. * contain an hugepage: check if we need to split an huge pmd.
  1846. */
  1847. if (adjust_next > 0) {
  1848. struct vm_area_struct *next = vma->vm_next;
  1849. unsigned long nstart = next->vm_start;
  1850. nstart += adjust_next << PAGE_SHIFT;
  1851. if (nstart & ~HPAGE_PMD_MASK &&
  1852. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  1853. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  1854. split_huge_pmd_address(next, nstart, false, NULL);
  1855. }
  1856. }
  1857. static void freeze_page(struct page *page)
  1858. {
  1859. enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
  1860. TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
  1861. int ret;
  1862. VM_BUG_ON_PAGE(!PageHead(page), page);
  1863. if (PageAnon(page))
  1864. ttu_flags |= TTU_MIGRATION;
  1865. ret = try_to_unmap(page, ttu_flags);
  1866. VM_BUG_ON_PAGE(ret, page);
  1867. }
  1868. static void unfreeze_page(struct page *page)
  1869. {
  1870. int i;
  1871. if (PageTransHuge(page)) {
  1872. remove_migration_ptes(page, page, true);
  1873. } else {
  1874. for (i = 0; i < HPAGE_PMD_NR; i++)
  1875. remove_migration_ptes(page + i, page + i, true);
  1876. }
  1877. }
  1878. static void __split_huge_page_tail(struct page *head, int tail,
  1879. struct lruvec *lruvec, struct list_head *list)
  1880. {
  1881. struct page *page_tail = head + tail;
  1882. VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
  1883. VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
  1884. /*
  1885. * tail_page->_refcount is zero and not changing from under us. But
  1886. * get_page_unless_zero() may be running from under us on the
  1887. * tail_page. If we used atomic_set() below instead of atomic_inc() or
  1888. * atomic_add(), we would then run atomic_set() concurrently with
  1889. * get_page_unless_zero(), and atomic_set() is implemented in C not
  1890. * using locked ops. spin_unlock on x86 sometime uses locked ops
  1891. * because of PPro errata 66, 92, so unless somebody can guarantee
  1892. * atomic_set() here would be safe on all archs (and not only on x86),
  1893. * it's safer to use atomic_inc()/atomic_add().
  1894. */
  1895. if (PageAnon(head)) {
  1896. page_ref_inc(page_tail);
  1897. } else {
  1898. /* Additional pin to radix tree */
  1899. page_ref_add(page_tail, 2);
  1900. }
  1901. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  1902. page_tail->flags |= (head->flags &
  1903. ((1L << PG_referenced) |
  1904. (1L << PG_swapbacked) |
  1905. (1L << PG_mlocked) |
  1906. (1L << PG_uptodate) |
  1907. (1L << PG_active) |
  1908. (1L << PG_locked) |
  1909. (1L << PG_unevictable) |
  1910. (1L << PG_dirty)));
  1911. /*
  1912. * After clearing PageTail the gup refcount can be released.
  1913. * Page flags also must be visible before we make the page non-compound.
  1914. */
  1915. smp_wmb();
  1916. clear_compound_head(page_tail);
  1917. if (page_is_young(head))
  1918. set_page_young(page_tail);
  1919. if (page_is_idle(head))
  1920. set_page_idle(page_tail);
  1921. /* ->mapping in first tail page is compound_mapcount */
  1922. VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
  1923. page_tail);
  1924. page_tail->mapping = head->mapping;
  1925. page_tail->index = head->index + tail;
  1926. page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
  1927. lru_add_page_tail(head, page_tail, lruvec, list);
  1928. }
  1929. static void __split_huge_page(struct page *page, struct list_head *list,
  1930. unsigned long flags)
  1931. {
  1932. struct page *head = compound_head(page);
  1933. struct zone *zone = page_zone(head);
  1934. struct lruvec *lruvec;
  1935. pgoff_t end = -1;
  1936. int i;
  1937. lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
  1938. /* complete memcg works before add pages to LRU */
  1939. mem_cgroup_split_huge_fixup(head);
  1940. if (!PageAnon(page))
  1941. end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
  1942. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1943. __split_huge_page_tail(head, i, lruvec, list);
  1944. /* Some pages can be beyond i_size: drop them from page cache */
  1945. if (head[i].index >= end) {
  1946. __ClearPageDirty(head + i);
  1947. __delete_from_page_cache(head + i, NULL);
  1948. if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
  1949. shmem_uncharge(head->mapping->host, 1);
  1950. put_page(head + i);
  1951. }
  1952. }
  1953. ClearPageCompound(head);
  1954. /* See comment in __split_huge_page_tail() */
  1955. if (PageAnon(head)) {
  1956. page_ref_inc(head);
  1957. } else {
  1958. /* Additional pin to radix tree */
  1959. page_ref_add(head, 2);
  1960. spin_unlock(&head->mapping->tree_lock);
  1961. }
  1962. spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
  1963. unfreeze_page(head);
  1964. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1965. struct page *subpage = head + i;
  1966. if (subpage == page)
  1967. continue;
  1968. unlock_page(subpage);
  1969. /*
  1970. * Subpages may be freed if there wasn't any mapping
  1971. * like if add_to_swap() is running on a lru page that
  1972. * had its mapping zapped. And freeing these pages
  1973. * requires taking the lru_lock so we do the put_page
  1974. * of the tail pages after the split is complete.
  1975. */
  1976. put_page(subpage);
  1977. }
  1978. }
  1979. int total_mapcount(struct page *page)
  1980. {
  1981. int i, compound, ret;
  1982. VM_BUG_ON_PAGE(PageTail(page), page);
  1983. if (likely(!PageCompound(page)))
  1984. return atomic_read(&page->_mapcount) + 1;
  1985. compound = compound_mapcount(page);
  1986. if (PageHuge(page))
  1987. return compound;
  1988. ret = compound;
  1989. for (i = 0; i < HPAGE_PMD_NR; i++)
  1990. ret += atomic_read(&page[i]._mapcount) + 1;
  1991. /* File pages has compound_mapcount included in _mapcount */
  1992. if (!PageAnon(page))
  1993. return ret - compound * HPAGE_PMD_NR;
  1994. if (PageDoubleMap(page))
  1995. ret -= HPAGE_PMD_NR;
  1996. return ret;
  1997. }
  1998. /*
  1999. * This calculates accurately how many mappings a transparent hugepage
  2000. * has (unlike page_mapcount() which isn't fully accurate). This full
  2001. * accuracy is primarily needed to know if copy-on-write faults can
  2002. * reuse the page and change the mapping to read-write instead of
  2003. * copying them. At the same time this returns the total_mapcount too.
  2004. *
  2005. * The function returns the highest mapcount any one of the subpages
  2006. * has. If the return value is one, even if different processes are
  2007. * mapping different subpages of the transparent hugepage, they can
  2008. * all reuse it, because each process is reusing a different subpage.
  2009. *
  2010. * The total_mapcount is instead counting all virtual mappings of the
  2011. * subpages. If the total_mapcount is equal to "one", it tells the
  2012. * caller all mappings belong to the same "mm" and in turn the
  2013. * anon_vma of the transparent hugepage can become the vma->anon_vma
  2014. * local one as no other process may be mapping any of the subpages.
  2015. *
  2016. * It would be more accurate to replace page_mapcount() with
  2017. * page_trans_huge_mapcount(), however we only use
  2018. * page_trans_huge_mapcount() in the copy-on-write faults where we
  2019. * need full accuracy to avoid breaking page pinning, because
  2020. * page_trans_huge_mapcount() is slower than page_mapcount().
  2021. */
  2022. int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
  2023. {
  2024. int i, ret, _total_mapcount, mapcount;
  2025. /* hugetlbfs shouldn't call it */
  2026. VM_BUG_ON_PAGE(PageHuge(page), page);
  2027. if (likely(!PageTransCompound(page))) {
  2028. mapcount = atomic_read(&page->_mapcount) + 1;
  2029. if (total_mapcount)
  2030. *total_mapcount = mapcount;
  2031. return mapcount;
  2032. }
  2033. page = compound_head(page);
  2034. _total_mapcount = ret = 0;
  2035. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2036. mapcount = atomic_read(&page[i]._mapcount) + 1;
  2037. ret = max(ret, mapcount);
  2038. _total_mapcount += mapcount;
  2039. }
  2040. if (PageDoubleMap(page)) {
  2041. ret -= 1;
  2042. _total_mapcount -= HPAGE_PMD_NR;
  2043. }
  2044. mapcount = compound_mapcount(page);
  2045. ret += mapcount;
  2046. _total_mapcount += mapcount;
  2047. if (total_mapcount)
  2048. *total_mapcount = _total_mapcount;
  2049. return ret;
  2050. }
  2051. /*
  2052. * This function splits huge page into normal pages. @page can point to any
  2053. * subpage of huge page to split. Split doesn't change the position of @page.
  2054. *
  2055. * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
  2056. * The huge page must be locked.
  2057. *
  2058. * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
  2059. *
  2060. * Both head page and tail pages will inherit mapping, flags, and so on from
  2061. * the hugepage.
  2062. *
  2063. * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
  2064. * they are not mapped.
  2065. *
  2066. * Returns 0 if the hugepage is split successfully.
  2067. * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
  2068. * us.
  2069. */
  2070. int split_huge_page_to_list(struct page *page, struct list_head *list)
  2071. {
  2072. struct page *head = compound_head(page);
  2073. struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
  2074. struct anon_vma *anon_vma = NULL;
  2075. struct address_space *mapping = NULL;
  2076. int count, mapcount, extra_pins, ret;
  2077. bool mlocked;
  2078. unsigned long flags;
  2079. VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
  2080. VM_BUG_ON_PAGE(!PageLocked(page), page);
  2081. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  2082. VM_BUG_ON_PAGE(!PageCompound(page), page);
  2083. if (PageAnon(head)) {
  2084. /*
  2085. * The caller does not necessarily hold an mmap_sem that would
  2086. * prevent the anon_vma disappearing so we first we take a
  2087. * reference to it and then lock the anon_vma for write. This
  2088. * is similar to page_lock_anon_vma_read except the write lock
  2089. * is taken to serialise against parallel split or collapse
  2090. * operations.
  2091. */
  2092. anon_vma = page_get_anon_vma(head);
  2093. if (!anon_vma) {
  2094. ret = -EBUSY;
  2095. goto out;
  2096. }
  2097. extra_pins = 0;
  2098. mapping = NULL;
  2099. anon_vma_lock_write(anon_vma);
  2100. } else {
  2101. mapping = head->mapping;
  2102. /* Truncated ? */
  2103. if (!mapping) {
  2104. ret = -EBUSY;
  2105. goto out;
  2106. }
  2107. /* Addidional pins from radix tree */
  2108. extra_pins = HPAGE_PMD_NR;
  2109. anon_vma = NULL;
  2110. i_mmap_lock_read(mapping);
  2111. }
  2112. /*
  2113. * Racy check if we can split the page, before freeze_page() will
  2114. * split PMDs
  2115. */
  2116. if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
  2117. ret = -EBUSY;
  2118. goto out_unlock;
  2119. }
  2120. mlocked = PageMlocked(page);
  2121. freeze_page(head);
  2122. VM_BUG_ON_PAGE(compound_mapcount(head), head);
  2123. /* Make sure the page is not on per-CPU pagevec as it takes pin */
  2124. if (mlocked)
  2125. lru_add_drain();
  2126. /* prevent PageLRU to go away from under us, and freeze lru stats */
  2127. spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
  2128. if (mapping) {
  2129. void **pslot;
  2130. spin_lock(&mapping->tree_lock);
  2131. pslot = radix_tree_lookup_slot(&mapping->page_tree,
  2132. page_index(head));
  2133. /*
  2134. * Check if the head page is present in radix tree.
  2135. * We assume all tail are present too, if head is there.
  2136. */
  2137. if (radix_tree_deref_slot_protected(pslot,
  2138. &mapping->tree_lock) != head)
  2139. goto fail;
  2140. }
  2141. /* Prevent deferred_split_scan() touching ->_refcount */
  2142. spin_lock(&pgdata->split_queue_lock);
  2143. count = page_count(head);
  2144. mapcount = total_mapcount(head);
  2145. if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
  2146. if (!list_empty(page_deferred_list(head))) {
  2147. pgdata->split_queue_len--;
  2148. list_del(page_deferred_list(head));
  2149. }
  2150. if (mapping)
  2151. __dec_node_page_state(page, NR_SHMEM_THPS);
  2152. spin_unlock(&pgdata->split_queue_lock);
  2153. __split_huge_page(page, list, flags);
  2154. ret = 0;
  2155. } else {
  2156. if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
  2157. pr_alert("total_mapcount: %u, page_count(): %u\n",
  2158. mapcount, count);
  2159. if (PageTail(page))
  2160. dump_page(head, NULL);
  2161. dump_page(page, "total_mapcount(head) > 0");
  2162. BUG();
  2163. }
  2164. spin_unlock(&pgdata->split_queue_lock);
  2165. fail: if (mapping)
  2166. spin_unlock(&mapping->tree_lock);
  2167. spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
  2168. unfreeze_page(head);
  2169. ret = -EBUSY;
  2170. }
  2171. out_unlock:
  2172. if (anon_vma) {
  2173. anon_vma_unlock_write(anon_vma);
  2174. put_anon_vma(anon_vma);
  2175. }
  2176. if (mapping)
  2177. i_mmap_unlock_read(mapping);
  2178. out:
  2179. count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
  2180. return ret;
  2181. }
  2182. void free_transhuge_page(struct page *page)
  2183. {
  2184. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2185. unsigned long flags;
  2186. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2187. if (!list_empty(page_deferred_list(page))) {
  2188. pgdata->split_queue_len--;
  2189. list_del(page_deferred_list(page));
  2190. }
  2191. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2192. free_compound_page(page);
  2193. }
  2194. void deferred_split_huge_page(struct page *page)
  2195. {
  2196. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2197. unsigned long flags;
  2198. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  2199. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2200. if (list_empty(page_deferred_list(page))) {
  2201. count_vm_event(THP_DEFERRED_SPLIT_PAGE);
  2202. list_add_tail(page_deferred_list(page), &pgdata->split_queue);
  2203. pgdata->split_queue_len++;
  2204. }
  2205. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2206. }
  2207. static unsigned long deferred_split_count(struct shrinker *shrink,
  2208. struct shrink_control *sc)
  2209. {
  2210. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2211. return ACCESS_ONCE(pgdata->split_queue_len);
  2212. }
  2213. static unsigned long deferred_split_scan(struct shrinker *shrink,
  2214. struct shrink_control *sc)
  2215. {
  2216. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2217. unsigned long flags;
  2218. LIST_HEAD(list), *pos, *next;
  2219. struct page *page;
  2220. int split = 0;
  2221. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2222. /* Take pin on all head pages to avoid freeing them under us */
  2223. list_for_each_safe(pos, next, &pgdata->split_queue) {
  2224. page = list_entry((void *)pos, struct page, mapping);
  2225. page = compound_head(page);
  2226. if (get_page_unless_zero(page)) {
  2227. list_move(page_deferred_list(page), &list);
  2228. } else {
  2229. /* We lost race with put_compound_page() */
  2230. list_del_init(page_deferred_list(page));
  2231. pgdata->split_queue_len--;
  2232. }
  2233. if (!--sc->nr_to_scan)
  2234. break;
  2235. }
  2236. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2237. list_for_each_safe(pos, next, &list) {
  2238. page = list_entry((void *)pos, struct page, mapping);
  2239. lock_page(page);
  2240. /* split_huge_page() removes page from list on success */
  2241. if (!split_huge_page(page))
  2242. split++;
  2243. unlock_page(page);
  2244. put_page(page);
  2245. }
  2246. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2247. list_splice_tail(&list, &pgdata->split_queue);
  2248. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2249. /*
  2250. * Stop shrinker if we didn't split any page, but the queue is empty.
  2251. * This can happen if pages were freed under us.
  2252. */
  2253. if (!split && list_empty(&pgdata->split_queue))
  2254. return SHRINK_STOP;
  2255. return split;
  2256. }
  2257. static struct shrinker deferred_split_shrinker = {
  2258. .count_objects = deferred_split_count,
  2259. .scan_objects = deferred_split_scan,
  2260. .seeks = DEFAULT_SEEKS,
  2261. .flags = SHRINKER_NUMA_AWARE,
  2262. };
  2263. #ifdef CONFIG_DEBUG_FS
  2264. static int split_huge_pages_set(void *data, u64 val)
  2265. {
  2266. struct zone *zone;
  2267. struct page *page;
  2268. unsigned long pfn, max_zone_pfn;
  2269. unsigned long total = 0, split = 0;
  2270. if (val != 1)
  2271. return -EINVAL;
  2272. for_each_populated_zone(zone) {
  2273. max_zone_pfn = zone_end_pfn(zone);
  2274. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
  2275. if (!pfn_valid(pfn))
  2276. continue;
  2277. page = pfn_to_page(pfn);
  2278. if (!get_page_unless_zero(page))
  2279. continue;
  2280. if (zone != page_zone(page))
  2281. goto next;
  2282. if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
  2283. goto next;
  2284. total++;
  2285. lock_page(page);
  2286. if (!split_huge_page(page))
  2287. split++;
  2288. unlock_page(page);
  2289. next:
  2290. put_page(page);
  2291. }
  2292. }
  2293. pr_info("%lu of %lu THP split\n", split, total);
  2294. return 0;
  2295. }
  2296. DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
  2297. "%llu\n");
  2298. static int __init split_huge_pages_debugfs(void)
  2299. {
  2300. void *ret;
  2301. ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
  2302. &split_huge_pages_fops);
  2303. if (!ret)
  2304. pr_warn("Failed to create split_huge_pages in debugfs");
  2305. return 0;
  2306. }
  2307. late_initcall(split_huge_pages_debugfs);
  2308. #endif